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Formulas and Tables



Useful Formulae and Other Information

x(t) =
∞

∑
k=−∞

cke jkω0t

ck =
1
T

∫

T
x(t)e− jkω0tdt

F{x(t)}= X(ω) =
∫ ∞

−∞
x(t)e− jωtdt

F−1{X(ω)}= x(t) =
1

2π

∫ ∞

−∞
X(ω)e jωtdω

X(ω) =
∞

∑
k=−∞

2πakδ (ω− kω0)

X(ω) =
∞

∑
k=−∞

ω0XT (kω0)δ (ω− kω0)

ak =
1
T XT (kω0)

L {x(t)}= X(s) =
∫ ∞

−∞
x(t)e−stdt

L −1{X(s)}= x(t) =
1

2π j

∫ σ+ j∞

σ− j∞
X(s)estds

U L {x(t)}= X(s) =
∫ ∞

0−
x(t)e−stdt

e jθ = cosθ + j sinθ

cosθ = 1
2

[
e jθ + e− jθ

]

sinθ = 1
2 j

[
e jθ − e− jθ

]
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Ak = (v− pk)F(v)|v=pk

Akl =
1

(qk− l)!

[
dqk−l

dvqk−l [(v− pk)
qk F(v)]

]∣∣∣∣
v=pk

ax2 +bx+ c = 0 ⇒ x =
−b±

√
b2−4ac

2a
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Fourier Series Properties
Property Time Domain Fourier Domain
Linearity Ax(t)+By(t) Aak +Bbk
Time-Domain Shifting x(t− t0) e− jkω0t0ak
Time Reversal x(−t) a−k

Fourier Transform Properties
Property Time Domain Frequency Domain
Linearity a1x1(t)+a2x2(t) a1X1(ω)+a2X2(ω)

Time-Domain Shifting x(t− t0) e− jωt0X(ω)

Frequency-Domain Shifting e jω0tx(t) X(ω−ω0)

Time/Frequency-Domain Scaling x(at) 1
|a|X

(ω
a

)

Conjugation x∗(t) X∗(−ω)

Duality X(t) 2πx(−ω)

Time-Domain Convolution x1(t)∗ x2(t) X1(ω)X2(ω)

Frequency-Domain Convolution x1(t)x2(t) 1
2π X1(ω)∗X2(ω)

Time-Domain Differentiation d
dt x(t) jωX(ω)

Frequency-Domain Differentiation tx(t) j d
dω X(ω)

Time-Domain Integration
∫ t
−∞ x(τ)dτ 1

jω X(ω)+πX(0)δ (ω)

Parseval’s Relation
∫ ∞
−∞ |x(t)|2 dt = 1

2π
∫ ∞
−∞ |X(ω)|2 dω

Fourier Transform Pairs
Pair x(t) X(ω)
1 δ (t) 1
2 u(t) πδ (ω)+ 1

jω
3 1 2πδ (ω)

4 sgn(t) 2
jω

5 e jω0t 2πδ (ω−ω0)

6 cosω0t π[δ (ω−ω0)+δ (ω +ω0)]

7 sinω0t π
j [δ (ω−ω0)−δ (ω +ω0)]

8 rect(t/T ) |T |sinc(T ω/2)

9 |B|
π sincBt rect ω

2B
10 e−atu(t), Re{a}> 0 1

a+ jω

11 tn−1e−atu(t), Re{a}> 0 (n−1)!
(a+ jω)n
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Bilateral Laplace Transform Properties
Property Time Domain Laplace Domain ROC
Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s) At least R1∩R2

Time-Domain Shifting x(t− t0) e−st0X(s) R
Laplace-Domain Shifting es0tx(t) X(s− s0) R+Re{s0}
Time/Laplace-Domain Scaling x(at) 1

|a|X
( s

a

)
aR

Conjugation x∗(t) X∗(s∗) R
Time-Domain Convolution x1(t)∗ x2(t) X1(s)X2(s) At least R1∩R2

Time-Domain Differentiation d
dt x(t) sX(s) At least R

Laplace-Domain Differentiation −tx(t) d
ds X(s) R

Time-Domain Integration
∫ t
−∞ x(τ)dτ 1

s X(s) At least R∩{Re{s}> 0}

Property
Initial Value Theorem x(0+) = lim

s→∞
sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)

Unilateral Laplace Transform Properties
Property Time Domain Laplace Domain
Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s)

Laplace-Domain Shifting es0tx(t) X(s− s0)

Time/Laplace-Domain Scaling x(at), a > 0 1
a X
( s

a

)

Conjugation x∗(t) X∗(s∗)

Time-Domain Convolution x1(t)∗ x2(t), x1(t) and x2(t) are causal X1(s)X2(s)

Time-Domain Differentiation d
dt x(t) sX(s)− x(0−)

Laplace-Domain Differentiation −tx(t) d
ds X(s)

Time-Domain Integration
∫ t

0− x(τ)dτ 1
s X(s)

Property
Initial Value Theorem x(0+) = lim

s→∞
sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)

Bilateral Laplace Transform Pairs
Pair x(t) X(s) ROC

1 δ (t) 1 All s
2 u(t) 1

s Re{s}> 0
3 −u(−t) 1

s Re{s}< 0
4 tnu(t) n!

sn+1 Re{s}> 0
5 −tnu(−t) n!

sn+1 Re{s}< 0
6 e−atu(t) 1

s+a Re{s}>−a
7 −e−atu(−t) 1

s+a Re{s}<−a
8 tne−atu(t) n!

(s+a)n+1 Re{s}>−a

9 −tne−atu(−t) n!
(s+a)n+1 Re{s}<−a

10 [cosω0t]u(t) s
s2+ω2

0
Re{s}> 0

11 [sinω0t]u(t) ω0
s2+ω2

0
Re{s}> 0

12 [e−at cosω0t]u(t) s+a
(s+a)2+ω2

0
Re{s}>−a

13 [e−at sinω0t]u(t) ω0
(s+a)2+ω2

0
Re{s}>−a

Unilateral Laplace Transform Pairs
Pair x(t) X(s)

1 δ (t) 1

2 1 1
s

3 tn n!
sn+1

4 e−at 1
s+a

5 tne−at n!
(s+a)n+1

6 cosω0t s
s2+ω2

0
7 sinω0t ω0

s2+ω2
0

8 e−at cosω0t s+a
(s+a)2+ω2

0
9 e−at sinω0t ω0

(s+a)2+ω2
0
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Complex Analysis
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Example A.10. Determine for what values of z the function f (z) = z2 is analytic.

Solution. First, we observe that f is a polynomial function. Then, we recall that polynomial functions are analytic

everywhere. Therefore, f is analytic everywhere.

Alternate Solution. We can demonstrate the analyticity of f using Theorem A.3. We express z in Cartesian form as

z = x+ jy. We rewrite f in the form of f (x,y) = v(x,y)+ jw(x,y) as follows:

f (z) = f (x+ jy) = (x+ jy)2 = x2 + j2xy− y2 = (x2 − y2)+ j(2xy).

Thus, we have that f (z) = v(x,y)+ jw(x,y), where

v(x,y) = x2 − y2 and w(x,y) = 2xy.

Now, computing the partial derivatives, we obtain

∂v

∂x
= 2x,

∂w

∂y
= 2x,

∂v

∂y
=−2y, and

∂w

∂x
= 2y.

From this, we can see that

∂v

∂x
=

∂w

∂y
and

∂v

∂y
=−

∂w

∂x
.

Therefore, the Cauchy-Riemann equations are satisfied for all complex z= x+ jy. Therefore, f is analytic everywhere.

�

Edition 2020-03-31 Copyright c© 2012–2020 Michael D. Adams



1

Example A.11. Determine for what values of z the function f (z) = 1/z is analytic.

Solution. We can deduce the analyticity properties of f as follows. First, we observe that f is a rational function.

Then, we recall that a rational function is analytic everywhere except at points where its denominator polynomial

becomes zero. Since the denominator polynomial of f only becomes zero at 0, f is analytic everywhere except at 0.

Alternate Solution. To study the analyticity of f , we use Theorem A.3. We express z in Cartesian form as z = x+ jy.

We rewrite f in the form f (x,y) = v(x,y)+ jw(x,y) as follows:

f (z) = f (x+ jy) =
1

x+ jy
=

(

1

x+ jy

)(

x− jy

x− jy

)

=
x− jy

x2 + y2
.

Thus, we have that f (x,y) = v(x,y)+ jw(x,y), where

v(x,y) =
x

x2 + y2
= x(x2 + y2)−1 and

w(x,y) =
−y

x2 + y2
=−y(x2 + y2)−1.

Now, computing the partial derivatives, we obtain

∂v

∂x
= (x2 + y2)−1 +(−1)(x2 + y2)−2(2x2) =

−2x2 +(x2 + y2)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂w

∂y
= (−1)(x2 + y2)−1 +(−1)(x2 + y2)−2(2y)(−y) =

2y2 − (x2 + y2)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂v

∂y
= (−1)(x2 + y2)−2(2y)x =

−2xy

(x2 + y2)2
, and

∂w

∂x
= (−1)(x2 + y2)−2(2x)(−y) =

2xy

(x2 + y2)2
.

So, we have that, for z 6= 0 (i.e., x and y not both zero),

∂v

∂x
=

∂w

∂y
and

∂v

∂y
=−

∂w

∂x

(i.e., the Cauchy-Riemann equations are satisfied). Therefore, f is analytic everywhere except at 0. �

Edition 2020-03-31 Copyright c© 2012–2020 Michael D. Adams



1

Example A.12 (Poles and zeros of a rational function). Find and plot the poles and (finite) zeros of the function

f (z) =
z2(z2 +1)(z−1)

(z+1)(z2 +3z+2)(z2 +2z+2)
.

Solution. We observe that f is a rational function, so we can easily determine the poles and zeros of f from its factored

form. We now proceed to factor f . First, we factor z2 +3z+2. To do this, we solve for the roots of z2 +3z+2 = 0 to

obtain

z =
−3±

√

32 −4(1)(2)

2(1)
=− 3

2
± 1

2
= {−1,−2}.

(For additional information on how to find the roots of a quadratic equation, see Section A.16.) So, we have

z2 +3z+2 = (z+1)(z+2).

Second, we factor z2 +2z+2. To do this, we solve for the roots of z2 +2z+2 = 0 to obtain

z =
−2±

√

22 −4(1)(2)

2(1)
=−1± j = {−1+ j,−1− j}.

So, we have

z2 +2z+2 = (z+1− j)(z+1+ j).

Lastly, we factor z2 +1. Using the well-known factorization for a sum of squares, we obtain

z2 +1 = (z+ j)(z− j).

Combining the above results, we can rewrite f as

f (z) =
z2(z+ j)(z− j)(z−1)

(z+1)2(z+2)(z+1− j)(z+1+ j)
.

From this expression, we can trivially deduce that f has:

• first order zeros at 1, j, and − j,

• a second order zero at 0,

• first order poles at −1+ j, −1− j, −2, and

• a second order pole at −1.

The zeros and poles of this function are plotted in Figure A.9. In such plots, the poles and zeros are typically denoted

by the symbols “x” and “o”, respectively.

−1−2 1 2

1

2

−1

−2

(2)

Im

Re
(1)

(1)

(2)

(1)

(1)

(1)

(1)

Figure A.9: Plot of the poles and zeros of f (with their orders indicated in parentheses).

�
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Example 2.2. For two functions x1 and x2, the expression x1+x2 denotes the function that is the sum of the functions

x1 and x2. The expression (x1 + x2)(t) denotes the function x1 + x2 evaluated at t. Since the addition of functions

can be defined pointwise (i.e., we can add two functions by adding their values at corresponding pairs of points), the

following relationship always holds:

(x1 + x2)(t) = x1(t)+ x2(t) for all t.

Similarly, since subtraction, multiplication, and division can also defined pointwise, the following relationships also

hold:

(x1 − x2)(t) = x1(t)− x2(t) for all t,

(x1x2)(t) = x1(t)x2(t) for all t, and

(x1/x2)(t) = x1(t)/x2(t) for all t.

It is important to note, however, that not all mathematical operations involving functions can be defined in a pointwise

manner. That is, some operations fundamentally require that their operands be functions. The convolution operation

(for functions), which will be considered later, is one such example. If some operator, which we denote for illustrative

purposes as “⋄”, is defined in such a way that it can only be applied to functions, then the expression (x1 ⋄ x2)(t) is

mathematically valid, but the expression x1(t) ⋄ x2(t) is not. The latter expression is not valid since the ⋄ operator

requires two functions as operands, but the provided operands x1(t) and x2(t) are numbers (namely, the values of the

functions x1 and x2 each evaluated at t). Due to issues like this, one must be careful in the use of mathematical notation

related to functions. Otherwise, it is easy to fall into the trap of writing expressions that are ambiguous, contradictory,

or nonsensical. �

Edition 2020-04-06 Copyright c© 2012–2020 Michael D. Adams

adding functions adding numbers

subtracting functions subtracting numbers

multiplying functions multiplying numbers

dividing numbersdividing functions
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Example 2.6. For a system operator H, a function x, and a real constant t0, the expression Hx(t − t0) denotes the

result obtained by taking the function y produced as the output of the system H when the input is the function x and

then evaluating y at t − t0. �

Edition 2020-04-06 Copyright c© 2012–2020 Michael D. Adams
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Example 2.7. For a system operator H, function x′, and real number t, the expression Hx′(t) denotes result of taking

the function y produced as the output of the system H when the input is the function x′ and then evaluating y at t. �
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3.3 Suppose that we have two functions x and y related as

y(t) = x(at −b),

where a and b are real constants and a 6= 0.

(a) Show that y can be formed by first time shifting x by b and then time scaling the result by a.

(b) Show that y can also be formed by first time scaling x by a and then time shifting the result by b
a
.

Answer (a).

Let f denote the result of time shifting x by b. So, by definition, we have

f (t) = x(t −b).

Let g denote the result of time scaling f by a. So, by definition, we have

g(t) = f (at).

Substituting the above formula for f into the equation for g, we obtain

g(t) = f (at)

= x(at −b)

= y(t).

Therefore, y can be formed in the manner specified in the problem statement.

Answer (b).

Let f denote the result of time scaling x by a. So, by definition, we have

f (t) = x(at).

Let g denote the result of time shifting f by b
a
. So, by definition, we have

g(t) = f
(

t − b
a

)

.

Substituting the above formula for f into the equation for g, we obtain

g(t) = f
(

t − b
a

)

= x
(

a
[

t − b
a

])

= x(at −b)

= y(t).

Therefore, y can be formed in the manner specified in the problem statement.
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Theorem 3.1 (Decomposition of function into even and odd parts). Any arbitrary function x can be uniquely repre-

sented as the sum of the form

x(t) = xe(t)+ xo(t), (3.7)

where xe and xo are even and odd, respectively, and given by

xe(t) =
1
2
[x(t)+ x(−t)] and (3.8)

xo(t) =
1
2
[x(t)− x(−t)] . (3.9)

As a matter of terminology, xe is called the even part of x and is denoted Even{x}, and xo is called the odd part of x

and is denoted Odd{x}.

Proof. From (3.8) and (3.9), we can easily confirm that xe+ xo = x as follows:

xe(t)+ xo(t) =
1
2
[x(t)+ x(−t)]+ 1

2
[x(t)− x(−t)]

= 1
2
x(t)+ 1

2
x(−t)+ 1

2
x(t)− 1

2
x(−t)

= x(t).

Furthermore, we can easily verify that xe is even and xo is odd. From the definition of xe in (3.8), we have

xe(−t) = 1
2
[x(−t)+ x(−[−t])]

= 1
2
[x(t)+ x(−t)]

= xe(t).

Thus, xe is even. From the definition of xo in (3.9), we have

xo(−t) = 1
2
[x(−t)− x(−[−t])]

= 1
2
[−x(t)+ x(−t)]

=−xo(t).

Thus, xo is odd.

Lastly, we show that the decomposition of x into the sum of an even function and odd function is unique. Suppose

that x can be written as the sum of an even function and odd function in two ways as

x(t) = fe(t)+ fo(t) and (3.10a)

x(t) = ge(t)+go(t), (3.10b)

where fe and ge are even and fo and go are odd. Equating these two expressions for x, we have

fe(t)+ fo(t) = ge(t)+go(t).

Rearranging this equation, we have

fe(t)−ge(t) = go(t)− fo(t).

Now, we consider the preceding equation more carefully. Since the sum of even functions is even and the sum of odd

functions is odd, we have that the left- and right-hand sides of the preceding equation correspond to even and odd

functions, respectively. Thus, we have that the even function fe(t)− ge(t) is equal to the odd function go(t)− fo(t).
The only function, however, that is both even and odd is the zero function. (A proof of this fact is left as an exercise

for the reader in Exercise 3.14.) Therefore, we have that

fe(t)−ge(t) = go(t)− fo(t) = 0.

In other words, we have that

fe(t) = ge(t) and fo(t) = go(t).

This implies that the two decompositions of x given by (3.10a) and (3.10b) must be the same decomposition (i.e., they

cannot be distinct). Thus, the decomposition of x into the sum of an even function and odd function is unique. �
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Example 3.2. Let x1(t) = sin(πt) and x2(t) = sin t. Determine whether the function y = x1 + x2 is periodic.

Solution. Denote the fundamental periods of x1 and x2 as T1 and T2, respectively. We then have

T1 =
2π

π
= 2 and T2 =

2π

1
= 2π.

Here, we used the fact that the fundamental period of sin(αt) is 2π

|α| . Thus, we have

T1
T2

= 2
2π

= 1
π
.

Since π is an irrational number,
T1
T2

is not rational. Therefore, y is not periodic. �
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Example 3.4. Let x1(t) = cos(6πt) and x2(t) = sin(30πt). Determine if the function y = x1 + x2 is periodic, and if it

is, find its fundamental period.

Solution. Let T1 and T2 denote the fundamental periods of x1 and x2, respectively. We have

T1 =
2π

6π
= 1

3
and T2 =

2π

30π
= 1

15
.

Thus, we have

T1
T2

= ( 1
3
)/( 1

15
) = 15

3
= 5

1
.

Since
T1
T2

is a rational number, y is periodic. Let T denote the fundamental period of y. Since 5 and 1 are coprime, we

have

T = 1T1 = 5T2 =
1
3
. �
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Example 3.8 (Sifting property example). Evaluate the integral

∫

∞

−∞

[sin t]δ (t −π/4)dt.

Solution. Using the sifting property of the unit impulse function, we have

∫

∞

−∞

[sin t]δ (t −π/4)dt = sin
(

π

4

)

= 1√
2
. �
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Example 3.9 (Sifting property example). Evaluate the integral

∫

∞

−∞

[sin(2πt)]δ (4t −1)dt.

Solution. First, we observe that the integral to be evaluated does not quite have the same form as (3.24). So, we need

to perform a change of variable. Let τ = 4t so that t = τ/4 and dt = dτ/4. Performing the change of variable, we

obtain
∫

∞

−∞

[sin(2πt)]δ (4t −1)dt =
∫

∞

−∞

1
4
[sin2πτ/4]δ (τ −1)dτ

=
∫

∞

−∞

[

1
4

sinπτ/2
]

δ (τ −1)dτ.

Now the integral has the desired form, and we can use the sifting property of the unit-impulse function to write

∫

∞

−∞

[sin2πt]δ (4t −1)dt =
[

1
4

sinπτ/2
]∣

∣

τ=1

= 1
4

sinπ/2

= 1
4
. �
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Example 3.10. Evaluate the integral
∫

t

−∞
(τ2 +1)δ (τ −2)dτ .

Solution. Using the equivalence property of the delta function given by (3.23), we can write

∫

t

−∞

(τ2 +1)δ (τ −2)dτ =
∫

t

−∞

(22 +1)δ (τ −2)dτ

= 5

∫

t

−∞

δ (τ −2)dτ.

Using the defining properties of the delta function given by (3.22), we have that

∫

t

−∞

δ (τ −2)dτ =

{

1 t ≥ 2

0 t < 2

= u(t −2).

Therefore, we conclude that

∫

t

−∞

(τ2 +1)δ (τ −2)dτ =

{

5 t ≥ 2

0 t < 2

= 5u(t −2). �
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Example 3.11 (Rectangular function). Show that the rect function can be expressed in terms of u as

rect t = u
(

t +
1
2

)

−u
(

t − 1
2

)

.

Solution. Using the definition of u and time-shift transformations, we have

u
(

t +
1
2

)

=

{

1 t ≥− 1
2

0 otherwise
and u

(

t − 1
2

)

=

{

1 t ≥ 1
2

0 otherwise.

Thus, we have

u
(

t +
1
2

)

−u
(

t − 1
2

)

=











0 t <− 1
2

1 − 1
2
≤ t <

1
2

0 t ≥ 1
2

=

{

1 − 1
2
≤ t <

1
2

0 otherwise

= rect t.

Graphically, we have the scenario depicted in Figure 3.24.

· · ·

t

u
(

t +
1
2

)

1

− 1
2

(a)

u
(

t − 1
2

)

t

· · ·

1
2

1

(b)

t

u
(

t +
1
2

)

−u
(

t − 1
2

)

1

− 1
2

1
2

(c)

Figure 3.24: Representing the rectangular function using unit-step functions. (a) A shifted unit-step function, (b) an-

other shifted unit-step function, and (c) their difference (which is the rectangular function).

�
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Example 3.12 (Piecewise-linear function). Consider the piecewise-linear function x given by

x(t) =



















t 0 ≤ t < 1

1 1 ≤ t < 2

3− t 2 ≤ t < 3

0 otherwise.

Find a single expression for x(t) (involving unit-step functions) that is valid for all t.

Solution. A plot of x is shown in Figure 3.25(a). We consider each segment of the piecewise-linear function separately.

The first segment (i.e., for 0 ≤ t < 1) can be expressed as

v1(t) = t[u(t)−u(t −1)].

This function is plotted in Figure 3.25(b). The second segment (i.e., for 1 ≤ t < 2) can be expressed as

v2(t) = u(t −1)−u(t −2).

This function is plotted in Figure 3.25(c). The third segment (i.e., for 2 ≤ t < 3) can be expressed as

v3(t) = (3− t)[u(t −2)−u(t −3)].

This function is plotted in Figure 3.25(d). Now, we observe that x = v1 + v2 + v3. That is, we have

x(t) = v1(t)+ v2(t)+ v3(t)

= t[u(t)−u(t −1)]+ [u(t −1)−u(t −2)]+(3− t)[u(t −2)−u(t −3)]

= tu(t)+(1− t)u(t −1)+(3− t −1)u(t −2)+(t −3)u(t −3)

= tu(t)+(1− t)u(t −1)+(2− t)u(t −2)+(t −3)u(t −3).

Thus, we have found a single expression for x(t) that is valid for all t.

1 2 3

1

x(t)

t
0

(a)

1 2 3

1

v1(t)

t
0

(b)

1 2 3

1

v2(t)

t
0

(c)

1 2 3

1

v3(t)

t
0

(d)

Figure 3.25: Representing a piecewise-linear function using unit-step functions. (a) The function x. (b), (c), and

(d) Three functions whose sum is x.

�
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Example 3.15 (Ideal amplifier). Determine whether the system H is memoryless, where

Hx(t) = Ax(t)

and A is a nonzero real constant.

Solution. Consider the calculation of Hx(t) at any arbitrary point t = t0. We have

Hx(t0) = Ax(t0).

Thus, Hx(t0) depends on x(t) only for t = t0. Therefore, the system is memoryless. �
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Example 3.16 (Ideal integrator). Determine whether the system H is memoryless, where

Hx(t) =
∫

t

−∞

x(τ)dτ.

Solution. Consider the calculation of Hx(t) at any arbitrary point t = t0. We have

Hx(t0) =
∫

t0

−∞

x(τ)dτ.

Thus, Hx(t0) depends on x(t) for −∞< t ≤ t0. So, Hx(t0) is dependent on x(t) for some t 6= t0 (e.g., t0−1). Therefore,

the system has memory (i.e., is not memoryless). �
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Example 3.19 (Ideal integrator). Determine whether the system H is causal, where

Hx(t) =
∫

t

−∞

x(τ)dτ.

Solution. Consider the calculation of Hx(t0) for arbitrary t0. We have

Hx(t0) =
∫

t0

−∞

x(τ)dτ.

Thus, we can see that Hx(t0) depends only on x(t) for −∞ < t ≤ t0. Since all of the values in this interval are less

than or equal to t0, the system is causal. �
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Example 3.20. Determine whether the system H is causal, where

Hx(t) =
∫

t+1

t−1
x(τ)dτ.

Solution. Consider the calculation of Hx(t0) for arbitrary t0. We have

Hx(t0) =
∫

t0+1

t0−1
x(τ)dτ.

Thus, we can see that Hx(t0) only depends on x(t) for t0 −1 ≤ t ≤ t0 +1. Since some of the values in this interval are

greater than t0 (e.g., t0 +1), the system is not causal. �
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Example 3.23. Determine whether the system H is invertible, where

Hx(t) = x(t − t0)

and t0 is a real constant.

Solution. Let y =Hx. By substituting t + t0 for t in y(t) = x(t − t0), we obtain

y(t + t0) = x(t + t0 − t0)

= x(t).

Thus, we have shown that

x(t) = y(t + t0).

This, however, is simply the equation of the inverse system H
−1. In particular, we have that

x(t) =H
−1y(t)

where

H
−1y(t) = y(t + t0).

Thus, we have found H
−1. Therefore, the system H is invertible. �

Edition 2020-03-31 Copyright c© 2012–2020 Michael D. Adams



1

Example 3.24. Determine whether the system H is invertible, where

Hx(t) = sin[x(t)].

Solution. Consider an input of the form x(t) = 2πk where k is an arbitrary integer. The response Hx to such an input

is given by

Hx(t) = sin[x(t)]

= sin2πk

= 0.

Thus, we have found an infinite number of distinct inputs (i.e., x(t) = 2πk for k = 0,±1,±2, . . .) that all result in the

same output. Therefore, the system is not invertible. �
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Example 3.27 (Ideal integrator). Determine whether the system H is BIBO stable, where

Hx(t) =
∫

t

−∞

x(τ)dτ.

Solution. Suppose that we choose the input x = u (where u denotes the unit-step function). Clearly, u is bounded (i.e.,

|u(t)| ≤ 1 for all t). Calculating the response Hx to this input, we have

Hx(t) =
∫

t

−∞

u(τ)dτ

=
∫

t

0
dτ

= [τ]|t0
= t.

From this result, however, we can see that as t → ∞, Hx(t)→ ∞. Thus, the output Hx is unbounded for the bounded

input x. Therefore, the system is not BIBO stable. �
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To show that a system is not BIBO stable, we simply need to find a counterexample (i.e., an example of a 
bounded input that yields an unbounded output).
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Example 3.28 (Squarer). Determine whether the system H is BIBO stable, where

Hx(t) = x
2(t).

Solution. Suppose that the input x is bounded such that (for all t)

|x(t)| ≤ A,

where A is a finite real constant. Squaring both sides of the inequality, we obtain

|x(t)|2 ≤ A
2
.

Interchanging the order of the squaring and magnitude operations on the left-hand side of the inequality, we have

∣

∣x
2(t)

∣

∣≤ A
2
.

Using the fact that Hx(t) = x
2(t), we can write

|Hx(t)| ≤ A
2
.

Since A is finite, A
2 is also finite. Thus, we have that Hx is bounded (i.e., |Hx(t)| ≤ A

2 < ∞ for all t). Therefore, the

system is BIBO stable. �
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Example 3.32. Determine whether the system H is time invariant, where

Hx(t) = sin[x(t)].

Solution. Let x
′(t) = x(t − t0), where t0 is an arbitrary real constant. From the definition of H, we can easily deduce

that

Hx(t − t0) = sin[x(t − t0)] and

Hx
′(t) = sinx

′(t)

= sin[x(t − t0)].

Since Hx(t − t0) =Hx
′(t) for all x and t0, the system is time invariant. �
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Example 3.33. Determine whether the system H is time invariant, where

Hx(t) = Odd(x)(t) = 1
2
[x(t)− x(−t)] .

Solution. Let x
′(t) = x(t − t0), where t0 is an arbitrary real constant. From the definition of H, we have

Hx(t − t0) =
1
2
[x(t − t0)− x(−(t − t0))]

= 1
2
[x(t − t0)− x(−t + t0)] and

Hx
′(t) = 1

2
[x′(t)− x

′(−t)]

= 1
2
[x(t − t0)− x(−t − t0)].

Since Hx(t − t0) =Hx
′(t) does not hold for all x and t0, the system is not time invariant. �
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Example 3.35. Determine whether the system H is linear, where

Hx(t) = tx(t).

Solution. Let x
′(t) = a1x1(t)+ a2x2(t), where x1 and x2 are arbitrary functions and a1 and a2 are arbitrary complex

constants. From the definition of H, we can write

a1Hx1(t)+a2Hx2(t) = a1tx1(t)+a2tx2(t) and

Hx
′(t) = tx

′(t)

= t [a1x1(t)+a2x2(t)]

= a1tx1(t)+a2tx2(t).

Since H(a1x1 +a2x2) = a1Hx1 +a2Hx2 for all x1, x2, a1, and a2, the superposition property holds and the system is

linear. �
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Example 3.36. Determine whether the system H is linear, where

Hx(t) = |x(t)| .

Solution. Let x
′(t) = a1x1(t)+ a2x2(t), where x1 and x2 are arbitrary functions and a1 and a2 are arbitrary complex

constants. From the definition of H, we have

a1Hx1(t)+a2Hx2(t) = a1 |x1(t)|+a2 |x2(t)| and

Hx
′(t) =

∣

∣x
′(t)

∣

∣

= |a1x1(t)+a2x2(t)| .

At this point, we recall the triangle inequality (i.e., for a,b ∈C, |a+b| ≤ |a|+ |b|). Thus, H(a1x1 +a2x2) = a1Hx1 +
a2Hx2 cannot hold for all x1, x2, a1, and a2 due, in part, to the triangle inequality. For example, this condition fails to

hold for

a1 =−1, x1(t) = 1, a2 = 0, and x2(t) = 0,

in which case

a1Hx1(t)+a2Hx2(t) =−1 and Hx
′(t) = 1.

Therefore, the superposition property does not hold and the system is not linear. �
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Example 3.41. Consider the system H characterized by the equation

Hx(t) =D
2
x(t),

where D denotes the derivative operator. For each function x given below, determine if x is an eigenfunction of H,

and if it is, find the corresponding eigenvalue.

(a) x(t) = cos2t; and

(b) x(t) = t
3.

Solution. (a) We have

Hx(t) =D
2{cos2t}(t)

=D{−2sin2t}(t)

=−4cos2t

=−4x(t).

Therefore, x is an eigenfunction of H with the eigenvalue −4.

(b) We have

Hx(t) =D
2{t

3}(t)

=D{3t
2}(t)

= 6t

= 6
t2 x(t).

Therefore, x is not an eigenfunction of H. �
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Unit:

CT LTI Systems



x * h(t)

x * h

x(t) * h(t)

(x * h)(t)

Example X.4.1

Let x and h denote functions, and let t denote a real number.

This expression denotes the function resulting from convolving the function x with the function h.

Both of these expressions denote the number resulting from convolving the function x with the function h and then 

evaluating the resulting function at the point t.

Strictly speaking, this expression is not mathematically valid, as it is attempting to convolve the number x(t) with the 

number h(t).  Both operands of a convolution operation, however, must be functions.  Convolution cannot be defined in a 

pointwise manner.  In other words, (x*h)(t) does not equal x(t) * h(t) because the latter expression is not even 

mathematically valid.  Sadly, many engineering textbooks abuse notation in this way, and this often leads to confusion for 

students.  Sometimes this abused notation x(t) * h(t) is intended to mean x * h; sometimes it might mean x * h(t); and yet 

other times it may mean something else entirely (and the reader is simply forced to guess the intended meaning).

(x + h)(t)

x(t) + h(t)

These expressions have slightly different meanings (i.e., the former is adding functions while the latter is adding numbers), 

but they are both valid mathematical expressions and, by definition, they are always equal since the addition of functions is 

defined pointwise (i.e., (x+h)(t) = x(t) + h(t)).
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Example 4.1. Compute the convolution x∗h where

x(t) =











−1 −1 ≤ t < 0

1 0 ≤ t < 1

0 otherwise

and h(t) = e
−t

u(t).

Solution. We begin by plotting the functions x and h as shown in Figures 4.1(a) and (b), respectively. Next, we

proceed to determine the time-reversed and time-shifted version of h. We can accomplish this in two steps. First,

we time-reverse h(τ) to obtain h(−τ) as shown in Figure 4.1(c). Second, we time-shift the resulting function by t to

obtain h(t − τ) as shown in Figure 4.1(d).

At this point, we are ready to begin considering the computation of the convolution integral. For each possible

value of t, we must multiply x(τ) by h(t−τ) and integrate the resulting product with respect to τ . Due to the form of x

and h, we can break this process into a small number of cases. These cases are represented by the scenarios illustrated

in Figures 4.1(e) to (h).

First, we consider the case of t <−1. From Figure 4.1(e), we can see that

x∗h(t) =
∫

∞

−∞

x(τ)h(t − τ)dτ = 0. (4.2)

Second, we consider the case of −1 ≤ t < 0. From Figure 4.1(f), we can see that

x∗h(t) =
∫

∞

−∞

x(τ)h(t − τ)dτ =
∫

t

−1
−e

τ−t
dτ

=−e
−t

∫

t

−1
e

τ
dτ

=−e
−t [eτ ]|t−1

=−e
−t [et − e

−1]

= e
−t−1 −1. (4.3)

Third, we consider the case of 0 ≤ t < 1. From Figure 4.1(g), we can see that

x∗h(t) =
∫

∞

−∞

x(τ)h(t − τ)dτ =
∫ 0

−1
−e

τ−t
dτ +

∫

t

0
e

τ−t
dτ

=−e
−t

∫ 0

−1
e

τ
dτ + e

−t

∫

t

0
e

τ
dτ

=−e
−t [eτ ]|0−1 + e

−t [eτ ]|t0

=−e
−t [1− e

−1]+ e
−t [et −1]

= e
−t [e−1 −1+ e

t −1]

= 1+(e−1 −2)e−t
. (4.4)

Fourth, we consider the case of t ≥ 1. From Figure 4.1(h), we can see that

x∗h(t) =
∫

∞

−∞

x(τ)h(t − τ)dτ =
∫ 0

−1
−e

τ−t
dτ +

∫ 1

0
e

τ−t
dτ

=−e
−t

∫ 0

−1
e

τ
dτ + e

−t

∫ 1

0
e

τ
dτ

=−e
−t [eτ ]|0−1 + e

−t [eτ ]|10

= e
−t [e−1 −1+ e−1]

= (e−2+ e
−1)e−t

. (4.5)
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Combining the results of (4.2), (4.3), (4.4), and (4.5), we have that

x∗h(t) =



















0 t <−1

e
−t−1 −1 −1 ≤ t < 0

(e−1 −2)e−t +1 0 ≤ t < 1

(e−2+ e
−1)e−t 1 ≤ t.

The convolution result x∗h is plotted in Figure 4.1(i).
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1

τ

1−1

−1

x(τ)

(a)

0

1

τ

h(τ)

(b)

0

1

τ

e
τ

h(−τ)

(c)

t τ

1

h(t − τ)

0
e

τ−t

(d)

1

1

x(τ)

t

h(t − τ)

τ

−1

−1

(e)

1

1

x(τ)

τ

h(t − τ)

t−1

−1

(f)

1

1

x(τ)

τ

t

h(t − τ)

−1

−1

(g)

1

1

x(τ)

τ

t

h(t − τ)

−1

−1

(h)

x∗h

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

−2 −1  0  1  2  3  4

(i)

Figure 4.1: Evaluation of the convolution x∗h. (a) The function x; (b) the function h; plots of (c) h(−τ) and (d) h(t−τ)
versus τ; the functions associated with the product in the convolution integral for (e) t <−1, (f) −1 ≤ t < 0, (g) 0 ≤
t < 1, and (h) t ≥ 1; and (i) the convolution result x∗h.

�
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Answer (u).

We need to compute x∗h, where

x(t) =

{

2− t 1 ≤ t < 2

0 otherwise
and h(t) =

{

−t −2 −3 ≤ t <−2

0 otherwise.

First, we plot x(τ) and h(t − τ) versus τ in Figures (a) and (d), respectively.

(a) (b)

(c) (d)

This leads to four cases to consider as shown below.

(e) (f)

(g)
(h)

From Figure (e), for t <−2 (i.e., t +3 < 1), we have

x∗h(t) = 0.

From Figure (f), for −2 ≤ t <−1 (i.e., 1 ≤ t +3 < 2), we have

x∗h(t) =
∫

t+3

1
(2− τ)(τ − t −2)dτ.

From Figure (g), for −1 ≤ t < 0 (i.e., 1 ≤ t +2 < 2), we have

x∗h(t) =
∫ 2

t+2
(2− τ)(τ − t −2)dτ.

From Figure (h), for t > 0 (i.e., t +2 > 2), we have

x∗h(t) = 0.
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Figure (g):

Figure (h):
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Simplifying, we obtain

x∗h(t) =











1
6
t
3 − t − 2

3
−2 ≤ t <−1

− 1
6
t
3 −1 ≤ t < 0

0 otherwise.
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Theorem 4.1 (Commutativity of convolution). Convolution is commutative. That is, for any two functions x and h,

x∗h = h∗ x. (4.16)

In other words, the result of a convolution is not affected by the order of its operands.

Proof. We now provide a proof of the commutative property stated above. To begin, we expand the left-hand side

of (4.16) as follows:

x∗h(t) =
∫

∞

−∞

x(τ)h(t − τ)dτ.

Next, we perform a change of variable. Let v = t − τ which implies that τ = t − v and dτ = −dv. Using this change

of variable, we can rewrite the previous equation as

x∗h(t) =
∫ t−∞

t+∞

x(t − v)h(v)(−dv)

=
∫ −∞

∞

x(t − v)h(v)(−dv)

=
∫

∞

−∞

x(t − v)h(v)dv

=
∫

∞

−∞

h(v)x(t − v)dv

= h∗ x(t).

(Note that, above, we used the fact that, for any function f ,
∫ b

a f (x)dx = −
∫ a

b f (x)dx.) Thus, we have proven that

convolution is commutative. �
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Theorem 4.5 (LTI systems and convolution). A LTI system H with impulse response h is such that

Hx = x∗h.

In other words, a LTI system computes a convolution. In particular, the output of the system is given by the convolution

of the input and impulse response.

Proof. Using the fact that δ is the convolutional identity, we can write

Hx(t) =H{x∗δ}(t).

Rewriting the convolution in terms of an integral, we have

Hx(t) =H

{

∫

∞

−∞

x(τ)δ (·− τ)dτ

}

(t).

Since H is a linear operator, we can pull the integral and x(τ) (which is a constant with respect to the operation

performed by H) outside H to obtain

Hx(t) =
∫

∞

−∞

x(τ)H{δ (·− τ)}(t)dτ.

Since H is time invariant, we can interchange the order of H and the time shift of δ by τ (i.e., H{δ (· − τ)} =
Hδ (·− τ)) and then use the fact that h =Hδ to obtain

Hx(t) =
∫

∞

−∞

x(τ)Hδ (t − τ)dτ

=
∫

∞

−∞

x(τ)h(t − τ)dτ

= x∗h(t).

Thus, we have shown that Hx = x∗h, where h =Hδ . �
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Example 4.5. Consider a LTI system H with impulse response

h(t) = u(t). (4.23)

Show that H is characterized by the equation

Hx(t) =
∫

t

−∞

x(τ)dτ (4.24)

(i.e., H corresponds to an ideal integrator).

Solution. Since the system is LTI, we have that

Hx(t) = x∗h(t).

Substituting (4.23) into the preceding equation, and simplifying we obtain

Hx(t) = x∗h(t)

= x∗u(t)

=
∫

∞

−∞

x(τ)u(t − τ)dτ

=
∫

t

−∞

x(τ)u(t − τ)dτ +
∫

∞

t

x(τ)u(t − τ)dτ

=
∫

t

−∞

x(τ)dτ.

Therefore, the system with the impulse response h given by (4.23) is, in fact, the ideal integrator given by (4.24). �
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Example 4.7. Consider the system with input x, output y, and impulse response h as shown in Figure 4.9. Each

subsystem in the block diagram is LTI and labelled with its impulse response. Find h.

Solution. From the left half of the block diagram, we can write

v(t) = x(t)+ x∗h1(t)+ x∗h2(t)

= x∗δ (t)+ x∗h1(t)+ x∗h2(t)

= (x∗ [δ +h1 +h2])(t).

Similarly, from the right half of the block diagram, we can write

y(t) = v∗h3(t).

Substituting the expression for v into the preceding equation we obtain

y(t) = v∗h3(t)

= (x∗ [δ +h1 +h2])∗h3(t)

= x∗ [h3 +h1 ∗h3 +h2 ∗h3](t).

Thus, the impulse response h of the overall system is

h(t) = h3(t)+h1 ∗h3(t)+h2 ∗h3(t). �

h1

h2

h3+
x v y

Figure 4.9: System interconnection example.
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To begin, we label all signals in Figure 4.9.

Recall that, for any LTI system with input x, 

output y, and impulse response h, y = x * h.
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Example 4.8. Consider the LTI system with the impulse response h given by

h(t) = e
−at

u(t),

where a is a real constant. Determine whether this system has memory.

Solution. The system has memory since h(t) 6= 0 for some t 6= 0 (e.g., h(1) = e
−a 6= 0). �
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Example 4.9. Consider the LTI system with the impulse response h given by

h(t) = δ (t).

Determine whether this system has memory.

Solution. Clearly, h is only nonzero at the origin. This follows immediately from the definition of the unit-impulse

function δ . Therefore, the system is memoryless (i.e., does not have memory). �
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Example 4.10. Consider the LTI system with impulse response h given by

h(t) = e
−at

u(t),

where a is a real constant. Determine whether this system is causal.

Solution. Clearly, h(t) = 0 for t < 0 (due to the u(t) factor in the expression for h(t)). Therefore, the system is

causal. �
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Example 4.11. Consider the LTI system with impulse response h given by

h(t) = δ (t + t0),

where t0 is a strictly positive real constant. Determine whether this system is causal.

Solution. From the definition of δ , we can easily deduce that h(t) = 0 except at t =−t0. Since −t0 < 0, the system is

not causal. �
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Example 4.12. Consider the LTI system H with impulse response h given by

h(t) = Aδ (t − t0),

where A and t0 are real constants and A 6= 0. Determine if H is invertible, and if it is, find the impulse response hinv of

the system H
−1.

Solution. If the system H
−1 exists, its impulse response hinv is given by the solution to the equation

h∗hinv = δ . (4.34)

So, let us attempt to solve this equation for hinv. Substituting the given function h into (4.34) and using straightforward

algebraic manipulation, we can write

h∗hinv(t) = δ (t)

⇒

∫
∞

−∞

h(τ)hinv(t − τ)dτ = δ (t)

⇒

∫
∞

−∞

Aδ (τ − t0)hinv(t − τ)dτ = δ (t)

⇒

∫
∞

−∞

δ (τ − t0)hinv(t − τ)dτ = 1
A

δ (t).

Using the sifting property of the unit-impulse function, we can simplify the integral expression in the preceding

equation to obtain

hinv(t − t0) =
1
A

δ (t). (4.35)

Substituting t + t0 for t in the preceding equation yields

hinv([t + t0]− t0) =
1
A

δ (t + t0) ⇔

hinv(t) =
1
A

δ (t + t0).

Since A 6= 0, the function hinv is always well defined. Thus, H−1 exists and consequently H is invertible. �
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Example 4.14. Consider the LTI system with impulse response h given by

h(t) = e
at

u(t),

where a is a real constant. Determine for what values of a the system is BIBO stable.

Solution. We need to determine for what values of a the impulse response h is absolutely integrable. We have

∫

∞

−∞

|h(t)|dt =
∫

∞

−∞

∣

∣e
at

u(t)
∣

∣dt

=
∫ 0

−∞

0dt +
∫

∞

0
e

at
dt

=
∫

∞

0
e

at
dt

=

{

∫

∞

0 e
at

dt a 6= 0
∫

∞

0 1dt a = 0

=

{

[

1
a
e

at
]∣

∣

∞

0
a 6= 0

[t]|∞0 a = 0.

Now, we simplify the preceding equation for each of the cases a 6= 0 and a = 0. Suppose that a 6= 0. We have

∫

∞

−∞

|h(t)|dt =
[

1
a
e

at
]∣

∣

∞

0

= 1
a
(ea∞ −1) .

We can see that the result of the above integration is finite if a < 0 and infinite if a > 0. In particular, if a < 0, we have

∫

∞

−∞

|h(t)|dt = 0− 1
a

=− 1
a
.

Suppose now that a = 0. In this case, we have

∫

∞

−∞

|h(t)|dt = [t]|∞0

= ∞.

Thus, we have shown that

∫

∞

−∞

|h(t)|dt =

{

− 1
a

a < 0

∞ a ≥ 0.

In other words, the impulse response h is absolutely integrable if and only if a < 0. Consequently, the system is BIBO

stable if and only if a < 0. �
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Example 4.15. Consider the LTI system with input x and output y defined by

y(t) =
∫ t

−∞

x(τ)dτ

(i.e., an ideal integrator). Determine whether this system is BIBO stable.

Solution. First, we find the impulse response h of the system. We have

h(t) =
∫ t

−∞

δ (τ)dτ

=

{

1 t ≥ 0

0 t < 0

= u(t).

Using this expression for h, we now check to see if h is absolutely integrable. We have

∫

∞

−∞

|h(t)|dt =
∫

∞

−∞

|u(t)|dt

=
∫

∞

0
1dt

= ∞.

Thus, h is not absolutely integrable. Therefore, the system is not BIBO stable. �
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Theorem 4.12 (Eigenfunctions of LTI systems). For an arbitrary LTI system H with impulse response h and a

function of the form x(t) = est , where s is an arbitrary complex constant (i.e., x is an arbitrary complex exponential),

the following holds:

Hx(t) = H(s)est
,

where

H(s) =
∫

∞

−∞

h(τ)e−sτ dτ. (4.49)

That is, x is an eigenfunction of H with the corresponding eigenvalue H(s).

Proof. We have

Hx(t) = x∗h(t)

= h∗ x(t)

=
∫

∞

−∞

h(τ)x(t − τ)dτ

=
∫

∞

−∞

h(τ)es(t−τ)dτ

= est

∫
∞

−∞

h(τ)e−sτ dτ

= H(s)est
. �
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Suppose that we have a LTI system H with input x, output y, impulse response h, and system function H. Suppose

now that we can express some arbitrary input signal x as a sum of complex exponentials as follows:

x(t) = ∑
k

akeskt
.

(As it turns out, many functions can be expressed in this way.) From the eigenfunction properties of LTI systems, the

response of the system to the input akeskt is akH(sk)e
skt . By using this knowledge and the superposition property, we

can write

y(t) =Hx(t)

=H

{

∑
k

akeskt

}

(t)

= ∑
k

akH{eskt}(t)

= ∑
k

akH(sk)e
skt
.

Thus, we have that

y(t) = ∑
k

akH(sk)e
skt
. (4.48)

Thus, if an input to a LTI system can be represented as a linear combination of complex exponentials, the output

can also be represented as linear combination of the same complex exponentials. Furthermore, observe that the

relationship between the input x(t) = ∑k akeskt and output y in (4.48) does not involve convolution (such as in the

equation y= x∗h). In fact, the formula for y is identical to that for x except for the insertion of a constant multiplicative

factor H(sk). In effect, we have used eigenfunctions to replace convolution with the much simpler operation of

multiplication by a constant.
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Example 4.16. Consider the LTI system H with the impulse response h given by

h(t) = δ (t −1).

(a) Find the system function H of the system H. (b) Use the system function H to determine the response y of the

system H to the particular input x given by

x(t) = et cos(πt).

Solution. (a) We find the system function H using (4.49). Substituting the given function h into (4.49), we obtain

H(s) =
∫ ∞

−∞
h(t)e−stdt

=
∫ ∞

−∞
δ (t −1)e−stdt

=
[

e−st
]∣

∣

t=1

= e−s
.

(b) We can rewrite x to obtain

x(t) = et cos(πt)

= et
[

1
2

(

e jπt + e− jπt
)]

= 1
2
e(1+ jπ)t + 1

2
e(1− jπ)t

.

So, the input x is now expressed in the form

x(t) =
1

∑
k=0

akeskt
,

where

ak =
1
2

and sk =

{

1+ jπ k = 0

1− jπ k = 1.

Now, we use H and the eigenfunction properties of LTI systems to find y. Calculating y, we have

y(t) =
1

∑
k=0

akH(sk)e
skt

= a0H(s0)e
s0t +a1H(s1)e

s1t

= 1
2
H(1+ jπ)e(1+ jπ)t + 1

2
H(1− jπ)e(1− jπ)t

= 1
2
e−(1+ jπ)e(1+ jπ)t + 1

2
e−(1− jπ)e(1− jπ)t

= 1
2
et−1+ jπt− jπ + 1

2
et−1− jπt+ jπ

= 1
2
et−1e jπ(t−1)+ 1

2
et−1e− jπ(t−1)

= et−1
[

1
2

(

e jπ(t−1)+ e− jπ(t−1)
)]

= et−1 cos [π(t −1)] .

Observe that the output y is just the input x time shifted by 1. This is not a coincidence because, as it turns out, a LTI

system with the system function H(s) = e−s is an ideal unit delay (i.e., a system that performs a time shift of 1). �
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Interlude



Interlude
 

1) LTI systems are relatively simple mathematically and are 
extremely useful in practice (e.g., for modelling real-world systems).
 

2) LTI systems, while relatively simpler, involve convolution.
 

3) Are we doomed to directly face convolution in every problem we 
solve that involves LTI systems?
 

4) Often, there is a better way.  Employ transform-based solution 
techniques that utilize mathematical tools such as:
    CT Fourier series
    CT Fourier transform
    Laplace transform



Unit:

CT Fourier Series



1

Example 5.1 (Fourier series of a periodic square wave). Find the Fourier series representation of the periodic square

wave x shown in Figure 5.1.

A

x(t)

T−T
t

− T
2

T
2

−A

Figure 5.1: Periodic square wave.

Solution. Let us consider the single period of x(t) for 0 ≤ t < T . For this range of t, we have

x(t) =

{

A 0 ≤ t < T
2

−A T
2
≤ t < T .

Let ω0 =
2π

T
. From the Fourier series analysis equation, we have

ck =
1
T

∫

T
x(t)e− jkω0tdt

= 1
T

(

∫ T/2

0
Ae− jkω0tdt +

∫ T

T/2
(−A)e− jkω0tdt

)

=















1

T

(

[

−A

jkω0
e− jkω0t

]∣

∣

∣

∣

T/2

0

+

[

A

jkω0
e− jkω0t

]∣

∣

∣

∣

T

T/2

)

k 6= 0

1

T

(

[At]|
T/2

0 + [−At]|TT/2

)

k = 0.

Now, we simplify the expression for ck for each of the cases k 6= 0 and k = 0 in turn. First, suppose that k 6= 0. We

have

ck =
1

T

(

[

−A

jkω0
e− jkω0t

]∣

∣

∣

∣

T/2

0

+

[

A

jkω0
e− jkω0t

]∣

∣

∣

∣

T

T/2

)

=
−A

j2πk

([

e− jkω0t
]∣

∣

∣

T/2

0
−
[

e− jkω0t
]∣

∣

∣

T

T/2

)

=
jA

2πk

([

e− jπk −1
]

−
[

e− j2πk − e− jπk
])

=
jA

2πk

[

2e− jπk − e− j2πk −1
]

=
jA

2πk

[

2(e− jπ)k − (e− j2π)k −1
]

.
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Now, we observe that e− jπ =−1 and e− j2π = 1. So, we have

ck =
jA

2πk
[2(−1)k −1k −1]

=
jA

2πk
[2(−1)k −2]

=
jA

πk
[(−1)k −1]

=







− j2A

πk
k odd

0 k even, k 6= 0.

Now, suppose that k = 0. We have

c0 =
1
T

(

[At]|
T/2

0 + [−At]|TT/2

)

= 1
T

[

AT
2
− AT

2

]

= 0.

Thus, the Fourier series of x is given by

x(t) =
∞

∑
k=−∞

cke j(2π/T )kt ,

where

ck =







− j2A

πk
k odd

0 k even. �
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Example 5.3. Consider the periodic function x with fundamental period T = 3 as shown in Figure 5.3. Find the

Fourier series representation of x.

−2−3 1 4−1
t

−1

1

−1 −1

3

x(t)

1 1

· · ·· · ·

−4 2

Figure 5.3: Periodic impulse train.

Solution. The function x has the fundamental frequency ω0 =
2π

T
= 2π

3
. Let us consider the single period of x(t) for

−T
2
≤ t < T

2
(i.e., − 3

2
≤ t < 3

2
). From the Fourier series analysis equation, we have

ck =
1
T

∫

T
x(t)e− jkω0tdt

= 1
3

∫ 3/2

−3/2
x(t)e− j(2π/3)ktdt

= 1
3

∫ 3/2

−3/2
[−δ (t +1)+δ (t −1)]e− j(2π/3)ktdt

= 1
3

[

∫ 3/2

−3/2
−δ (t +1)e− j(2π/3)ktdt +

∫ 3/2

−3/2
δ (t −1)e− j(2π/3)ktdt

]

= 1
3

[

−e− jk(2π/3)(−1)+ e− jk(2π/3)(1)
]

= 1
3

[

e− j(2π/3)k − e j(2π/3)k
]

= 1
3

[

2 j sin
(

− 2π

3
k
)]

= 2 j
3

sin
(

− 2π

3
k
)

=− 2 j
3

sin
(

2π

3
k
)

.

Thus, x has the Fourier series representation

x(t) =
∞

∑
k=−∞

cke jkω0t

=
∞

∑
k=−∞

− 2 j
3

sin
(

2π

3
k
)

e j(2π/3)kt . �
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Example 5.6. Consider the periodic function x with period T = 2 as shown in Figure 5.4. Let x̂ denote the Fourier

series representation of x (i.e., x̂(t) = ∑
∞
k=−∞ cke jkω0t , where ω0 = π). Determine the values x̂(0) and x̂(1).

1 20−1

1

x(t)

· · · · · ·

t
3

Figure 5.4: Periodic function x.

Solution. We begin by observing that x satisfies the Dirichlet conditions. Consequently, Theorem 5.4 applies. Thus,

we have that

x̂(0) = 1
2

[

x(0−)+ x(0+)
]

= 1
2
(0+1)

= 1
2

and

x̂(1) = 1
2

[

x(1−)+ x(1+)
]

= 1
2
(1+0)

= 1
2
. �
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Suppose that we have a complex periodic function x with period T and Fourier series coefficient sequence c. One

can easily show that the coefficient c0 is the average value of x over a single period T . The proof is trivial. Consider

the Fourier series analysis equation given by (5.2). Substituting k = 0 into this equation, we obtain

c0 =

[

1
T

∫

T
x(t)e− jkω0tdt

]∣

∣

∣

∣

k=0

= 1
T

∫

T
x(t)e0dt

= 1
T

∫

T
x(t)dt.

Thus, c0 is simply the average value of x over a single period.
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Example 5.7. The periodic square wave x in Example 5.1 has fundamental period T , fundamental frequency ω0, and

the Fourier series coefficient sequence given by

ck =

{

− j2A
πk

k odd

0 k even,

where A is a positive constant. Find and plot the magnitude and phase spectra of x. Determine at what frequency (or

frequencies) x has the most information.

Solution. First, we compute the magnitude spectrum of x, which is given by |ck|. We have

|ck|=

{

∣

∣

∣

− j2A
πk

∣

∣

∣
k odd

0 k even

=

{

2A
π|k| k odd

0 k even.

Next, we compute the phase spectrum of x, which is given by argck. Using the fact that arg0 = 0 and arg
− j2A

πk
=

−π

2
sgnk, we have

argck =

{

arg
− j2A

πk
k odd

arg0 k even

=











π

2
k odd, k < 0

−π

2
k odd, k > 0

0 k even

=

{

−π

2
sgnk k odd

0 k even.

The magnitude and phase spectra of x are plotted in Figures 5.7(a) and (b), respectively. Note that the magnitude

spectrum is an even function, while the phase spectrum is an odd function. This is what we should expect, since x

is real. Since |ck| is largest for k = −1 and k = 1, the function x has the most information at frequencies −ω0 and

ω0. �
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0 3ω02ω0ω0−3ω0 −2ω0 −ω0

2A
π

−4ω0 4ω0

ω

· · ·· · ·

|ck|

(a)

−3ω0 −2ω0 −ω0−4ω0

ω

· · ·

· · ·

π

2

argck

ω0 2ω0 3ω0 4ω0

−π

2

(b)

Figure 5.7: Frequency spectrum of the periodic square wave. (a) Magnitude spectrum and (b) phase spectrum.
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Example 5.9. Consider a LTI system with the frequency response

H(ω) = e− jω/4.

Find the response y of the system to the input x, where

x(t) = 1
2

cos(2πt).

Solution. To begin, we rewrite x as

x(t) = 1
4
(e j2πt + e− j2πt).

Thus, the Fourier series for x is given by

x(t) =
∞

∑
k=−∞

cke jkω0t ,

where ω0 = 2π and

ck =

{

1
4

k ∈ {−1,1}

0 otherwise.

Thus, we can write

y(t) =
∞

∑
k=−∞

ckH(kω0)e
jkω0t

= c−1H(−ω0)e
− jω0t + c1H(ω0)e

jω0t

= 1
4
H(−2π)e− j2πt + 1

4
H(2π)e j2πt

= 1
4
e jπ/2e− j2πt + 1

4
e− jπ/2e j2πt

= 1
4
[e− j(2πt−π/2)+ e j(2πt−π/2)]

= 1
4

(

2cos(2πt − π

2
)
)

= 1
2

cos(2πt − π

2
)

= 1
2

cos
(

2π

[

t − 1
4

])

.

Observe that y(t) = x
(

t − 1
4

)

. This is not a coincidence because, as it turns out, a LTI system with the frequency

response H(ω) = e−ω/4 is an ideal delay of 1
4

(i.e., a system that performs a time shift of 1
4
). �
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Example 5.10 (Lowpass filtering). Suppose that we have a LTI system with input x, output y, and frequency response

H(ω), where

H(ω) =

{

1 |ω| ≤ 3π

0 otherwise.

Further, suppose that the input x is the periodic function

x(t) = 1+2cos(2πt)+ cos(4πt)+ 1
2

cos(6πt).

(a) Find the Fourier series representation of x. (b) Use this representation in order to find the response y of the system

to the input x. (c) Plot the frequency spectra of x and y.

Solution. (a) We begin by finding the Fourier series representation of x. Using Euler’s formula, we can re-express x

as

x(t) = 1+2cos(2πt)+ cos(4πt)+ 1
2

cos(6πt)

= 1+2
[

1
2
(e j2πt + e− j2πt)

]

+
[

1
2
(e j4πt + e− j4πt)

]

+ 1
2

[

1
2
(e j6πt + e− j6πt)

]

= 1+ e j2πt + e− j2πt + 1
2
[e j4πt + e− j4πt ]+ 1

4
[e j6πt + e− j6πt ]

= 1
4
e− j6πt + 1

2
e− j4πt + e− j2πt +1+ e j2πt + 1

2
e j4πt + 1

4
e j6πt

= 1
4
e j(−3)(2π)t + 1

2
e j(−2)(2π)t + e j(−1)(2π)t + e j(0)(2π)t + e j(1)(2π)t + 1

2
e j(2)(2π)t + 1

4
e j(3)(2π)t

.

From the last line of the preceding equation, we deduce that ω0 = 2π , since a larger value for ω0 would imply that

some Fourier series coefficient indices are noninteger, which clearly makes no sense. Thus, we have that the Fourier

series of x is given by

x(t) =
∞

∑
k=−∞

ake jkω0t
,

where ω0 = 2π and

ak =































1 k = 0

1 k ∈ {−1,1}
1
2

k ∈ {−2,2}
1
4

k ∈ {−3,3}

0 otherwise.

(b) Since the system is LTI, we know that the output y has the form

y(t) =
∞

∑
k=−∞

bke jkω0t
,

where

bk = akH(kω0).

Using the results from above, we can calculate the bk as follows:

b0 = a0H([0][2π]) = 1(1) = 1,

b1 = a1H([1][2π]) = 1(1) = 1,

b−1 = a−1H([−1][2π]) = 1(1) = 1,

b2 = a2H([2][2π]) = 1
2
(0) = 0,

b−2 = a−2H([−2][2π]) = 1
2
(0) = 0,

b3 = a3H([3][2π]) = 1
4
(0) = 0, and

b−3 = a−3H([−3][2π]) = 1
4
(0) = 0.
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Thus, we have

bk =

{

1 k ∈ {−1,0,1}

0 otherwise.

(c) Lastly, we plot the frequency spectra of x and y in Figures 5.10(a) and (b), respectively. The frequency response

H is superimposed on the plot of the frequency spectrum of x for illustrative purposes.

ak

−6π −4π −2π 2π0 4π 6π

ω

1
2

H(ω)1

(a)

1

bk

−6π −4π −2π 2π0 4π 6π

ω

1
2

(b)

Figure 5.10: Frequency spectra of the (a) input function x and (b) output function y.

�
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Gibbs Phenomenon: Periodic Square Wave Example
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Example 6.1 (Fourier transform of the unit-impulse function). Find the Fourier transform X of the function

x(t) = Aδ (t− t0),

where A and t0 are real constants. Then, from this result, write the Fourier transform representation of x.

Solution. From the definition of the Fourier transform, we can write

X(ω) =
∫

∞

−∞

Aδ (t− t0)e
− jωtdt

= A

∫
∞

−∞

δ (t− t0)e
− jωtdt.

Using the sifting property of the unit-impulse function, we can simplify the above result to obtain

X(ω) = Ae− jωt0
.

Thus, we have shown that

Aδ (t− t0)
CTFT

←→ Ae− jωt0
.

From the Fourier transform analysis and synthesis equations, we have that the Fourier transform representation of x is

given by

x(t) =
1

2π

∫
∞

−∞

X(ω)e jωtdω, where X(ω) = Ae− jωt0
. �
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Example 6.3 (Fourier transform of the rectangular function). Find the Fourier transform X of the function

x(t) = rect t.

Solution. From the definition of the Fourier transform, we can write

X(ω) =
∫

∞

−∞

rect(t)e− jωtdt.

From the definition of the rectangular function, we can simplify this equation to obtain

X(ω) =
∫ 1/2

−1/2
rect(t)e− jωtdt

=
∫ 1/2

−1/2
e− jωtdt.

Evaluating the integral and simplifying, we have

X(ω) =
[

− 1
jω

e− jωt
]∣

∣

∣

1/2

−1/2

= 1
jω

(

e jω/2− e− jω/2
)

= 1
jω

[

2 j sin
(

ω

2

)]

= 2
ω

sin
(

ω

2

)

=
[

sin
(

ω

2

)]

/
(

ω

2

)

= sinc
(

ω

2

)

.

Thus, we have shown that

rect t
CTFT

←→ sinc
(

ω

2

)

. �
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Note: This is why the sinc function is 

of great importance.
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Example 6.6. Consider the function x shown in Figure 6.5. Let x̂ denote the Fourier transform representation of x

(i.e., x̂(t) = 1
2π

∫

∞

−∞
X(ω)e jωtdω , where X denotes the Fourier transform of x). Determine the values x̂(− 1

2
) and x̂( 1

2
).

1
2

− 1
2

t

x(t)

1

Figure 6.5: Function x.

Solution. We begin by observing that x satisfies the Dirichlet conditions. Consequently, Theorem 6.3 applies. Thus,

we have that

x̂(− 1
2
) = 1

2

[

x(− 1
2

−
)+ x(− 1

2

+
)
]

= 1
2
(0+1)

= 1
2

and

x̂( 1
2
) = 1

2

[

x( 1
2

−
)+ x( 1

2

+
)
]

= 1
2
(1+0)

= 1
2
. �
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At a point of discontinuity, the Fourier transform 

representation converges to the average of the left 

and right limits.
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Example 6.7 (Linearity property of the Fourier transform). Using properties of the Fourier transform and the trans-

form pair

e jω0t CTFT

←→ 2πδ (ω−ω0),

find the Fourier transform X of the function

x(t) = Acos(ω0t),

where A and ω0 are real constants.

Solution. We recall that cosα = 1
2
[e jα + e− jα ] for any real α . Thus, we can write

X(ω) = (F{Acos(ω0t)})(ω)

=
(

F{A
2
(e jω0t + e− jω0t)}

)

(ω).

Then, we use the linearity property of the Fourier transform to obtain

X(ω) = A
2
F{e jω0t}(ω)+ A

2
F{e− jω0t}(ω).

Using the given Fourier transform pair, we can further simplify the above expression for X(ω) as follows:

X(ω) = A
2
[2πδ (ω +ω0)]+

A
2
[2πδ (ω−ω0)]

= Aπ[δ (ω +ω0)+δ (ω−ω0)].

Thus, we have shown that

Acos(ω0t)
CTFT

←→ Aπ[δ (ω +ω0)+δ (ω−ω0)]. �
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Example 6.9 (Time-domain shifting property of the Fourier transform). Find the Fourier transform X of the function

x(t) = Acos(ω0t +θ),

where A, ω0, and θ are real constants.

Solution. Let v(t) = Acos(ω0t) so that x(t) = v(t + θ

ω0
). Also, let V = Fv. From Table 6.2, we have that

cos(ω0t)
CTFT

←→ π[δ (ω−ω0)+δ (ω +ω0)].

Using this transform pair and the linearity property of the Fourier transform, we have that

V (ω) = F{Acos(ω0t)}(ω)

= Aπ[δ (ω +ω0)+δ (ω−ω0)].

From the definition of v and the time-shifting property of the Fourier transform, we have

X(ω) = e jωθ/ω0V (ω)

= e jωθ/ω0 Aπ[δ (ω +ω0)+δ (ω−ω0)].

Thus, we have shown that

Acos(ω0t +θ)
CTFT

←→ Aπe jωθ/ω0 [δ (ω +ω0)+δ (ω−ω0)]. �
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Example 6.10 (Frequency-domain shifting property of the Fourier transform). Find the Fourier transform X of the

function

x(t) = cos(ω0t)cos(20πt),

where ω0 is a real constant.

Solution. Recall that cosα = 1
2
[e jα + e− jα ] for any real α . Using this relationship and the linearity property of the

Fourier transform, we can write

X(ω) =
(

F{cos(ω0t)( 1
2
)(e j20πt + e− j20πt)}

)

(ω)

=
(

F{ 1
2
e j20πt cos(ω0t)+ 1

2
e− j20πt cos(ω0t)}

)

(ω)

= 1
2

(

F{e j20πt cos(ω0t)}
)

(ω)+ 1
2

(

F{e− j20πt cos(ω0t)}
)

(ω).

From Table 6.2, we have that

cos(ω0t)
CTFT

←→ π[δ (ω−ω0)+δ (ω +ω0)].

From this transform pair and the frequency-domain shifting property of the Fourier transform, we have

X(ω) = 1
2
(F{cos(ω0t)})(ω−20π)+ 1

2
(F{cos(ω0t)})(ω +20π)

= 1
2
[π [δ (v−ω0)+δ (v+ω0)]]|v=ω−20π

+ 1
2
[π [δ (v−ω0)+δ (v+ω0)]]|v=ω+20π

= 1
2
(π[δ (ω +ω0−20π)+δ (ω−ω0−20π)])+ 1

2
(π[δ (ω +ω0 +20π)+δ (ω−ω0 +20π)])

= π

2
[δ (ω +ω0−20π)+δ (ω−ω0−20π)+δ (ω +ω0 +20π)+δ (ω−ω0 +20π)] . �
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Example 6.11 (Time scaling property of the Fourier transform). Using the Fourier transform pair

rect t
CTFT

←→ sinc
(

ω

2

)

,

find the Fourier transform X of the function

x(t) = rect(at),

where a is a nonzero real constant.

Solution. Let v(t) = rect t so that x(t) = v(at). Also, let V = Fv. From the given transform pair, we know that

V (ω) = (F{rect t})(ω) = sinc
(

ω

2

)

. (6.9)

From the definition of v and the time-scaling property of the Fourier transform, we have

X(ω) =
1

|a|
V

(

ω

a

)

.

Substituting the expression for V in (6.9) into the preceding equation, we have

X(ω) =
1

|a|
sinc

(

ω

2a

)

.

Thus, we have shown that

rect(at)
CTFT

←→
1

|a|
sinc

(

ω

2a

)

. �
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Example 6.12 (Fourier transform of a real function). Let X denote the Fourier transform of the function x. Show that,

if x is real, then X is conjugate symmetric (i.e., X(ω) = X
∗(−ω) for all ω).

Solution. From the conjugation property of the Fourier transform, we have

F{x
∗(t)}(ω) = X

∗(−ω).

Since x is real, we can replace x
∗ with x to yield

Fx(ω) = X
∗(−ω),

or equivalently

X(ω) = X
∗(−ω). �
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Example 6.13 (Fourier transform of the sinc function). Using the transform pair

rect t
CTFT

←→ sinc
(

ω

2

)

,

find the Fourier transform X of the function

x(t) = sinc
(

t

2

)

.

Solution. From the given Fourier transform pair, we have

v(t) = rect t
CTFT

←→ V (ω) = sinc
(

ω

2

)

.

By duality, we have

V (t) = sinc
(

t

2

)

CTFT

←→ FV (ω) = 2πv(−ω) = 2π rect(−ω) = 2π rectω.

Thus, we have

V (t) = sinc
(

t

2

)

CTFT

←→ FV (ω) = 2π rectω.

Observing that V = x and FV = X , we can rewrite the preceding relationship as

x(t) = sinc
(

t

2

)

CTFT

←→ X(ω) = 2π rectω.

Thus, we have shown that

X(ω) = 2π rectω. �
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Example 6.14 (Time-domain convolution property of the Fourier transform). With the aid of Table 6.2, find the

Fourier transform X of the function

x(t) = x1 ∗ x2(t),

where

x1(t) = e−2tu(t) and x2(t) = u(t).

Solution. Let X1 and X2 denote the Fourier transforms of x1 and x2, respectively. From the time-domain convolution

property of the Fourier transform, we know that

X(ω) = (F{x1 ∗ x2})(ω)

= X1(ω)X2(ω). (6.10)

From Table 6.2, we know that

X1(ω) =
(

F{e−2tu(t)}
)

(ω)

= 1
2+ jω

and

X2(ω) = Fu(ω)

= πδ (ω)+ 1
jω
.

Substituting these expressions for X1(ω) and X2(ω) into (6.10), we obtain

X(ω) = [ 1
2+ jω

](πδ (ω)+ 1
jω
)

= π

2+ jω
δ (ω)+ 1

jω
( 1

2+ jω
)

= π

2+ jω
δ (ω)+ 1

j2ω−ω2

= π

2
δ (ω)+ 1

j2ω−ω2 . �
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Example 6.15 (Frequency-domain convolution property). Let x and y be functions related as

y(t) = x(t)cos(ωct),

where ωc is a nonzero real constant. Let Y = Fy and X = Fx. Find an expression for Y in terms of X .

Solution. To allow for simpler notation in what follows, we define

v(t) = cos(ωct)

and let V denote the Fourier transform of v. From Table 6.2, we have that

V (ω) = π[δ (ω −ωc)+δ (ω +ωc)].

From the definition of v, we have

y(t) = x(t)v(t).

Taking the Fourier transform of both sides of this equation, we have

Y (ω) = F{x(t)v(t)}(ω).

Using the frequency-domain convolution property of the Fourier transform, we obtain

Y (ω) = 1
2π

X ∗V (ω)

= 1
2π

∫

∞

−∞

X(λ )V (ω −λ )dλ .

Substituting the above expression for V , we obtain

Y (ω) = 1
2π

∫

∞

−∞

X(λ )(π[δ (ω −λ −ωc)+δ (ω −λ +ωc)])dλ

= 1
2

∫

∞

−∞

X(λ )[δ (ω −λ −ωc)+δ (ω −λ +ωc)]dλ

= 1
2

[

∫

∞

−∞

X(λ )δ (ω −λ −ωc)dλ +
∫

∞

−∞

X(λ )δ (ω −λ +ωc)dλ

]

= 1
2

[

∫

∞

−∞

X(λ )δ (λ −ω +ωc)dλ +
∫

∞

−∞

X(λ )δ (λ −ω −ωc)dλ

]

= 1
2

[

∫

∞

−∞

X(λ )δ [λ − (ω −ωc)]dλ +
∫

∞

−∞

X(λ )δ [λ − (ω +ωc)]dλ

]

= 1
2
[X(ω −ωc)+X(ω +ωc)]

= 1
2
X(ω −ωc)+

1
2
X(ω +ωc). �
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Example 6.16 (Time-domain differentiation property). Find the Fourier transform X of the function

x(t) = d
dt

δ (t).

Solution. Taking the Fourier transform of both sides of the given equation for x yields

X(ω) =
(

F
{

d
dt

δ (t)
})

(ω).

Using the time-domain differentiation property of the Fourier transform, we can write

X(ω) =
(

F
{

d
dt

δ (t)
})

(ω)

= jωFδ (ω).

Evaluating the Fourier transform of δ using Table 6.2, we obtain

X(ω) = jω(1)

= jω. �
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Example 6.17 (Frequency-domain differentiation property). Find the Fourier transform X of the function

x(t) = t cos(ω0t),

where ω0 is a nonzero real constant.

Solution. Taking the Fourier transform of both sides of the equation for x yields

X(ω) = F{t cos(ω0t)}(ω).

From the frequency-domain differentiation property of the Fourier transform, we can write

X(ω) = F{t cos(ω0t)}(ω)

= j (DF{cos(ω0t)})(ω),

where D denotes the derivative operator. Evaluating the Fourier transform on the right-hand side using Table 6.2, we

obtain

X(ω) = j d
dω

[π[δ (ω −ω0)+δ (ω +ω0)]]

= jπ d
dω

[δ (ω −ω0)+δ (ω +ω0)]

= jπ d
dω

δ (ω −ω0)+ jπ d
dω

δ (ω +ω0). �
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Example 6.18 (Time-domain integration property of the Fourier transform). Use the time-domain integration property

of the Fourier transform in order to find the Fourier transform X of the function x = u.

Solution. We begin by observing that x can be expressed in terms of an integral as

x(t) = u(t) =
∫ t

−∞

δ (τ)dτ.

Now, we consider the Fourier transform of x. We have

X(ω) =

(

F

{

∫ t

−∞

δ (τ)dτ

})

(ω).

From the time-domain integration property, we can write

X(ω) = 1
jω
Fδ (ω)+πFδ (0)δ (ω).

Evaluating the two Fourier transforms on the right-hand side using Table 6.2, we obtain

X(ω) = 1
jω
(1)+π(1)δ (ω)

= 1
jω

+πδ (ω).

Thus, we have shown that u(t)
CTFT

←→ 1
jω

+πδ (ω). �
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Example 6.19 (Energy of the sinc function). Consider the function x(t) = sinc
(

1
2
t
)

, which has the Fourier transform

X given by X(ω) = 2π rectω . Compute the energy of x.

Solution. We could directly compute the energy of x as

E =
∫

∞

−∞

|x(t)|2 dt

=
∫

∞

−∞

∣

∣sinc
(

1
2
t
)∣

∣

2
dt.

This integral is not so easy to compute, however. Instead, we use Parseval’s relation to write

E =
1

2π

∫

∞

−∞

|X(ω)|2 dω

=
1

2π

∫

∞

−∞

|2π rectω|2 dω

=
1

2π

∫ 1/2

−1/2
(2π)2

dω

= 2π

∫ 1/2

−1/2
dω

= 2π[ω]|
1/2

−1/2

= 2π[ 1
2
+ 1

2
]

= 2π.

Thus, we have

E =
∫

∞

−∞

∣

∣sinc
(

1
2
t
)∣

∣

2
dt = 2π. �
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Answer (g).

We are asked to find the Fourier transform Y of

y(t) =
[

te− j5tx(t)
]∗

.

In what follows, we use the prime symbol to denote the derivative (i.e., f ′ denotes the derivative of f ). To begin,

we have

y(t) =
[

te− j5tx(t)
]∗

=
[

e− j5ttx(t)
]∗

.

Letting v1(t) = tx(t), we have

y(t) =
[

e− j5tv1(t)
]∗

.

Letting v2(t) = e− j5tv1(t), we have

y(t) = v∗2(t).

Thus, we have written y(t) as

y(t) = v∗2(t)

where

v1(t) = tx(t) and

v2(t) = e− j5tv1(t).

Taking the Fourier transforms of the preceding equations, we obtain

V1(ω) = jX ′(ω),

V2(ω) =V1(ω +5), and

Y (ω) =V ∗
2 (−ω).

Combining the above equations, we have

Y (ω) =V ∗
2 (−ω)

= [V1(−ω +5)]∗

=
[

jX ′(−ω +5)
]∗

=− jX ′∗(−ω +5).
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Example 6.26. Let X and Y denote the Fourier transforms of x and y, respectively. Suppose that y(t) = x(t)cos(at),
where a is a nonzero real constant. Find an expression for Y in terms of X .

Solution. Essentially, we need to take the Fourier transform of both sides of the given equation. There are two obvious

ways in which to do this. One is to use the time-domain multiplication property of the Fourier transform, and another

is to use the frequency-domain shifting property. We will solve this problem using each method in turn in order to

show that the two approaches do not involve an equal amount of effort.

FIRST SOLUTION (USING AN UNENLIGHTENED APPROACH). We use the time-domain multiplication property.

To allow for simpler notation in what follows, we define

v(t) = cos(at)

and let V denote the Fourier transform of v. From Table 6.2, we have that

V (ω) = π[δ (ω −a)+δ (ω +a)].

Taking the Fourier transform of both sides of the given equation, we obtain

Y (ω) = (F{x(t)v(t)})(ω)

= 1
2π

X ∗V (ω)

= 1
2π

∫

∞

−∞

X(λ )V (ω −λ )dλ .

Substituting the above expression for V , we obtain

Y (ω) = 1
2π

∫

∞

−∞

X(λ )(π[δ (ω −λ −a)+δ (ω −λ +a)])dλ

= 1
2

∫

∞

−∞

X(λ )[δ (ω −λ −a)+δ (ω −λ +a)]dλ

= 1
2

[

∫

∞

−∞

X(λ )δ (ω −λ −a)dλ +
∫

∞

−∞

X(λ )δ (ω −λ +a)dλ

]

= 1
2

[

∫

∞

−∞

X(λ )δ (λ −ω +a)dλ +
∫

∞

−∞

X(λ )δ (λ −ω −a)dλ

]

= 1
2

[

∫

∞

−∞

X(λ )δ [λ − (ω −a)]dλ +
∫

∞

−∞

X(λ )δ [λ − (ω +a)]dλ

]

= 1
2
[X(ω −a)+X(ω +a)]

= 1
2
X(ω −a)+ 1

2
X(ω +a).

Note that the above solution is essentially identical to the one appearing earlier in Example 6.15 on page 1.

SECOND SOLUTION (USING AN ENLIGHTENED APPROACH). We use the frequency-domain shifting property.

Taking the Fourier transform of both sides of the given equation, we obtain

Y (ω) = (F{x(t)cos(at)})(ω)

=
(

F{ 1
2
(e jat + e− jat)x(t)}

)

(ω)

= 1
2

(

F{e jatx(t)}
)

(ω)+ 1
2

(

F{e− jatx(t)}
)

(ω)

= 1
2
X(ω −a)+ 1

2
X(ω +a).

COMMENTARY. Clearly, of the above two solution methods, the second approach is simpler and much less error

prone. Generally, the use of the time-domain multiplication property tends to lead to less clean solutions, as this forces

a convolution to be performed in the frequency domain and convolution is often best avoided if possible. �
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Answer (j).

We are asked to find the Fourier transform X of

x(t) =
∫ 5t

−∞

e−τ−1u(τ −1)dτ.

We begin by rewriting x(t) as

x(t) = v3(5t),

where

v1(t) = e−tu(t),

v2(t) = v1(t −1), and

v3(t) =
∫ t

−∞

e−2v2(τ)dτ.

Taking the Fourier transform of both sides of each of the above equations yields

V1(ω) =
1

1+ jω
,

V2(ω) = e− jωV1(ω),

V3(ω) = e−2

[

1

jω
V2(ω)+πV2(0)δ (ω)

]

, and

X(ω) = 1
5
V3(ω/5).

Combining the above results, we have

X(ω) = 1
5
V3(ω/5)

= 1
5
e−2

[(

1

j(ω/5)

)

V2(ω/5)+πV2(0)δ (ω/5)

]

= 1
5e2

[(

5

jω

)

V2(ω/5)+πV2(0)δ (ω/5)

]

= 1
5e2

[(

5

jω

)

e− jω/5V1(ω/5)+πV1(0)δ (ω/5)

]

= 1
5e2

[(

5

jω

)

e− jω/5

(

1

1+ j(ω/5)

)

+πδ (ω/5)

]

= 1
5e2

[(

5

jω

)(

5

5+ jω

)

e− jω/5 +πδ (ω/5)

]

= 1
5e2

[(

25

j5ω −ω2

)

e− jω/5 +πδ (ω/5)

]

.
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Example 6.20. Let X1 and X2 denote the Fourier transforms of x1 and x2, respectively. Suppose that X1 and X2 are as

shown in Figures 6.6(a) and (b). Determine whether x1 and x2 are periodic.

20−2

X1(ω)

11 1 1

−4 4−6
ω

6

1
2

1
2

(a)

10−1

X2(ω)

ω

1

(b)

Figure 6.6: Frequency spectra. The frequency spectra (a) X1 and (b) X2.

Solution. We know that the Fourier transform X of a T -periodic function x must be of the form

X(ω) =
∞

∑
k=−∞

αkδ (ω − kω0),

where ω0 = 2π

T
and the {αk} are complex constants. The spectrum X1 does have this form, with ω0 = 2 and T =

2π

2
= π . Therefore, x1 must be π-periodic. The spectrum X2 does not have this form. Therefore, x2 must not be

periodic. �
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Example 6.21. Consider the periodic function x with fundamental period T = 2 as shown in Figure 6.7. Using the

Fourier transform, find the Fourier series representation of x.

1
2

3
2

− 1
2

− 3
2

t

· · ·· · ·

1

x(t)

Figure 6.7: Periodic function x.

Solution. Let ω0 denote the fundamental frequency of x. We have that ω0 =
2π

T
= π . Let y(t) = rect t (i.e., y corre-

sponds to a single period of the periodic function x). Thus, we have that

x(t) =
∞

∑
k=−∞

y(t −2k).

Let Y denote the Fourier transform of y. Taking the Fourier transform of y, we obtain

Y (ω) = (F{rect t})(ω) = sinc
(

1
2
ω

)

.

Now, we seek to find the Fourier series representation of x, which has the form

x(t) =
∞

∑
k=−∞

cke jkω0t
.

Using the Fourier transform, we have

ck =
1
T

Y (kω0)

= 1
2

sinc
(

ω0
2

k
)

= 1
2

sinc
(

π

2
k
)

. �
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Example 6.24. Consider the periodic function x given by

x(t) =
∞

∑
k=−∞

x0(t − kT ),

where a single period of x is given by

x0(t) = A rect
(

2t

T

)

and A is a real constant. Find the Fourier transform X of the function x.

Solution. From (6.16b), we know that

X(ω) = F

{

∞

∑
k=−∞

x0(t − kT )

}

(ω)

=
∞

∑
k=−∞

ω0X0(kω0)δ (ω − kω0).

So, we need to find X0. Using the linearity property of the Fourier transform and Table 6.2, we have

X0(ω) = F
{

A rect
(

2t

T

)}

(ω)

= AF
{

rect
(

2t

T

)}

(ω)

= AT

2
sinc

(

ωT

4

)

.

Thus, we have that

X(ω) =
∞

∑
k=−∞

ω0

(

AT

2

)

sinc
(

kω0T

4

)

δ (ω − kω0)

=
∞

∑
k=−∞

πAsinc
(

πk

2

)

δ (ω − kω0). �
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Example 6.30 (Frequency spectrum of a time-shifted signum function). The function

x(t) = sgn(t −1)

has the Fourier transform

X(ω) = 2
jω

e− jω
.

(a) Find and plot the magnitude and phase spectra of x. (b) Determine at what frequency (or frequencies) x has the

most information.

Solution. (a) First, we find the magnitude spectrum |X(ω)|. From the expression for X(ω), we can write

|X(ω)|=
∣

∣

∣

2
jω

e− jω
∣

∣

∣

=
∣

∣

∣

2
jω

∣

∣

∣

∣

∣e− jω
∣

∣

=
∣

∣

∣

2
jω

∣

∣

∣

= 2
|ω| .

Next, we find the phase spectrum argX(ω). First, we observe that argX(ω) is not well defined if ω = 0. So, we

assume that ω 6= 0. From the expression for X(ω), we can write (for ω 6= 0)

argX(ω) = arg
{

2
jω

e− jω
}

= arge− jω + arg 2
jω

=−ω + arg 2
jω

=−ω + arg(− j2
ω
)

=

{

−π

2
−ω ω > 0

π

2
−ω ω < 0

=−π

2
sgnω −ω.

In the above simplification, we used the fact that

arg 2
jω

= arg(− j2
ω
) =

{

−π

2
ω > 0

π

2
ω < 0.

Finally, using numerical calculation, we can plot the graphs of |X(ω)| and argX(ω) to obtain the results shown in

Figures 6.10(a) and (b).

(b) Since |X(ω)| is largest for ω = 0, x has the most information at the frequency 0.
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0−1−2−3 1 2 3

|X(ω)|

ω

6

4

2

(a)

π

2

ω

argX(ω)

− π

2
π

2

− π

2

(b)

Figure 6.10: Frequency spectrum of the time-shifted signum function. (a) Magnitude spectrum and (b) phase spectrum

of x.

�
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Example 6.34 (Differential equation to frequency response). A LTI system with input x and output y is characterized

by the differential equation

7y′′(t)+11y′(t)+13y(t) = 5x′(t)+3x(t),

where x′, y′, and y′′ denote the first derivative of x, the first derivative of y, and the second derivative of y, respectively.

Find the frequency response H of this system.

Solution. Taking the Fourier transform of the given differential equation, we obtain

7( jω)2Y (ω)+11 jωY (ω)+13Y (ω) = 5 jωX(ω)+3X(ω).

Rearranging the terms and factoring, we have

(−7ω
2 +11 jω +13)Y (ω) = (5 jω +3)X(ω).

Thus, H is given by

H(ω) =
Y (ω)

X(ω)
=

5 jω +3

−7ω
2 +11 jω +13

. �
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Example 6.35 (Frequency response to differential equation). A LTI system with input x and output y has the frequency

response

H(ω) =
−7ω

2 +11 jω +3

−5ω
2 +2

.

Find the differential equation that characterizes this system.

Solution. From the given frequency response H, we have

Y (ω)

X(ω)
=

−7ω
2 +11 jω +3

−5ω
2 +2

.

Multiplying both sides by (−5ω
2 +2)X(ω), we have

−5ω
2Y (ω)+2Y (ω) =−7ω

2X(ω)+11 jωX(ω)+3X(ω).

Applying some simple algebraic manipulation yields

5( jω)2Y (ω)+2Y (ω) = 7( jω)2X(ω)+11( jω)X(ω)+3X(ω).

Taking the inverse Fourier transform of the preceding equation, we obtain

5y′′(t)+2y(t) = 7x′′(t)+11x′(t)+3x(t). �
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Example 6.38 (Bandpass filtering). Consider a LTI system with the impulse response

h(t) = 2
π

sinc(t)cos(4t).

Using frequency-domain methods, find the response y of the system to the input

x(t) =−2+2cos(2t)+ cos(4t)− cos(6t).

Solution. Taking the Fourier transform of x, we have

X(ω) =−2πδ (ω)+2(π[δ (ω −2)+δ (ω +2)])+π[δ (ω −4)+δ (ω +4)]−π[δ (ω −6)+δ (ω +6)]

=−πδ (ω +6)+πδ (ω +4)+2πδ (ω +2)−2πδ (ω)+2πδ (ω −2)+πδ (ω −4)−πδ (ω −6).

The frequency spectrum X is shown in Figure 6.22(a). Now, we compute the frequency response H of the system.

Using the results of Example 6.36, we can determine H to be

H(ω) = F{ 2
π

sinc(t)cos(4t)}

= rect
(

ω−4
2

)

+ rect
(

ω+4
2

)

=

{

1 3 ≤ |ω| ≤ 5

0 otherwise.

The frequency response H is shown in Figure 6.22(b). The frequency spectrum Y of the output is given by

Y (ω) = H(ω)X(ω)

= πδ (ω +4)+πδ (ω −4).

Taking the inverse Fourier transform, we obtain

y(t) = F
−1 {πδ (ω +4)+πδ (ω −4)}(t)

= F
−1 {π[δ (ω +4)+δ (ω −4)]}(t)

= cos(4t). �
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−2−4 2 4

−π −π

π

2π

−2π

ω
6−6

X(ω)

2π

π

(a)

ω

H(ω)

−5 −3 3 5

1

(b)

−4
ω

42−2−6 6

π π

Y (ω)

(c)

Figure 6.22: Frequency spectra for bandpass filtering example. (a) Frequency spectrum of the input x. (b) Frequency

response of the system. (c) Frequency spectrum of the output y.
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Example 6.40 (Simple RL network). Consider the resistor-inductor (RL) network shown in Figure 6.26 with input

v1 and output v2. This system is LTI, since it can be characterized by a linear differential equation with constant

coefficients. (a) Find the frequency response H of the system. (b) Find the response v2 of the system to the input

v1(t) = sgn t.

R
i

v2v1 L

Figure 6.26: Simple RL network.

Solution. (a) From basic circuit analysis, we can write

v1(t) = Ri(t)+L d
dt

i(t) and (6.35)

v2(t) = L d
dt

i(t). (6.36)

(Recall that the voltage v across an inductor L is related to the current i through the inductor as v(t) = L d
dt

i(t).) Taking

the Fourier transform of (6.35) and (6.36) yields

V1(ω) = RI(ω)+ jωLI(ω)

= (R+ jωL)I(ω) and (6.37)

V2(ω) = jωLI(ω). (6.38)

From (6.37) and (6.38), we have

H(ω) =
V2(ω)

V1(ω)

=
jωLI(ω)

(R+ jωL)I(ω)

=
jωL

R+ jωL
. (6.39)

Thus, we have found the frequency response of the system.

(b) Now, suppose that v1(t) = sgn t (as given). Taking the Fourier transform of the input v1 (with the aid of

Table 6.2), we have

V1(ω) =
2

jω
. (6.40)

From the definition of the system, we know

V2(ω) = H(ω)V1(ω). (6.41)

Substituting (6.40) and (6.39) into (6.41), we obtain

V2(ω) =

(

jωL

R+ jωL

)(

2

jω

)

=
2L

R+ jωL
.
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Taking the inverse Fourier transform of both sides of this equation, we obtain

v2(t) = F
−1

{

2L

R+ jωL

}

(t)

= F
−1

{

2

R/L+ jω

}

(t)

= 2F−1

{

1

R/L+ jω

}

(t).

Using Table 6.2, we can simplify to obtain

v2(t) = 2e−(R/L)tu(t).

Thus, we have found the response v2 to the input v1(t) = sgn t. �
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DSB-SC AM: Transmitter

×

c(t) = cos(ωct)

yx

y(t) = cos(ωct)x(t)

X = Fx, Y = Fy

Y (ω) = F{cos(ωct)x(t)}(ω)

= F
{

1

2

(

e jωct + e− jωct
)

x(t)
}

(ω)

= 1

2

[

F{e jωctx(t)}(ω)+F{e− jωctx(t)}(ω)
]

= 1

2
[X(ω−ωc)+X(ω+ωc)]
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DSB-SC AM: Receiver

×

c(t) = cos(ωct)

h
x̂vy

h(t) = 2ωc0

π
sinc(ωc0t)

v(t) = cos(ωct)y(t), h(t) = 2ωc0

π
sinc(ωc0t), x̂(t) = v∗h(t)

Y = Fy, V = Fv, H = Fh, X̂ = Fx̂

V (ω) = F{cos(ωct)y(t)}(ω)

= F
{

1

2

(

e jωct + e− jωct
)

y(t)
}

(ω)

= 1

2

[

F
{

e jωcty(t)
}

(ω)+F
{

e− jωcty(t)
}

(ω)
]

= 1

2
[Y (ω−ωc)+Y (ω+ωc)]

H(ω) = F

{

2ωc0

π
sinc(ωc0t)

}

(ω)

= 2rect

(

ω

2ωc0

)

X̂(ω) = H(ω)V (ω)
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DSB-SC AM: Complete System

×

c(t) = cos(ωct)

yx
×

c(t) = cos(ωct)

h
x̂vy

h(t) = 2ωc0

π
sinc(ωc0t)

Y (ω) = 1

2
[X(ω−ωc)+X(ω+ωc)]

V (ω) = 1

2
[Y (ω−ωc)+Y (ω+ωc)]

= 1

2

[

1

2
[X([ω−ωc]−ωc)+X([ω−ωc]+ωc)]+

1

2
[X([ω+ωc]−ωc)+X([ω+ωc]+ωc)]

]

= 1

2
X(ω)+ 1

4
X(ω−2ωc)+

1

4
X(ω+2ωc)

X̂(ω) = H(ω)V (ω)

= H(ω)
[

1

2
X(ω)+ 1

4
X(ω−2ωc)+

1

4
X(ω+2ωc)

]

= 1

2
H(ω)X(ω)+ 1

4
H(ω)X(ω−2ωc)+

1

4
H(ω)X(ω+2ωc)

= 1

2
[2X(ω)]+ 1

4
(0)+ 1

4
(0)

= X(ω)
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DSB-SC AM: Spectra

ωb

X(ω)
1

−ωb
ω

Transmitter Input
ωc−ωc

ω

C(ω)

ππ

ωc0−ωc0
ω

2

H(ω)

−ωc −ωb−ωc−ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc
ω

−2ωc 2ωc

1

2

Transmitter Output

V (ω)

−ωb ωb
ω

−2ωc−2ωc −ωb −2ωc +ωb
2ωc2ωc −ωb 2ωc +ωb

1

2

1

4

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)

Receiver Output
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Now, let us consider the communication system shown in Figure 6.29. This system is known as a double-side-

band/suppressed-carrier (DSB/SC) amplitude modulation (AM) system. The receiver in Figure 6.29(b) contains a LTI

subsystem that is labelled with its impulse response h. The DSB/SC AM system is very similar to the one considered

earlier in Figure 6.27. In the new system, however, multiplication by a complex sinusoid has been replaced by

multiplication by a real sinusoid. The new system also requires that the input signal x be bandlimited to frequencies

in the interval [−ωb,ωb] and that

ωb < ωc0 < 2ωc −ωb. (6.45)

The reasons for this restriction will become clear after having studied this system in more detail.

×

c(t) = cos(ωct)

yx

(a)

×

c(t) = cos(ωct)

h
x̂vy

h(t) = 2ωc0
π

sinc(ωc0t)

(b)

Figure 6.29: DSB/SC amplitude modulation system. (a) Transmitter and (b) receiver.

Consider the transmitter shown in Figure 6.29(a). The transmitter is a system with input x and output y that is

characterized by the equation

y(t) = c(t)x(t),

where

c(t) = cos(ωct).

Taking the Fourier transform of both sides of the preceding equation, we obtain

Y (ω) = F{cx}(ω)

= F{cos(ωct)x(t)}(ω)

= F
{

1
2
[e jωct + e− jωct ]x(t)

}

(ω)

= 1
2

[

F{e jωctx(t)}(ω)+F{e− jωctx(t)}(ω)
]

= 1
2
[X(ω −ωc)+X(ω +ωc)] . (6.46)

(Note that, above, we used the fact that cos(ωct) =
1
2
(e jωct + e− jωct).) Thus, the frequency spectrum of the (transmit-

ter) output is the average of two shifted versions of the frequency spectrum of the (transmitter) input. The relationship

between the frequency spectra of the input and output can be seen through Figures 6.30(a) and (d). Observe that we

have managed to shift the frequency spectrum of the input signal into a different range of frequencies for transmission

as desired. Next, we must determine whether the receiver can recover the original signal x.

Consider the receiver shown in Figure 6.29(b). The receiver is a system with input y and output x̂ that is charac-

terized by the equations

v(t) = c(t)y(t) and (6.47a)

x̂(t) = v∗h(t), (6.47b)

where c is as defined earlier and

h(t) = 2ωc0
π

sinc(ωc0t). (6.47c)
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Let H, Y , V , and X̂ denote the Fourier transforms of h, y, v and x̂, respectively. Taking the Fourier transform of X̂

(in (6.47b)), we have

X̂(ω) = H(ω)V (ω). (6.48)

Taking the Fourier transform of h (in (6.47c)) with the assistance of Table 6.2, we have

H(ω) = F

{

2ωc0
π

sinc(ωc0t)
}

(ω)

= 2rect ω

2ωc0

=

{

2 |ω| ≤ ωc0

0 otherwise.

Taking the Fourier transform of v (in (6.47a)) yields

V (ω) = F{cy}(ω)

= F{cos(ωct)y(t)}(ω)

= F
{

1
2

(

e jωct + e− jωct
)

y(t)
}

(ω)

= 1
2

[

F
{

e jωcty(t)
}

(ω)+F
{

e− jωcty(t)
}

(ω)
]

= 1
2
[Y (ω −ωc)+Y (ω +ωc)].

Substituting the expression for Y in (6.46) into this equation, we obtain

V (ω) = 1
2

[

1
2
[X([ω −ωc]−ωc)+X([ω −ωc]+ωc)]+

1
2
[X([ω +ωc]−ωc)+X([ω +ωc]+ωc)]

]

= 1
2
X(ω)+ 1

4
X(ω −2ωc)+

1
4
X(ω +2ωc). (6.49)

The relationship between V and X can be seen via Figures 6.30(a) and (e). Substituting the above expression for V

into (6.47b) and simplifying, we obtain

X̂(ω) = H(ω)V (ω)

= H(ω)
[

1
2
X(ω)+ 1

4
X(ω −2ωc)+

1
4
X(ω +2ωc)

]

= 1
2
H(ω)X(ω)+ 1

4
H(ω)X(ω −2ωc)+

1
4
H(ω)X(ω +2ωc)

= 1
2
[2X(ω)]+ 1

4
(0)+ 1

4
(0)

= X(ω).

In the above simplification, since H(ω)= 2rect ω

2ωc0
and condition (6.45) holds, we were able to deduce that H(ω)X(ω)=

2X(ω), H(ω)X(ω −2ωc) = 0, and H(ω)X(ω +2ωc) = 0. The relationship between X̂ and X can be seen from Fig-

ures 6.30(a) and (f). Thus, we have that X̂ = X , implying x̂ = x. So, we have recovered the original signal x at the

receiver. This system has managed to shift x into a different frequency range before transmission and then recover x

at the receiver. This is exactly what we wanted to accomplish.
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ωb

X(ω)

1

−ωb

ω

(a)

ωc−ωc
ω

C(ω)

ππ

(b)

ωc0−ωc0
ω

2

H(ω)

(c)

−ωc −ωb −ωc −ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc
ω

−2ωc 2ωc

1
2

(d)

V (ω)

−ωb ωb

ω
−2ωc−2ωc −ωb −2ωc +ωb

2ωc2ωc −ωb 2ωc +ωb

1
2

1
4

(e)

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)

(f)

Figure 6.30: Signal spectra for DSB/SC amplitude modulation. (a) Spectrum of the transmitter input. (b) Spectrum

of the sinusoidal function used in the transmitter and receiver. (c) Frequency response of the filter in the receiver.

(d) Spectrum of the transmitted signal. (e) Spectrum of the multiplier output in the receiver. (f) Spectrum of the

receiver output.

Edition 2020-04-11 Copyright c© 2012–2020 Michael D. Adams



Sampling: Fourier Series for a Periodic Impulse Train

p(t) =
∞

∑
k=−∞

δ(t − kT ), ωs =
2π
T

p(t) =
∞

∑
k=−∞

cke jkωst

ck =
1

T

∫ T/2

−T/2

p(t)e− jkωstdt

= 1

T

∫ T/2

−T/2

δ(t)e− jkωstdt

= 1

T

∫ ∞

−∞
δ(t)e− jkωstdt

= 1

T

= ωs
2π

p(t) = ωs
2π

∞

∑
k=−∞

e jkωst

Copyright c© 2013–2020 Michael D. Adams Signals and Systems Edition 2020-05-ECE260



Sampling: Multiplication by a Periodic Impulse Train

×

x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t − kT )

s(t) = p(t)x(t), p(t) =
∞

∑
k=−∞

δ(t − kT ), ωs =
2π
T

p(t) = ωs
2π

∞

∑
k=−∞

e jkωst

s(t) = ωs
2π

∞

∑
k=−∞

e jkωstx(t)

X = Fx, S = Fs

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω− kωs)
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1

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ (t − kT )

Figure 6.36: Model of ideal C/D converter with input function x and output sequence y.

Now, let us consider the above model of sampling in more detail. In particular, we would like to find the rela-

tionship between the frequency spectra of the original function x and its impulse-train sampled version s. In what

follows, let X , Y , P, and S denote the Fourier transforms of x, y, p, and s, respectively. Since p is T -periodic, it can be

represented in terms of a Fourier series as

p(t) =
∞

∑
k=−∞

cke jkωst . (6.52)

Using the Fourier series analysis equation, we calculate the coefficients ck to be

ck =
1
T

∫ T/2

−T/2
p(t)e− jkωstdt

= 1
T

∫ T/2

−T/2
δ (t)e− jkωstdt

= 1
T

= ωs
2π
. (6.53)

Substituting (6.52) and (6.53) into (6.51), we obtain

s(t) = x(t)
∞

∑
k=−∞

ωs
2π

e jkωst

= ωs
2π

∞

∑
k=−∞

x(t)e jkωst .

Taking the Fourier transform of s yields

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω − kωs). (6.54)

Thus, the spectrum of the impulse-train sampled function s is a scaled sum of an infinite number of shifted copies of

the spectrum of the original function x.
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Example 6.41. Let x denote a continuous-time audio signal with Fourier transform X . Suppose that |X(ω)|= 0 for all

|ω| ≥ 44100π . Determine the largest period T with which x can be sampled that will allow x to be exactly recovered

from its samples.

Solution. The function x is bandlimited to frequencies in the range (−ωm,ωm), where ωm = 44100π . From the

sampling theorem, we know that the minimum sampling rate required is given by

ωs = 2ωm

= 2(44100π)

= 88200π.

Thus, the largest permissible sampling period is given by

T = 2π

ωs

= 2π

88200π

= 1
44100

. �
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Why does CD-quality audio use a sampling rate of 44.1 kHz?

In practice, how do we ensure the audio signal to be sampled is sufficiently bandlimited?

The human auditory system (assuming pristine hearing) can sense frequencies up to about 22.05 kHz.
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Example 6.39 (Communication channel equalization). Consider a LTI communication channel with frequency re-

sponse

H(ω) = 1
3+ jω

.

Unfortunately, this channel has the undesirable effect of attenuating higher frequencies. Find the frequency response

G of an equalizer that when connected in series with the communication channel yields an ideal (i.e., distortion-

less) channel. The new system with equalization is shown in Figure 6.24, where g and h denote the inverse Fourier

transforms of G and H, respectively.

h
y

g
x

Figure 6.24: System from example that employs equalization.

Solution. An ideal communication channel has a frequency response equal to one for all frequencies. Consequently,

we want H(ω)G(ω) = 1 or equivalently G(ω) = 1/H(ω). Thus, we conclude that

G(ω) =
1

H(ω)

=
1

(

1
3+ jω

)

= 3+ jω. �
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Unit:

Partial Fraction Expansions
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Example B.1 (Simple pole). Find the partial fraction expansion of the function

f (z) =
3

z2 +3z+2
.

Solution. First, we rewrite f with the denominator polynomial factored to obtain

f (z) =
3

(z+1)(z+2)
.

From this, we know that f has a partial fraction expansion of the form

f (z) =
A1

z+1
+

A2

z+2
,

where A1 and A2 are constants to be determined. Now, we calculate A1 and A2 as follows:

A1 = (z+1) f (z)|z=−1

=
3

z+2

∣

∣

∣

∣

z=−1

= 3 and

A2 = (z+2) f (z)|z=−2

=
3

z+1

∣

∣

∣

∣

z=−2

=−3.

Thus, the partial fraction expansion of f is given by

f (z) =
3

z+1
−

3

z+2
. �
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Example B.2 (Repeated pole). Find the partial fraction expansion of the function

f (z) =
4z+8

(z+1)2(z+3)
.

Solution. Since f has a repeated pole, we know that f has a partial fraction expansion of the form

f (z) =
A1,1

z+1
+

A1,2

(z+1)2
+

A2,1

z+3
.

where A1,1, A1,2, and A2,1 are constants to be determined. To calculate these constants, we proceed as follows:

A1,1 =
1

(2−1)!

[

(

d
dz

)2−1 [
(z+1)2 f (z)

]

]∣

∣

∣

z=−1

=
1

1!

[

d
dz

[

(z+1)2 f (z)
]]∣

∣

z=−1

=

[

d
dz

(

4z+8

z+3

)]∣

∣

∣

∣

z=−1

=
[

4(z+3)−1 +(−1)(z+3)−2(4z+8)
]∣

∣

z=−1

=

[

4

(z+3)2

]∣

∣

∣

∣

z=−1

= 4
4

= 1,

A1,2 =
1

(2−2)!

[

(

d
dz

)2−2 [
(z+1)2 f (z)

]

]∣

∣

∣

z=−1

=
1

0!

[

(z+1)2 f (z)
]∣

∣

z=−1

=

[

4z+8

z+3

]∣

∣

∣

∣

z=−1

= 4
2

= 2, and

A2,1 = (z+3) f (z)|z=−3

=
4z+8

(z+1)2

∣

∣

∣

∣

z=−3

= −4
4

=−1.

Thus, the partial fraction expansion of f is given by

f (z) =
1

z+1
+

2

(z+1)2
−

1

z+3
. �

Edition 2020-04-11 Copyright c© 2012–2020 Michael D. Adams



Unit:

Laplace Transform
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Recall the definition of the Laplace transform in (7.2). Consider now the special case of (7.2) where s = jω and

ω is real (i.e., Re(s) = 0). In this case, (7.2) becomes

X( jω) =

[

∫

∞

−∞

x(t)e−stdt

]∣

∣

∣

∣

s= jω

=
∫

∞

−∞

x(t)e− jωtdt

= Fx(ω).

Thus, the Fourier transform is simply the Laplace transform evaluated at s = jω , assuming that this quantity is well

defined (i.e., converges). In other words,

X( jω) = Fx(ω). (7.4)

Incidentally, it is due to the preceding relationship that the Fourier transform of x is sometimes written as X( jω).
When this notation is used, the function X actually corresponds to the Laplace transform of x rather than its Fourier

transform (i.e., the expression X( jω) corresponds to the Laplace transform evaluated at points on the imaginary axis).
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Relationship Between the Laplace and Fourier Transforms
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Now, consider the general case of an arbitrary complex value for s in (7.2). Let us express s in Cartesian form as

s = σ + jω where σ and ω are real. Substituting s = σ + jω into (7.2), we obtain

X(σ + jω) =
∫

∞

−∞

x(t)e−(σ+ jω)tdt

=
∫

∞

−∞

[x(t)e−σt ]e− jωtdt

= F{e−σtx(t)}(ω).

Thus, we have shown

X(σ + jω) = F{e−σtx(t)}(ω). (7.5)

Thus, the Laplace transform of x can be viewed as the (CT) Fourier transform of x′(t) = e−σtx(t) (i.e., x weighted by

a real exponential function).
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Relationship Between the Laplace and Fourier Transforms (General Case)
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Example 7.3. Find the Laplace transform X of the function

x(t) = e−atu(t),

where a is a real constant.

Solution. Let s = σ + jω , where σ and ω are real. From the definition of the Laplace transform, we have

X(s) = L{e−atu(t)}(s)

=
∫

∞

−∞

e−atu(t)e−stdt

=
∫

∞

0
e−(s+a)tdt

=
[

(

− 1
s+a

)

e−(s+a)t
]∣

∣

∣

∞

0
.

At this point, we substitute s = σ + jω in order to more easily determine when the above expression converges to a

finite value. This yields

X(s) =
[(

− 1
σ+a+ jω

)

e−(σ+a+ jω)t
]∣

∣

∣

∞

0

=
(

−1
σ+a+ jω

) [

e−(σ+a)te− jωt
]∣

∣

∣

∞

0

=
(

−1
σ+a+ jω

)[

e−(σ+a)∞e− jω∞−1
]

.

Thus, we can see that the above expression only converges for σ +a > 0 (i.e., Re(s)>−a). In this case, we have that

X(s) =
(

−1
σ+a+ jω

)

[0−1]

=
(

−1
s+a

)

(−1)

=
1

s+a
.

Thus, we have that

e−atu(t)
LT

←→
1

s+a
for Re(s)>−a.

The region of convergence for X is illustrated in Figures 7.2(a) and (b) for the cases of a > 0 and a < 0, respectively.

Re(s)

Im(s)

−a

(a)

Im(s)

−a
Re(s)

(b)

Figure 7.2: Region of convergence for the case that (a) a > 0 and (b) a < 0.

�
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Example 7.4. Find the Laplace transform X of the function

x(t) =−e−atu(−t),

where a is a real constant.

Solution. Let s = σ + jω , where σ and ω are real. From the definition of the Laplace transform, we can write

X(s) = L{−e−atu(−t)}(s)

=
∫

∞

−∞

−e−atu(−t)e−stdt

=
∫ 0

−∞

−e−ate−stdt

=
∫ 0

−∞

−e−(s+a)tdt

=
[

(

1
s+a

)

e−(s+a)t
]∣

∣

∣

0

−∞

.

In order to more easily determine when the above expression converges to a finite value, we substitute s = σ + jω .

This yields

X(s) =
[(

1
σ+a+ jω

)

e−(σ+a+ jω)t
]∣

∣

∣

0

−∞

=
(

1
σ+a+ jω

) [

e−(σ+a)te− jωt
]∣

∣

∣

0

−∞

=
(

1
σ+a+ jω

)[

1− e(σ+a)∞e jω∞

]

.

Thus, we can see that the above expression only converges for σ +a < 0 (i.e., Re(s)<−a). In this case, we have

X(s) =
(

1
σ+a+ jω

)

[1−0]

=
1

s+a
.

Thus, we have that

−e−atu(−t)
LT

←→
1

s+a
for Re(s)<−a.

The region of convergence for X is illustrated in Figures 7.3(a) and (b) for the cases of a > 0 and a < 0, respectively.

Im(s)

Re(s)
−a

(a)

Im(s)

Re(s)
−a

(b)

Figure 7.3: Region of convergence for the case that (a) a > 0 and (b) a < 0.
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Example 7.7. The Laplace transform X of the function x has the algebraic expression

X(s) =
s+ 1

2

(s2 +2s+2)(s2 + s−2)
.

Identify all of the possible ROCs of X . For each ROC, indicate whether the corresponding function x is left sided,

right sided, two sided, or finite duration.

Solution. The possible ROCs associated with X are determined by the poles of this function. So, we must find the

poles of X . Factoring the denominator of X , we obtain

X(s) =
s+ 1

2

(s+1− j)(s+1+ j)(s+2)(s−1)
.

Thus, X has poles at −2, −1− j, −1+ j, and 1. Since these poles only have three distinct real parts (namely, −2, −1,

and 1), there are four possible ROCs:

i) Re(s)<−2,

ii) −2 < Re(s)<−1,

iii) −1 < Re(s)< 1, and

iv) Re(s)> 1.

These ROCs are plotted in Figures 7.8(a), (b), (c), and (d), respectively. The first ROC is a left-half plane, so the

corresponding x must be left sided. The second ROC is a vertical strip (i.e., neither a left- nor right-half plane), so the

corresponding x must be two sided. The third ROC is a vertical strip (i.e., neither a left- nor right-half plane), so the

corresponding x must be two sided. The fourth ROC is a right-half plane, so the corresponding x must be right sided.

1 2

1

2

−1

−2

Im

−2−3 3
Re

−1

(a)

1 2

1

2

−1

−2

Im

−2−3 3
Re

−1

(b)

1 2

1

2

−1

−2

Im

−2−3 3
Re

−1

(c)

1 2

1

2

−1

−2

Im

−2−3 3
Re

−1

(d)

Figure 7.8: ROCs for example. The (a) first, (b) second, (c) third, and (d) fourth possible ROCs for X .

�
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Example 7.8 (Linearity property of the Laplace transform). Find the Laplace transform of the function

x = x1 + x2,

where

x1(t) = e
−t

u(t) and x2(t) = e
−t

u(t)− e
−2t

u(t).

Solution. Using Laplace transform pairs from Table 7.2, we have

X1(s) = L{e
−t

u(t)}(s)

=
1

s+1
for Re(s)>−1 and

X2(s) = L{e
−t

u(t)− e
−2t

u(t)}(s)

= L{e
−t

u(t)}(s)−L{e
−2t

u(t)}(s)

=
1

s+1
−

1

s+2
for Re(s)>−1

=
1

(s+1)(s+2)
for Re(s)>−1.

So, from the definition of X , we can write

X(s) = L{x1 + x2}(s)

= X1(s)+X2(s)

=
1

s+1
+

1

(s+1)(s+2)

=
s+2+1

(s+1)(s+2)

=
s+3

(s+1)(s+2)
.

Now, we must determine the ROC of X . We know that the ROC of X must contain the intersection of the ROCs of X1

and X2. So, the ROC must contain Re(s) > −1. Furthermore, the ROC cannot be larger than this intersection, since

X has a pole at −1. Therefore, the ROC of X is Re(s) > −1. The various ROCs are illustrated in Figure 7.9. So, in

conclusion, we have

X(s) =
s+3

(s+1)(s+2)
for Re(s)>−1. �
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−1−2 1 2

1

2

−1

−2

Im

Re

(a)

−1−2 1 2

1

2

−1

−2

Im

Re

(b)

−1 1 2

1

2

−1

−2

Im

Re
−2

(c)

−1 1 2

1

2

−1

−2

Im

Re
−2

(d)

Figure 7.9: ROCs for the linearity example. The (a) ROC of X1, (b) ROC of X2, (c) ROC associated with the

intersection of the ROCs of X1 and X2, and (d) ROC of X .
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Example 7.9 (Linearity property of the Laplace transform and pole-zero cancellation). Find the Laplace transform X

of the function

x = x1 − x2,

where x1 and x2 are as defined in the previous example.

Solution. From the previous example, we know that

X1(s) =
1

s+1
for Re(s)>−1 and

X2(s) =
1

(s+1)(s+2)
for Re(s)>−1.

From the definition of X , we have

X(s) = L{x1 − x2}(s)

= X1(s)−X2(s)

=
1

s+1
−

1

(s+1)(s+2)

=
s+2−1

(s+1)(s+2)

=
s+1

(s+1)(s+2)

=
1

s+2
.

Now, we must determine the ROC of X . We know that the ROC of X must at least contain the intersection of the

ROCs of X1 and X2. Therefore, the ROC must contain Re(s) > −1. Since X is rational, we also know that the ROC

must be bounded by poles or extend to infinity. Since X has only one pole and this pole is at −2, the ROC must also

include −2 < Re(s) < −1. Therefore, the ROC of X is Re(s) > −2. In effect, the pole at −1 has been cancelled by

a zero at the same location. As a result, the ROC of X is larger than the intersection of the ROCs of X1 and X2. The

various ROCs are illustrated in Figure 7.10. So, in conclusion, we have

X(s) =
1

s+2
for Re(s)>−2. �
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1

2

−1

−2

Im

Re

(a)

−1−2 1 2

1

2

−1

−2

Im

Re

(b)

−1−2 1 2

1

2

−1

−2

Im

Re

(c)

−1−2 1 2

1

2

−1

−2

Im

Re

(d)

Figure 7.10: ROCs for the linearity example. The (a) ROC of X1, (b) ROC of X2, (c) ROC associated with the

intersection of the ROCs of X1 and X2, and (d) ROC of X .
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Example 7.10 (Time-domain shifting property). Find the Laplace transform X of

x(t) = u(t−1).

Solution. From Table 7.2, we know that

u(t)
LT

←→ 1/s for Re(s)> 0.

Using the time-domain shifting property, we can deduce

x(t) = u(t−1)
LT

←→ X(s) = e
−s

(

1
s

)

for Re(s)> 0.

Therefore, we have

X(s) =
e
−s

s
for Re(s)> 0. �
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Example 7.11 (Laplace-domain shifting property). Using only the properties of the Laplace transform and the trans-

form pair

e
−|t| LT

←→
2

1− s2
for −1 < Re(s)< 1,

find the Laplace transform X of

x(t) = e
5t

e
−|t|

.

Solution. We are given

e
−|t| LT

←→
2

1− s2
for −1 < Re(s)< 1.

Using the Laplace-domain shifting property, we can deduce

x(t) = e
5t

e
−|t| LT

←→ X(s) =
2

1− (s−5)2
for −1+5 < Re(s)< 1+5,

Thus, we have

X(s) =
2

1− (s−5)2
for 4 < Re(s)< 6.

Rewriting X in factored form, we have

X(s) =
2

1− (s−5)2
=

2

1− (s2−10s+25)
=

2

−s2 +10s−24
=

−2

s2−10s+24
=

−2

(s−6)(s−4)
.

Therefore, we have

X(s) =
−2

(s−4)(s−6)
for 4 < Re(s)< 6. �
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Example 7.12 (Time-domain scaling property). Using only properties of the Laplace transform and the transform

pair

e
−|t| LT

←→
2

1− s2
for −1 < Re(s)< 1,

find the Laplace transform of the function

x(t) = e
−|3t|

.

Solution. We are given

e
−|t| LT

←→
2

1− s2
for −1 < Re(s)< 1.

Using the time-domain scaling property, we can deduce

x(t) = e
−|3t| LT

←→ X(s) =
1

|3|

2

1− ( s

3
)2

for 3(−1)< Re(s)< 3(1).

Thus, we have

X(s) =
2

3
[

1− ( s

3
)2
] for −3 < Re(s)< 3.

Simplifying, we have

X(s) =
2

3(1− s
2

9
)
=

2

3( 9−s
2

9
)
=

2(9)

3(9− s2)
=

6

9− s2
=

−6

(s+3)(s−3)
.

Therefore, we have

X(s) =
−6

(s+3)(s−3)
for −3 < Re(s)< 3. �
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Example 7.19. Using properties of the Laplace transform and the Laplace transform pair

e
−a|t| LT

←→
−2a

(s+a)(s−a)
for −a < Re(s)< a,

find the Laplace transform X of the function

x(t) = e
−5|3t−7|.

Solution. We begin by re-expressing x in terms of the following equations:

v1(t) = e
−5|t|,

v2(t) = v1(t−7), and

x(t) = v2(3t).

In what follows, let RV1
, RV2

, and RX denote the ROCs of V1, V2, and X , respectively. Taking the Laplace transform of

the above three equations, we obtain

V1(s) =
−10

(s+5)(s−5)
, RV1

= (−5 < Re(s)< 5),

V2(s) = e
−7s

V1(s), RV2
= RV1

,

X(s) = 1
3
V2(s/3), and RX = 3RV2

.

Combining the above equations, we have

X(s) = 1
3
V2(s/3)

= 1
3
e
−7(s/3)

V1(s/3)

= 1
3
e
−7s/3

V1(s/3)

= 1
3
e
−7s/3 −10

(s/3+5)(s/3−5)
and

RX = 3RV2

= 3RV1

= 3(−5 < Re(s)< 5)

=−15 < Re(s)< 15.

Thus, we have shown that

X(s) = 1
3
e
−7s/3 −10

(s/3+5)(s/3−5)
for −15 < Re(s)< 15. �
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Example 7.13 (Conjugation property). Using only properties of the Laplace transform and the transform pair

e(−1− j)tu(t)
LT

←→
1

s+1+ j
for Re(s)>−1,

find the Laplace transform of

x(t) = e(−1+ j)tu(t).

Solution. To begin, let v(t) = e(−1− j)tu(t) (i.e., v is the function whose Laplace transform is given in the Laplace-

transform pair above) and let V denote the Laplace transform of v. First, we determine the relationship between x and

v. We have

x(t) =
((

e(−1+ j)tu(t)
)∗)∗

=
((

e(−1+ j)t
)∗

u∗(t)
)∗

=
[

e(−1− j)tu(t)
]∗

= v∗(t).

Thus, x = v∗. Next, we find the Laplace transform of x. We are given

v(t) = e(−1− j)tu(t)
LT

←→ V (s) =
1

s+1+ j
for Re(s)>−1.

Using the conjugation property, we can deduce

x(t) = e(−1+ j)tu(t)
LT

←→ X(s) =

(

1

s∗+1+ j

)∗

for Re(s)>−1.

Simplifying the algebraic expression for X , we have

X(s) =

(

1

s∗+1+ j

)∗

=
1∗

[s∗+1+ j]∗
=

1

s+1− j
.

Therefore, we can conclude

X(s) =
1

s+1− j
for Re(s)>−1. �
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Example 7.14 (Time-domain convolution property). Find the Laplace transform X of the function

x(t) = x1 ∗ x2(t),

where

x1(t) = sin(3t)u(t) and x2(t) = tu(t).

Solution. From Table 7.2, we have that

x1(t) = sin(3t)u(t)
LT

←→ X1(s) =
3

s2 +9
for Re(s)> 0 and

x2(t) = tu(t)
LT

←→ X2(s) =
1

s2
for Re(s)> 0.

Using the time-domain convolution property, we have

x(t)
LT

←→ X(s) =

(

3

s2 +9

)(

1

s2

)

for {Re(s)> 0}∩{Re(s)> 0}.

The ROC of X is {Re(s)> 0}∩{Re(s)> 0} (as opposed to a superset thereof), since no pole-zero cancellation occurs.

Simplifying the expression for X , we conclude

X(s) =
3

s2(s2 +9)
for Re(s)> 0. �
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Example 7.15 (Time-domain differentiation property). Find the Laplace transform X of the function

x(t) = d

dt
δ (t).

Solution. From Table 7.2, we have that

δ (t)
LT

←→ 1 for all s.

Using the time-domain differentiation property, we can deduce

x(t) = d

dt
δ (t)

LT

←→ X(s) = s(1) for all s.

Therefore, we have

X(s) = s for all s. �
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Example 7.16 (Laplace-domain differentiation property). Using only the properties of the Laplace transform and the

transform pair

e
−2t

u(t)
LT

←→
1

s+2
for Re(s)>−2,

find the Laplace transform of the function

x(t) = te
−2t

u(t).

Solution. We are given

e
−2t

u(t)
LT

←→
1

s+2
for Re(s)>−2.

Using the Laplace-domain differentiation and linearity properties, we can deduce

x(t) = te
−2t

u(t)
LT

←→ X(s) =− d

ds

(

1

s+2

)

for Re(s)>−2.

Simplifying the algebraic expression for X , we have

X(s) =− d

ds

(

1

s+2

)

=− d

ds
(s+2)−1 = (−1)(−1)(s+2)−2 =

1

(s+2)2
.

Therefore, we conclude

X(s) =
1

(s+2)2
for Re(s)>−2. �
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Example 7.17 (Time-domain integration property). Find the Laplace transform of the function

x(t) =
∫ t

−∞

e−2τ sin(τ)u(τ)dτ.

Solution. From Table 7.2, we have that

e−2t sin(t)u(t)
LT

←→
1

(s+2)2 +1
for Re(s)>−2.

Using the time-domain integration property, we can deduce

x(t) =
∫ t

−∞

e−2τ sin(τ)u(τ)dτ
LT

←→ X(s) =
1

s

(

1

(s+2)2 +1

)

for {Re(s)>−2}∩{Re(s)> 0}.

The ROC of X is {Re(s) > −2}∩ {Re(s) > 0} (as opposed to a superset thereof), since no pole-zero cancellation

takes place. Simplifying the algebraic expression for X , we have

X(s) =
1

s

(

1

(s+2)2 +1

)

=
1

s

(

1

s2 +4s+4+1

)

=
1

s

(

1

s2 +4s+5

)

.

Therefore, we have

X(s) =
1

s(s2 +4s+5)
for Re(s)> 0.

[Note: s2 +4s+5 = (s+2− j)(s+2+ j).] �
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Example 7.18 (Initial and final value theorems). A bounded causal function x with a (finite) limit at infinity has the

Laplace transform

X(s) =
2s

2 +3s+2

s3 +2s2 +2s
for Re(s)> 0.

Determine x(0+) and limt→∞ x(t).

Solution. Since x is causal (i.e., x(t) = 0 for all t < 0) and does not have any singularities at the origin, the initial

value theorem can be applied. From this theorem, we have

x(0+) = lim
s→∞

sX(s)

= lim
s→∞

s

[

2s
2 +3s+2

s3 +2s2 +2s

]

= lim
s→∞

2s
2 +3s+2

s2 +2s+2

= 2.

Since x is bounded and causal and has well-defined limit at infinity, we can apply the final value theorem. From

this theorem, we have

lim
t→∞

x(t) = lim
s→0

sX(s)

= lim
s→0

s

[

2s
2 +3s+2

s3 +2s2 +2s

]

=
2s

2 +3s+2

s2 +2s+2

∣

∣

∣

∣

s=0

= 1.

In passing, we note that the inverse Laplace transform x of X can be shown to be

x(t) = [1+ e
−t cos t]u(t).

As we would expect, the values calculated above for x(0+) and limt→∞ x(t) are consistent with this formula for x. �

Edition 2020-04-11 Copyright c© 2012–2020 Michael D. Adams



1

Example 7.25. Using a Laplace transform table and properties of the Laplace transform, find the Laplace transform

X of the function x shown in Figure 7.13.

0 1
t

x(t)

1

Figure 7.13: Function for the Laplace transform example.

Second solution (which incurs less work by avoiding differentiation). First, we express x using unit-step functions to

yield

x(t) = t[u(t)−u(t −1)]

= tu(t)− tu(t −1).

To simplify the subsequent Laplace transform calculation, we choose to rewrite x as

x(t) = tu(t)− tu(t −1)+u(t −1)−u(t −1)

= tu(t)− (t −1)u(t −1)−u(t −1).

(This is motivated by a preference to compute the Laplace transform of (t − 1)u(t − 1) instead of tu(t − 1).) Taking

the Laplace transform of both sides of the preceding equation, we obtain

X(s) = L{tu(t)}(s)−L{(t −1)u(t −1)}(s)−L{u(t −1)}(s).

We have

L{tu(t)}(s) =
1

s2
,

L{(t −1)u(t −1)}(s) = e−s
L{tu(t)}(s)

= e−s

(

1

s2

)

=
e−s

s2
, and

L{u(t −1)}(s) = e−s
L{u(t)}(s)

= e−s

(

1

s

)

=
e−s

s
.

Combining the above results, we have

X(s) =
1

s2
−

e−s

s2
−

e−s

s

=
1− e−s − se−s

s2
.

Since x is finite duration, the ROC of X is the entire complex plane. �
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Example 7.27. Find the inverse Laplace transform x of

X(s) =
2

s2− s−2
for −1 < Re(s)< 2.

Solution. We begin by rewriting X in the factored form

X(s) =
2

(s+1)(s−2)
.

Then, we find a partial fraction expansion of X . We know that X has an expansion of the form

X(s) =
A1

s+1
+

A2

s−2
.

Calculating the coefficients of the expansion, we obtain

A1 = (s+1)X(s)|
s=−1

=
2

s−2

∣

∣

∣

∣

s=−1

=−
2

3
and

A2 = (s−2)X(s)|
s=2

=
2

s+1

∣

∣

∣

∣

s=2

=
2

3
.

So, X has the expansion

X(s) =
2

3

(

1

s−2

)

−
2

3

(

1

s+1

)

.

Taking the inverse Laplace transform of both sides of this equation, we have

x(t) =
2

3
L
−1

{

1

s−2

}

(t)−
2

3
L
−1

{

1

s+1

}

(t). (7.6)

Using Table 7.2 and the given ROC, we have

−e
2t

u(−t)
LT

←→
1

s−2
for Re(s)< 2 and

e
−t

u(t)
LT

←→
1

s+1
for Re(s)>−1.

Substituting these results into (7.6), we obtain

x(t) = 2
3
[−e

2t
u(−t)]− 2

3
[e−t

u(t)]

=− 2
3
e

2t
u(−t)− 2

3
e
−t

u(t). �
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From Table 7.2, we have

e
−t

u(t)
LT

←→ 1
s+1

for Re(s)>−1,

te
−t

u(t)
LT

←→ 1
(s+1)2 for Re(s)>−1, and

e
−2t

u(t)
LT

←→ 1
s+2

for Re(s)>−2.

Substituting these results into (7.7), we obtain

x(t) = 3e
−t

u(t)− te
−t

u(t)−3e
−2t

u(t)

=
(

3e
−t − te

−t −3e
−2t

)

u(t). �
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Example 7.31. For the LTI system with each system function H below, determine whether the system is causal.

(a) H(s) =
1

s+1
for Re(s)>−1;

(b) H(s) =
1

s2 −1
for −1 < Re(s)< 1;

(c) H(s) =
e

s

s+1
for Re(s)<−1; and

(d) H(s) =
e

s

s+1
for Re(s)>−1.

Solution. (a) The poles of H are plotted in Figure 7.19(a) and the ROC is indicated by the shaded area. The system

function H is rational and the ROC is the right-half plane to the right of the rightmost pole. Therefore, the system is

causal.

(b) The poles of H are plotted in Figure 7.19(b) and the ROC is indicated by the shaded area. The system function

is rational but the ROC is not a right-half plane. Therefore, the system is not causal.

(c) The system function H has a left-half plane ROC. Therefore, h is a left-sided signal. Thus, the system is not

causal.

(d) The system function H has a right-half plane ROC but is not rational. Thus, we cannot make any conclusion

directly from the system function. Instead, we draw our conclusion from the impulse response h. Taking the inverse

Laplace transform of H, we obtain

h(t) = e
−(t+1)

u(t +1).

Thus, the impulse response h is not causal. Therefore, the system is not causal.

Re

Im

−1

(a)

Im

−1
Re

1

(b)

Figure 7.19: Pole and ROCs of the rational system functions in the causality example. The cases of the (a) first

(b) second system functions.

�

Edition 2020-04-11 Copyright c© 2012–2020 Michael D. Adams



1

Example 7.32. A LTI system has the system function

H(s) =
1

(s+1)(s+2)
.

Given that the system is BIBO stable, determine the ROC of H.

Solution. Clearly, the system function H is rational with poles at −1 and −2. Therefore, only three possibilities exist

for the ROC:

i) Re(s)<−2,

ii) −2 < Re(s)<−1, and

iii) Re(s)>−1.

In order for the system to be stable, however, the ROC of H must include the entire imaginary axis. Therefore, the

ROC must be Re(s)>−1. This ROC is illustrated in Figure 7.20.

Re

Im

−1−2

Figure 7.20: ROC for example.

�
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Example 7.33. A LTI system is causal and has the system function

H(s) =
1

(s+2)(s2 +2s+2)
.

Determine whether this system is BIBO stable.

Solution. We begin by factoring H to obtain

H(s) =
1

(s+2)(s+1− j)(s+1+ j)
.

(Using the quadratic formula, one can confirm that s2 +2s+2 = 0 has roots at s =−1± j.) Thus, H has poles at −2,

−1+ j, and −1− j. The poles are plotted in Figure 7.21. Since the system is causal and all of the poles of H are in

the left half of the plane, the system is stable.

Re

Im

−1−2

1

−1

Figure 7.21: Poles of the system function.

�
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Example 7.34. For each LTI system with system function H given below, determine the ROC of H that corresponds

to a BIBO stable system.

(a) H(s) =
s(s−1)

(s+2)(s+1+ j)(s+1− j)
;

(b) H(s) =
s

(s+1)(s−1)(s−1− j)(s−1+ j)
;

(c) H(s) =
(s+ j)(s− j)

(s+2− j)(s+2+ j)
; and

(d) H(s) =
s−1

s
.

Solution. (a) The function H has poles at −2, −1+ j, and −1− j. The poles are shown in Figure 7.22(a). Since

H is rational, the ROC must be bounded by poles or extend to infinity. Consequently, only three distinct ROCs are

possible:

i) Re(s)<−2,

ii) −2 < Re(s)<−1, and

iii) Re(s)>−1.

Since we want a stable system, the ROC must include the entire imaginary axis. Therefore, the ROC must be Re(s)>
−1. This is the shaded region in the Figure 7.22(a).

(b) The function H has poles at −1, 1, 1+ j, and 1− j. The poles are shown in Figure 7.22(b). Since H is rational,

the ROC must be bounded by poles or extend to infinity. Consequently, only three distinct ROCs are possible:

i) Re(s)<−1,

ii) −1 < Re(s)< 1, and

iii) Re(s)> 1.

Since we want a stable system, the ROC must include the entire imaginary axis. Therefore, the ROC must be −1 <

Re(s)< 1. This is the shaded region in Figure 7.22(b).

(c) The function H has poles at −2+ j and −2− j. The poles are shown in Figure 7.22(c). Since H is rational,

the ROC must be bounded by poles or extend to infinity. Consequently, only two distinct ROCs are possible:

i) Re(s)<−2 and

ii) Re(s)>−2.

Since we want a stable system, the ROC must include the entire imaginary axis. Therefore, the ROC must be Re(s)>
−2. This is the shaded region in Figure 7.22(c).

(d) The function H has a pole at 0. The pole is shown in Figure 7.22(d). Since H is rational, it cannot converge

at 0 (which is a pole of H). Consequently, the ROC can never include the entire imaginary axis. Therefore, the system

function H can never be associated with a stable system. �
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−1−2 1 2

1

2

−1

−2

Im

Re

(a)

−1−2 1 2

1

2

−1

−2

Im

Re

(b)

−1−2 1 2

1

2

−1

−2

Im

Re

(c)

−1−2 1 2

1

2

−1

−2

Im

Re

(d)

Figure 7.22: Poles and ROCs of the system function H in the (a) first, (b) second, (c) third, and (d) fourth parts of the

example.
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Example 7.35. Consider the LTI system with system function

H(s) =
s+1

s+2
for Re(s)>−2.

Determine all possible inverses of this system. Comment on the stability of each of these inverse systems.

Solution. The system function Hinv of the inverse system is given by

Hinv(s) =
1

H(s)
=

s+2

s+1
.

Two ROCs are possible for Hinv:

i) Re(s)<−1 and

ii) Re(s)>−1.

Each ROC is associated with a distinct inverse system. The first ROC is associated with an unstable system since

this ROC does not include the imaginary axis. The second ROC is associated with a stable system, since this ROC

includes the entire imaginary axis. �
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Example 7.36 (Differential equation to system function). A LTI system with input x and output y is characterized by

the differential equation

y′′(t)+ D
M

y′(t)+ K
M

y(t) = x(t),

where D, K, and M are positive real constants, and the prime symbol is used to denote derivative. Find the system

function H of this system.

Solution. Taking the Laplace transform of the given differential equation, we obtain

s2Y (s)+ D
M

sY (s)+ K
M

Y (s) = X(s).

Rearranging the terms and factoring, we have

(

s2 + D
M

s+ K
M

)

Y (s) = X(s).

Dividing both sides by
(

s2 + D
M

s+ K
M

)

X(s), we obtain

Y (s)

X(s)
=

1

s2 + D
M

s+ K
M

.

Thus, H is given by

H(s) =
1

s2 + D
M

s+ K
M

. �
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Example 7.37 (System function to differential equation). A LTI system with input x and output y has the system

function

H(s) =
s

s+R/L
,

where L and R are positive real constants. Find the differential equation that characterizes this system.

Solution. Let X and Y denote the Laplace transforms of x and y, respectively. To begin, we have

Y (s) = H(s)X(s)

=

(

s

s+R/L

)

X(s).

Rearranging this equation, we obtain

(s+ R
L
)Y (s) = sX(s)

⇒ sY (s)+ R
L

Y (s) = sX(s).

Taking the inverse Laplace transform of both sides of this equation (by using the linearity and time-differentiation

properties of the Laplace transform), we have

L
−1{sY (s)}(t)+ R

L
L
−1Y (t) = L

−1{sX(s)}(t)

⇒ d
dt

y(t)+ R
L

y(t) = d
dt

x(t).

Therefore, the system is characterized by the differential equation

d
dt

y(t)+ R
L

y(t) = d
dt

x(t). �
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Example 7.38 (Simple RC network). Consider the resistor-capacitor (RC) network shown in Figure 7.24 with input v1

and output v2. This system is LTI and can be characterized by a linear differential equation with constant coefficients.

(a) Find the system function H of this system. (b) Determine whether the system is BIBO stable. (c) Determine the

step response of the system.

R
i

Cv1

+

−

v2

−

+

Figure 7.24: Simple RC network.

Solution. (a) From basic circuit analysis, we have

v1(t) = Ri(t)+ v2(t) and (7.14a)

i(t) =C
d

dt
v2(t). (7.14b)

Taking the Laplace transform of (7.14) yields

V1(s) = RI(s)+V2(s) and (7.15a)

I(s) =CsV2(s). (7.15b)

Substituting (7.15b) into (7.15a) and rearranging, we obtain

V1(s) = R[CsV2(s)]+V2(s)

⇒ V1(s) = RCsV2(s)+V2(s)

⇒ V1(s) = [1+RCs]V2(s)

⇒
V2(s)

V1(s)
=

1

1+RCs
.

Thus, we have that the system function H is given by

H(s) =
1

1+RCs

=
1

RC

s+ 1
RC

=
1

RC

s− (− 1
RC

)
.

Since the system can be physically realized, it must be causal. Therefore, the ROC of H must be a right-half plane.

Thus, we may infer that the ROC of H is Re(s)>− 1
RC

. So, we have

H(s) =
1

1+RCs
for Re(s)>− 1

RC
.

(b) Since resistance and capacitance are (strictly) positive quantities, R > 0 and C > 0. Thus, − 1
RC

< 0. Conse-

quently, the ROC contains the imaginary axis and the system is stable.
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(c) Now, let us calculate the step response of the system. We know that the system input-output behavior is

characterized by the equation

V2(s) = H(s)V1(s)

=

(

1

1+RCs

)

V1(s).

To compute the step response, we need to consider an input equal to the unit-step function. So, v1 = u, implying that

V1(s) =
1
s
. Substituting this expression for V1 into the above expression for V2, we have

V2(s) =

(

1

1+RCs

)(

1

s

)

=
1

RC

s(s+ 1
RC

)
.

Now, we need to compute the inverse Laplace transform of V2 in order to determine v2. To simplify this task, we find

the partial fraction expansion for V2. We know that this expansion is of the form

V2(s) =
A1

s
+

A2

s+ 1
RC

.

Solving for the coefficients of the expansion, we obtain

A1 = sV2(s)|s=0

= 1 and

A2 = (s+ 1
RC

)V2(s)|
s=−

1
RC

=
1

RC

− 1
RC

=−1.

Thus, we have that V2 has the partial fraction expansion given by

V2(s) =
1

s
−

1

s+ 1
RC

.

Taking the inverse Laplace transform of both sides of the equation, we obtain

v2(t) = L
−1

{

1

s

}

(t)−L
−1

{

1

s+ 1
RC

}

(t).

Using Table 7.2 and the fact that the system is causal (which implies the necessary ROC), we obtain

v2(t) = u(t)− e
−t/(RC)

u(t)

=
(

1− e
−t/(RC)

)

u(t). �
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Stabilization Example: Unstable Plant

� causal LTI plant:

P
X Y

P(s) = 10
s−1

� ROC of P:

1 Re

Im

� system is not BIBO stable
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Stabilization Example: Using Pole-Zero Cancellation

� system formed by series interconnection of plant and causal LTI
compensator:

W P
X Y

P(s) = 10
s−1 , W (s) = s−1

10(s+1)

� system function H of overall system:

H(s) =W (s)P(s) =
(

s−1
10(s+1)

)( 10
s−1

)
= 1

s+1

� ROC of H:

−1 Re

Im

� overall system is BIBO stable
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Stabilization Example: Using Feedback (1)

� feedback system (with causal LTI compensator and sensor):

C

Q

P+
X R Y

−

P(s) = 10
s−1 , C(s) = β, Q(s) = 1

� system function H of feedback system:

H(s) = C(s)P(s)
1+C(s)P(s)Q(s) =

10β
s−(1−10β)

� ROC of H:

1−10β
Re

Im

� feedback system is BIBO stable if and only if 1−10β < 0 or equivalently
β > 1

10
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Stabilization Example: Using Feedback (2)

C

Q

P+
X R Y

−

R(s) = X(s)−Q(s)Y (s)

Y (s) =C(s)P(s)R(s)

Y (s) =C(s)P(s)R(s)

=C(s)P(s)[X(s)−Q(s)Y (s)]

=C(s)P(s)X(s)−C(s)P(s)Q(s)Y (s)

[1+C(s)P(s)Q(s)]Y (s) =C(s)P(s)X(s)

H(s) =
Y (s)
X(s)

=
C(s)P(s)

1+C(s)P(s)Q(s)
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Stabilization Example: Using Feedback (3)

P(s) = 10
s−1 , C(s) = β, Q(s) = 1

H(s) =
C(s)P(s)

1+C(s)P(s)Q(s)

=
β( 10

s−1)

1+β( 10
s−1)(1)

=
10β

s−1+10β

=
10β

s− (1−10β)
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Remarks on Stabilization Via Pole-Zero Cancellation

� Pole-zero cancellation is not achievable in practice, and therefore it cannot
be used to stabilize real-world systems.

� The theoretical models used to represent real-world systems are only
approximations due to many factors, including the following:

2 Determining the system function of a system involves measurement, which
always has some error.

2 A system cannot be built with such precision that it will have exactly some
prescribed system function.

2 The system function of most systems will vary at least slightly with changes
in the physical environment.

2 Although a LTI model is used to represent a system, the likely reality is that
the system is not exactly LTI, which introduces error.

� Due to approximation error, the effective poles and zeros of the system
function will only be approximately where they are expected to be.

� Since pole-zero cancellation requires that a pole and zero be placed at
exactly the same location, any error will prevent this cancellation from
being achieved.
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Example 7.40 (Stabilization of unstable plant). Consider the causal LTI system with input Laplace transform X ,

output Laplace transform Y , and system function

P(s) =
10

s−1
,

as depicted in Figure 7.27. One can easily confirm that this system is not BIBO stable, due to the pole of P at 1. (Since

the system is causal, the ROC of P is the RHP given by Re(s)> 1. Clearly, this ROC does not include the imaginary

axis. Therefore, the system is not stable.) In what follows, we consider two different strategies for stabilizing this

unstable system as well as their suitability for use in practice.

P
X Y

Figure 7.27: Plant.

(a) STABILIZATION OF UNSTABLE PLANT VIA POLE-ZERO CANCELLATION. Suppose that the system in Fig-

ure 7.27 is connected in series with another causal LTI system with system function

W (s) =
s−1

10(s+1)
,

in order to yield a new system with input Laplace transform X and output Laplace transform Y , as shown in Fig-

ure 7.28(a). Show that this new system is BIBO stable.

(b) STABILIZATION OF UNSTABLE PLANT VIA FEEDBACK. Suppose now that the system in Figure 7.27 is

interconnected with two other causal LTI systems with system functions C and Q, as shown in Figure 7.28(b), in order

to yield a new system with input Laplace transform X , output Laplace transform Y , and system function H. Moreover,

suppose that

C(s) = β and Q(s) = 1,

where β is a real constant. Show that, with an appropriate choice of β , the resulting system is BIBO stable.

P W
X Y

(a)

C

Q

P+
X R Y

−

(b)

Figure 7.28: Two configurations for stabilizing the unstable plant. (a) Simple cascade system and (b) feedback control

system.

(c) PRACTICAL ISSUES. Parts (a) and (b) of this example consider two different schemes for stabilizing the

unstable system in Figure 7.27. As it turns out, a scheme like the one in part (a) is not useful in practice. Identify

the practical problems associated with this approach. Indicate whether the scheme in part (b) suffers from the same

shortcomings.
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Solution. (a) From the block diagram in Figure 7.28(a), the system function H of the overall system is

H(s) = P(s)W (s)

=

(

10

s−1

)(

s−1

10(s+1)

)

=
1

s+1
.

Since the system is causal and H is rational, the ROC of H is Re(s) > −1. Since the ROC includes the imaginary

axis, the system is BIBO stable.

Although our only objective in this example is to stabilize the unstable plant, we note that, as it turns out, the

system also has a somewhat reasonable step response. Recall that, for a control system, the output should track the

input. Since, in the case of the step response, the input is u, we would like the output to at least approximate u. The

step response s is given by

s(t) = L
−1 {U(s)H(s)}(t)

= L
−1

{

1

s(s+1)

}

(t)

= L
−1

{

1

s
−

1

s+1

}

(t)

= (1− e−t)u(t).

Evidently, s is a somewhat crude approximation of the desired response u.

(b) From the block diagram in Figure 7.28(b), we can write

R(s) = X(s)−Q(s)Y (s) and

Y (s) =C(s)P(s)R(s).

Combining these equations (by substituting the expression for R in the first equation into the second equation), we

obtain

Y (s) =C(s)P(s)[X(s)−Q(s)Y (s)]

⇒ Y (s) =C(s)P(s)X(s)−C(s)P(s)Q(s)Y (s)

⇒ [1+C(s)P(s)Q(s)]Y (s) =C(s)P(s)X(s)

⇒
Y (s)

X(s)
=

C(s)P(s)

1+C(s)P(s)Q(s)
.

Since H(s) = Y (s)
X(s) , we have

H(s) =
C(s)P(s)

1+C(s)P(s)Q(s)
.

Substituting the given expressions for P, C, and Q, we have

H(s) =
β ( 10

s−1
)

1+β ( 10
s−1

)(1)

=
10β

s−1+10β

=
10β

s− (1−10β )
.
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The system function H is rational and has a single pole at 1−10β . Since the system is causal, the ROC must be the

RHP given by Re(s) > 1− 10β . For the system to be stable, we require that the ROC includes the imaginary axis.

Thus, the system is stable if 1−10β < 0 which implies 10β > 1, or equivalently β >
1
10

.

Although our only objective in this example is to stabilize the unstable plant, we note that, as it turns out, the

system also has a reasonable step response. (This is not by chance, however. Some care had to be exercised in

the choice of the form of the compensator system function C. The process involved in making this choice requires

knowledge of control systems beyond the scope of this book, however.) Recall that, for a control system, the output

should track the input. Since, in the case of the step response, the input is u, we would like the output to at least

approximate u. The step response s is given by

s(t) = L
−1 {U(s)H(s)}(t)

= L
−1

{

10β

s(s− [1−10β ])

}

(t)

= L
−1

{

10β

10β −1

(

1

s
−

1

s− (1−10β )

)}

(t)

=
10β

10β −1

(

1− e−(10β−1)t
)

u(t)

≈ u(t) for large β .

Clearly, as β increases, s better approximates the desired response u.

(c) The scheme in part (a) for stabilizing the unstable plant relies on pole-zero cancellation. Unfortunately, in

practice, it is not possible to achieve pole-zero cancellation. In short, the issue is one of approximation. Our analysis

of systems is based on theoretical models specified in terms of equations. These theoretical models, however, are only

approximations of real-world systems. This approximate nature is due to many factors, including (but not limited to)

the following:

1. We cannot determine the system function of a system exactly, since this involves measurement, which always

has some error.

2. We cannot build a system with such precision that it will have exactly some prescribed system function. The

system function will only be close to the desired one.

3. The system function of most systems will vary at least slightly with changes in the physical environment (e.g.,

changes in temperature and pressure, or changes in gravitational forces due to changes in the phase of the moon,

and so on).

4. Although a system may be represented by a LTI model, the likely reality is that the system is not exactly LTI,

which introduces error.

For reasons such as these, the effective poles and zeros of the system function will only be approximately where we

expect them to be. Pole-zero cancellation, however, requires a pole and zero to be placed at exactly the same location.

So, any error will prevent the pole-zero cancellation from occurring. Since at least some small error is unavoidable in

practice, the desired pole-zero cancellation will not be achieved.

The scheme in part (b) for stabilizing the unstable plant is based on feedback. With the feedback approach, the

poles of the system function are not cancelled with zeros. Instead, the poles are completely changed/relocated. For

this reason, we can place the poles such that, even if the poles are displaced slightly (due to approximation error),

the stability of the system will not be compromised. Therefore, this second scheme does not suffer from the same

practical problem that the first one does. �
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7.30 Consider the system H with input Laplace transform X and output Laplace transform Y as shown in the figure.

In the figure, each subsystem is LTI and causal and labelled with its system function, and a is a real constant.

(a) Find the system function H of the system H. (b) Determine whether the system H is BIBO stable.

+ +

1
s

1
s

−3

−4 2

a

V YX

Short Answer. (a) H(s) = s2+as+2
s2+3s+4

for Re(s)>− 3
2
; (b) system is BIBO stable.

Answer (a,b).

From the system block diagram, we have:

Y (s) =V (s)+
(

a

s

)

V (s)+

(

2

s2

)

V (s) and

V (s) = X(s)+

(

−3

s

)

V (s)+

(

− 4

s2

)

V (s).

The preceding two equations can be rearranged to yield

Y (s) =

(

1+
a

s
+

2

s2

)

V (s) and

X(s) =

(

1+
3

s
+

4

s2

)

V (s).

Thus, H(s) is given by

H(s) =
Y (s)

X(s)
=

1+a/s+2/s2

1+3/s+4/s2
=

s2 +as+2

s2 +3s+4

Solving for the poles of H(s), we obtain

−3±
√

9−4(1)(4)

2(1)
=− 3

2
± j

√
7

2
.

Since the poles have negative real parts, the system is BIBO stable.
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Example 7.42 (Unilateral Laplace transform of second-order derivative). Find the unilateral Laplace transform Y of

y in terms of the unilateral Laplace transform X of x, where

y(t) = x′′(t)

and the prime symbol denotes derivative (e.g., x′′ is the second derivative of x)

Solution. Define the function

v(t) = x′(t) (7.17)

so that

y(t) = v′(t). (7.18)

Let V denote the unilateral Laplace transform of v. Taking the unilateral Laplace transform of (7.17) (using the

time-domain differentiation property), we have

V (s) = Lu

{

x′
}

(s)

= sX(s)− x(0−). (7.19)

Taking the unilateral Laplace transform of (7.18) (using the time-domain differentiation property), we have

Y (s) = Lu

{

v′
}

(s)

= sV (s)− v(0−). (7.20)

Substituting (7.19) into (7.20), we have

Y (s) = s
[

sX(s)− x(0−)
]

− v(0−)

= s2X(s)− sx(0−)− x′(0−).

Thus, we have that

Y (s) = s2X(s)− sx(0−)− x′(0−). �
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Example 7.43. Consider the causal incrementally-linear TI system with input x and output y characterized by the

differential equation

y′′(t)+3y′(t)+2y(t) = x(t),

where the prime symbol denotes derivative. If x(t) = 5u(t), y(0−) = 1, and y′(0−) =−1, find y.

Solution. We begin by taking the unilateral Laplace transform of both sides of the given differential equation. This

yields

Lu

{

y′′+3y′+2y
}

(s) = Lux(s)

⇒ Lu

{

y′′
}

(s)+3Lu

{

y′
}

(s)+2Luy(s) = Lux(s)

⇒
[

s2Y (s)− sy(0−)− y′(0−)
]

+3
[

sY (s)− y(0−)
]

+2Y (s) = X(s)

⇒ s2Y (s)− sy(0−)− y′(0−)+3sY (s)−3y(0−)+2Y (s) = X(s)

⇒
[

s2 +3s+2
]

Y (s) = X(s)+ sy(0−)+ y′(0−)+3y(0−)

⇒ Y (s) =
X(s)+ sy(0−)+ y′(0−)+3y(0−)

s2 +3s+2
.

Since x(t) = 5u(t), we have

X(s) = Lu{5u(t)}(s) = 5
s
.

Substituting this expression for X and the given initial conditions into the above equation yields

Y (s) =

(

5
s

)

+ s−1+3

s2 +3s+2
=

s2 +2s+5

s(s+1)(s+2)
.

Now, we must find a partial fraction expansion of Y . Such an expansion is of the form

Y (s) =
A1

s
+

A2

s+1
+

A3

s+2
.

Calculating the expansion coefficients, we obtain

A1 = sY (s)|s=0

=
s2 +2s+5

(s+1)(s+2)

∣

∣

∣

∣

s=0

= 5
2
,

A2 = (s+1)Y (s)|s=−1

=
s2 +2s+5

s(s+2)

∣

∣

∣

∣

s=−1

=−4, and

A3 = (s+2)Y (s)|s=−2

=
s2 +2s+5

s(s+1)

∣

∣

∣

∣

s=−2

= 5
2
.

So, we can rewrite Y as

Y (s) =
5/2

s
−

4

s+1
+

5/2

s+2
.
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Taking the inverse unilateral Laplace transform of Y yields

y(t) = L
−1
u

Y (t)

= 5
2
L
−1
u

{

1

s

}

(t)−4L−1
u

{

1

s+1

}

(t)+ 5
2
L
−1
u

{

1

s+2

}

(t)

= 5
2
−4e−t + 5

2
e−2t for t ≥ 0. �
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