
CCCG 2009, Vancouver, BC, August 17–19, 2009

A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods

Michael D. Adams∗

Abstract

Two fully-dynamic Delaunay triangulation methods,
which differ in their point-location strategies, are pro-
posed. One method is derived from the (bucket-based)
BucketInc scheme of Su and Drysdale. The other is
a new method based on a quadtree partitioning of the
triangulation domain. The two methods are compared
experimentally, and their relative merits discussed.

1 Introduction

For the application of image compression, there has
been a growing interest in image representations based
on arbitrary sampling (i.e., sampling at an arbitrary
subset of points from a lattice) [2, 1]. Frequently, such
representations are formed by constructing a Delaunay
triangulation (DT) of a subset of the sample points and
then generating an interpolant over each face of the
resulting DT. Since images are usually sampled on a
(truncated) lattice, a means is needed for determining
a good subset of sample points to use for representation
purposes. Typically, the solution to this sample-point
selection problem requires the use of a fully-dynamic
DT method. By “fully-dynamic”, we mean that the
DT method must allow the incremental insertion and
deletion of points, where the distribution of the points
is not known in advance, can change over time, and can
be highly nonuniform.

Although many DT methods have been proposed in
the literature [5], relatively few are suitable for use in
fully-dynamic situations. For example, many methods
require all points to be known in advance (e.g., divide-
and-conquer approaches). The work described herein
was motivated by a desire to find which fully-dynamic
DT methods would be best suited to the above image-
compression application. In particular, in this paper,
we propose two fully-dynamic DT methods and then
compare these methods with the goal of better under-
standing the relative merits of each. Since, in our appli-
cation, the points to be triangulated always fall on the
integer lattice, points are assumed to have integer coor-
dinates in our work. It is worth noting, however, that
our methods trivially extend to the case of fixed-point
coordinates. For this reason, our proposed methods are

∗Department of Electrical and Computer Engineering,

University of Victoria, Victoria, BC, V8W 3P6, Canada.

mdadams@ece.uvic.ca

of potential use in a wide variety of applications needing
fully-dynamic DT methods.

The remainder of this paper is structured as follows.
The general framework employed by our proposed DT
methods is introduced in Section 2, and then in Sec-
tion 3, each of our proposed methods is presented in
the context of this general framework. Next, Section 4
compares the various methods in terms of their runtime
performance. Finally, Section 5 concludes this paper
with a summary of our work.

2 General Approach

In our work, we consider a general framework for the
DT based on the incremental algorithm described by
Guibas and Stolfi [4]. In our application, it is a re-
quirement that, for any given point set, the DT method
produce a unique triangulation. Therefore, to ensure
the uniqueness of the DT, our framework employs the
preferred-directions technique [3]. Our work specifically
focuses on effective schemes for point location within the
above framework. Before introducing the specific point-
location strategies of interest, however, we will provide
some additional details on the general framework into
which these point-location schemes fit.

We assume the triangulation domain D to be square
with power-of-two dimensions. In practice, this con-
straint can always be satisfied by padding the do-
main if necessary. Our DT framework provides three
basic primitives: 1) insertVertex, which inserts a
new vertex into the triangulation; 2) deleteVertex,
which deletes a vertex (that has already been located)
from the triangulation; and 3) findVertex, which lo-
cates a vertex already in the triangulation. Note that
deleteVertex requires a previously located vertex as a
parameter. So, depending on the circumstances, it may
be necessary to use the findVertex and deleteVertex

operations in succession in order to delete a vertex.
In our application, successive points to be in-

serted/deleted can often be nearby one another in the
triangulation domain. For this reason, we maintain as
additional state what is called the active vertex. When-
ever point-location locates a vertex v to use as the start-
ing point for an oriented walk, we substitute in its place
the active vertex if the active vertex is closer to the
query point than v. This can potentially save time when
insertions/deletions exhibit locality.

In more detail, the various DT primitives behave as



21st Canadian Conference on Computational Geometry, 2009

described below. The insertVertex primitive: 1) lo-
cates a candidate starting point for an oriented walk
using the relevant point-location strategy; 2) performs
an oriented walk [6] to find the face containing the new
vertex; 3) inserts the new vertex into the point-location
structure; 4) updates the DT by adding the new vertex
and performing edge flips to restore the Delaunay prop-
erty; and 5) sets the active vertex to the newly inserted
vertex. The deleteVertex primitive: 1) updates the
DT by removing the vertex and performing edge flips
to restore the Delaunay property; 2) deletes the ver-
tex from the point-location structure; and 3) sets the
active vertex to any vertex that shared an edge with
the deleted vertex. The findVertex primitive: 1) lo-
cates the specified vertex using the point-location struc-
ture, possibly in conjunction with an oriented walk; and
2) sets the active vertex to the located vertex.

3 Point-Location Strategies

Bucket Method. The first of our two point-location
methods is a modified version of the BucketInc scheme
from [5]. Our changes to the original (i.e., BucketInc)
scheme were made in order to allow both vertex inser-
tion and deletion to be done efficiently. (The original
method only considered efficient vertex insertion.) Due
to space constraints, we do not provide a full descrip-
tion of our method. Instead, we simply outline the dif-
ferences between the original method as described in [5]
and our modified version.

In the bucket method, the triangulation domain is
partitioned, using a uniform grid, into square regions
called buckets. The point-location structure consists of
a 2-D bucket array, with one entry per bucket. In the
case of the original method, at most one vertex is as-
sociated with each bucket-array entry. In our method,
however, we track every vertex that falls in a particular
bucket. This is necessary to allow both vertex insertion
and deletion to be done efficiently. In particular, each
bucket-array entry is a doubly-linked list that contains
all vertices falling in the corresponding bucket. Each list
node has a pointer to its corresponding vertex object in
the DT and vice versa.

Adding/removing a vertex from the bucket array is
done in a straightforward manner by inserting/removing
a node from the appropriate vertex list. The aver-
age number η of vertices per bucket is required to sat-
isfy c ≤ η < 4c, where c is a fixed parameter of the
method and corresponds to the smallest allowable av-
erage number of vertices per bucket. Should the pre-
ceding condition become violated (e.g., due to vertex
insertion/deletion), the bucket grid spacing is halved or
doubled (in both dimensions) as appropriate, changing
η by a factor of 4, and then the bucket array is reinitial-
ized. When the grid spacing is decreased (during vertex
insertion), we allocate a new larger bucket array, and

then move each vertex from its vertex list in the old
bucket array to its correct list in the new bucket array.
When the grid spacing is increased (during vertex dele-
tion), we allocate a new smaller bucket array, and merge
groups of old buckets (four at a time) into new larger
buckets by splicing the vertex lists of the old buckets
into the new vertex lists. In both cases, rebucketing
takes linear time in the number of vertices.

Point location works in the same way as with the orig-
inal method, that is, by using an outward spiral search
for a nonempty bucket starting from the bucket contain-
ing the search point. In the case of our method, when
a nonempty bucket is found, we simply use the first
vertex in the bucket’s vertex list for the search result.
In the original method, there is no choice involved, as
at most one vertex is recorded for each bucket. Lastly,
since a bucket may contain a large number of points (for
nonuniform point distributions), the findVertex prim-
itive employs an oriented walk starting from the first
vertex in a bucket’s vertex list (instead of doing a linear
search over the vertex list).

Tree Method. The second of our point-location strate-
gies is based on a quadtree partitioning of the triangula-
tion domain D. To simplify our subsequent explanation,
we assume that the bottom-left corner of D corresponds
to the origin. Thus, D is of the form {0, . . . , 2S − 1}2,
where S is a positive integer. With this method, D is
hierarchically partitioned, using a quadtree, into square
regions called cells. The root cell of the quadtree is cho-
sen as D, and the remainder of the cells are determined
by the recursive splitting of the root cell. In particular, a
cell is split at its midpoint along each dimension to pro-
duce four child cells. In this method, the point-location
structure is a tree. Each node in the tree is implicitly
(by its position in the tree) associated with a particular
cell in the quadtree partitioning of D. In particular, a
given node in the tree is associated with the cell in the
quadtree partitioning having the same relative position
with respect to its root. For example, the root node is
associated with the root cell, each child of root node is
associated with the corresponding child of the root cell,
and so on. Each node in the tree contains the following
information: 1) a pointer to the node’s parent; 2) point-
ers to each of the node’s four children; and 3) a pointer
to a DT vertex that is contained in the node’s cell.

Each vertex in the DT is represented by a leaf node
in the tree. For a leaf node, the node’s vertex pointer
is set to the corresponding DT vertex. Also, each DT
vertex has a pointer to its corresponding leaf node in the
tree. For nonleaf nodes, the vertex pointer is set to any
vertex contained in the node’s cell, and may be null to
indicate an uninitialized state. The tree is maintained
such that leaf nodes are always placed as close to the
root as possible, subject to the constraint that each leaf
node must be associated with a vertex in the node’s cell.



CCCG 2009, Vancouver, BC, August 17–19, 2009

Since point coordinates are assumed to be integer, the
tree can have at most S + 1 levels.

Now, we briefly discuss how the tree method relates
to the three DT primitives. The point-location related
part of the insertVertex primitive needs to insert a
new node n corresponding to the new vertex v into the
tree and also determine an already existing vertex for
the starting point of an oriented walk. This process is
accomplished as follows. If the tree is empty, we sim-
ply add the new (leaf) node n at the root, and we are
done. (Since the DT structure always contains at least
three vertices once created, the empty-tree case can only
occur during initialization.) Otherwise, we proceed to
locate the node q furthest from the root whose cell con-
tains v. If q is not a leaf, we add n as a child of q; and
if the vertex pointer of q is null, it is set to a nonnull
vertex pointer of any descendant of q (excluding n). If q
is a leaf (in which case the cell of q contains both v and
the vertex of q), we first move q downwards in the tree
by adding a linear chain of (new) nodes immediately
above q until the newly resulting cell associated with q

no longer contains v. Then, we add n as a sibling of q.
The vertex of q is used for an oriented walk.

The point-location related part of the deleteVertex

primitive needs to remove from the tree the (leaf) node
n corresponding to the vertex v to be deleted. This
node removal process works as follows. Let p denote the
parent of n. (Since the DT always contains at least three
vertices, n cannot be the root.) To begin, we delete n. If
any nodes on the path from p to the root have v as their
vertex pointer, the vertex pointer is set to null. If p has
only one child c remaining and c is a leaf, the deletion
of n has resulted in a linear chain of nodes above c.
In this case, we move c upwards in the tree by deleting
this linear chain of nodes. This chain deletion process is
essentially the inverse of the operation occurring in the
insertVertex primitive where a linear chain of nodes
is added.

The point-location related part of the findVertex

primitive locates the node furthest from the root whose
cell contains the search vertex. The vertex pointer of
this node is the vertex being sought.

Generally speaking, the computational cost of the
above algorithms depends on the average tree depth ℓ.
Although the distribution of points does effect ℓ, the
maximum value attainable by ℓ is bounded by S + 1
which, in practice, tends to be relatively small. For ex-
ample, in our application, we typically handle triangu-
lation domains of size 4096 × 4096 or less (i.e., S ≤ 12)
in which case ℓ ≤ 13.

4 Experimental Results

We now compare the runtime performance of the bucket
and tree DT methods proposed above. Since the per-
formance of the bucket method changes with the pa-

Figure 1: The planets dataset (rotated by 90 degrees).

rameter c, we have elected to provide results for two
values of c, namely 2 and 0.25. For convenience, we re-
fer to these two cases as bucket(2) and bucket(0.25),
respectively. Although numerous datasets were em-
ployed in our work, we focus our attention on two herein:
planets and uniform. These datasets were chosen in
order to cover the case of both uniform and nonuni-
form point distributions. The planets dataset consists
of 140025 points distributed in a nonuniform manner
over a domain of size 1500 × 1867, as shown in Fig-
ure 1, with the point set having been generated by one
of the sample-point selection schemes from our image-
compression application. The uniform dataset consists
of 104861 points uniformly distributed over a domain
of size 2048 × 2048. To ensure a fair comparison, an
identical software framework was used to evaluate the
bucket and tree methods—only the point-location code
was changed.

To evaluate the performance of the methods under
consideration, we employed a simple application that
performs the following steps (in order) for a given
dataset: 1) all of the points are inserted into the trian-
gulation via insertVertex; 2) all of the vertices are lo-
cated using findVertex; 3) all of the vertices are deleted
via deleteVertex using the information obtained in the
previous step. Since, in some situations, an application
may not need to explicitly find a vertex (via point loca-
tion) before deletion, we have chosen to keep the vertex
location and deletion operations separate in steps 2 and
3, respectively. The average time spent for each of the
insertVertex, findVertex, and deleteVertex opera-
tions was measured (based on statistics from multiple
runs). In addition, the following quantities were also
recorded: the amount of memory consumed by the DT
and point-location structures, and the average number
of orientation tests per insertVertex operation. The
results obtained for the two datasets under considera-
tion are shown in Table 1.

By examining the results of the table, we can make
a number of observations. For insertVertex, the tree
method is anywhere from about 3% slower to 9% faster
than the bucket method, depending on the dataset and
choice of c for the bucket method. For the nonuni-
form dataset, which is of most interest in our image-
compression application, the tree method is compara-



21st Canadian Conference on Computational Geometry, 2009

Table 1: Comparison of triangulation methods for planets and uniform datasets.
planets uniform

Quantity Tree Bucket(2) Bucket(0.25) Tree Bucket(2) Bucket(0.25)

avg. insertVertex time (us) 8.1534 8.8709 8.0983 8.1359 7.7663 7.9021
avg. deleteVertex time (us) 7.9919 9.3084 9.1362 7.7102 8.8306 8.9916
avg. findVertex time (us) 0.7221 2.3008 1.5119 0.7246 1.6782 1.1145
DT structure size∗ (MB) 46.08 43.06 44.06 34.84 32.10 33.98
point-location structure size (MB) 4.95 1.93 2.93 4.06 1.32 3.20
avg. orientation tests/insertVertex 5.356 10.33 5.972 5.498 6.621 5.252

∗including point-location structure

ble to the bucket(0.25) scheme (within 1%) and signifi-
cantly faster than the bucket(2) scheme (by about 9%).
Overall, for deleteVertex, the tree method is consis-
tently faster (by about 14% to 16%) than the bucket
method regardless of c. This is due to the cost imposed
by rebucketing in the bucket method. For findVertex,
the tree method is also faster (by about 50% to 200%)
than the bucket method. In general, we can see that the
performance of the bucket method depends fairly heav-
ily on the choice of c. For this reason, when using the
bucket method, it is important that c be well chosen.
In [5], it was observed that choosing the c parameter
as 2 and 0.25 tended to lead to reasonably good vertex
insertion times for uniform and nonuniform point sets,
respectively. In our results, we see a similar trend. An-
other trend that we can observe is that the tree method
tends to become faster relative to the bucket method as
the point distribution becomes increasingly nonuniform.
The tree method is better able to adapt to nonuniform
distributions since it uses a partitioning of the trian-
gulation domain with variable-size cells (whereas the
buckets in the bucket method all have the same size).

As shown by the results in Table 1, in terms of mem-
ory usage, the tree method consistently exacts a higher
cost than the bucket method. Also, as one would ex-
pect, memory usage for the bucket method increases
as the parameter c is decreased. In many applications,
it is likely that the increased memory requirements of
the tree method are not of critical importance. This is
due to the fact that the point-location structure only
accounts for a small fraction of the total memory con-
sumed by the DT structure. Furthermore, the memory
usage numbers do not capture the fact that the bucket
method transiently uses significantly more memory (i.e.,
when the old and new bucket arrays both exist during
rebucketing).

Although no single method performs best in terms
of all of the criteria considered, the tree method does
present an interesting alternative to the bucket method.
The tree method’s execution speed is competitive with
the bucket method’s best performance without the need
to choose any special parameters (like c). Not having
to chose such parameters can be extremely beneficial if
the point distribution is very unpredictable and possibly

changing over time, in which case an appropriate choice
of c may be difficult to make. Lastly, if vertex deletion
(via deleteVertex) is performed very frequently, the
tree method also has an advantage since it is faster.

5 Conclusions

In this paper, we have proposed two fully-dynamic DT
methods, namely the bucket and tree methods. Al-
though neither method is superior to the other in terms
of all of the criteria considered, the tree method has
some advantages that may make its use preferable in
some applications. Perhaps, the biggest advantage of
the tree method is that it performs well for a wide va-
riety of point distributions without the need for any
special input parameters (like c). This could be quite
advantageous in situations where the point distribution
is highly unpredictable or changes over time. In any
case, by using the results of our work and exercising
good judgment, one can hope to build more efficient
applications utilizing fully-dynamic DTs.

References

[1] M. D. Adams. An evaluation of several mesh-generation
methods using a simple mesh-based image coder. In
Proc. of IEEE International Conference on Image Pro-

cessing, pages 1041–1044, Oct. 2008.

[2] L. Demaret and A. Iske. Adaptive image approximation
by linear splines over locally optimal Delaunay triangu-
lations. IEEE Signal Processing Letters, 13(5):281–284,
May 2006.

[3] C. Dyken and M. S. Floater. Preferred directions
for resolving the non-uniqueness of Delaunay triangu-
lations. Computational Geometry—Theory and Applica-

tions, 34:96–101, 2006.

[4] L. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of Voronoi
diagrams. ACM Transactions on Graphics, 4(2):74–123,
Apr. 1985.

[5] P. Su and R. L. S. Drysdale. A comparison of se-
quential Delaunay triangulation algorithms. Computa-

tional Geometry—Theory and Applications, 7(5–6):361–
385, Apr. 1997.

[6] F. Weller. On the total correctness of Lawson’s oriented
walk algorithm. In Proc. of Canadian Conference on

Computational Geometry, 1998.


