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Abstract— Cache-efficient breadth-first lifting-based algorithms
for the wavelet transform (WT) are considered. Two optimizations
for improving the efficiency of the WT computation are proposed.
These optimizations are then applied to two different baseline WT
algorithms and shown to be highly effective, reducing the execution
time by as much as one third. Moreover, the resulting optimized
WT algorithms are shown to be quite competitive with another more
sophisticated algorithm, in spite of having very substantially reduced
memory requirements.

Keywords— wavelet transform, lifting, cache-efficient algorithms,
JPEG 2000.

I. INTRODUCTION

Separable two-dimensional (2-D) wavelet transform (WTs)
are used in many applications (e.g., [1], [2]). Consequently,
efficient implementation techniques for such transforms are of
great interest. The class of breadth-first [3] lifting-based [4]
algorithms is particularly intriguing, due to the suitability of
such algorithms in a wide variety of applications. It is this
class of algorithms that is the focus of the work herein.

In this paper, we propose two optimizations for improving
the efficiency of WT algorithms. The goal of our work is
to produce fast memory-efficient algorithms that are also
reasonably portable. For this reason, we do not explicitly
consider instruction-set specific optimizations.

The remainder of this paper is structured as follows. Sec-
tion II briefly introduces some of the notation and conventions
used herein. Section III briefly discusses the WT and issues as-
sociated with its computation. Then, several WT computation
strategies are proposed in Section IV, and their performance
is evaluated in Section V. Finally, Section VI concludes with
a summary of our work and some closing remarks.

II. NOTATION AND CONVENTIONS

Before proceeding further a brief digression is in order
regarding the notation and conventions employed herein. For
an integer n, the notation �n� denotes the largest integer not
more than n (i.e., the floor function). Also, since C is used
as the language of implementation in our work, all arrays are
tacitly assumed to be indexed from zero and stored in row-
major order.

III. WAVELET TRANSFORM

The basic building block of the WT is the 1-D uniformly
maximally decimated filter bank. Herein, we consider the
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Fig. 1. Lifting realization of a 1-D filter bank. (a) Analysis side. (b) Synthesis
side.

lifting realization [4] of such a filter bank, which has the
general form shown in Fig. 1. In the diagram, the {Ak} are
filters (called lifting filters), the {sk} are amplifiers, and the
{Qk} are optional rounding operators. The forward transform,
associated with the system shown in Fig. 1(a), consists of
a split operation (i.e., polyphase decomposition) followed
by a number of lifting/scaling operations, while the inverse
transform, associated with the system shown in Fig 1(b),
consists of a number of scaling/lifting operations followed by
a join operation (i.e., polyphase recomposition). The split and
join operations are effectively permutations, while the lifting/s-
caling operations correspond to filtering. The split operation
rearranges the elements of an array such that the elements of
the first-polyphase component appear first (in order), followed
by the elements of the second-polyphase component (in order).
The join operation is simply the inverse of the split operation.
In other words, the split and join operations allow us to move
between the two representations of a sequence shown in Fig. 2.

The well-known 5/3 WT from the JPEG-2000 standard [1]
has an underlying 1-D filter bank with the lifting parameters:

λ = 2, A0(z) = − 1
2 (z + 1), A1(z) = 1

4 (1 + z−1),
Q0(x) = −�−x� , Q1(x) =

⌊
x + 1

2

⌋
, s0 = s1 = 1.

(1)
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Fig. 2. Two different representations of sequence of length N = 12.
(a) Original sequence. (b) Polyphase decomposition of sequence (obtained
via split operation).

Although, in some parts of this paper, we specifically consider
the implementation of the 5/3 WT, our ideas are equally
applicable to other WTs as well (such as the 9/7 WT from [1]).

To form a 2-D WT, we simply apply the 1-D WT in each of
the horizontal and vertical directions. This process is repeated
L times recursively to the lowpass signal in order to form
an L-level WT. Unfortunately, the 2-D nature of the WT
poses some problems for efficient implementation. Perform-
ing operations in the horizontal direction can be done very
efficiently, as neighbouring elements in a row are contiguous
in memory. Processing in the vertical direction, however, can
be extremely inefficient, due to the large stride in memory
between neighbouring elements in a column, which typically
reduces the effectiveness of memory caches. In the extreme
case, every element in a single column maps to the same cache
set, resulting in an extremely large number of cache misses
during vertical processing. In practice, this situation usually
occurs when the array width is an integer multiple of some
sufficiently large power of two. This leads to a periodic spike
in the WT execution time as one increases the array width.
For example, this behavior is evident in some of the later
plots, such as Figs. 7(a) and 8(a). To mitigate this problem,
we normally perform vertical processing on groups of columns
together in a process known as stripmining [5] (or loop tiling).
Although this does not, by any means, eliminate the problem,
it does help to reduce the problem’s severity.

IV. PROPOSED METHODS

In our work, we consider two baseline algorithms for the
computation of the WT. Both of these algorithms are strip-
mined, due to the effectiveness of this technique, especially in
pathological cases. In what follows, we only discuss the WT
algorithms in a 1-D context, as the 2-D WT algorithms are
directly constructed from the 1-D algorithms in a straightfor-
ward manner.

The first of the two baseline algorithms, which we refer
to as the non-interleaved filtering (NIF) scheme, is the one
that follows most naturally from the block diagrams shown in
Fig. 1. The forward WT is implemented by first applying a
split (i.e., permutation) operation, followed by lifting/scaling
(i.e., filtering) operations, while the inverse transform is real-
ized by first applying lifting/scaling (i.e., filtering) operations,
followed by a join (i.e., permutation) operation.

The second of the two baseline algorithms, which we refer
to as the interleaved filtering (IF) scheme, represents a
slight departure from the algorithm described above. In this
scheme, the order of the permutation and filtering operations
are reversed in each of the forward and inverse WT algorithms.
That is, the forward transform first performs lifting/scaling
operations (i.e., filtering), followed by a split (i.e., permuta-
tion) operation, while the inverse transform first applies a join
(i.e., permutation) operation, followed by scaling/lifting (i.e.,
filtering) operations. Due to the re-ordering of the permutation
and filtering operations, the two polyphase components are
interleaved at the time of filtering (hence, the name of this
algorithm). This interleaved structure, however, results in
substantially different memory access patterns as compared to
the NIF case (from above). Thus, the effects of optimization
on the NIF and IF baseline algorithms may be different. For
this reason, we choose to explicitly consider both baseline
algorithms herein.

In what follows, we will now consider two different opti-
mizations that can be applied to each of the above two baseline
algorithms. Ideally, through these optimizations, we seek to
improve the WT algorithm performance in pathological cases
without having an overly adverse effect in the other remaining
cases.

A. Modified Split/Join (MSJ)

The first of our proposed optimizations affects the way in
which split/join operations are performed. In what follows, let
us consider a split/join operation applied to a data array orig
of length N .

Traditionally, the split operation is accomplished via the
following three-step algorithm (e.g., as in [3]): 1) copy the
elements of the second-polyphase component in the data array
orig to a temporary array tmp; 2) copy the elements of the
first-polyphase component to their correct final positions in
the data array orig; 3) copy the elements of the temporary
array tmp to their correct final positions in the data array
orig. This algorithm is illustrated in Fig. 3. In the diagrams,
copy operations are denoted by arrows, and in instances where
the ordering of such operations is important, the arrows are
numbered to indicate the correct order.

Traditionally, the join operation is implemented in an anal-
ogous way to above. The algorithm consists of the following
three steps: 1) copy the elements of the second-polyphase
component to the temporary array tmp; 2) copy the elements
of the first-polyphase component to their correct final positions
in the array orig; 3) copy the elements from the temporary
array tmp to their correct final positions in the array orig.
This process is illustrated in Fig. 4.

Now, we make a few observations concerning the traditional
split and join algorithms introduced above. First, the temporary
array tmp needs to be of size N

2 (approximately). Second,
each of the three steps in these algorithms requires (about) N

2
reads and N

2 writes. Thus, the split and join algorithms each
need (approximately) 3N

2 reads and 3N
2 writes in total.
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Fig. 3. Traditional split algorithm for an array of length N = 12. (a) First, (b) second, and (c) third steps.
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Fig. 4. Traditional join algorithm for an array of length N = 12. (a) First, (b) second, and (c) third steps.

Fortunately, we can improve upon the above situation. As
for how to accomplish this, the key insight can be obtained
by considering what happens if we do not perform step 1 in
the split algorithm above. A careful analysis shows that only
(about) half of the samples are lost in so doing. Thus, we can
implement the split operation by saving only (approximately)
half of the second-polyphase-component (i.e., odd-indexed)
samples, in particular, those that will subsequently be overwrit-
ten. The resulting two-step algorithm is illustrated in Fig. 5.
Observe that the temporary array tmp in this case is (approx-
imately) half of the size of the one used in the traditional split
algorithm. Furthermore, the number of memory accesses is
reduced. The first step requires (approximately) 3N

4 reads and
3N
4 writes, while the second step requires (approximately) N

2

reads and N
2 writes. Thus, a total of (about) 5

4N reads and
5
4N writes are necessary, a 16.7% reduction in total memory
accesses from the traditional method.

We can also modify the join algorithm in a similar way as
above. This leads to an algorithm like that shown in Fig. 6.
As in the case of the split algorithm, this modification to the
join algorithm reduces the total number of memory accesses
by 16.7% and reduces the size of the temporary array by
one half. In the remainder of this paper, we will refer to
the above enhancements to the split/join algorithms as the
modified split/join (MSJ) optimization.

In some applications, the above memory savings (due to
a reduced-size temporary array) could be quite desirable,
especially with stripmined vertical filtering (which requires
a larger-sized temporary array). More importantly, as will be
demonstrated later, the reduced number of memory accesses
can also lead to significant reductions in WT execution time,
especially in the pathological cases. Lastly, in passing, we
note that the above optimizations (with minor modifications)
can also be applied if one desires to follow the convention
of placing the odd-indexed samples first in the data array
during a split operation (as is sometimes done, for example,
in JPEG 2000 [1]).
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Fig. 5. New split algorithm for an array of length N = 12. (a) First and
(b) second steps.
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Fig. 6. New join algorithm for an array of length N = 12. (a) First and
(b) second steps.

B. Pipelined Filtering (PF)

The second of our proposed optimizations affects the way
in which filtering is performed. In the classic WT imple-
mentation, each lifting operation is applied in totality before
commencing any computation for subsequent lifting opera-
tions. With our proposed optimization, the computation for
all lifting operations are performed simultaneously with the
computation of quantities beginning as soon as the necessary
data dependencies are satisfied. Drawing on an analogy with
hardware pipelining, we shall refer to this optimization as



Table 1. System Specifications
Processor Intel Pentium M 733 (Dothan) 1.10 GHz
L1 Data Cache 32 KB, 8-way, 64-byte lines
L2 Unified Cache 2 MB, 8-way, sectored, 64-byte lines

pipelined filtering (PF). In passing, we note that, for the case
of λ ≤ 2 (in Fig. 1), the PF optimization is similar to ideas
proposed in [3], [6], except that stripmining is not considered
in these other works.

To make the PF optimization more concrete, we explain
how it can be applied to the 5/3 WT as defined by (1).
Let l and h denote the arrays associated with the first- and
second-polyphase components (which may or may not be
interleaved with one another in memory, depending on whether
the optimization is being applied to the NIF or IF baseline
WT algorithm). Neglecting the initialization and termination
conditions (which can be derived in a straightforward manner),
the body of the main loop in the forward WT has the form:

1) h[k] := h[k] − ⌊
1
2 (l[k] + l[k + 1])

⌋

2) l[k] := l[k] +
⌊

1
4 (h[k − 1] + h[k] + 2)

⌋

3) k := k + 1
(Here, the symbol “:=” denotes assignment.) Similarly, the
body of the main loop in the inverse WT has the form:

1) l[k] := l[k] − ⌊
1
4 (h[k − 1] + h[k] + 2)

⌋

2) h[k] := h[k] +
⌊

1
2 (l[k] + l[k + 1])

⌋

3) k := k − 1
In order to avoid unnecessarily complicating the above exam-
ple, stripmining has been ignored in the preceding pseudocode.

The PF optimization described above is advantageous as it
reduces the number of passes that need to be made over the
WT data, resulting in greater locality for memory references
and improved cache efficiency.

V. EXPERIMENTAL RESULTS

Having introduced our proposed (MSJ and PF) WT opti-
mizations, we will now proceed to evaluate their performance.
To do this, for the case of the 5/3 WT (as introduced
earlier), we implemented the proposed baseline (NIF and IF)
WT algorithms as well as the proposed optimizations. In
our implementation, we elected to stripmine using groups of
16 columns, as this provides a reasonable tradeoff between
performance and memory requirements (which increase with
column group size). For further comparison purposes, we also
implemented the nonrecursive-layout WT algorithm described
in [7]. We shall henceforth refer to this as the Chatterjee-
Brooks (CB) algorithm. All of the code was written in C
and executed on a system with the processor and cache
specifications shown in Table 1. Also, 32-bit integers were
used for the sample data (to be transformed).

As suggested earlier, the width of the 2-D data array to be
transformed has, by far, the most dominant effect on execution
time. Thus, in order to better understand how algorithm
performance varies with array size, we chose to conduct timing
experiments in which the data-array height was fixed at 1024

while the width was varied. In all of our experiments, a 5-
level wavelet decomposition was employed, typical of that
used in image coding applications. In what follows, we begin
by presenting the results obtained for each of the NIF and IF
baseline WT algorithms.

A. Non-Interleaved Filtering (NIF) Case

For each of the forward and inverse WTs, we measured
the execution time of the baseline NIF algorithm as well as
the relative change in execution time when each of the MSJ,
PF, and combined MSJ-PF optimizations were employed. The
results are shown in Figs. 7 and 8. Since, in the figures,
the relative time differences use the baseline as a reference,
negative values correspond to a reduction in execution time as
compared to the baseline. Evidently, from Figs. 7(a) and 8(a),
the pathological cases (i.e., the cases where the execution
time spikes) occur at widths that are multiples of 512 (which
correspond to either every element or every other element in a
column mapping to the same cache set). To more clearly see
from the graphs the behavior of the various schemes in these
pathological cases, the points associated with multiple-of-256
widths have been marked with the symbol “×”.

Let us now examine the forward transform results in Fig. 7.
From Figs. 7(b) and (c), it is clear that the MSJ and PF
optimizations significantly reduce execution time for all array
widths. The MSJ optimization yields a reduction of 6.8 to
15.9% (with a median of 10.2%), while the PF optimization
yields a reduction of 4.7 to 17.9% (with a median of 7.2%).
Moreover, from Fig. 7(d), it is evident that the MSJ and
PF optimizations can be combined to good effect. More
specifically, the combined MSJ-PF optimization produces a
time savings of 12.9 to 31.1% (with a median of 16.8%).
Often, the largest time reductions come at multiple-of-512
widths, where the original baseline algorithm is slowest, and
therefore, stands to benefit most.

Consider now, the inverse transform results in Fig. 8. From
Figs. 8(b) and (c), we can observe that the MSJ optimization
yields a time savings of up to 13.1% (with a median of
5.1%). In particular, it is highly effective for larger widths
and multiple-of-512 widths. The PF optimization is extremely
effective, yielding a time reduction of 5.7 to 24.4% (with
a median of 14.5%), and a very signficiant reduction for
multiple-of-512 widths. From Fig. 8(d), it is evident that the
MSJ and PF optimizations can be used together to good effect.
The combined MSJ-PF optimization produces a time savings
of up to 26.9% (with a median of 18.0%). Furthermore,
the improvement is extremely significant for multiple-of-512
widths, namely about 15 to 27%.

B. Interleaved Filtering (IF) Case

Next, we evaluated our two proposed optimizations in the
IF case. In particular, for each of the forward and inverse WTs,
we measured the execution time for baseline IF algorithm as
well as the relative difference in execution time obtained when
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Fig. 7. Forward WT performance comparison for the NIF case. (a) Execution
time for the baseline algorithm. Relative execution times with the addition of
the (b) MSJ, (c) PF, and (d) combined MSJ-PF optimizations.
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Fig. 8. Inverse WT performance comparison for the NIF case. (a) Execution
time for the baseline algorithm. Relative execution times with the addition of
the (b) MSJ, (c) PF, and (d) combined MSJ-PF optimizations.

each of the MSJ, PF, and combined MSJ-PF optimizations
were employed. The results are shown in Figs. 9 and 10.

Let us first examine the results for the forward WT in
Fig. 9. From Figs. 9(b) and (c), we can see that both the
MSJ and PF optimizations significantly improve performance
for all array widths. More specifically, the MSJ optimization
yields an improvement of 4.9 to 14.1% (with a median of
6.7%), while the PF optimization offers an improvement of
6.4 to 19.2% (with a median of 14.8%). From Fig. 9(d), it is
clear that the best performance is obtained from the combined
MSJ-PF optimization. In this case, an improvement of 15.1 to
27.7% (with a median of 21.5%) is obtained. For each of the

optimizations considered, the most significant improvements
occur at multiple-of-512 widths, where the baseline algorithm
can benefit most.

Consider now, the inverse transform results in Fig. 10.
From Fig. 10(b), we see that MSJ optimization leads to
improved performance at multiple-of-512 widths (about 2 to
8%). Also, the median behavior is clearly better for larger
widths. From Fig. 10(c), it is evident that the PF optimization
leads to improved performance for all array widths, offering
time savings of 2.6 to 28.8% (with a median of 8.5%), and
very large improvements at multiple-of-512 widths (of about
23 to 29%). Lastly, from Fig. 10(d), we see that although
the combined MSJ-PF optimization does perform well, it does
not offer a substantial improvement over the PF optimization
alone. This is due to the relatively poorer performance of
the MSJ optimization in this case. This, however, is the only
instance where the combined MSJ-PF optimization does not
yield significantly better performance than that obtained with
each of the MSJ and PF optimizations alone.

C. Additional Comparison

To further illustrate the benefits of our proposed methods,
we compare our combined MSJ-PF scheme to the CB method
(introduced earlier). Although the CB approach is highly
efficient, it has one extremely important drawback, namely
the size of the temporary array required.

Let W and H denote the width and height of the data
array to be transformed (in samples), and let c denote the
number of columns grouped together in stripmining (where,
as indicated earlier, c = 16 in our experiments). With our
approach, the number of entries required in the temporary
array is 1

2c max(W, H) = 8 max(W, H). On the other hand,
with the CB approach the number of entries required in the
temporary array is WH . Clearly, in practical situations, the
difference in memory requirements is extremely large. For
example, in the case of a 1024 × 1024 data array, the sizes
of temporary arrays required by our approach and the CB
approach are 8192 and 1048576, respectively. In other words,
our approach needs less than 1% of the auxiliary memory
required by the competing scheme.

Of course, we must also consider how the different ap-
proaches compare in terms of execution time. To do this, we
compared the relative difference in execution times between
the CB approach and our approach for the forward and inverse
WTs. The results are shown in Fig. 11 (where negative values
correspond to the CB method being faster). On each graph, we
include two sets of numbers, labelled “dynamic” and “static”,
the only difference between them being in how the memory
for the temporary array is allocated in the CB approach,
namely either dynamically or statically. Static allocation is
generally faster than dynamic allocation, especially for large-
size memory requests. With the CB approach, however, it
would be infeasible in many applications to statically allocate
the temporary array, due to its extremely large size. Thus,
in a practical sense, the dynamically-allocated case is most
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Fig. 9. Forward WT performance comparison for the IF case. (a) Execution
time for the baseline algorithm. Relative execution times with the addition of
the (b) MSJ, (c) PF, and (d) combined MSJ-PF optimizations.
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Fig. 10. Inverse WT performance comparison for the IF case. (a) Execution
time for the baseline algorithm. Relative execution times with the addition of
the (b) MSJ, (c) PF, and (d) combined MSJ-PF optimizations.

important. Nevertheless, it is still interesting to consider the
statically-allocated case. (In the case of our approach, the
above issue does not arise, since the temporary array is always
relatively small and can be dynamically allocated without
excessive time penalties.)

Examining the results shown in Fig. 11, we can make the
following observations. For both the forward and inverse WT,
our approach is faster than the CB approach with dynamic
allocation, often by more than 10% and sometimes by as
much as 93%. This is rather impressive, as the CB approach
uses orders of magnitude more memory. Even in the case
of static allocation, our approach compares quite favorably
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Fig. 11. Relative difference in execution time between the CB approach and
our approach for the (a) forward and (b) inverse transforms.

with the CB approach, considering the significant difference
in memory requirements between the two approaches. This
further demonstrates the power of our methods proposed
herein.

VI. CONCLUSIONS

In this paper, we proposed two optimizations for improving
the efficiency of the WT computation. These optimizations
were employed in two different baseline WT algorithms, and
shown to lead to improved efficiency, sometimes reducing the
execution time by one third. Furthermore, the optimizations
were also shown to lead to WT algorithms that compete quite
favorably with more sophisticated methods while requiring
only a small fraction of the memory cost. Clearly, our meth-
ods can benefit the many applications in which the WT is
employed.
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