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Compression System with Interpolating Filter
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Abstract

In this project, two families of filter banks are constructed, then their performance is compared with

an image compression system. The one-dimensional and quincunx families of interpolating filter banks

are constructed on the lifting scheme, such that they have the properties of perfect reconstruction and

arbitrary numbers of vanishing moments. Then the filter banks are applied to images, and the transformed

data are processed in some quantization strategies such that the performance is compared in terms of

PSNR.

I. I NTRODUCTION

Wavelet transforms and perfect reconstruction filter banks (PRFBs) are widely used in numerous signal

processing applications including image compression, and there are various construction techniques for

PRFBs [1]. The introduction of the lifting scheme by Sweldens [2] [3] provides a new way of wavelet

constructions. It was motivated to build time-varying filter banks, and it also offers several advantages to

the earlier approaches in the time-invariant setting [4]. Lifting also leads to fast and inplace implementation

of PRFBs, and can be used in reversible integer to integer wavelet transforms.

[4] shows that families of wavelets with interpolating scaling functions can be built with two lifting

steps: a predict step and an update step. The resulting filter banks have the perfect reconstruction and

arbitrary numbers of dual and primal vanishing moments, if the predict and update filters satisfy certain

conditions related to Neville filters.

In this project, two families of interpolating filters are built: the traditional one dimensional two channel

filter banks, and the two dimensional nonseparable quincunx filter banks. Then the performance of those

filters are compared within an image compression system.
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This report is organized as follows. Section II provides the notation and some preliminaries, such as

Neville filters and the lifting scheme. Section III states the problem studied in this project. Section IV

describe how to construct the interpolating filter banks and implement the image compression system, and

gives some examples. The results of the performance comparison between different wavelet transforms

are given in Section V, and the conclusion is made in Section VI.

II. N OTATION AND BACKGROUND MATERIALS

A. Notation

The notation used in this report is the same as in [4]:

1) Signal: A signal x is a sequence of real-valued numbers indexed by the index setK

x = {xk ∈ R | k ∈ K} ∈ RK.

In this project, the index setK ∈ Zd and the signal is defined on a lattice ind-dimensional Euclidean

space.

2) Linear operator and its adjoint:A linear operator isA : l2(K) → l2(K), and the adjoint ofA is

the linear operatorA∗ such that〈Ax, y〉 = 〈x,A∗y〉 for all sequencesx, y ∈ l2(K), where〈·, ·〉 is the

standard inner product. A filter is a time invariant linear operator with the impulse response{ak | k ∈ K}.
3) Polynomial and the space:π(x) is a multivariate polynomial withx ∈ Rd. π is the sequence

formed by evaluatingπ(x) on the latticeZd.

π = π
(
Zd

)
=

{
π(k) ∈ k ∈ Zd

}

Πn denotes the space of all polynomial sequences of total degree less thann.

4) Multidimensional filters:A multidimensional filter is a linear operator, where the index setK = Zd.

An index k ∈ Zd is a vector(k1, . . . , kd) where kj ∈ Z. z is also a vector(z1, . . . , zd). If α =

(α1, . . . , αd) , then

zα =
d∏

i=1

zαi

i

and the size of a multi-index is

|n| =
d∑

i=1

ni
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5) Sublattices:D is a d× d matrix with integer coefficients, thenDZd is a sublattice ofZd. There

aredet D − 1 cosets of the formDZd + tj , wheretj ∈ Zd and1 ≤ j ≤ det D. These cosets satisfies

Zd =
M−1⋃

j=0

(
DZd + tj

)

↓ D : AK → ADK is the downsmapling operator with the dilation matrixD, and its adjoint is the

upsampling operator↑ D. In z-domain, the upsampling is defined as:

zD = {zd1 , zd2 , . . . , zdd}

wheredi is the ith column vector of the dilation matrixD.

B. Interpolating Filters

A filter H is interpolating if its impulse response satisfieshDk
= δk, which means that the impulse

response is zero in all sampling points except the origin. Itsz-transform can be expressed as:

H(z) = 1 +
M−1∑

i=1

ztiPi

(
zD

)

When an interpolating filter is applied to an upsampled signal, the values of the original sample points

remain the same and the values of the new points are the linear combination of the old ones.

A scaling functionφ(x) ∈ Ł2(Rd) satisfies a refinement relation:

φ(x) =
∑

k∈K
hkφ(Dx− k)

where {hk} is the impulse response of a filterH. The scaling function is interpolating if it satisfies

φ(k) = δk, which means it is zero in all points in the lattice except the origin. If a scaling function is

interpolating, the refinement filterH is also interpolating.

C. Neville Filters

A filter P is a Neville filter of orderN with shift τ ∈ Rd if

Pπ
(
Zd

)
= π

(
Zd + τ

)
, for π ∈ ΠN

which means ifP is applied to a polynomial, it results in the same polynomial on the original lattice

offset byτ .

A Neville filter P has the property that its impulse response{pk} satisfies

∑

k

p−kk
n = τn, for |n| < N. (1)
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H̃

G̃

↓ D

↓ D

↑ D

↑ D

H∗

G∗

+
x[n] x̂[n]y0[n]

y1[n]

Fig. 1. A typical 2-channel UMD filter bank

This equation provides a way to calculate the coefficients of the Neville filters.

Some other important properties of the Neville filters are:

(1) If P is a Neville filter of orderN with shift τ , then the adjointP ∗ is a Neville filter of orderN

with shift −τ .

(2) If P is a Neville filter of orderN with shift τ , andP
′

is a Neville filter of orderN
′

with shift τ
′
,

thenPP
′

is a Neville filter of orderminN, N
′

with shift τ + τ
′
.

(3) If P is a Neville filter of orderN with shift τ , thenQ(z) = P
(
zD

)
is a Neville filter of orderN

with shift Dτ .

D. Lifting

Lifting is a way to calculate and design filter banks [2] [3]. It features reversible and inplace compu-

tation, and leads to fast implementation of the discrete wavelet transform. A UMD filter bank shown in

Fig. 1 can be implemented by the lifting scheme by decomposing the polyphase matrices into a sequence

of elementary matrices; each matrix represents a simple operation of the subband signals. The resulting

lifting structure is illustrated in Fig. 2. Fig. 2(a) shows the analysis side of the filter bank, which consists

of a set of lifting steps: prediction stepsPi and update stepsUi, and Fig. 2(b) shows the analysis side

of the filter bank, which consists of a set of inverse steps.

The lifting structure is also used in building new subband decompositions from the existing ones. The

basic idea behind lifting is that the new and old filter banks have the same lowpass or highpass filters.

The construction begins from a trivial filter bank, and then the properties of the filter bank is enhanced

using lifting stepsPi and Ui. The trivial filter bank is the polyphase transform, also referred to as the

Lazy wavelet transform [2], which splits the input signal into even- and odd-indexed components. The

analysis polyphase matrixP a is then given by the product of the elementary matrices which correspond

to the lifting steps:

P a =


H̃e H̃o

G̃e G̃o


 = · · ·


1 U1

0 1





 1 0

−P1 1
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P1 U1z−t

↓ D

↓ D +

+

· · ·

· · ·

· · ·
x[n]

y0[n]

y1[n]
−

(a) Analysis side

P1U1 zt

↑ D

↑ D+

+ +

· · ·

· · ·

· · ·
x̂[n]

y0[n]

y1[n]

−

(b) Synthesis side

Fig. 2. The lifting structure of two channel filter banks

and the analysis filters are given by:

H̃(z) = H̃e

(
zD

)
+ z−tH̃o

(
zD

)

G̃(z) = G̃e

(
zD

)
+ z−tG̃o

(
zD

)

E. Quincunx Filters Banks

A quincunx lattice is a two dimensional nonseparable lattice with dilation matrix:

D =


 1 1

1 −1




Fig. 3 shows the lattices before and after the downsampler↓ D. There are other dilation matrices that

result in the same sublattices, such as


0 2

1 1


. D is better than the other dilation matrices in thatD2 = 2I,

which means that two levels of downsampling byD is separable.

The quincunx filter banks have the advantage that it leads to a two-channel multiresolution analysis,

and the expressions ofz-domain downsampling and upsampling are in a similar form to that of one

dimensional filter banks. The relationship is shown in Table I. Another advantage is that they can better

extract the spectrum information of images and adopts to human visual system, as they are more sensitive

along the diagonal directions than the traditional separable filter banks.
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TABLE I

THE RELATIONSHIP BETWEEN ONE-DIMENSIONAL AND QUINCUNX FILTER BANKS IN DOWNSAMPLING AND UPSAMPLING

Downsampling

1-D Y (z) = 1
2

h
X(z1/2) + X(−z1/2)

i

Quincunx Y (z1, z2) = 1
2

h
X
�
z
1/2
1 z

1/2
2 , z

1/2
1 z

−1/2
2

�
+ X

�
−z

1/2
1 z

1/2
2 ,−z

1/2
1 z

−1/2
2

�i

Upsampling

1-D Y (z) = X(z2)

Quincunx Y (z1, z2) = X
�
z1z2, z1z

−1
2

�

Upsampling after downsampling

1-D Y (z) = 1
2

[X(z) + X(−z)]

Quincunx Y (z1, z2) = 1
2

[X (z1, z2) + X (−z1,−z2)]

a d

b

c

a

d

b

c

D

Fig. 3. Quincunx lattices before and after downsampled byD with unit cell

III. PROBLEM STATEMENT

This project includes three parts:

• Construction of interpolating filter banks

• Implementation of the compression system

• Performance comparison

The purpose of the first part, construction of interpolating filter banks, is to build two channel filter

banks with analysis filters̃H, G̃, and synthesis filtersH, G that satisfy three properties: perfect re-

construction,N primal vanishing moments and̃N dual vanishing moments, as shown in Fig. 1. Two
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P Uz−t

↓ D

↓ D +

+

PU zt

↑ D

↑ D+

+ +
x[n] x̂[n]y0[n]

y1[n]−

−

Fig. 4. 2-step lifting scheme

families of interpolating filters are built based on the lifting scheme: the traditional one dimensional and

nonseparable quincunx interpolating filter bank families.

In the second part, implementation of the compression system, the wavelets constructed in the first

part are applied to images, then the transformed wavelet coefficients are compressed using an encoder

similar to the one in JPEG 2000 standard. In the inverse process, the compressed data is decoded and the

inverse wavelet transform is implemented to reconstruct the images. At the time of writing this report, the

encoder still does not work. Therefore, other methods are used to approximate a lossy coder by simply

quantizing the wavelet coefficients.

The last part of this project is to compare the performance of different wavelets by computing the

PSNR of the images reconstructed from quantized wavelet coefficients.

IV. M ETHODS

A. Construction of Filter Banks

The interpolating filter banks are constructed based on the two-step lifting scheme shown in Fig. 4.

P is the predict filter andU is the update filter. These two lifting steps in the analysis side, and the

corresponding inverse steps in the synthesis side are sufficient to satisfy the three properties: perfect

reconstruction, dual and primal vanishing moments, and these properties can be satisfied separately [4].

• Perfect reconstruction

This property requires that the reconstructed signalx̂[n] is a shifted version of the input signalx[n].

It is automatically satisfied for every filter bank built with lifting.

• Dual vanishing moments:

The dual wavelets havẽN vanishing moments,
∫

tkψ̃(t)dt = 0, for |k| < Ñ
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which means the primal scaling function can accurately approximate smooth polynomials up to order

Ñ , and the wavelet coefficients of a smooth function decays rapidly. Using the notation in Section

II, it can be expressed as

(↓)G̃ π = 0 for π ∈ ΠÑ

This property is satisfied if the predict filterP is a Neville filter of orderÑ and shiftτ = D−1t.

• Primal vanishing moments:

The primal wavelets haveN vanishing moments,
∫

tkψ(t)dt = 0, for |k| < N

Using the notation in Section II, it can be expressed as

(↓)Gπ = 0 for π ∈ ΠN

This property is satisfied if2U is a Neville filter of orderN and shift−τ = −D−1t.

Therefore, the predict and update filters can be computed by solving the linear systems in (1). After

selecting the proper predict filterP and update filterU , the analysis and synthesis polyphase matrix of

the filter bankPa andPs can be computed as:

Pa =


H̃e H̃o

G̃e G̃o


 =


1− UP U

−P 1




Ps =


He Ho

Ge Go


 =


 1 P ∗

−U∗ 1− U∗P ∗




and the analysis and synthesis filters are:

H̃(z) = H̃e

(
zD

)
+ z−tH̃o

(
zD

)
= 1− U

(
zD

)
P

(
zD

)
+ z−tU

(
zD

)

G̃(z) = G̃e

(
zD

)
+ z−tG̃o

(
zD

)
= −P

(
zD

)
+ z−t

H(z) = He

(
zD

)
+ ztHo

(
zD

)
= 1 + P ∗ (

zD
)

G(z) = Ge

(
zD

)
+ ztGo

(
zD

)
= −U∗ (

zD
)

+ z−t
(
1− U∗ (

zD
)
P ∗ (

zD
))

whereH is interpolating.
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TABLE II

SOME OF THEONE DIMENSIONAL NEVILLE FILTERS WITH L INEAR PHASE

Numerator Denominator

Order 4 3 2 1 0 -1 -2 -3 -4 -5

2 1 1 2

2 -1 9 9 -1 24

6 3 -25 150 150 -25 3 28

8 -5 49 -245 1225 1225 -245 49 -5 211

10 35 -405 2268 -8820 39690 39690 -8820 2268 -405 35 216

i

j

0

Fig. 5. Coset representative of a quincunx lattice

1 1

1 1

2 2

2

2

2 2

2

2

3 3

3 3

4 4

4

4

4 4

4

4

5 5

5

5

5 5

5

5

6 6

6 6

7 7

7

7

7 7

7

7

Fig. 6. The quincunx lattice in the sampled domain with

neighborhoods. The point in the center representsτ that are to

be interpolated

1) One Dimensional Filter Banks:In one dimensional cases, the Neville filters can be easily con-

structed by solving the linear systems in (1), which can be rewritten in matrix form as:



1 1 · · · 1

k1 k1 + 1 · · · k2

...
...

...
...

kN−1
1 (k1 + 1)N−1 · · · kN−1

2







p−k1

p−(k1+1)

...

p−k2




=




1

τ
...

τN−1




When |k2 − k1| = N − 1, the coefficient matrix is a Vandermonde matrix and is always invertible. Thus,

the filter coefficients have a unique solution. Table II shows some of the 1-D Neville filters of even order,

which are all symmetric and thus have linear phase.
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TABLE III

QUINCUNX NEVILLE FILTERS

Numerator Denominator

Taps Order\Ring 1(4) 2(8) 3(4) 4(8) 5(8) 6(4) 7(8)

4 2 1 22

12 4 10 -1 25

24 6 174 -27 2 3 29

44 8 23300 -4470 625 850 -75 9 -80 216

FWT Encoder Decoder IWT

Original
Image

Reconstructed
Image

Fig. 7. Block diagram of the compression system

2) Quincunx Filter Banks:In quincunx lattices, the delay between the two sublattices, represented by

the filled and unfilled circles in Fig. 5, ist =
[
1 0

]
, and the shift for the Neville filters isτ = D−1t =[

1/2 1/2
]
. The coefficients of the predict and update filters are selected in the neighborhood ofτ in a

symmetric way as shown in Fig. 6. The filter coefficients are taken from TABLE II in [4], as shown in

table III, where the third to the ninth columns correspond to the tap weights of the seven rings in Fig.

6 numbered from one to seven.

B. Implementation of the Compression System

The compression system is shown in the block disgram in Fig. 7, which includes two parts: two-

dimensional wavelet transforms and a coder/decoder.

1) Wavelet Transforms:For the traditional 1-D filter banks, the subband decomposition is applied

to the images row-wise first and then column wise. There are four subbands after the first level of

decomposition: vertically and horizontally lowpass (LL), horizontally lowpass and vertically highpass

(LH), horizontally highpass and vertically lowpass (HL), and vertically and horizontally highpass (HH)

subbands. Then the LL band is decomposed further. This two-dimensional forward wavelet transform is

in a tree structured 2-D analysis filter bank which results in the subband structure in Fig. 8(a)

For the quincunx filter banks, the input image is decomposed into two subbands after each level of

decomposition, and the subbands have the shape of a diamond. The lowpass subband is decomposed
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(a) 1-D (b) Quincunx

Fig. 8. The subband structure after four levels of decomposition for the one dimensional filter banks and quincunx filter banks

further. This filter bank results in the subbands structure in Fig. 8(b).

A tree-structure 2-D synthesis filter bank is used to perform the inverse 2-D wavelet transform for the

reconstruction of the images. This structure is simply the inverse of the analysis filter bank.

The forward and inverse wavelet transforms are implemented using the lifting steps in Fig. 4. One of

the advantages of the lifting structure is that the transform can be calculated in place. Therefore, unlike

the subband structure shown in Fig. 8, the wavelet coefficients are stored at their original positions. This

leads to the fact that the coefficients belonging to the same subband are not stored next to each other,

but scattered in the entire data matrix.

After each lifting step, there is a rounding unit, such that the wavelet coefficients are all signed integers.

This unit can be a rounding to zero, to the nearest integer, or flooring after plus1/2. As long as the

same method is used in the analysis and synthesis sides, the image can still be perfectly reconstructed.

When filtering along the image borders, the filter may need undefined sample points outside the image.

There are some schemes for extension, such as symmetric extension and periodic extension. In this project,

those undefined sampling points are replaced by their nearest defined neighbor in the same coset. In both

one dimensional and quincunx filter banks, the nearest neighbor may not be unique. There may be two

points inside the defined region with the same distance an undefined point. However, as long as the

selection scheme is the same in the analysis and synthesis side, the image can still be reconstructed.

2) CODEC: The coding algorithm is a simplified version of the EBCOT (embedded block coding

with optimized truncation) [5] used in JPEG 2000. Compared to other popular coding schemes, such as

EZW [6] and SPIHT [7], EBCOT does not employ the interband information, thus it can be used in both
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separable and nonseparable subband decompositions. I tried to write one that can address both the lossy

and lossless coding, but the time is not enough, therefor only the lossless part in included.

The encoder works in a similar way to that in JPEG 2000 [8] [5] [9] [10] as follows. Each subband

is processed separately. The wavelet coefficients of a subband are arithmetically coded by bitplane. The

coding is performed from the most significant bitplane to the least significant bitplane. For 1-D filter

banks, each bitplane is scanned in the order in Fig. 9. In quincunx case, when there are odd levels of

decomposition, the subbands have the shape of a diamond. The scan order is the same except for a

rotation of45◦, as I stored the subband signals in a rectangular matrix.

Encoding a bit involves (1) determining its context, (2) estimating a probability for it, and (3) sending

the bit and its probability to an arithmetic coder, named MQ coder. Each wavelet coefficient has a 1-bit

variable indicating its significance. The context of a bit is computed from the significance of its eight

near neighbors.

There are three coding passes per bitplane. Each bit in the bitplane is encoded in one of the three

passes. The first coding pass, the significance propagation pass, encodes all the bits that belong to the

wavelet coefficients satisfying:

• the coefficient is insignificant

• at least one of its eight nearest neighbors is significant

If a bit encoded in this pass is 1, its wavelet coefficient is marked as significant. The second coding pass,

the magnitude refinement, encodes all bits of wavelet coefficients that became significant in a previous

bitplane. The third coding pass, the cleanup pass, encodes all the remaining bits in the bitplane. If a bit

encoded in this pass is 1, the wavelet coefficient becomes significant.

Encoding starts from the first bitplane that is not identically zero, and this bitplane is encoded in the

cleanup pass. The sign bit of a coefficient is encoded following the first 1 bit of the coefficient.

The context of a bit is determined in different ways for different passes. For one-dimensional transforms,

the decision is the same as in JPEG2000 [8]. For quincunx transforms, the lowpass band uses the contexts

for the LL subband, and the highpass band uses the contexts for the HH subband.

The code in this part relies on the JasPer software [11].

3) Quantization:Since the CODEC does not work, a simple quantization is used to simulate a lossy

coder. One of the quantization strategy is to throw away several least significant bitplanes of the wavelet

coefficients. This can be done by shifting the bits of every coefficient.

Another quantization strategy that works well for 2-D subband signals is to apply a hard thresholding

with thresholdδ to the images [12], which results in more zero coefficients and thus increases the
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· · ·

· · ·

...
...

...
...

Four rows

Four rows

Fig. 9. Scan order within a subband

”compression ratio”η defined as

η =
k0

k
(2)

wherek0 is the number of pixel in the original image with magnitude larger thanδ, andk is the number of

wavelet coefficients after the forward wavelet transform with magnitude larger thanδ. All the coefficients

that are less than or equal toδ are set to zero.

C. Performance Comparison

The criterion for performance comparison is the bit rate (bit per pixel) in the compressed data.

For lossy coding, the PSNR (peak signal to noise ratio) and visual quality is used, where the PSNR

and MSE (mean squared error) is defined as:

PSNR= 10 log10

(
2P − 1

)2

MSE

MSE =
1

MN

M−1∑

i=0

N−1∑

j=0

(xi,j − x̂i,j)
2

If the hard thresholding strategy is used to quantize the wavelet coefficients,η as defined in (2) can also

serve as a criterion.

V. RESULTS

A. Examples of Interpolating Filter Banks

1) Haar: Haar filter bank is the simplest filter bank withN = 1 primal andÑ = 1 dual vanishing

moments. The predict and update filters areP (z) = 1 andU(z) = 1/2 respectively. The corresponding
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(a) Analysis filters
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synthesis filters

(b) Synthesis filters

Fig. 10. Frequency responses of the analysis and synthesis filters withN = 2 primal andÑ = 4 dual vanishing moments

filters areH(z) = 1 + z−1 andG(z) = −1/2 + z−1/2.

2) One Dimensional Filter Bank withN = 2 primal andÑ = 4 dual vanishing moments:The predict

filter is a Neville filter of order 4, and two times the adjoint of the update filter is a Neville filter of order

2, therefore

P (z) =
(−z + 9 + 9z−1 − z−2

)
/16

U(z) = (z + 1) /4

And the corresponding analysis lowpass and highpass filters are:

H̃(z) =
(
z4 − 8z2 + 16z + 46 + 16z−1 − 8z−2 + z−4

)
/64

G̃(z) =
(
z2 − 9 + 16z−1 − 9z−2 + z−4

)
/16

The frequency responses of the analysis and synthesis filters are shown in Fig. 10

3) Quincunx Filter Bank withN = 2 primal and Ñ = 2 dual vanishing moments:The predict filter

is a two dimensional Neville filter of order 2, and two times the adjoint of the update filter is also a

Neville filter of order 2, therefore

P (z) =
(
1 + z−1

1 + z−1
2 + z−1

1 z−1
2

)
/4

U(z) = (1 + z1 + z2 + z1z2) /8
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(a) Analysis filters
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(b) Lowpass filter

Fig. 11. Frequency responses of the quincunx lowpass and highpass filters withN = 2 primal andÑ = 2 dual vanishing

moments
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(a) Quincunx 2/2
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(b) Quincunx 4/4

Fig. 12. The approximation of the scaling functions of two members of the quincunx filter banks family

And the corresponding analysis lowpass and highpass filters are:

H̃(z) = 1
32

(
28− 2z−1

1 z−1
2 − 2z1z

−1
2 − 2z−1

1 z2 − 2z1z2 − z−2
1 − z2

1 − z−2
2 − z2

2 + 4z−1
1 + 4z1 + 4z−1

2 + 4z2

)

G̃(z) = z−1
1 − (

1 + z−1
1 z−1

2 + z−1
1 z2 + z−2

1

)

This results in the frequency responses of the lowpass and highpass filters shown in Fig. 11. This

combination does not leads to a stable biorthogonal basis. An approximation of the shape of the scaling

function is shown in Fig. 12(a), and the shape of the scaling function of another quincunx filter bank is

shown in Fig. 12(b).
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TABLE IV

FILE SIZE OF 3 AND 4 LEVELS OF DECOMPOSITION

Number of Primal/Dual Vanishing Moments

Image Levels 1/1 1/2 2/2 2/4 4/4 2/6 4/6 2/2

3 1213 1310 1043 913 1047 883 882 4240

lena 4 973 1093 793 644 768 622 615 4349

3 1703 1692 1299 1136 1023 1098 1098 7238

man 4 1485 1455 1034 854 1309 812 812 7543

TABLE V

FILE SIZE OF 4 AND 5 LEVELS OFDECOMPOSITION

Number of Primal/Dual Vanishing Moments

Image Levels 2/2 2/4 4/4 2/6 4/6 2/8 4/8 6/8

4 2170 1933 1858 1878 1849 1863 1849 1874

airplane 5 1601 1351 1305 1299 1297 1272 1302 1279

B. Performance Comparison

The nine test images are all 8-bit gray images, with the size of512× 512.

1) Lossless:The lossless encoder creates a file containing the compressed data. The bit rate is given

by the size of the compressed data over the number of pixels in the original image. The encoder does not

work correctly, as the size is unreasonably small, and so far I still has not figured out where the problem

is. Although the encoder is wrong, the size of the output file seems to be proportional to what it should

be. For example, more decomposition levels and long filters results in smaller size. I think perhaps the

encoder codes only a small part of the subband data, and the results may represent some of the properties

of the filter banks.

Table IV shows the compression results from 1-D interpolating filter banks with different numbers of

vanishing moments. Table V are the results from quincunx filter banks. It can be seen from Table IV

that the two nonsymmetric filters perform the worst for all the images. Especially the one list in the last

column with causal predict filter. Its output file size is much larger than the others. Another nonsymmetric

filter is in the fourth column with one primal and two dual vanishing moments. It can be seen from the

table that longer filters generally perform better than shorter ones, and more levels of decomposition

leads to higher compression ratio.
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2) Lossy:The performance from simple quantization strategies that simulate the lossy coding is shown

in this part. Firstly, several least significant bitplanes of all the wavelet coefficients are simply thrown

away, and the image is reconstructed using the wavelet coefficients with less precision. The PSNR and

number of zero coefficients are computed and the results are shown in Tables VI - IX.

Using this strategy, small coefficients are lost and large coefficients are quantized to an integer power

of 2. Table VI shows the results from various 1-D filter banks of 4 levels of decomposition on different

images. In the quantization step, three least significant bitplanes are thrown away. It shows that the filter

bank in the rightmost column performs the worse, which is the non symmetric filter banks. The filter

bank with 1 primal and 2 dual vanishing moments seem to have the best reconstruction, as the PSNR is

the highest for all the test images, but the number of zero coefficients are much less than the symmetric

filters with more vanishing moments, which may lead to a low compression ratio. The analysis lowpass

filter of this filter bank is not symmetric:̃H(z) = 0.75 + 0.5z−1 − z−2.

The filter bank with 2 primal and 2 dual vanishing moments gives the second best PSNR for all, and

it has a number of zero coefficients comparable to the longer filters. The analysis lowpass and highpass

filters of this filter bank is

H̃(z) =
1
8

(−z2 + 2z + 6 + 2z−1 − z−2
)

G̃(z) =
1
2

(−1 + 2z−1 − z−2
)

which is the unnormalized CDF22 filter bank.

Table VII gives the results of quincunx filter banks with 8 levels of decomposition, thus the lowpass

subband has the same number of samples as the 1-D filter banks in Table VI. Again, the three least

significant bitplanes are thrown away. These quincunx filters have symmetric filters. For all the test images,

the filter bank with the least vanishing moments (2/2) gives the best PSNR. The numbers of different

filter banks do not vary too much, although longer filters tend to have more zero coefficients. Combine

Table VI and VII, the quincunx filter banks generally have higher PSNR but less zero coefficients.

Table VIII shows the results from the one-dimensional filter banks with 6 levels of decomposition.

Different numbers of bitplanes are shifted out. It can be seen from the table that with higher levels of

decomposition, the nonsymmetric (1/2) filter bank is no longer the best in terms of PSNR, while the one

with 2 primal and 2 dual vanishing moments still performs very well.

Table IX shows the results from the quincunx filter banks with 12 levels of decomposition. Different

numbers of bitplanes are shifted out. The one with two primal and two dual vanishing moments still

performs the best in terms of PSNR.
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TABLE VI

PERFORMANCE OF1-D FILTER BANKS ON DIFFERENT IMAGES, WITH THREE BITPLANES THROWN AWAY

Number of Primal/Dual Vanishing Moments

Image Criterion 1/1 1/2 2/2 2/4 4/4 2/6 4/6 2/2

# of zeros 220138 231199 232875 234967 234719 234868 234782 204689

airplane PSNR 32.77 33.68 33.64 33.24 32.77 33.03 32.47 28.35

# of zeros 125183 133321 140150 141081 142076 140532 141683 89956

baboon PSNR 31.83 33.17 32.75 32.25 31.69 32.02 31.45 27.155

# of zeros 169989 187274 193233 198738 200373 200017 201827 152256

barb PSNR 32.31 33.40 33.02 32.32 32.21 32.24 31.95 27.61

# of zeros 179030 191736 197130 197698 197869 197000 197400 143889

boat PSNR 32.44 33.45 33.02 32.45 32.29 32.30 32.04 27.38

# of zeros 226380 232075 235205 235843 235856 235617 235770 196734

fruits PSNR 32.96 34.10 33.71 33.34 33.05 33.02 32.73 27.76

# of zeros 183179 197452 202282 202052 202311 200989 201285 149295

goldhill PSNR 32.33 33.32 32.99 32.45 32.04 32.29 31.88 27.41

# of zeros 208867 224934 228412 230269 230305 229942 230223 182646

lena PSNR 32.69 33.74 33.42 32.79 32.76 32.54 32.52 27.65

# of zeros 189844 202873 207406 208820 208760 208076 208208 162018

man PSNR 32.40 33.66 33.03 32.52 32.20 32.23 31.95 27.57

# of zeros 209740 220132 224347 223494 223723 222358 222859 174373

peppers PSNR 32.63 33.70 33.45 32.98 32.70 32.69 32.44 27.53

Another quantization strategy is the hard thresholding as stated in the previous section. After the

quantization, the small coefficients are set to zero, while the large coefficients remains the same, unlike

in the bitplane method where they are quantized to an integer power of 2. The performance results are

shown in Tables X - XIII.

Table X shows the results from various 1-D filter banks of 4 levels of decomposition on different

images. The threshold is set to 15. The nonsymmetric filters, which are in the fourth and rightmost

columns, and the Haar filter banks are the worst, as the ratioη and the PSNR are both low. Among the

other filter banks, the 2/2 one has the best PSNR, but ”compression ratio” is lower. It seems the other

four, with 2/4, 4/4, 2/6, and 4/6 vanishing moments respectively, haveη and PSNR that are close to each

other.

Table XI is the counterpart to Table X, with quincunx filter banks of 12 levels decomposition, and
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TABLE VII

PERFORMANCE OFQUINCUNX FILTER BANKS ON DIFFERENT IMAGES. THREE BITPLANES ARE THROWN AWAY

Number of Primal/Dual Vanishing Moments

Image Criterion 2/2 2/4 4/4 2/6 4/6 2/8 4/8 6/8

# of zeros 223739 230242 231018 231006 231272 231197 231247 230959

airplane PSNR 33.81 33.29 32.34 33.02 32.13 32.87 31.97 32.72

# of zeros 127737 131298 130789 131548 130216 130980 129367 131706

baboon PSNR 33.59 32.78 31.26 32.42 30.99 32.28 30.91 31.82

# of zeros 176228 183766 183331 186238 185137 187559 186187 189039

barb PSNR 33.45 32.72 31.40 32.51 31.21 32.44 31.15 31.91

# of zeros 188043 192168 191705 191883 190610 191100 189338 191683

boat PSNR 33.50 32.72 31.27 32.52 31.09 32.40 30.95 32.10

# of zeros 228960 231172 231588 231246 231086 230925 230529 230869

fruits PSNR 34.17 33.45 32.33 33.11 32.10 32.90 31.98 32.70

# of zeros 190084 195665 195902 196309 195668 196197 195091 196493

goldhill PSNR 33.52 32.87 31.50 32.53 31.26 32.50 31.20 31.90

# of zeros 221820 226838 227012 227309 227038 227208 226601 227318

lena PSNR 33.71 33.02 31.93 32.76 31.64 32.60 31.56 32.50

# of zeros 197254 202157 202912 202189 202225 201857 201323 201637

man PSNR 33.65 32.89 31.51 32.62 31.52 32.50 31.36 31.99

# of zeros 224134 224860 224399 223964 222759 223130 221534 223658

peppers PSNR 33.75 32.96 31.91 32.89 31.81 32.56 31.65 32.48

the thresholdδ = 15. The filter bank with two primal and two dual vanishing moments has the highest

PSNR for all the images, as in the bitplane method, but the compression ratio is lower, especially for

some of the images. The best one in terms of the ratioη varies among the filter banks with at least 6

dual vanishing moments. Combine with Table X the quincunx filters generally offers lower compression

ratio and higher PSNR.

Table XII and Table XIII show the results of various threshold on Lena with 6-level 1-D filter banks and

12-level quincunx filter banks, respectively. Among 1-D filter banks, the (2/2) filter bank still performs

well on PSNR except in the last case with high compression ratio. The other four, in the first to fourth

columns from the right, has similar performance. Similarly, in the quincunx case, the (2/2) filter bank

has the highest PSNR and lowest compression ratio.

The images processed with different wavelet transforms are also compared in terms of visual quality.
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TABLE VIII

PERFORMANCE OF1-D FILTER BANKS WITH DIFFERENTNUMBERS OFBITPLANES

Number of Primal/Dual Vanishing Moments

# of Bitplanes Criterion 1/1 1/2 2/2 2/4 4/4 2/6 4/6

# of zeros 77923 86611 91415 91205 91471 90231 90667

1 PSNR 39.31 39.90 42.06 41.07 40.35 40.79 40.55

# of zeros 148540 165177 171335 172003 172387 170948 171743

2 PSNR 35.38 36.67 37.78 36.63 36.54 36.09 36.15

# of zeros 209287 225224 228781 230658 230690 230328 230613

3 PSNR 31.11 32.36 32.60 31.39 31.27 31.23 30.67

# of zeros 241458 248599 250063 251421 251435 251561 251677

4 PSNR 25.63 27.22 27.34 26.26 26.01 26.10 25.63

# of zeros 256034 257508 258318 258875 258811 258993 258994

5 PSNR 20.24 21.51 21.76 21.19 20.94 21.00 20.62

# of zeros 261251 261045 261404 261601 261574 261619 261621

6 PSNR 15.31 15.73 15.64 15.07 14.90 14.79 14.71

TABLE IX

PERFORMANCE OFQUINCUNX FILTER BANKS WITH DIFFERENTNUMBERS OFBITPLANES

Number of Primal/Dual Vanishing Moments

# of Bitplanes Criterion 2/2 2/4 4/4 2/6 4/6 2/8 4/8 6/8

# of zeros 88830 90407 90069 89241 88518 88287 87134 89136

1 PSNR 43.75 42.57 44.02 42.42 43.44 41.57 42.81 41.22

# of zeros 166466 170073 169448 169145 167959 168123 166581 169119

2 PSNR 37.04 36.42 36.93 36.15 36.31 35.93 35.84 36.34

# of zeros 222080 227091 227280 227564 227291 227474 226859 227584

3 PSNR 32.57 31.63 30.94 31.58 30.65 31.08 29.93 31.10

# of zeros 246353 249563 250016 250132 250259 250293 250187 250221

4 PSNR 27.32 26.18 24.89 25.71 24.77 25.95 24.23 25.34

# of zeros 257322 258636 258865 258917 258930 258993 258901 258974

5 PSNR 21.82 20.67 20.00 20.40 19.77 20.32 19.66 20.11

# of zeros 261312 261607 261667 261675 261647 261697 261631 261722

6 PSNR 15.81 15.07 14.62 14.69 14.36 14.61 14.26 14.44
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TABLE X

PERFORMANCE OF1-D FILTER BANKS ON DIFFERENT IMAGES WITH THRESHOLD15

Number of Primal/Dual Vanishing Moments

Image Criterion 1/1 1/2 2/2 2/4 4/4 2/6 4/6 2/2

η 12.83 18.34 20.00 22.49 22.21 23.12 23.03 9.14

airplane PSNR 31.79 32.59 33.19 32.40 32.48 32.03 32.16 25.44

η 3.45 3.76 4.14 4.23 4.26 4.21 4.26 2.26

baboon PSNR 28.53 29.62 30.10 29.31 29.47 29.06 29.17 24.82

η 4.98 6.13 6.99 7.77 8.02 8.04 8.32 3.85

barb PSNR 29.93 30.74 31.37 30.70 30.95 30.49 30.66 24.83

η 7.86 10.77 12.00 12.39 12.34 12.18 12.20 4.64

boat PSNR 29.75 30.43 30.99 30.33 30.51 30.14 30.27 23.94

η 18.48 22.10 25.09 27.22 27.02 27.52 27.62 8.15

fruits PSNR 31.32 32.40 33.04 32.31 32.42 32.05 32.14 24.52

η 9.19 11.80 13.37 13.83 13.88 13.81 13.93 4.76

goldhill PSNR 29.26 30.07 30.69 30.07 30.19 29.79 29.89 23.96

η 12.31 18.72 20.81 23.24 23.26 23.53 23.76 7.45

lena PSNR 30.82 31.88 32.56 31.95 32.10 31.68 31.83 24.31

η 8.36 10.26 11.51 12.20 12.17 12.21 12.25 4.67

man PSNR 29.67 30.52 31.15 30.42 30.51 30.08 30.23 24.65

η 15.10 23.26 24.48 26.32 26.13 26.00 25.99 7.89

peppers PSNR 30.73 31.88 32.65 31.79 31.96 31.50 31.56 23.80

• Example 1:Fig. 13(a) is the reconstructed image from three levels of decomposition of the MIT9/7

filter banks, which has two primal and four vanishing moments. Fig. 13(b) is the reconstructed

image from Haar filter bank, which has one primal and one dual vanishing moments. The three least

significant bitplanes are thrown away. It can be seen that although the PSNR is almost the same, the

quality of Fig. 13(a) is much better than Fig. 13(b), as Fig. 13(b) has the severe blocking effects.

• Example 2:Fig. 14 shows the reconstructed images with low PSNR. Fig. 14(a) is the reconstructed

image from six levels of decomposition of the quincunx filter banks with two primal and two

vanishing moments. Fig. 14(b) is the reconstructed image from three levels of decomposition of

the MIT9/7 filter banks, which has two primal and four vanishing moments. These two subband

decompositions result in the same number of the wavelet coefficients in the lowpass subbands. The

PSNR of the quincunx filter bank is only a little higher, but the quality is better the MIT97 filter
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Reconstructed image: 2/4, bitplane=3, PSNR=33.65, level=3

(a) MIT9/7, 2 primal and 4 dual vanishing mo-

ments

Reconstructed image: 1/1, bitplane=3, PSNR=33.46, level=3

(b) Haar: 1 primal and 1 dual vanishing moments

Fig. 13. Reconstructed image by throwing away three least significant bitplanes with 1-D filter banks

Reconstructed image: Quincunx 2/2, bitplane=5, PSNR=22.86, level=6

(a) Quincunx filter bank with 2 primal and 2 dual

vanishing moments

Reconstructed image: MIT9/7, bitplane=5, PSNR=22.54, level=3

(b) MIT97 filter bank

Fig. 14. Reconstructed image by throwing away five least significant bitplanes
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TABLE XI

PERFORMANCE OFQUINCUNX FILTER BANKS WITH THRESHOLD15

Number of Primal/Dual Vanishing Moments

Image Criterion 2/2 2/4 4/4 2/6 4/6 2/8 4/8 6/8

η 14.55 18.44 19.08 19.93 20.21 21.02 21.11 20.61

airplane PSNR 33.68 32.56 31.18 32.00 30.92 31.78 30.70 32.19

η 3.45 3.64 3.61 3.67 3.60 3.67 3.58 3.71

baboon PSNR 30.87 29.86 28.77 29.43 28.47 29.18 28.27 29.43

η 5.16 5.78 5.68 6.03 5.88 6.15 5.96 6.37

barb PSNR 31.92 30.64 29.62 30.30 29.26 30.08 29.17 30.31

η 9.03 10.53 10.72 10.74 10.84 10.64 10.64 10.79

boat PSNR 31.50 30.41 29.15 28.88 29.84 28.72 28.72 30.14

η 19.09 22.65 23.29 23.31 23.34 23.47 23.12 23.28

fruits PSNR 33.25 32.22 30.95 31.83 30.59 31.49 30.36 31.78

η 10.33 11.93 12.03 12.26 12.02 12.33 11.88 12.43

goldhill PSNR 31.06 30.14 29.01 24.75 28.72 29.52 28.55 29.86

η 16.22 20.13 20.83 21.01 21.23 21.26 21.12 21.12

lena PSNR 32.67 31.70 30.30 31.27 30.07 31.09 30.04 31.45

η 9.37 10.77 10.94 11.01 10.92 11.00 10.77 11.01

man PSNR 31.67 30.52 29.20 30.08 28.91 29.87 28.79 30.07

η 19.49 23.58 23.87 24.89 24.40 25.53 24.63 25.42

peppers PSNR 32.83 31.75 30.36 31.26 30.01 30.91 29.82 31.28

bank.

VI. CONCLUSIONS

In this project, several one dimensional and quincunx interpolating filter banks are built using the

method proposed by Kovac̆evíc and Sweldens in [4]. The construction relies on the lifting structure

with two lifting steps. Three important properties: perfect reconstruction, dual and primal vanishing

moments, are satisfies separately. Then these filter banks are used to decompose images in a simple

image compression system, and their performance are compared.

From the compression results, it can be seen that different filter banks have different effects on the

images. Their performance depends on the particular images, levels of decomposition and the desired

compression ratio. It is hard to find one that offers the best overall performance. Generally speaking,
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TABLE XII

PERFORMANCE OF1-D FILTER BANKS WITH VARIOUS HARD THREDHOLDING

Number of Primal/Dual Vanishing Moments

Threshold Criterion 1/1 1/2 2/2 2/4 4/4 2/6 4/6

η 3.51 4.64 5.09 5.24 5.27 5.16 5.21

5 PSNR 36.68 37.60 37.68 36.75 36.54 36.76 36.65

η 7.49 11.31 12.62 13.78 13.78 13.79 13.91

10 PSNR 31.56 32.87 33.38 32.27 32.46 31.95 32.17

η 19.30 28.91 33.21 37.81 37.60 37.60 38.96

20 PSNR 26.27 28.03 28.81 27.73 27.61 27.61 27.35

η 39.90 53.65 64.49 75.29 74.14 78.21 78.19

30 PSNR 23.47 24.71 25.84 24.72 24.89 24.40 24.41

η 214.59 178.25 266.62 349.18 333.38 367.77 373.36

60 PSNR 18.78 19.82 19.58 18.72 18.86 18.08 18.30

symmetric filters perform better than nonsymmetric filters, and longer filters with more vanishing moments

perform better for smooth images. The filter banks in the quincunx family tend to have higher PSNR but

lower compression ratio than those with the same number of vanishing moments in the one-dimensional

family.

There are still a lot of unfinished work in this project. Firstly, the encoder needs to be corrected, such

that the performance can be compared in a more reasonable way, and the compression results need to be

examined more carefully. More future work includes studying the performance of other families of one

dimensional wavelet transforms and wavelet transforms on other nonseparable sampling lattices.
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