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Abstract

In this project, two families of filter banks are constructed, then their performance is compared with
an image compression system. The one-dimensional and quincunx families of interpolating filter banks
are constructed on the lifting scheme, such that they have the properties of perfect reconstruction and
arbitrary numbers of vanishing moments. Then the filter banks are applied to images, and the transformed
data are processed in some quantization strategies such that the performance is compared in terms of
PSNR.

. INTRODUCTION

Wavelet transforms and perfect reconstruction filter banks (PRFBs) are widely used in numerous signal
processing applications including image compression, and there are various construction techniques for
PRFBs [1]. The introduction of the lifting scheme by Sweldens [2] [3] provides a new way of wavelet
constructions. It was motivated to build time-varying filter banks, and it also offers several advantages to
the earlier approaches in the time-invariant setting [4]. Lifting also leads to fast and inplace implementation
of PRFBs, and can be used in reversible integer to integer wavelet transforms.

[4] shows that families of wavelets with interpolating scaling functions can be built with two lifting
steps: a predict step and an update step. The resulting filter banks have the perfect reconstruction and
arbitrary numbers of dual and primal vanishing moments, if the predict and update filters satisfy certain
conditions related to Neville filters.

In this project, two families of interpolating filters are built: the traditional one dimensional two channel
filter banks, and the two dimensional nonseparable quincunx filter banks. Then the performance of those

filters are compared within an image compression system.
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This report is organized as follows. Section Il provides the notation and some preliminaries, such as
Neville filters and the lifting scheme. Section Il states the problem studied in this project. Section IV
describe how to construct the interpolating filter banks and implement the image compression system, and
gives some examples. The results of the performance comparison between different wavelet transforms

are given in Section V, and the conclusion is made in Section VI.

[I. NOTATION AND BACKGROUND MATERIALS
A. Notation

The notation used in this report is the same as in [4]:

1) Signal: A signal z is a sequence of real-valued numbers indexed by the indeX set
r={z, € R|keK}eR"

In this project, the index sé€ € Z? and the signal is defined on a lattice drdimensional Euclidean
space.

2) Linear operator and its adjointA linear operator isA : I2(K) — I2(K), and the adjoint of4 is
the linear operatord* such that(Az,y) = (x, A*y) for all sequences;,y € I2(K), where(-,-) is the
standard inner product. A filter is a time invariant linear operator with the impulse responsé < C}.

3) Polynomial and the spacer(z) is a multivariate polynomial with: € R?. 7 is the sequence

formed by evaluatingr(z) on the latticeZ*.
T=T (Zd> = {77(]4:) c€ke Zd}

IT,, denotes the space of all polynomial sequences of total degree less.than
4) Multidimensional filters:A multidimensional filter is a linear operator, where the indextset Z¢.
An index k € Z¢ is a vector(ky,...,k;) where ki € Z. z is also a vector(zy,...,zg). If a =

(051, RN ,O(d) , then

and the size of a multi-index is

August 15, 2004 DRAFT



5) Sublattices:D is ad x d matrix with integer coefficients, the®Z? is a sublattice ofZ¢. There

aredet D — 1 cosets of the formDZ% + tj, wheret; € Z%and1 < j < det D. These cosets satisfies

M-1

z'= | (DZd+tj)

j=0
| D: A*¥ — APX is the downsmapling operator with the dilation matfix and its adjoint is the

upsampling operatof D. In z-domain, the upsampling is defined as:
2D = {ah 2%, 24

whered; is theith column vector of the dilation matrip.

B. Interpolating Filters

A filter H is interpolating if its impulse response satisffes, = J;, which means that the impulse

response is zero in all sampling points except the originzdisansform can be expressed as:
M-1
H(z)=1+ Z 1P (zD)
=1
When an interpolating filter is applied to an upsampled signal, the values of the original sample points
remain the same and the values of the new points are the linear combination of the old ones.
A scaling functiong(z) € £o(R?) satisfies a refinement relation:

$(x) =Y hpd(Dz — k)

kek
where {h;} is the impulse response of a filtédf. The scaling function is interpolating if it satisfies

(k) = &, which means it is zero in all points in the lattice except the origin. If a scaling function is

interpolating, the refinement filteil is also interpolating.

C. Neville Filters

A filter P is a Neville filter of orderN with shift - € R? if
Pr (Zd) :W(Zd—I—T) , formelly

which means ifP is applied to a polynomial, it results in the same polynomial on the original lattice
offset by .
A Neville filter P has the property that its impulse respofgg} satisfies

> ppk™=71", for n| <N. (1)
k
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Fig. 1. A typical 2-channel UMD filter bank

This equation provides a way to calculate the coefficients of the Neville filters.
Some other important properties of the Neville filters are:

(1) If P is a Neuville filter of orderN with shift 7, then the adjointP* is a Neville filter of orderN
with shift —7.

(2) If P is a Neville filter of orderN with shift 7, and P’ is a Neville filter of orderN" with shift 7',
then PP’ is a Neville filter of ordermin N, N with shift 7 + 7.

(3) If Pis a Neville filter of orderN with shift 7, thenQ(z) = P (=) is a Neville filter of orderN
with shift Dr.

D. Lifting

Lifting is a way to calculate and design filter banks [2] [3]. It features reversible and inplace compu-
tation, and leads to fast implementation of the discrete wavelet transform. A UMD filter bank shown in
Fig. 1 can be implemented by the lifting scheme by decomposing the polyphase matrices into a sequence
of elementary matrices; each matrix represents a simple operation of the subband signals. The resulting
lifting structure is illustrated in Fig. 2. Fig. 2(a) shows the analysis side of the filter bank, which consists
of a set of lifting steps: prediction sted@g and update step§;, and Fig. 2(b) shows the analysis side
of the filter bank, which consists of a set of inverse steps.

The lifting structure is also used in building new subband decompositions from the existing ones. The
basic idea behind lifting is that the new and old filter banks have the same lowpass or highpass filters.
The construction begins from a trivial filter bank, and then the properties of the filter bank is enhanced
using lifting stepsP; and U;. The trivial filter bank is the polyphase transform, also referred to as the
Lazy wavelet transform [2], which splits the input signal into even- and odd-indexed components. The
analysis polyphase matriR, is then given by the product of the elementary matrices which correspond
to the lifting steps:

P _ H. H, _ |t 1o
0 1 -P 1

Ge G

Q
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- — wo[n]

Yo[n]

y1[n]
(b) Synthesis side

Fig. 2. The lifting structure of two channel filter banks

and the analysis filters are given by:

E. Quincunx Filters Banks

A quincunx lattice is a two dimensional nonseparable lattice with dilation matrix:

1 1
D =
1 -1

Fig. 3 shows the lattices before and after the downsamplBr There are other dilation matrices that

0 2
result in the same sublattices, such|as . D is better than the other dilation matrices in tfzt = 21,
1 1

which means that two levels of downsampling Byis separable.

The quincunx filter banks have the advantage that it leads to a two-channel multiresolution analysis,
and the expressions afdomain downsampling and upsampling are in a similar form to that of one
dimensional filter banks. The relationship is shown in Table I. Another advantage is that they can better
extract the spectrum information of images and adopts to human visual system, as they are more sensitive

along the diagonal directions than the traditional separable filter banks.
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TABLE |

THE RELATIONSHIP BETWEEN ONE-DIMENSIONAL AND QUINCUNX FILTER BANKS IN DOWNSAMPLING AND UPSAMPLING

[aownsampling :
1-D " Y(z)=1 X(='?) +X(-2'?) .
Quincunx | Y (z1,22) = % X 211/225/2,2}/22271/2 + X —zi/Qz;ﬂ,—zll/zz;lm
Upsampling
1-D Y(2) = X(2?)
Quincunx Y(z1,22) = X 2122, z1z2_1

Upsampling after downsampling
1-D Y(2) = 5 [X(2) + X(=2)]

2
Quincunx Y(Zl, Zz) = % [X (,217 2’2) + X (—,2’17 —2’2)]

R
e o ¢ e e
[ ] [ ] ¢ d [ ]
—re o« o ¢ b o .
e o ¢ e e
e o ¢ e e

Fig. 3. Quincunx lattices before and after downsampled’bwith unit cell

[1l. PROBLEM STATEMENT

This project includes three parts:

« Construction of interpolating filter banks

« Implementation of the compression system

» Performance comparison

The purpose of the first part, construction of interpolating filter banks, is to build two channel filter
banks with analysis filterdZ, G, and synthesis filtergZ, G that satisfy three properties: perfect re-

construction,N primal vanishing moments an®¥ dual vanishing moments, as shown in Fig. 1. Two
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y1[n]

Fig. 4. 2-step lifting scheme

families of interpolating filters are built based on the lifting scheme: the traditional one dimensional and
nonseparable quincunx interpolating filter bank families.

In the second part, implementation of the compression system, the wavelets constructed in the first
part are applied to images, then the transformed wavelet coefficients are compressed using an encoder
similar to the one in JPEG 2000 standard. In the inverse process, the compressed data is decoded and the
inverse wavelet transform is implemented to reconstruct the images. At the time of writing this report, the
encoder still does not work. Therefore, other methods are used to approximate a lossy coder by simply
guantizing the wavelet coefficients.

The last part of this project is to compare the performance of different wavelets by computing the

PSNR of the images reconstructed from quantized wavelet coefficients.

IV. METHODS
A. Construction of Filter Banks

The interpolating filter banks are constructed based on the two-step lifting scheme shown in Fig. 4.
P is the predict filter andJ is the update filter. These two lifting steps in the analysis side, and the
corresponding inverse steps in the synthesis side are sufficient to satisfy the three properties: perfect
reconstruction, dual and primal vanishing moments, and these properties can be satisfied separately [4].

« Perfect reconstruction

This property requires that the reconstructed sigra] is a shifted version of the input signaln].
It is automatically satisfied for every filter bank built with lifting.
« Dual vanishing moments:

The dual wavelets havay vanishing moments,

/t’%(t)dt =0, for |k|<N
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which means the primal scaling function can accurately approximate smooth polynomials up to order
N, and the wavelet coefficients of a smooth function decays rapidly. Using the notation in Section
I, it can be expressed as

())Gr=0 for we Iy

This property is satisfied if the predict filtg? is a Neville filter of orderN and shiftr = D~1¢.
o Primal vanishing moments:

The primal wavelets hav&’ vanishing moments,
/tkw(t)dt =0, for k| <N
Using the notation in Section Il, it can be expressed as
()Gm=0 for melly

This property is satisfied U is a Neville filter of orderN and shift—7 = —D~1¢.

Therefore, the predict and update filters can be computed by solving the linear systems in (1). After
selecting the proper predict filtd? and update filtel/, the analysis and synthesis polyphase matrix of

the filter bankP, and P; can be computed as:

R

1-UP U

ge o
Pa = _ _ =

Ge G, -P 1

H. H, 1 P
PS = =

Ge G, -U* 1-U"P*

where H is interpolating.
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TABLE Il

SOME OF THEONE DIMENSIONAL NEVILLE FILTERS WITH LINEAR PHASE

Numerator Denominator
Order 4 3 2 1 0 -1 -2 -3 -4 -5
2 1 1 2
2 -1 9 9 -1 24
6 3 -25 150 150 -25 3 28
8 -5 49  -245 1225 1225 @ -245 49 -5 2!

10 35 -405 2268 -8820 39690 39690 -8820 2268 -405 35 2'¢

Y 3 S 7 |
o ] (o) 70 1 70 o o] (o)
* © * © * o] 6O :)O 40 i 40 5O 6O (o)
. o ) o ) o ° 5 35 25 12 35 5 °
L] o] L] o] L] 70 40 2O 10 i 10 20 4O 70
,,,,,,,,,,, ‘,,,,,,,#,,,,,,,,,,,,,,,,,,
It o . ° . ° o b % il % T
o 50 30 20 i 20 30 5O o
L] o] L] o] L] 1
o] 6O :)O 40 i 40 5O 60 (o)
A o ] [e) 70 ; 70 [e] o] [e]
! :
Fig. 5. Coset representative of a quincunx lattice Fig. 6. The quincunx lattice in the sampled domain with

neighborhoods. The point in the center representsat are to

be interpolated

1) One Dimensional Filter Banksin one dimensional cases, the Neville filters can be easily con-

structed by solving the linear systems in (1), which can be rewritten in matrix form as:

1 1 1 Pk, 1
k1 k1 +1 ke P—(k+n)| | T
_k:]]-V—l (kl +1)N—1 ké\f—l_ I Dk, | _TN—l_

When|ks — k1| = N — 1, the coefficient matrix is a Vandermonde matrix and is always invertible. Thus,
the filter coefficients have a unique solution. Table Il shows some of the 1-D Neville filters of even order,

which are all symmetric and thus have linear phase.
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TABLE 1l

QUINCUNX NEVILLE FILTERS

Numerator Denominator
Taps OrdexRing 1(4) 2(8) 3(4) 4(8) 5(8) 6(4) 7(8
4 2 1 2?
12 4 10 -1 2°
24 6 174 -27 2 3 2°
44 8 23300 -4470 625 850 -75 9 -80 216
Original Reconstructed
Image Image
— FWT Encoder Decoder IWT ——

Fig. 7. Block diagram of the compression system

2) Quincunx Filter Banks:n quincunx lattices, the delay between the two sublattices, represented by
the filled and unfilled circles in Fig. 5, is= [1 0}, and the shift for the Neville filters is = D1t =
[1/2 1/2]. The coefficients of the predict and update filters are selected in the neighborhoad af
symmetric way as shown in Fig. 6. The filter coefficients are taken from TABLE Il in [4], as shown in
table 1ll, where the third to the ninth columns correspond to the tap weights of the seven rings in Fig.

6 numbered from one to seven.

B. Implementation of the Compression System

The compression system is shown in the block disgram in Fig. 7, which includes two parts: two-
dimensional wavelet transforms and a coder/decoder.

1) Wavelet Transformsfor the traditional 1-D filter banks, the subband decomposition is applied
to the images row-wise first and then column wise. There are four subbands after the first level of
decomposition: vertically and horizontally lowpass (LL), horizontally lowpass and vertically highpass
(LH), horizontally highpass and vertically lowpass (HL), and vertically and horizontally highpass (HH)
subbands. Then the LL band is decomposed further. This two-dimensional forward wavelet transform is
in a tree structured 2-D analysis filter bank which results in the subband structure in Fig. 8(a)

For the quincunx filter banks, the input image is decomposed into two subbands after each level of

decomposition, and the subbands have the shape of a diamond. The lowpass subband is decomposed
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(@ 1-D (b) Quincunx

Fig. 8. The subband structure after four levels of decomposition for the one dimensional filter banks and quincunx filter banks

further. This filter bank results in the subbands structure in Fig. 8(b).

A tree-structure 2-D synthesis filter bank is used to perform the inverse 2-D wavelet transform for the
reconstruction of the images. This structure is simply the inverse of the analysis filter bank.

The forward and inverse wavelet transforms are implemented using the lifting steps in Fig. 4. One of
the advantages of the lifting structure is that the transform can be calculated in place. Therefore, unlike
the subband structure shown in Fig. 8, the wavelet coefficients are stored at their original positions. This
leads to the fact that the coefficients belonging to the same subband are not stored next to each other,
but scattered in the entire data matrix.

After each lifting step, there is a rounding unit, such that the wavelet coefficients are all signed integers.
This unit can be a rounding to zero, to the nearest integer, or flooring afterl ppusAs long as the
same method is used in the analysis and synthesis sides, the image can still be perfectly reconstructed.

When filtering along the image borders, the filter may need undefined sample points outside the image.
There are some schemes for extension, such as symmetric extension and periodic extension. In this project,
those undefined sampling points are replaced by their nearest defined neighbor in the same coset. In both
one dimensional and quincunx filter banks, the nearest neighbor may not be unique. There may be two
points inside the defined region with the same distance an undefined point. However, as long as the
selection scheme is the same in the analysis and synthesis side, the image can still be reconstructed.

2) CODEC: The coding algorithm is a simplified version of the EBCOT (embedded block coding
with optimized truncation) [5] used in JPEG 2000. Compared to other popular coding schemes, such as

EZW [6] and SPIHT [7], EBCOT does not employ the interband information, thus it can be used in both
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separable and nonseparable subband decompositions. | tried to write one that can address both the lossy
and lossless coding, but the time is not enough, therefor only the lossless part in included.

The encoder works in a similar way to that in JPEG 2000 [8] [5] [9] [10] as follows. Each subband
is processed separately. The wavelet coefficients of a subband are arithmetically coded by bitplane. The
coding is performed from the most significant bitplane to the least significant bitplane. For 1-D filter
banks, each bitplane is scanned in the order in Fig. 9. In quincunx case, when there are odd levels of
decomposition, the subbands have the shape of a diamond. The scan order is the same except for a
rotation of45°, as | stored the subband signals in a rectangular matrix.

Encoding a bit involves (1) determining its context, (2) estimating a probability for it, and (3) sending
the bit and its probability to an arithmetic coder, named MQ coder. Each wavelet coefficient has a 1-bit
variable indicating its significance. The context of a bit is computed from the significance of its eight
near neighbors.

There are three coding passes per bitplane. Each bit in the bitplane is encoded in one of the three
passes. The first coding pass, the significance propagation pass, encodes all the bits that belong to the
wavelet coefficients satisfying:

« the coefficient is insignificant

« at least one of its eight nearest neighbors is significant
If a bit encoded in this pass is 1, its wavelet coefficient is marked as significant. The second coding pass,
the magnitude refinement, encodes all bits of wavelet coefficients that became significant in a previous
bitplane. The third coding pass, the cleanup pass, encodes all the remaining bits in the bitplane. If a bit
encoded in this pass is 1, the wavelet coefficient becomes significant.

Encoding starts from the first bitplane that is not identically zero, and this bitplane is encoded in the
cleanup pass. The sign bit of a coefficient is encoded following the first 1 bit of the coefficient.

The context of a bit is determined in different ways for different passes. For one-dimensional transforms,
the decision is the same as in JPEG2000 [8]. For quincunx transforms, the lowpass band uses the contexts
for the LL subband, and the highpass band uses the contexts for the HH subband.

The code in this part relies on the JasPer software [11].

3) Quantization: Since the CODEC does not work, a simple quantization is used to simulate a lossy
coder. One of the quantization strategy is to throw away several least significant bitplanes of the wavelet
coefficients. This can be done by shifting the bits of every coefficient.

Another quantization strategy that works well for 2-D subband signals is to apply a hard thresholding

with threshold§ to the images [12], which results in more zero coefficients and thus increases the
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Four rows

Four rows

Fig. 9. Scan order within a subband

"compression ratio™ defined as
_ko
ok

wherekg is the number of pixel in the original image with magnitude larger thaandk is the number of

n (2)

wavelet coefficients after the forward wavelet transform with magnitude largesthahthe coefficients

that are less than or equal &oare set to zero.

C. Performance Comparison

The criterion for performance comparison is the bit rate (bit per pixel) in the compressed data.
For lossy coding, the PSNR (peak signal to noise ratio) and visual quality is used, where the PSNR

and MSE (mean squared error) is defined as:

PSNR= 10lo -1y
- glO MSE
1 M—-1N-1
A 2
MSE = 7MN ZZ:; jz:;) <$i,j - xi,j)

If the hard thresholding strategy is used to quantize the wavelet coefficieassdefined in (2) can also

serve as a criterion.

V. RESULTS
A. Examples of Interpolating Filter Banks
1) Haar: Haar filter bank is the simplest filter bank witi = 1 primal and N = 1 dual vanishing

moments. The predict and update filters &) = 1 andU(z) = 1/2 respectively. The corresponding

August 15, 2004 DRAFT



14

analysis filters synthesis filters
T T

(a) Analysis filters (b) Synthesis filters

Fig. 10. Frequency responses of the analysis and synthesis filters\witt2 primal and N = 4 dual vanishing moments

filters areH(z) = 1 + 2z~ andG(z) = —1/2 + z71/2.
2) One Dimensional Filter Bank with/ = 2 primal and N = 4 dual vanishing momentsthe predict
filter is a Neville filter of order 4, and two times the adjoint of the update filter is a Neville filter of order

2, therefore
P(z)=(—2+9+92"" —27?%) /16
U(z)=(2+1)/4
And the corresponding analysis lowpass and highpass filters are:
H(z) = (2" — 822 + 162 + 46 + 162" — 8272 + 27 %) /64
G(z)= (2 —9+162" —9272+27%) /16

The frequency responses of the analysis and synthesis filters are shown in Fig. 10
3) Quincunx Filter Bank withV = 2 primal and N = 2 dual vanishing momentsThe predict filter
is a two dimensional Neville filter of order 2, and two times the adjoint of the update filter is also a

Neville filter of order 2, therefore
Plz)=(1+z +2t +2712") /4

U(z) = (14 21+ 22+ 2122) /8
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Frequency Response of Analysis Lowpass Filter Frequency Response of Analysis Highpass Filter

Magnitude
Magnitude

(a) Analysis filters (b) Lowpass filter

Fig. 11. Frequency responses of the quincunx lowpass and highpass filtera/witt2 primal and N = 2 dual vanishing

moments

Transformed data: shape of the scaling function Transformed data: shape of the scaling function

0.8 /\i’l 0.8

0.6 0.6

04 0.4

0.2

0.2

ST 7/, r ==
At NN 7 R
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0 SR w XSS
50 "ff'o":‘:‘::: N @0“‘%\\‘3&“’2 “©

40 60 30

(a) Quincunx 2/2 (b) Quincunx 4/4

Fig. 12. The approximation of the scaling functions of two members of the quincunx filter banks family

And the corresponding analysis lowpass and highpass filters are:
ﬁ(z) = 3—12 (28—221_122_1 —221z2_1 —Zzl_le—2z1zg—zl_2 —z% —22_2 —z§+4zl_1+421+422_1 —1—42’2)
G2)=z7'— (L4272 + 27 2 + 2072)

This results in the frequency responses of the lowpass and highpass filters shown in Fig. 11. This
combination does not leads to a stable biorthogonal basis. An approximation of the shape of the scaling
function is shown in Fig. 12(a), and the shape of the scaling function of another quincunx filter bank is

shown in Fig. 12(b).
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TABLE IV

FILE SIZE OF 3 AND 4 LEVELS OF DECOMPOSITION

Number of Primal/Dual Vanishing Moments
mage| Levels| 11| 12| 22| 24| am| 26| are| 22

3 1213 | 1310 | 1043 | 913 | 1047 | 883 | 882 | 4240

lena 4 973 | 1093 | 793 | 644 | 768 | 622 | 615 | 4349
3 1703 | 1692 | 1299 | 1136 | 1023 | 1098 | 1098 | 7238
man 4 1485 | 1455| 1034 | 854 | 1309 | 812 | 812 | 7543

TABLE V

FILE SizE OF 4 AND 5 LEVELS OFDECOMPOSITION

Number of Primal/Dual Vanishing Moments
mage | Levels| 22| 24| 4| 2/6| am| 28| 4| e

4 2170 | 1933 | 1858 | 1878 | 1849 | 1863 | 1849 | 1874
airplane 5 1601 | 1351 | 1305 | 1299 | 1297 | 1272 | 1302 | 1279

B. Performance Comparison

The nine test images are all 8-bit gray images, with the sizgldfx 512.

1) Lossless:The lossless encoder creates a file containing the compressed data. The bit rate is given
by the size of the compressed data over the number of pixels in the original image. The encoder does not
work correctly, as the size is unreasonably small, and so far | still has not figured out where the problem
is. Although the encoder is wrong, the size of the output file seems to be proportional to what it should
be. For example, more decomposition levels and long filters results in smaller size. | think perhaps the
encoder codes only a small part of the subband data, and the results may represent some of the properties
of the filter banks.

Table IV shows the compression results from 1-D interpolating filter banks with different numbers of
vanishing moments. Table V are the results from quincunx filter banks. It can be seen from Table IV
that the two nonsymmetric filters perform the worst for all the images. Especially the one list in the last
column with causal predict filter. Its output file size is much larger than the others. Another nonsymmetric
filter is in the fourth column with one primal and two dual vanishing moments. It can be seen from the
table that longer filters generally perform better than shorter ones, and more levels of decomposition

leads to higher compression ratio.
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2) Lossy:The performance from simple quantization strategies that simulate the lossy coding is shown
in this part. Firstly, several least significant bitplanes of all the wavelet coefficients are simply thrown
away, and the image is reconstructed using the wavelet coefficients with less precision. The PSNR and
number of zero coefficients are computed and the results are shown in Tables VI - IX.

Using this strategy, small coefficients are lost and large coefficients are quantized to an integer power
of 2. Table VI shows the results from various 1-D filter banks of 4 levels of decomposition on different
images. In the quantization step, three least significant bitplanes are thrown away. It shows that the filter
bank in the rightmost column performs the worse, which is the non symmetric filter banks. The filter
bank with 1 primal and 2 dual vanishing moments seem to have the best reconstruction, as the PSNR is
the highest for all the test images, but the number of zero coefficients are much less than the symmetric
filters with more vanishing moments, which may lead to a low compression ratio. The analysis lowpass
filter of this filter bank is not symmetricH (z) = 0.75 + 0.5z~! — 272,

The filter bank with 2 primal and 2 dual vanishing moments gives the second best PSNR for all, and
it has a number of zero coefficients comparable to the longer filters. The analysis lowpass and highpass

filters of this filter bank is

H(z) = (—22 +2246+2271 - 2_2)

N = 0o =

G(z) = (-1+2z71—272)

which is the unnormalized CDF22 filter bank.

Table VII gives the results of quincunx filter banks with 8 levels of decomposition, thus the lowpass
subband has the same number of samples as the 1-D filter banks in Table VI. Again, the three least
significant bitplanes are thrown away. These quincunx filters have symmetric filters. For all the test images,
the filter bank with the least vanishing moments (2/2) gives the best PSNR. The numbers of different
filter banks do not vary too much, although longer filters tend to have more zero coefficients. Combine
Table VI and VII, the quincunx filter banks generally have higher PSNR but less zero coefficients.

Table VIl shows the results from the one-dimensional filter banks with 6 levels of decomposition.
Different numbers of bitplanes are shifted out. It can be seen from the table that with higher levels of
decomposition, the nonsymmetric (1/2) filter bank is no longer the best in terms of PSNR, while the one
with 2 primal and 2 dual vanishing moments still performs very well.

Table IX shows the results from the quincunx filter banks with 12 levels of decomposition. Different
numbers of bitplanes are shifted out. The one with two primal and two dual vanishing moments still

performs the best in terms of PSNR.

August 15, 2004 DRAFT



18

TABLE VI

PERFORMANCE OF1-D FILTER BANKS ON DIFFERENTIMAGES, WITH THREE BITPLANES THROWN AWAY

Number of Primal/Dual Vanishing Moments
Image | Criterion 1| we| 22| 24| wa|  ae|  as| 2

# of zeros| 220138 | 231199 | 232875 | 234967 | 234719 | 234868 | 234782 | 204689
airplane PSNR 32.77 33.68 33.64 33.24 32.77 33.03 32.47 28.35

# of zeros| 125183 | 133321 | 140150 | 141081 | 142076 | 140532 | 141683| 89956
baboon PSNR 31.83 33.17 32.75 32.25 31.69| 32.02 31.45| 27.155

# of zeros| 169989 | 187274 | 193233 | 198738 | 200373 | 200017 | 201827 | 152256
barb PSNR 32.31| 3340| 33.02| 3232| 3221| 3224| 3195| 2761

# of zeros| 179030 | 191736 | 197130 | 197698 | 197869 | 197000| 197400 | 143889
boat PSNR 32.44 33.45 33.02 32.45 32.29 32.30 32.04 27.38

# of zeros | 226380 | 232075 | 235205 | 235843 | 235856 | 235617 | 235770 | 196734
fruits PSNR 32.96 34.10 33.71 33.34 33.05 33.02 32.73 27.76

# of zeros| 183179 | 197452 | 202282 | 202052 | 202311 | 200989 | 201285 | 149295
goldhill PSNR 32.33 33.32 32.99 32.45 32.04 32.29 31.88 27.41

# of zeros| 208867 | 224934 | 228412 | 230269 | 230305 | 229942 | 230223 | 182646
lena PSNR 32.69 33.74 | 33.42 32.79 | 32.76| 3254| 3252 27.65

# of zeros | 189844 | 202873 | 207406 | 208820 | 208760 | 208076 | 208208 | 162018
man PSNR 32.40 33.66 33.03 32.52 32.20 32.23 31.95 27.57

# of zeros| 209740 | 220132 | 224347 | 223494 | 223723 | 222358 | 222859 | 174373
peppers PSNR 32.63 33.70 33.45 32.98 32.70| 32.69| 3244| 27.53

Another quantization strategy is the hard thresholding as stated in the previous section. After the
guantization, the small coefficients are set to zero, while the large coefficients remains the same, unlike
in the bitplane method where they are quantized to an integer power of 2. The performance results are
shown in Tables X - XIII.

Table X shows the results from various 1-D filter banks of 4 levels of decomposition on different
images. The threshold is set to 15. The nonsymmetric filters, which are in the fourth and rightmost
columns, and the Haar filter banks are the worst, as the natiod the PSNR are both low. Among the
other filter banks, the 2/2 one has the best PSNR, but "compression ratio” is lower. It seems the other
four, with 2/4, 4/4, 2/6, and 4/6 vanishing moments respectively, heamed PSNR that are close to each
other.

Table Xl is the counterpart to Table X, with quincunx filter banks of 12 levels decomposition, and
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TABLE VI

PERFORMANCE OFQUINCUNX FILTER BANKS ON DIFFERENTIMAGES. THREE BITPLANES ARE THROWN AWAY

Number of Primal/Dual Vanishing Moments
Image | Criterion 22| 2| aa| 26| ae| 28] aB| o

# of zeros | 223739 | 230242 | 231018 | 231006 | 231272 | 231197 | 231247 | 230959
airplane PSNR 33.81 33.29 32.34| 33.02| 32.13| 32.87 31.97 32.72

# of zeros| 127737 | 131298 | 130789 | 131548 | 130216| 130980| 129367 | 131706
baboon PSNR 33.59 32.78 31.26 32.42 30.99| 32.28| 3091 31.82

# of zeros| 176228 | 183766 | 183331 | 186238 | 185137 | 187559 | 186187 | 189039
barb PSNR 33.45 32.72 31.40 32.51 31.21| 3244 31.15| 31091

# of zeros| 188043 | 192168 | 191705| 191883 | 190610 | 191100| 189338 | 191683
boat PSNR 3350 | 32.72| 31.27| 3252| 31.09| 3240| 3095| 3210

# of zeros| 228960 | 231172 | 231588 | 231246 | 231086 | 230925| 230529 | 230869
fruits PSNR 34.17 33.45 32.33 33.11 32.10 32.90 31.98 32.70

# of zeros| 190084 | 195665 | 195902 | 196309 | 195668 | 196197 | 195091 | 196493
goldhill PSNR 33.52 32.87 31.50 32.53 31.26 32.50 31.20 31.90

# of zeros| 221820 | 226838 | 227012 | 227309 | 227038 | 227208 | 226601 | 227318
lena PSNR 33.71 33.02 31.93 32.76 31.64 32.60 31.56 32.50

# of zeros| 197254 | 202157 | 202912 | 202189 | 202225| 201857 | 201323 | 201637
man PSNR 33.65 32.89 3151 32.62| 3152| 3250| 31.36| 31.99

# of zeros | 224134 | 224860 | 224399 | 223964 | 222759 | 223130| 221534 | 223658
peppers PSNR 33.75 32.96 31.91 32.89 3181| 3256| 31.65| 32.48

the thresholdy = 15. The filter bank with two primal and two dual vanishing moments has the highest
PSNR for all the images, as in the bitplane method, but the compression ratio is lower, especially for
some of the images. The best one in terms of the rati@ries among the filter banks with at least 6
dual vanishing moments. Combine with Table X the quincunx filters generally offers lower compression
ratio and higher PSNR.

Table XII and Table XIII show the results of various threshold on Lena with 6-level 1-D filter banks and
12-level quincunx filter banks, respectively. Among 1-D filter banks, the (2/2) filter bank still performs
well on PSNR except in the last case with high compression ratio. The other four, in the first to fourth
columns from the right, has similar performance. Similarly, in the quincunx case, the (2/2) filter bank
has the highest PSNR and lowest compression ratio.

The images processed with different wavelet transforms are also compared in terms of visual quality.
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TABLE VIII

PERFORMANCE OF1-D FILTER BANKS WITH DIFFERENTNUMBERS OFBITPLANES

Number of Primal/Dual Vanishing Moments

# of Bitplanes

Criterion

1/1\ 1/2\ 2/2\ 2/4\ 4/4\ 2/6\ 416

# of zeros

77923 | 86611 | 91415| 91205| 91471 | 90231| 90667

PSNR

39.31 39.90 42.06 41.07 40.35 40.79 40.55

# of zeros

148540 | 165177 | 171335| 172003 | 172387 | 170948 | 171743

PSNR

35.38| 36.67| 37.78| 36.63| 36.54| 36.09| 36.15

# of zeros

209287 | 225224 | 228781 | 230658 | 230690 | 230328 | 230613

PSNR

3111} 3236| 3260| 31.39| 31.27| 31.23| 30.67

# of zeros

241458 | 248599 | 250063 | 251421 | 251435| 251561 | 251677

PSNR

25.63 27.22 27.34 26.26 26.01 26.10 25.63

# of zeros

256034 | 257508 | 258318 | 258875 | 258811 | 258993 | 258994

PSNR

20.24 21.51 21.76 21.19 20.94 21.00 20.62

# of zeros

261251 | 261045 | 261404 | 261601 | 261574 | 261619 | 261621

PSNR

15.31 15.73 15.64 15.07 14.90 14.79 14.71

TABLE IX

PERFORMANCE OFQUINCUNX FILTER BANKS WITH DIFFERENTNUMBERS OFBITPLANES

20

Number of Primal/Dual Vanishing Moments

# of Bitplanes

Criterion

2/2 \

2/4\ 4/4\ 2/6\ 4/6\ 2/8\ 4/8

6/8

# of zeros

88830

90407 | 90069 | 89241 | 88518 | 88287 | 87134

89136

PSNR

43.75

4257 | 44.02| 4242 | 4344 4157| 4281

41.22

# of zeros

166466

170073 | 169448 | 169145| 167959 | 168123 | 166581

169119

PSNR

37.04

36.42| 36.93| 36.15| 36.31| 3593| 3584

36.34

# of zeros

222080

227091 | 227280 | 227564 | 227291 | 227474 | 226859

227584

PSNR

32.57

31.63 30.94 31.58 30.65 31.08 29.93

31.10

# of zeros

246353

249563 | 250016 | 250132 | 250259 | 250293 | 250187

250221

PSNR

27.32

26.18 24.89 25.71 24.77 25.95 24.23

25.34

# of zeros

257322

258636 | 258865 | 258917 | 258930 | 258993 | 258901

258974

PSNR

21.82

20.67| 20.00| 20.40 19.77| 20.32 19.66

20.11

# of zeros

261312

261607 | 261667 | 261675 | 261647 | 261697 | 261631

261722

PSNR

15.81

15.07 14.62 14.69 14.36 14.61 14.26

14.44
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TABLE X

PERFORMANCE OF1-D FILTER BANKS ON DIFFERENTIMAGES WITH THRESHOLD 15

Number of Primal/Dual Vanishing Moments

mage | Criterion | 11| 12| 2;2| 24| aa| 2e| ae| 2
n | 12.83] 18.34] 20.00] 22.49] 2221 23.12] 23.03] 9.14
airplane| PSNR | 31.79 | 32.50 | 33.19 | 32.40| 32.48| 32.03| 32.16] 25.44
" 345| 3.76| 4.14| 423| 426 421] 426 2.26
baboon | PSNR | 28.53| 29.62 | 30.10 | 29.31 | 29.47| 20.06 | 29.17| 24.82
" 498| 613] 6.99] 7.77] 802| 804| 832 385
barb | PSNR | 29.93| 30.74| 31.37| 30.70 | 30.95 | 30.49| 30.66 | 24.83
. 7.86 | 10.77] 12.00] 12.39| 12.34 | 12.18] 1220 4.64
boat | PSNR | 29.75| 30.43| 30.99 | 30.33| 30.51| 30.14 | 30.27] 23.94
n | 1848] 22.10] 25.00] 27.22] 27.02] 27.52] 27.62] 8.15
fruits | PSNR | 31.32| 32.40| 33.04| 32.31| 32.42 | 32.05| 32.14| 24.52
" 9.19| 11.80] 13.37] 1383 13.88 | 13.81] 13.93| 4.76
goldhill | PSNR | 29.26 | 30.07 | 30.69| 30.07| 30.19 | 29.79| 20.89 | 23.96
n | 12.31] 18.72] 20.81] 23.24| 23.26 | 2353 23.76| 7.45
lena | PSNR | 30.82| 31.88| 32.56 | 31.95| 32.10 | 31.68| 31.83 | 24.31
. 8.36 | 10.26] 11.51] 12.20| 12.17| 12.21] 1225 4.67
man | PSNR | 29.67| 30.52| 31.15| 30.42 | 30.51| 30.08 | 30.23| 24.65
n | 15.10| 23.26] 24.48] 26.32] 26.13| 26.00] 25.99] 7.89
peppers| PSNR | 30.73| 31.88 | 32.65| 31.79| 31.96 | 31.50 | 31.56 | 23.80

21

« Example 1:Fig. 13(a) is the reconstructed image from three levels of decomposition of the MIT9/7

filter banks, which has two primal and four vanishing moments. Fig. 13(b) is the reconstructed

image from Haar filter bank, which has one primal and one dual vanishing moments. The three least

significant bitplanes are thrown away. It can be seen that although the PSNR is almost the same, the

guality of Fig. 13(a) is much better than Fig. 13(b), as Fig. 13(b) has the severe blocking effects.

« Example 2:Fig. 14 shows the reconstructed images with low PSNR. Fig. 14(a) is the reconstructed

image from six levels of decomposition of the quincunx filter banks with two primal and two

vanishing moments. Fig. 14(b) is the reconstructed image from three levels of decomposition of

the MIT9/7 filter banks, which has two primal and four vanishing moments. These two subband

decompositions result in the same number of the wavelet coefficients in the lowpass subbands. The

PSNR of the quincunx filter bank is only a little higher, but the quality is better the MIT97 filter
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Reconstructed image: 2/4, bitplane=3, PSNR=33.65, level=3 Reconstructed image: 1/1, bitplane=3, PSNR=33.46, level=3

(&) MIT9/7, 2 primal and 4 dual vanishing mo- (b) Haar: 1 primal and 1 dual vanishing moments
ments

Fig. 13. Reconstructed image by throwing away three least significant bitplanes with 1-D filter banks

Reconstructed image: Quincunx 2/2, bitplane=5, PSNR=22.86, level=6 Reconstructed image: MIT9/7, bitplane=5, PSNR=22.54, level=3

(a) Quincunx filter bank with 2 primal and 2 dual (b) MIT97 filter bank

vanishing moments

Fig. 14. Reconstructed image by throwing away five least significant bitplanes
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TABLE Xl

PERFORMANCE OFQUINCUNX FILTER BANKS WITH THRESHOLD 15

Number of Primal/Dual Vanishing Moments
image | Criterion | 2/2| 24| am| 26| 4| 28| s

6/8

n 1455 18.44| 19.08 | 19.93| 20.21| 21.02 | 21.11 | 20.61
airplane| PSNR | 33.68 | 32.56| 31.18 | 32.00| 30.92| 31.78 | 30.70 | 32.19

n 345| 3.64| 361 3.67| 3.60| 3.67| 3.58| 3.71
baboon| PSNR | 30.87 | 29.86 | 28.77 | 29.43| 28.47 | 29.18 | 28.27 | 29.43

n 516 | 5.78| 5.68 6.03| 588| 6.15| 596 | 6.37
barb PSNR | 31.92| 30.64| 29.62 | 30.30| 29.26 | 30.08 | 29.17 | 30.31

n 9.03 | 10.53| 10.72 | 10.74| 10.84 | 10.64| 10.64 | 10.79
boat PSNR | 31.50| 30.41| 29.15| 28.88| 29.84| 28.72 | 28.72| 30.14

n 19.09| 22.65| 23.29 | 23.31| 23.34| 23.47 | 23.12| 23.28
fruits PSNR | 33.25| 32.22 | 30.95| 31.83| 30.59| 31.49 | 30.36 | 31.78

n 10.33| 11.93| 12.03| 12.26 | 12.02| 12.33 | 11.88 | 12.43
goldhill PSNR | 31.06 | 30.14 | 29.01| 24.75| 28.72| 29.52 | 28.55 | 29.86

n 16.22 | 20.13 | 20.83| 21.01| 21.23| 21.26 | 21.12| 21.12
lena PSNR | 32.67 | 31.70| 30.30| 31.27 | 30.07| 31.09 | 30.04 | 31.45

n 9.37 | 10.77| 10.94| 11.01| 10.92 | 11.00| 10.77 | 11.01
man PSNR | 31.67 | 30.52 | 29.20| 30.08 | 28.91 | 29.87 | 28.79 | 30.07

n 19.49 | 23.58| 23.87 | 24.89| 24.40| 25.53 | 24.63 | 25.42
peppers| PSNR | 32.83| 31.75| 30.36 | 31.26| 30.01 | 30.91| 29.82 | 31.28

bank.

VI. CONCLUSIONS

In this project, several one dimensional and quincunx interpolating filter banks are built using the
method proposed by Kotavic and Sweldens in [4]. The construction relies on the lifting structure
with two lifting steps. Three important properties: perfect reconstruction, dual and primal vanishing
moments, are satisfies separately. Then these filter banks are used to decompose images in a simple
image compression system, and their performance are compared.

From the compression results, it can be seen that different filter banks have different effects on the
images. Their performance depends on the particular images, levels of decomposition and the desired

compression ratio. It is hard to find one that offers the best overall performance. Generally speaking,
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TABLE Xl

PERFORMANCE OF1-D FILTER BANKS WITH VARIOUS HARD THREDHOLDING

Number of Primal/Dual Vanishing Moments

Threshold| Criterion | 11| 12| 22| 24| am| 26|
n 3.51 4.64 5.09 5.24 5.27 5.16 5.21

5 PSNR 36.68| 37.60| 37.68| 36.75| 36.54| 36.76| 36.65
n 749 11.31| 1262| 13.78| 13.78| 13.79| 1391

10 PSNR 31.56| 32.87| 33.38| 32.27| 32.46| 31.95| 32.17
n 19.30| 2891| 33.21| 3781| 37.60| 37.60| 38.96

20 PSNR 26.27| 28.03| 2881| 27.73| 2761| 27.61| 27.35
n 39.90| 53.65| 64.49| 75.29| 74.14| 78.21| 78.19

30 PSNR 2347 | 24.71| 25.84| 24.72| 2489 | 24.40| 2441
n 21459 | 178.25| 266.62 | 349.18 | 333.38| 367.77| 373.36

60 PSNR 18.78 | 19.82| 19.58| 18.72| 18.86| 18.08| 18.30

symmetric filters perform better than nonsymmetric filters, and longer filters with more vanishing moments
perform better for smooth images. The filter banks in the quincunx family tend to have higher PSNR but
lower compression ratio than those with the same number of vanishing moments in the one-dimensional
family.

There are still a lot of unfinished work in this project. Firstly, the encoder needs to be corrected, such
that the performance can be compared in a more reasonable way, and the compression results need to be
examined more carefully. More future work includes studying the performance of other families of one

dimensional wavelet transforms and wavelet transforms on other nonseparable sampling lattices.
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