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Abstract— An optimization-based method for the design of high-
performance separable filter banks for image coding is proposed.
This method yields linear-phase perfect-reconstruction systems with
high coding gain, good frequency selectivity, and certain prescribed
vanishing-moment properties. Several filter banks designed with the
proposed method are presented and shown to work extremely well
for image coding, outperforming the well-known 9/7 filter bank from
the JPEG-2000 standard in most cases.
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I. INTRODUCTION

Filter banks have proven to be an extremely valuable
tool for image coding applications [1], [2], [3]. In order
to be effective in such applications, however, a filter bank
must typically have a number of desirable characteristics,
namely, perfect reconstruction (PR), linear phase, high coding
gain [4], good frequency selectivity, and certain vanishing-
moment properties. To design filter banks having all of the
preceding characteristics is a challenging task. In this paper,
we propose a new optimal design method based on [5] that
yields high-performance separable filter banks with all of the
aforementioned desirable characteristics.

The remainder of this paper is structured as follows. Sec-
tion II briefly introduces some of the notation used herein.
Then, Section III introduces some essential background related
to filter banks. Our new design method is presented in detail
in Section IV, and Section V provides some examples of filter
banks produced using our proposed method and evaluates their
performance for image coding. Finally, Section VI concludes
the paper with a summary of our work and some closing
remarks.

II. NOTATION AND TERMINOLOGY

Before proceeding further, a brief digression is in order
regarding the notation used herein. The set of integers is
denoted as Z. Matrices and vectors are denoted by uppercase
and lowercase boldface letters, respectively. For matrix mul-
tiplication, we define the product notation as

∏N
k=M AAAk �

AAANAAAN−1 . . .AAAM+1AAAM . For a positive semi-definite matrix
AAA, we denote its square root (e.g., as defined in [6]) as AAA1/2.
For a function f , its gradient and transposed gradient with
respect to xxx are denoted as ∇xxxf and ∇T

xxx f , respectively, where
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Fig. 1. The canonical form of a 1-D 2-channel filter bank. (a) Analysis side
and (b) synthesis side.

the subscript xxx may be omitted when clear from the context.
The transfer function, impulse response, and frequency re-
sponse of a filter H are denoted as H(z), h, and ĥ, respectively.

III. FILTER BANKS

A one-dimensional (1-D) two-channel filter bank has the
canonical form shown in Fig. 1. Such a filter bank consists of
lowpass and highpass analysis filters H0 and H1, lowpass and
highpass synthesis filters G0 and G1, as well as downsamplers
and upsamplers. In our design method, rather than representing
a filter bank in its canonical form, we instead use the lifting
framework. The lifting realization [7] of a 1-D two-channel
filter bank is shown in Fig. 2, where there are 2λ lifting filters
{Fk}2λ−1

k=0 . Without loss of generality, we assume that only
F0(z) and F2λ−1(z) may be identically zero. The analysis
filter transfer functions can be calculated from the lifting
parameterization as

H0(z) = H0,0(z2) + zH0,1(z2) and (1a)

H1(z) = H1,0(z2) + zH1,1(z2), (1b)

where
[

H0,0(z) H0,1(z)
H1,0(z) H1,1(z)

]
=

∏λ−1
k=0

([
1 F2k+1(z)
0 1

] [
1 0

F2k(z) 1

])
.

The transfer functions of the synthesis filters can be similarly
derived. Since the synthesis filters are completely determined
by the analysis filters, we focus primarily on the analysis side
of the filter bank in what follows.

The use of the lifting realization has a number of advantages
over the canonical form. The key benefit, however, is that
the PR condition is automatically satisfied. Additionally, the
linear phase requirement can be easily met by choosing the
lifting filters to have certain symmetries, as we shall see
shortly. Since the PR and linear-phase conditions can be
imposed via the lifting framework, there is no need for explicit
optimization constraints to ensure that these conditions hold.
This greatly reduces the complexity of the subsequent optimal-
design problem.

As suggested above, the linear-phase condition can be easily
imposed through a clever choice of the lifting filters {Fk}2λ−1

k=0 .
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Fig. 2. The lifting realization of a 1-D two-channel filter bank. (a) Analysis
side and (b) synthesis side.
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Fig. 3. The equivalent L-channel nonuniform filter bank associated with the
N -level tree-structured filter bank.

It can be shown [8] that if the {Fk(z)}2λ−1
k=0 are chosen to be

of either of the following two forms, then the resulting filter
bank will have linear phase:

Fk(z) =

{∑(Lk−2)/2
i=0 ak,i(z−i + zi+1) for even k∑(Lk−2)/2
i=0 ak,i(z−i−1 + zi) for odd k

(2a)

or

Fk(z) =



−1 for k = 0
1
2 + F̃1(z) for k = 1
F̃k(z) for k ≥ 2,

(2b)

where F̃k(z) =
∑(Lk−1)/2

i=1 ãk,i(z−i + zi), Lk is the length
of the lifting filter Fk , and the {Lk} are all even and all odd
in (2a) and (2b), respectively.

To construct a 2-D filter bank from a 1-D filter bank, we
simply apply the 1-D filter bank in each of the two dimensions
in succession. This results in a separable four-channel 2-D
filter bank. Furthermore, in practice, we usually apply the
2-D filter bank in an N -level tree structure, decomposing
the lowest-frequency band at each level in the tree. The
resulting N -level tree-structured filter bank can be equivalently
expressed (via the noble identities [9]) in the form of an L-
channel nonuniform filter bank as shown in Fig. 3, where
L = 3N + 1. In the diagram, the {H′

hk}, {H′
vk}, {G′

hk},
and {G′

vk} denote the equivalent horizontal analysis, vertical
analysis, horizontal synthesis, and vertical synthesis filters,
respectively, and the {Mhk} and {Mvk} denote horizontal and
vertical upsampling/downsampling factors, respectively. As a

matter of notation, the subscripts “h” and “v” on ↓, ↑, and
z indicate correspondences with the horizontal and vertical
directions, respectively.

Since we have elected to use a lifting parameterization for
our later optimization problem formulation, we need to re-
late the analysis-filter frequency responses, vanishing-moment
properties, and coding gain to the lifting-filter coefficients. In
the case of the frequency responses and vanishing-moment
properties, these relationships can be derived in a straightfor-
ward manner via (1) and (2). In the case of the coding gain,
the relationship can be derived as follows. First, we determine
the filters of the equivalent nonuniform filter bank (as shown
in Fig. 3) via (1), (2), and the noble identities. Then, one can
show [4] that the coding gain GSBC is given by

GSBC =
∏L−1

k=0 ( αk

AkBk
)αk , where (3a)

Ak =
∑

m∈Z
h′

hk(m)
∑

n∈Z
h′

vk(n)
∑

p∈Z
h′

hk(p)∑
q∈Z

h′
vk(q)r(m − p, n − q),

Bk = αk

∑
m∈Z

g′2hk(m)
∑

n∈Z
g′2vk(n), αk = (MhkMvk)−1,

and r is the normalized autocorrelation function (NACF) of
the input image. In practice, the NACF is chosen, depending
on the most appropriate image model, as follows:

r(x, y) =

{
ρ|x|+|y| for separable model

ρ
√

x2+y2
for isotropic model,

(3b)

where ρ is the correlation coefficient (typically, 0.9 ≤ ρ ≤
0.95). In all of our subsequent work, we assume ρ = 0.95 for
both models.

IV. DESIGN METHOD

As indicated earlier, we seek to design filter banks having
numerous desirable characteristics, namely, PR, linear phase,
high coding gain, good frequency selectivity, and certain
prescribed vanishing-moment properties. Since the PR and
linear-phase properties are structurally imposed via the lifting
framework, we need not consider them further. Thus, the
design problem at hand reduces to one explicitly involving
only coding gain, frequency selectivity, and vanishing-moment
properties.

Now, let us consider the formulation of the design problem
as an optimization. Let xxx denote the vector of independent
lifting-filter coefficients. We choose G, a measure related to
coding gain, as our objective function to maximize. Let Gsep

and Giso denote the coding gain (in dB) obtained from (3)
using the separable and isotropic models, respectively. In our
work, we consider three possible choices for G as given by

G(xxx) =




Gsep(xxx) separable only (4a)

Giso(xxx) isotropic only (4b)

min{Gsep(xxx), Giso(xxx)} joint. (4c)

That is, we consider the maximization of each of the separable
and isotropic coding gains individually as well as the maxi-
mization of the minimum of both coding gains together. This



last case is motivated by the observation that many images are
nonstationary, exhibiting both separable and isotropic behavior
in different regions. Thus, we might suspect that there is an
advantage to having both coding gains high.

The remaining filter bank properties are handled as con-
straints. To quantify the frequency selectivity of the analysis
filters, we employ a stopband-energy measure. In particular,
we define the stopband energy of the analysis filter Hk as

bk(xxx) �
∫

Sk

|ĥk(ω,xxx)|2dω, k ∈ {0, 1}, (5)

where S0 = [π−ωb, π], S1 = [0, ωb], ĥk denotes the frequency
response of Hk, and ωb denotes the stopband width of the
analysis filters. In passing, we note that a choice of ωb = 3π

8
is made in our work. To facilitate the introduction of moment
constraints, we define the moment-constraint functions

ck(xxx) � ‖mmmk(xxx)‖, k ∈ {1, 2, . . . , n}, (6)

where mmmk is a νk-dimensional vector function with its ele-
ments corresponding to moments of interest (i.e., moments that
are to be constrained). Each mmmk may contain only one moment
(i.e., νk = 1) or a group of several moments (i.e., νk > 1). In
this way, moments can controlled either individually or jointly.

Combining (4), (5), and (6), we obtain the following abstract
optimization problem to be solved:

maximize G(xxx) (7a)

subject to: bk(xxx) ≤ εk, k ∈ {0, 1} and (7b)

ck(xxx) ≤ γk, k ∈ {1, 2, . . . , n}, (7c)

where the {εk} and {γk} are strictly positive tolerances for
the stopband-energy and moment constraints. Since the {γk}
are strictly positive, we do not impose exact vanishing-moment
conditions; rather, we only ensure that the moments in question
are very small. In a practical sense, there is no significant
disadvantage to allowing moments to deviate slightly from
zero, as true vanishing-moment properties are usually lost
during implementation anyhow, due to finite-precision effects.
This more relaxed form of moment constraint is, in fact, ad-
vantageous, resulting in a larger feasible region and therefore
potentially better designs.

Unfortunately, the abstract optimization problem given
by (7) is highly nonlinear and somewhat difficult to solve
directly. For this reason, rather than directly solving this
problem, we instead employ an approach based on the iterative
solution of a reduced-order problem.

To simplify our initial discussion, we consider our
optimization-solution technique for the first two possibilities
for the objective function given by (4a) and (4b). In these
cases, we use a Taylor series in the variable δδδ to approximate
the G, {bk}, and {ck} about a fixed operating point xxx, such
that the approximation of G is linear, and the approximations
of the {bk} and {ck} are at most quadratic. This reduced-
order problem can then be expressed as a second-order cone
programming (SOCP) problem [10], as explained shortly, and

solved relatively easily using software such as SeDuMi [11]
(which is employed in our work). Since the various Taylor
series involved are only good approximations in the neigh-
bourhood of the operating point xxx (i.e., for small δδδ), we must
impose an additional constraint on δδδ to force a solution to be
in this neighbourhood. As the neighbourhood of the solution
is limited, we then update our operating point to xxx + δδδ and
repeat this process in order to permit solutions farther away
from the current operating point. The optimization terminates
when either the increase in G or the change in the operating
point becomes sufficiently small.

Let us now consider the formulation of the SOCP problem
mentioned above. A SOCP problem has the general form:

maximize bbbTxxx (8a)

subject to: ‖AAAT
k xxx + ccck‖ ≤ bbbT

k xxx + dk, k ∈ {1, 2, . . . , K}.
(8b)

It can be shown that the abstract optimization problem in (7)
can be converted to the following form:

maximize ∇T G(xxx)δδδ (9a)

subject to: ‖QQQ1/2
k (xxx)δδδ + qqqk(xxx)‖ ≤ εk − bk(xxx)

+ qqqT
k (xxx)qqqk(xxx), k ∈ {0, 1}, (9b)

‖∇Tmmmk(xxx)δδδ + mmmk(xxx)‖ ≤ γk,

k ∈ {1, 2, . . . , n}, and (9c)

‖δδδ‖ ≤ β, (9d)

where

QQQk(xxx) =
∫

Sk

∇xxxĥk(ω,xxx)∇T
xxx ĥk(ω,xxx)dω,

qqqk(xxx) = QQQ
−1/2
k (xxx)

∫
Sk

ĥk(ω,xxx)∇T
xxx ĥk(ω,xxx)dω,

and δδδ is a small perturbation from the operating point xxx.
Clearly, the preceding problem is of the form of (8), where
the optimization is performed with respect to the variable δδδ.

To complete our discussion, we must now consider the third
possibility for the objective function (4c). In this case, the
reduced-order optimization problem can be expressed as

maximize t

subject to: Gsep(xxx) + ∇T Gsep(xxx)δδδ ≥ t,

Giso(xxx) + ∇T Giso(xxx)δδδ ≥ t, and

(9b-9d),

where t is an auxiliary variable. By introducing the new
augmented vector variable δ̃δδ �

[
t δδδ

]T
, the problem at hand

can be trivially cast as a SOCP problem with respect to δ̃δδ.

A. Design Parameter Selection

Having introduced our design method, we now comment
briefly on the selection of several key design parameters. In
the case of the frequency-selectivity constraints, an appropriate
choice of tolerances {εk} is critical to achieving a good design.
Based on experimentation, for a stopband width of ωb = 3π

8 ,



Table 1. Characteristics of a subset of the test images
Image Size, Precision† Model‡ Description
gold 720 × 576, 8 separable houses and countryside

target 512 × 512, 8 — patterns and textures
sar2 800 × 800, 12 isotropic synthetic aperture radar

‡best-fitting image model (e.g., separable or isotropic)
†precision in bits per sample

a choice of εk ∈ [0.02, 0.14] is highly effective. The selection
of the moment constraints (i.e., the {mmmk} and {γk}) is also
quite important. Since filter banks satisfying (2a) and (2b),
respectively, have all of their even and all of their odd moments
automatically vanish, only the remaining moments need to be
considered. Again, based on our experiments, good designs
satisfying (2a) are obtained when the moments are constrained
such that the norm of the vector of zeroth dual and primal
moments is less than 2·10−5. Lastly, since the optimal solution
obtained depends on the choice of the initial point xxx, the
quality of the design can be improved by finding multiple
solutions and then selecting the best one. As a practical matter,
we found that an effective strategy in this regard is to consider
many initial points with lifting-filter coefficients of magnitude
2 or less, as the best designs typically have coefficients in this
range.

V. EXPERIMENTAL RESULTS

Having introduced our design method, we would now like
to present some experimental results related to our method.
Before proceeding, however, we first introduce some details
concerning our test environment. In all of our experiments,
for test data, all of the twenty-six reasonably-sized continuous-
tone grayscale images from the JPEG-2000 test set [12] were
employed. Often, in what follows, we will focus our attention
on a representative subset of these images, namely, the gold,
sar2, and target images, whose characteristics are given
in Table 1. To evaluate the performance of filter banks for
image coding, the EZW [2], SPIHT [3], and MIC [13] codecs
were employed, all of which utilize reversible integer-to-
integer transforms. Since similar results were obtained with all
three codecs, however, only results from the MIC codec are
presented herein. In all of our coding experiments, a six-level
wavelet decomposition was employed. In what follows, we use
the notation l0/l1 to indicate that a filter bank has lowpass and
highpass analysis filters of lengths l0 and l1, respectively. We
also identify the lengths {Lk} of the lifting filters (i.e., the
lifting configuration) using the notation {L0, L1, . . .}.

A. Choice of Objective Function

As explained earlier, our design method allows for three
possible objective functions as given by (4). We also suggested
that, of these possibilities, (4c) might be most desirable. Now,
we experimentally show this to be the case.

To begin, for each of several different lifting configurations,
we used our method to design three filter banks, one for each
of the three choices of objective function in (4). In so doing,

Table 2. Characteristics of the filter banks designed using different objective
functions for the 9/7 and 6/14 cases

Transform G‡
sep G‡

iso b†0 b†1 Van. Mom.∗
9/7-ref 14.9734 12.1781 0.0628 0.0347 4, 9.560
9/7-sep 14.9735 12.1781 0.0628 0.0347 2, 5.79E-5

9/7-iso/jnt 14.9326 12.1809 0.0570 0.0351 2, 0.0041
6/14-ref 14.8801 12.0457 0.0340 0.0241 3, 3.000
6/14-sep 15.0912 11.9285 0.0252 0.0131 1, 0.0483

6/14-iso/jnt 14.9766 12.0738 0.0212 0.0229 1, 0.0643
∗index and magnitude of the first dual moment with

magnitude greater than 2 · 10−5

‡coding gain (in dB) for a six-level decomposition
†stopband energy as defined by (5)

we were able to make an interesting observation. As it turns
out, in all of our tests, optimizing with respect to either of the
objective functions (4b) or (4c) always led to the same optimal
design. This is due to the fact that, for filter banks with good
frequency selectivity, Gsep always tends to be greater than Giso.
Therefore, maximizing (4c) is equivalent (in a practical sense)
to maximizing (4b). With the above observation in mind, we
combine the cases of (4b) and (4c) in the remainder of this
discussion.

Herein, we consider two sets of optimal designs with
analysis filter lengths of 9/7 and 6/14 (which correspond to
lifting configurations of {2, 2, 2, 2} and {1, 3, 5}, respectively).
The characteristics of these filter banks are shown in Table 2,
where the suffixes “sep”, “iso”, and “jnt” are used to designate
the optimal designs obtained using the objective functions (4a),
(4b), and (4c), respectively. For comparison purposes, in the
case of each of the two sets, we also consider a filter bank
(having an identical lifting configuration) that is already known
to be effective for image coding. In the table, the reference
filter bank is designated by the suffix “ref”.

Having produced several sets of optimal filter banks as
described above, we then proceeded to compare the coding
performance of the filter banks in each set. For each of the
filter banks in each set, we compressed all of the twenty-six
test images in a lossy manner at several bit rates. In each case,
we measured the relative difference between the distortions (in
PSNR) obtained with our design and the appropriate reference
(i.e., “ref”) filter bank. The results are summarized in statistical
form in Table 3(a). In particular, we provide the mean and
median relative differences (with positive values corresponding
to our designs outperforming the reference filter bank). As
well, we indicate the percentage of cases in which our filter
bank outperforms the reference filter bank. From Table 3(a),
we can see that, in both the 9/7 and 6/14 cases, designs based
on the (joint) objective function (4c) (designated by the suffix
“jnt”) have better performance relative to the reference filter
bank than the designs based on the (separable-only) objective
function (4a). In Table 3(b), we provide the actual distortions
obtained for three representative images. Here, we can see that
the filter banks with the jointly-highest coding gains perform
better overall for all three images, in spite of the images
having significantly different autocorrelation models. Clearly,



Table 3. Lossy compression results for the filter banks designed using
different objective functions. (a) Summary statistical results over all twenty-
six test images and five bit rates. (b) Specific results for three images.

(a)
Transform Mean (%) Median (%) Outperform (%)

9/7-sep -0.0049 -0.0001 46.15
9/7-iso/jnt 0.1488 0.1070 87.69
6/14-sep -0.5848 -0.5112 20.77

6/14-iso/jnt 0.0331 0.0279 61.54

(b)
PSNR (dB)

Image CR† 9/7-sep 9/7-iso/jnt 6/14-sep 6/14-iso/jnt
8 36.76 36.88 36.77 36.96
16 33.77 33.84 33.50 33.78

gold 32 31.26 31.27 31.07 31.15
64 29.15 29.15 28.82 28.83

128 27.33 27.32 27.06 27.26
8 41.48 41.59 40.94 41.68
16 33.55 33.55 32.79 32.91

target 32 27.08 27.19 27.37 27.00
64 22.70 22.84 22.39 22.43

128 19.13 19.14 18.49 18.26
8 30.33 30.35 30.24 30.39
16 26.61 26.62 26.49 26.49

sar2 32 24.69 24.70 24.64 24.78
64 23.55 23.55 23.48 23.46

128 22.73 22.73 22.59 22.68
†compression ratio

the above experiment demonstrates that there is a potential
benefit to jointly optimizing both of the separable and isotropic
coding gains (i.e., using the objective function (4c)).

B. Design Examples

To demonstrate the effectiveness of our design method, we
now consider the lossy and lossless coding performance of
five filter banks constructed with our method. For all of these
designs, the objective function (4c) was employed, as this
was earlier determined to be the best choice. For comparison
purposes, we also consider the well-known 9/7 filter bank from
JPEG 2000 [1], which we henceforth refer to by the name 9/7-J
(in order to distinguish it from other filter banks having the
same analysis-filter lengths). Several characteristics of our five
optimal designs as well as the 9/7-J filter bank are shown in
Table 4. Due to space constraints, the lifting-filter coefficients
for our optimal designs are not presented here, but can be
obtained from [14].

First, we consider the lossy coding performance of the
various filter banks. To evaluate lossy coding performance,
each filter bank was used to compress all of the test images
at several bit rates. Then, we measured the relative difference
between the distortions (in PSNR) obtained with each of our
optimal designs and the reference 9/7-J filter bank. The results
are summarized in statistical form in Table 5(a). In particular,
we provide the mean and median relative differences (with
positive values corresponding to our designs outperforming the
reference 9/7-J filter bank). As well, we indicate the percentage
of cases in which our optimal design outperforms the 9/7-J
filter bank. From these results, it is clear that all of our optimal
designs outperform the 9/7-J filter bank in the majority of

Table 5. Lossy compression results for the various filter banks. (a) Summary
statistical results over all twenty-six test images and five bit rates. (b) Specific
results for three images.

(a)
Transform Mean (%) Median (%) Outperform (%)

9/7 0.1488 0.1070 87.69
9/11 0.5371 0.0554 59.23

13/11 0.1863 0.0872 74.62
17/11 0.5804 0.2422 77.69
13/15 0.5936 0.1633 68.46

(b)
PSNR (dB)

Image CR† 9/7-J 9/7 9/11 13/11 17/11 13/15
8 36.75 36.88 37.34 36.85 37.17 37.39
16 33.75 33.84 34.00 33.76 33.91 33.95

gold 32 31.23 31.27 31.35 31.24 31.32 31.27
64 29.16 29.15 29.24 29.17 29.17 29.25

128 27.32 27.32 27.39 27.35 27.37 27.34
8 41.46 41.59 42.92 42.12 42.81 43.11
16 33.54 33.55 33.47 33.83 34.00 33.45

target 32 27.07 27.19 26.65 27.84 27.88 26.84
64 22.70 22.84 22.35 23.11 23.19 22.42

128 19.16 19.14 18.86 19.35 19.46 18.94
8 30.32 30.35 30.30 30.33 30.33 30.37
16 26.61 26.62 26.59 26.62 26.60 26.57

sar2 32 24.69 24.70 24.65 24.69 24.69 24.70
64 23.55 23.55 23.52 23.54 23.53 23.54

128 22.73 22.73 22.70 22.74 22.74 22.67
†compression ratio

cases. For example, our 9/7 optimal design outperforms the
9/7-J filter bank 87.69% of the time. Our four other designs
outperform the 9/7-J filter bank by margins ranging from
about 59 to 78%. The above results are extremely encouraging,
given that the 9/7-J filter bank is well known for its exceptional
lossy-coding performance. In Table 5(b), we provide the actual
PSNR results obtained for a representative subset of the test
images, where the best result is highlighted in each case. From
the table, we can see that, even for images with different
statistical properties (such as the three considered here), our
optimal designs outperform the 9/7-J filter bank, sometimes
by a margin as high as 1.65 dB. Lastly, we would like to note
that our optimal designs also lead to good subjective image
quality, comparable to that of the 9/7-J filter bank. In Fig. 4, we
provide an example of lossy image reconstructions obtained
with the various filter banks. One can see that the quality of the
reconstructions produced by our optimal designs is comparable
to that obtained with the 9/7-J filter bank.

As an aside, we would like to note that, as can be seen
from Table 4, our 9/7 design and the 9/7-J filter bank have the
same lifting configuration. While the 9/7-J filter bank has four
dual and four primal vanishing moments, our 9/7 design has
only two dual and two primal near-vanishing moments and
slightly higher isotropic coding gain as well. With our design
approach, by reducing the number of constrained moments and
relaxing the requirement that moments be exactly zero, we
are able to gain additional freedom, which ultimately allows
higher-performance filter banks to be constructed.

In our work, we also evaluated the lossless coding perfor-
mance of the various filter banks. Each of the filter banks was



Table 4. Characteristics of various filter banks
Transform {Lk} G‡

sep G‡
iso b†0 b†1 Van. Mom.∗ ĥ0(0) ĥ0(π) ĥ1(0) ĥ1(π)

9/7-J {2,2,2,2} 14.9734 12.1781 0.0628 0.0347 4, 9.560 1.2302 2.31E-9 3.94E-9 1.6258
9/7 {2,2,2,2} 14.9326 12.1809 0.0570 0.0351 2, 0.0041 1.2504 2.11E-6 -9.07E-6 1.5995
9/11 {4,2,2} 14.9283 12.1118 0.1110 0.0430 2, 0.2755 1.2394 -5.62E-6 -9.43E-6 1.6137

13/11 {4,2,2,2} 15.0406 12.2059 0.0299 0.0268 2, 0.0680 1.1986 2.15E-5 -1.93E-5 1.6687
17/11 {2,2,4,4} 15.1174 12.2177 0.0306 0.0275 2, 0.3367 1.1869 9.85E-6 4.87E-6 1.6851
13/15 {6,2,2} 14.6409 12.0741 0.0940 0.0354 2, 0.1685 1.3465 -5.41E-6 -9.42E-6 1.4854

∗index and magnitude of the first dual moment with magnitude greater than 2 · 10−5

‡coding gain (in dB) for a six-level decomposition
†stopband energy as defined by (5)

(a) (b)

(c) (d)

(e) (f)
Fig. 4. Parts of the lossy reconstructions obtained after coding the gold
image at a compression ratio of 32 using the (a) 9/7-J, (b) 9/7, (c) 9/11,
(d) 13/11, (e) 17/11, and (f) 13/15 filter banks.

Table 6. Lossless compression results for the various filter banks
NBR

Image 9/7-J 9/7 9/11 13/11 17/11 13/15
gold 0.5673 0.5666 0.5630 0.5652 0.5657 0.5644

target 0.3173 0.3086 0.2949 0.2964 0.3130 0.2975
sar2 0.6350 0.6351 0.6349 0.6353 0.6353 0.6352
Mean† 0.4880 0.4874 0.4771 0.4787 0.4870 0.4828

†mean taken over all twenty-six test images

used to losslessly compress all of the twenty-six test images.
The results are shown in Table 6. In particular, we provide the
normalized bit rate (NBR) (i.e., the reciprocal of compression
ratio) for three images as well as the mean taken over all of
the twenty-six test images. Evidently, all of our filter banks
perform better overall than the 9/7-J for lossless coding, with
the 9/11 design being the best.

VI. CONCLUSIONS

In this paper, we proposed a method for the design of filter
banks with properties desirable for image coding (i.e., PR,
linear phase, high coding gain, good frequency selectivity, and
certain prescribed moment properties). Several examples of
filter banks constructed using our method were presented, and
shown to be highly effective for image coding. In particular,
our optimal designs outperformed the well-known 9/7-J filter
bank (from the JPEG-2000 standard) for both lossy and loss-
less compression, an impressive feat given that the 9/7-J filter
bank is known for its exceptional lossy coding performance.
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