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The goal of this work is to develop a simple mesh-based image coder (a) () (b)
and then use it to evaluate the performance of several mesh-generation Encoded Decoded _ _ _
methods. Through the results of this evaluation, we can gain a bet- Image Mesh | Image Fig. 6: Lossy coding resulis for the (a) 1lena and (b) peppers images
ter understanding of the relative effectiveness of these methods as well > Decoder | * | Rasterizer —» using the GH, GH-CT, MGH, and MGH-CT methods.
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1) Yang, Wernick, and Brankov (YWB) method [2]. In this method,
a feature map Is computed that approximates the largest magnitude P g AR 5
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mesh via rasterization. The above image representation scheme is il-
lustrated in Fig. 1.
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Fig. 7: Lossy reconstructed images obtained at about 50:1 compres-
sion with the (a) MGH (26.91 dB) and (b) MGH-CT (23.76 dB) methods.

local spatial density is approximately proportional to the corresponding
value in the feature map. The number of sample points is controlled
indirectly through an error-diffusion threshold parameter. The sample
points are triangulated in order to establish the mesh connectivity.

2) Garland and Heckbert (GH) method (i.e., data-independent greedy
iInsertion from [3]). In this method, the four corners of the image bound- (9)

ing box are triangulated to form an initial approximation. Then, the (un- _. . . ‘ 7. Conclusions I
usged) sample pc?int with the largest absoIB!cOe error is inserted into(the F!g. 4:#%?23}/ reconjtructze;! 5”;3%68 gbz;iwgd 2301‘ ?gcz;g 20:1 C;:ngge;}
triangulation. This process is repeated until the vertex-count budget is sion with the (a) random (21. ). (0) _ (20. . ) (€) . ( . We have developed a simple mesh-based image coder and used this
exhausted. a5), and (q) MGH (26.31 cB) methods; and e /mage-domaC/;n ran coder to evaluate the performance of several mesh-generation meth
. . . lation associated with each of the (e) random, (f) YWB, (g) GH, and - -
3) Modified GH (MGH) method (i.e., our proposed method). In this 9Y -
me’Zhod, the fourcc()rners)of the imége bouncfl)ingpbox are triang)ulated to (h) MGH methods. ods. Of the melhods considered, our proposec Miah scheme was

- T . shown to perform best (both objectively and subjectively) by a signif-
form an initial approximation. Then, we iterate as follows. In the current

. . , , L icant margin. Through our evaluation, we have also shown that the
triangulation, select the triangle with the largest squared error. Within

S 2 use of a CT interpolant leads to much poorer results than a linear in-
this triangle, choose the (unused) sample point with the largest absolute terpolant, due to severe overshoot/undershoot in the vicinity of image
error and insert it into the triangulation. Repeat until the vertex-count

_ edges. Through the insights provided by our work, one can hope to
budget is exhausted.

. .. _ develop improved mesh-based image coders in the future.
4) Random method. This very trivial method (used for benchmarking

purposes) simply chooses sample points randomly and then triangu-
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variants of the GH and MGH methods that employ the Clough-Tocher
(CT) interpolant [4], yielding what we refer to as the GH-CT and MGH-
CT methods, respectively.

6. Results I |
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