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ABSTRACT

Two highly effective content-adaptive methods for generating Delaunay mesh mod-

els of images, known as IID1 and IID2, are proposed. The methods repeatedly alter-

nate between mesh simplification and refinement, based on the incremental/decremental

mesh-generation framework of Adams, which has several free parameters. The effect of

different choices of the framework’s free parameters is studied, and the results are used to

derive two mesh-generation methods that differ in computational complexity. The higher

complexity IID2 method generates mesh models of superior reconstruction quality, while

the lower complexity IID1 method trades mesh quality in return for a decrease in com-

putational cost. Some of the contributions of our work include the recommendation of a

better choice for the growth-schedule parameter of the framework, as well as the use of

Floyd-Steinberg error diffusion for the initial-mesh selection.

As part of our work, we evaluated the performance of the proposed methods using

a data set of 50 images varying in type (e.g., photographic, computer generated, and

medical), size and bit depth with multiple target mesh densities ranging from 0.125% to

4%. The experimental results show that our proposed methods perform extremely well,

yielding high-quality image approximations in terms of peak-signal-to-noise ratio (PSNR)

and subjective visual quality, at an equivalent or lower computational cost compared to

other well known approaches such as the ID1, ID2, and IDDT methods of Adams, and

the greedy point removal (GPR) scheme of Demaret and Iske. More specifically, the

IID2 method outperforms the GPR scheme in terms of mesh quality by 0.2–1.0 dB

with a 62–93% decrease in computational cost. Furthermore, the IID2 method yields

meshes of similar quality to the ID2 method at a computational cost that is lower by
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9–41%. The IID1 method provides improvements in mesh quality in 93% of the test

cases by margins of 0.04–1.31 dB compared to the IDDT scheme, while having a similar

complexity. Moreover, reductions in execution time of 4–59% are achieved compared to

the ID1 method in 86% of the test cases.
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Chapter 1

Introduction

1.1 Mesh Representation of Images

Despite being the most common form of image representation, lattice-based sampling is

far from optimal. Typically, images are nonstationary, which inevitably leads to over-

sampling in some regions of the sampled domain and undersampling in others, due to

the uniform sampling used. Nonuniform sampling addresses this issue by adapting the

sampling density to the content of the image. A more intelligent placement of the sample

points leads to greater efficiency, thereby significantly reducing the number of samples

needed while keeping the visual quality at acceptable levels. Nonuniform sampling has

proven useful in many applications such as: feature detection [1], pattern recognition [2],

image/video coding [3–9], tomographic reconstruction [10, 11], restoration [12] and fil-

tering [13].

Several approaches to nonuniform sampling have been proposed over the years, such as

radial basis function methods [14, 15], Voronoi and natural neighbor methods [14], inverse

distance-weighted methods [14, 15] and finite-element methods [14, 15]. One particular

approach to image representation based on content-adaptive sampling that has garnered

interest from researchers in the past few years is based on meshes [16–36]. Large regions

of the image can be represented using a few polygons instead of a much larger number

of pixels. This takes advantage of the inherent geometric structure in images and the

correlation between adjacent image pixels. Triangle meshes are particularly well suited for

this application, due to their simplicity and their ability to model a wide range of image

content as well as some features inherent in images such as sharp edges. In a triangle-

mesh model, the image domain is partitioned into triangle faces whose vertices are the
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sample points, and an interpolant is constructed over each face. The sample points,

their connectivity, and the function value at the sample points uniquely characterize the

model.

The so called mesh-generation problem is concerned with creating a mesh approxi-

mation of an image, more specifically, a mesh of a fixed size that minimizes some approx-

imation error criteria. As it turns out, finding computationally-efficient solutions to this

type of problem is quite challenging [37].

1.2 Historical Perspective

Over the years, a great number of methods for generating mesh models of bivariate func-

tions have been developed [16–36]. Typically, they can be classified based on how they

select the sample points. One category of methods determine all the sample points in

one shot based on the local image content, then construct a triangulation of the gen-

erated set of sample points. The highly effective scheme proposed by Yang et al. [36],

for instance, uses the classical Floyd-Steinberg error diffusion algorithm [38] to select

the sample points such that their density is proportional to the maximum magnitude

second order directional derivative of the image. A Delaunay triangulation of the se-

lected sample points is then constructed. Other examples of similar techniques can be

found in [10–12, 39, 40]. Another group of mesh-generation methods update the set of

selected sample points over multiple iterations on the mesh, in an attempt to gradually

improve the mesh model’s approximation quality [17, 18, 23, 41]. They achieve this by

either adding or removing points in each iteration, which is why they tend to be more

computationally expensive but, generally, produce higher quality image approximations

than methods of the first category. In mesh-simplification schemes, sample points are

gradually removed from the mesh until the desired number of samples or approximation

error has been reached [17, 42]. This can be with one or more sample points removed at

a time, starting from a mesh containing many or all of the sample points in the image

domain. The adaptive thinning method of Demaret and Iske [17] is able to generate

high-quality mesh models using a mesh-simplification approach based on minimizing the

increase in approximation error of piecewise-linear interpolants over the Delaunay tri-

angulation. Unfortunately, as with many mesh-simplification methods, it suffers from

a high computational cost. Moreover, the memory cost associated with a mesh con-

taining most or all of the sample points quickly becomes prohibitive as the image size

becomes large. Conversely, mesh refinement methods start with a low-density mesh con-
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sisting of the four extreme convex-hull points of the image domain, and possibly a small

subset of the sample points as well. The mesh is then refined by adding one or more

points until the termination criteria, such as mesh size or mesh approximation error, is

reached [18, 23, 34, 35]. Mesh-generation methods that use refinement, such as the one

proposed by Rippa [23], generally have a lower computational and memory cost than

simplification methods, but at the expense of mesh quality.

In addition to the sample points selected, mesh models are characterized by the

mesh connectivity (i.e., how the vertices are connected by edges). Consequently, mesh-

generation methods may also be classified by the type of triangulation connectivity they

use. The use of a Delaunay triangulation is quite popular, as Delaunay triangulations

have some useful properties for approximation [43]. Delaunay triangulations minimize

the maximum interior angle of all the triangles in the triangulation, thereby avoiding

poorly chosen sliver (i.e. long and thin) triangles, which can lead to high approxima-

tion error. Furthermore, when used in conjunction with a technique such as preferred

directions [44], the connectivity of a Delaunay triangulation can be uniquely determined

from the position of the points being triangulated. Another class of triangulations

used in mesh-generation applications is data-dependent triangulations (DDTs) [18, 23–

26, 29, 30, 32, 33, 35]. In a DDT, the mesh connectivity is chosen arbitrarily based on

information from the data being triangulated. DDTs are therefore more flexible than

Delaunay triangulations, and can outperform them if the sample points and the con-

nectivity are chosen well. Nevertheless, the flexibility afforded by DDTs means that, in

mesh-generation, achieving acceptable results comes at a very high computational cost.

Consequently, Delaunay triangulations were chosen over DDTs in our work.

In [20], Adams proposed a framework for generating mesh models of images based

on the Delaunay triangulation. The framework is iterative and has many degrees of

freedom to accommodate a wide variety of mesh-generation methods. The IDDT [20],

and later, ID1 and ID2 [21] methods were derived from this framework by fixing the

degrees of freedom to specific choices, which were determined based on experimentation.

A combination of mesh refinement and mesh simplification is used in these methods. This

allows these methods to benefit from mesh quality comparable to methods relying solely

on mesh simplification, such as adaptive thinning, but at a much lower computational

cost. Despite the improved speed over using pure mesh simplification, the IDDT, ID1, and

ID2 methods are not as fast as methods that generate the sample points in one shot such

as error diffusion. Nevertheless, one-shot methods perform substantially worse in terms

of mesh quality. The work of this thesis is based on the framework by Adams [20, 21],
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and uses a fast approach for selecting the initial mesh samples in one shot, specifically

error diffusion, along with a combination of mesh simplification and mesh refinement such

that the advantages of all these different classes of methods in terms of mesh quality and

computation cost are achieved.

1.3 Overview and Contribution of the Thesis

In this thesis, we explore the generation of triangle-mesh models of images. Given a

grayscale image, our goal is to generate a mesh model of the image that minimizes the

mean-squared error. Our work focuses on the generation of triangle-mesh models using

the computational framework proposed by Adams [20]. More specifically, we are con-

cerned with mesh models that are based on preferred-directions Delaunay triangulations.

The choice is motivated by the fact that, as stated previously, Delaunay triangulations

have some attractive properties for approximation purposes. Furthermore, by using De-

launay triangulations, we can focus on optimizing the selection of the sample points

without the additional burden of selecting their connectivity. The two mesh-generation

methods proposed, IID1 and IID2, are derived from the incremental/decremental com-

putational framework based on experimental results. The methods make different trade

offs between the quality of the image approximation, and computational complexity.

Nevertheless, both methods are highly effective in terms of objective and subjective

approximation quality compared to state-of-the-art methods of similar computational

complexity.

The remainder of this thesis is organized into four chapters and an appendix. In what

follows, we provide and overview of these chapters and the appendix.

In Chapter 2, we introduce background material to aid with understanding the work

presented in this thesis. The notation and terminology used are presented first. Sub-

sequently, we describe concepts from computational geometry (e.g., Delaunay triangu-

lations) and image processing (e.g., image filtering). Triangle-mesh models of images

and the mesh-generation problem addressed in our work are also formally defined. A

grid-point to face mapping scheme, and some of the techniques used for selecting the

sample points of the initial mesh are then described. Further, we define the computa-

tional framework of [20] which forms the foundation for our work. Finally, we introduce

some highly effective schemes that were previously proposed for generating triangle-mesh

models of images. The first of the methods is the greedy point removal (GPR) scheme

of Demaret and Iske [17], which is often considered a good benchmark for mesh quality.
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The remaining methods are the IDDT [20], ID1, and ID2 [21] methods of Adams, all of

which are based on the computational framework of [20].

Chapter 3 presents our proposed mesh-generation methods and the process by which

these methods were developed. First, we describe in more detail the free parameters of

the incremental/decremental computational framework, as well as the choices considered

for experimentation for each of them. The effect of the different choices on various

performance metrics is then determined. Finally, the mesh-generation methods, IID1 and

IID2, are proposed based on the results of the experimental analysis. The IID2 method

is a high complexity variant that achieves higher mesh quality at a higher computational

cost, while the IID1 method is the low complexity faster variant that yields slightly lower

quality meshes.

In Chapter 4, the performance of the IID1 and IID2 methods in terms of approxima-

tion quality and computational cost is evaluated. Each of the two methods is compared

to other mesh generation schemes of similar complexity. It is shown that the IID2 method

consistently outperforms the GPR method on all counts, and produces meshes of com-

parable quality to the ID2 method at a lower computational cost. The IID1 method is

comparable to the IDDT method in terms of execution time but typically yields meshes

of higher quality. For example, the IID2 method performs better than the GPR method

by an average of 0.44 dB in terms of PSNR while managing to be up to 11 times faster,

and use substantially less memory. Furthermore, the quality of meshes generated using

the IID1 method are better in PSNR by an average of 0.89 dB than those produced by

the IDDT method, at an equivalent or lesser computational cost.

Chapter 5 concludes by summarizing the key results of our work. Some suggestions

for future work are also given.

In Appendix A, the software developed during the course of our research is docu-

mented. The documentation includes a description of the programs and their options as

well as the file formats used. Some examples of how to use the software are also provided.
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Chapter 2

Preliminaries

2.1 Overview

In this chapter, background information essential for understanding the work presented

in this thesis is introduced, beginning with the notation and terminology used throughout

this document. Some basic image processing and computational geometry concepts are

then presented. Triangle-mesh models for image representation as well as some related

topics, such as scan conversion and mesh evaluation are discussed. The chapter concludes

with a description of error diffusion and the incremental/decremental mesh-generation

framework, which are central to the work of this thesis.

2.2 Notation and Terminology

Before proceeding further, a brief digression is in order concerning the notation and

terminology used herein. The sets of integers and real numbers are denoted Z and R,

respectively. For a, b ∈ R, (a, b), [a, b), (a, b], and [a, b] denote, respectively, the open

interval {x ∈ R : a < x < b}, the half-closed half-open interval {x ∈ R : a 6 x < b}, the

half-open half-closed interval {x ∈ R : a < x 6 b}, and the closed interval {x ∈ R : a 6

x 6 b}. For a ∈ R, dae denotes the ceiling of a (i.e. the smallest integer no less than a,

and bac denotes the floor of a (i.e. the largest integer no more than a). The cardinality

of a set S is denoted |S|. The 2-norm of a vector v = (v1, v2, ..., vn) in Rn, denoted ‖v‖,
is defined as

‖v‖ =
√
v2

1 + v2
2 + ...+ v2

n.
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The assignment operator, which assigns the value of the right-hand argument to the left-

hand argument, is denoted “:=”. Hence, a := b denotes the assignment of the value of b

to a.

2.3 Image Processing

Binomial filters are low-pass filters that approximate Gaussian filtering [45]. Their sim-

plicity and efficiency makes them particularly useful for smoothing in image processing

applications. The transfer function Hn(z) of a one-dimensional n-th order binomial filter

with unity DC gain and zero phase is given by

Hn(z) = z
n−1
2

(
1

2
+

1

2
z−1

)n−1

,

where n is an odd integer. A two-dimensional binomial filter can be constructed from

the tensor product of two one-dimensional binomial filters. For example, the non-zero

coefficients of a two-dimensional third-order binomial filter are
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 ,
which can be equivalently applied in a separable fashion using the one-dimensional third-

order binomial filter with non-zero coefficients
[

1
4

1
2

1
4

]
.

The bilateral filter is a nonlinear edge-preserving smoothing filter [46, 47]. It splits the

image into large scale features and small scale features (e.g., texture), which allows for

selective filtering of the latter, unlike a linear filter which smoothes image features indis-

criminately. With Ip and Iq denoting the intensities of the pixels p and q, respectively,

the filter is defined as

BF [I]p =
1

Wp

∑
q∈S

Gσs(‖p− q‖)Gσr(‖Ip − Iq‖)Iq,
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where Wp is a normalization factor given by

Wp =
∑
q∈S

Gσs(‖p− q‖)Gσr(‖Ip − Iq‖),

Gσs is the spatial Gaussian, and Gσr is the range Gaussian. The filter equation is ef-

fectively a normalized weighted average of pixel intensities. The spatial parameter σs

and the range parameter σr constitute the window sizes of the Gσs and Gσr Gaussians,

respectively, and characterize the bilateral filter. The spatial Gaussian Gσs reduces the

influence of distant pixels. As the spatial parameter σs is increased, larger features of

the image are smoothed. The range Gaussian Gσr reduces the influence of distant pixels

q that have an intensity Iq different from Ip. Increasing the range parameter σr has

the effect of bringing the bilateral filter closer to a true Gaussian filter. The impact of

varying the σs and σr parameters on the filtering result is illustrated in Figure 2.1.

The maximum-magnitude second-order directional derivative (MMSODD) [36] d for

a function f defined on R is defined as

d(x, y) = max
{
|α(x, y) + β(x, y)|, |α(x, y)− β(x, y)|

}
, (2.1)

where

α(x, y) =
1

2

[
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y)

]
and

β(x, y) =

√
1

4

[
∂2

∂x2
f(x, y)− ∂2

∂y2
f(x, y)

]2

+

[
∂2

∂x∂y
f(x, y)

]2

.

The partial-derivative operators in the preceding equation are formed from the tensor

product of one-dimensional derivative operators, where the discrete-time approximations

of the one-dimensional first- and second-order derivative operators are computed using

the filters with transfer functions 1
2
z− 1

2
z−1 and z−2+z−1, respectively. The MMSODD

has the special property that an edge produces a double response which makes it par-

ticularly useful in our work. An example of an image and its MMSODD are shown in

Figures 2.2(a) and 2.2(b), respectively.

The magnitude of the gradient of an image, IG, can be approximated using the Sobel
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.1: Effect of the space (σs) and range (σr) parameters on the output of the
bilateral filter. The filter approximates a Gaussian for σr ≈ ∞.
(a) σs = 2 and σr = 0.1, (b) σs = 2 and σr = 0.25, (c) σs = 2 and σr ≈ ∞,
(d) σs = 6 and σr = 0.1, (e) σs = 6 and σr = 0.25, (f) σs = 6 and σr ≈ ∞,
(g) σs = 18 and σr = 0.1, (h) σs = 18 and σr = 0.25, and (i) σs = 18 and σr ≈ ∞
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(a)

(b)

Figure 2.2: (a) An image and (b) its MMSODD.
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operator [48]. It is computed as

|IG| =
√
I2
Gx + I2

Gy,

where IGx and IGy are obtained by filtering using the convolution kernels Gx and Gy,

respectively, which are given by

Gx =

 −1 0 1

−2 0 2

−1 0 1

 and Gy =

 −1 −2 −1

0 0 0

1 2 1

 .
An approximation of the Laplacian of an image [48] can be calculated in a separable

fashion using the 1-D filter

L =
[

1 −2 1
]
.

The gradient magnitude and the Laplacian of an image computed using the filters

above are illustrated in Figure 2.3. The gradient of the image in Figure 2.3(a) is shown

in Figure 2.3(b). Similarly, the Laplacian of the image in Figure 2.3(a) is shown in

Figure 2.3(c).

2.4 Computational Geometry

The mesh-generation methods proposed later in this thesis are based on Delaunay tri-

angulations. An introduction to some computational geometry concepts is therefore in

order. Such concepts include triangulations and Delaunay triangulations.

Before we can present the definition of a triangulation, we must first introduce the

notion of a convex set and a convex hull.

Definition 2.1 (Convex set). A set P of points in R2 is said to be convex if, for every

pair of points x, y ∈ P , the line segment xy is completely contained in P .

Two different sets are depicted in Figure 2.4 to better illustrate the notion of a convex

set. In Figure 2.4(a), the line segment xy connecting the points x and y is also in the

set. Similarly, we can see that any pair of two points from the set can be connected using

a line segment that is also completely contained in the set. On the other hand, the set
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(a)

(b)

(c)

Figure 2.3: Example of gradient magnitude and Laplacian of an image. (a) An image
and its (b) gradient magnitude and (c) Laplacian.
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x

y

(a)

x

y

(b)

Figure 2.4: Examples of a (a) convex set, and (b) nonconvex set.

(a) (b)

Figure 2.5: Convex-hull example. (a) A set of points and (b) its convex hull.

shown in Figure 2.4(b) is nonconvex because, for the two points x and y which are in the

set, the line segment xy shown is not completely contained in the set.

Definition 2.2 (Convex hull). The convex hull of a set P of points is the intersection

of all convex sets that contain P (i.e., the smallest convex set containing P ).

Figure 2.5 illustrates the preceding definition. For a set of points P in R2 as shown in

Figure 2.5(a), the convex hull is the set represented by the shaded area in Figure 2.5(b).

If the locations of the points in P are represented by pins sticking out of a plane, the

convex hull of P may be viewed as the area enclosed by an elastic band that was stretched

around the pins then released such that it contains all the pins in its interior. Having

introduced the concept of convex hull, we can now define the concept of triangulation

that is fundamental in this thesis.

Definition 2.3 (Triangulation). A triangulation T of the finite set P of points in R2 is
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(a) (b) (c)

Figure 2.6: Example of triangulations of a set of points. (a) A set P of points, (b) a
triangulation of P , and (c) a different triangulation of P .

a set T of non-degenerate triangles that satisfies the following conditions:

1. the set of all vertices of triangles in T is P ;

2. the interiors of any two triangles in T do not intersect;

3. the union of all triangles in T is the convex hull of P ; and

4. every edge of a triangle in T only contains two points from P .

In other words, a triangulation of a set P of points partitions the convex hull of P into a

set of triangles such that no two distinct triangles overlap, and all the vertices are in P .

As a matter of notation, for a triangulation T , the set of vertices, edges, and faces of T

are denoted as V(T ), E(T ), and F(T ) respectively.

A given set P of points typically has many possible triangulations. This is illustrated

by the example in Figure 2.6. For the set P of points in Figure 2.6(a), one possible

triangulation of P is shown in Figure 2.6(b). In Figure 2.6(c), we can see that the same

set P of points has a different triangulation from that shown in Figure 2.6(b).

A number of triangulation types have been proposed over the years. One widely used

type that is of particular interest to our work is the Delaunay triangulation [43]. Before

we can define the Delaunay triangulation, however, we must first introduce the concept

of circumcircle.

Definition 2.4 (Circumcircle). The unique circle passing through all three vertices of a

triangle T is called the circumcircle of T .



15

(a) (b)

Figure 2.7: Example of a Delaunay triangulation. (a) A set of points, and (b) its Delaunay
triangulation.

With the definition of circumcircle in place, we can define a Delaunay triangulation as

given below.

Definition 2.5 (Delaunay triangulation). A triangulation T of a set P of points in R2

is said to be Delaunay if each triangle in T is such that the interior of its circumcircle

contains no vertices of T .

An example of a Delaunay triangulation is illustrated in Figure 2.7. A set P of points

is shown in Figure 2.7(a) along with its Delaunay triangulation in Figure 2.7(b). The

circumcircle of each triangle is displayed using dashed lines. Clearly, no vertices are

strictly in the interior of the circumcircle of any triangle in T .

Delaunay triangulations have numerous properties that make them particularly useful.

They maximize the minimum interior angle of all of the triangles in the triangulation.

Consequently, the incidence of sliver (i.e., long and thin) triangles is greatly reduced,

which is often desirable. Due to the fact that multiple points may be cocircular, the

Delaunay triangulation of a set of points is not guaranteed to be unique. In fact, when

points are constrained to being on an integer lattice such as is the case in this work,

the Delaunay triangulation is almost guaranteed not to be unique. The nonuniqueness

of Delaunay triangulations is illustrated by the example in Figure 2.8 where, for a set

of cocircular points, the two different triangulations in Figures 2.8(a) and 2.8(b) equally

meet the Delaunay conditions. Several methods have been proposed for resolving the

nonuniqueness of Delaunay triangulation by deterministically selecting one of the many

possible choices. Such techniques include the symbolic perturbation [49–51] and preferred
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v0

v1

v2

v3

(a)

v0

v1

v2

v3

(b)

Figure 2.8: Examples of Delaunay triangulations with cocircular points. (a) A Delaunay
triangulation of a set of points, and (b) a different Delaunay triangulation of the same
set of points.

directions [44] methods. When a Delaunay triangulation is used in conjunction with a

method such as preferred directions, the triangulation connectivity is determined solely

by the set P of points being triangulated. This property is desirable in many applications

because it leads to more compact representations: the position and value of the sample

points are sufficient for reconstructing a triangulation.

An advantageous property of Delaunay triangulations is that point deletion is lo-

cal [52]. In other words, when a vertex is removed from the triangulation, it only impacts

faces in the immediate vicinity of the removed vertex. Figure 2.9 illustrates this property

of Delaunay triangulations. The vertex p of the Delaunay triangulation in Figure 2.9(a)

is to be removed from the mesh. The shaded faces in the figure are in the immediate

vicinity of the vertex p. Figure 2.9(b) shows the updated triangulation after p is removed

from the triangulation. We can see that the deletion of p from the triangulation only

affected the shaded region. The deletion of points from a Delaunay triangulation and the

ensuing connectivity update are therefore efficient. Mesh simplification schemes that are

based on Delaunay triangulations can potentially exploit this property.

2.5 Mesh Models of Images

In the context of our work, an image of width W and height H is an integer-valued

function φ defined on D = [0,W − 1] × [0, H − 1] and sampled on the two-dimensional
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p

(a) (b)

Figure 2.9: Example of the local effect of vertex deletion in Delaunay triangulations.
(a) A Delaunay triangulation of a set of points, and the vertex p to be removed. (b) The
Delaunay triangulation after removing the vertex.

integer lattice Λ = {0, 1, ...,W−1}×{0, 1, ..., H−1}, where the function value corresponds

to the brightness. The set of sample points for φ is denoted Pφ = {pi}|Λ|−1
i=0 , while the

set of corresponding sample values is Zφ = {zi}|Λ|−1
i=0 where zi = φ(pi). Triangle mesh-

based image representation is an approach that aims to model the image function φ by

partitioning the entire image domain into a set of triangular regions. A mesh model of

an image φ is completely characterized by:

1. a set P = {pi}|P |−1
i=0 of sample points;

2. a triangulation T of P ; and

3. a set Z = {zi}|P |−1
i=0 of corresponding sample-point function values.

The set P is chosen to always include the extreme convex-hull points of the image domain.

This ensures that all of Λ is covered by the triangulation. The quantity |P | is known as

the size of the mesh model, while the sampling density of the mesh model is defined as

|P |/|Λ|.
The above mesh model is associated with a continuous piecewise-linear function φ̃P

that approximates φ and is defined on the entire domain Λ. The function φ̃P is con-

structed from P and Z by combining the linear interpolants over each of the faces in the

triangulation T . The integer-valued image approximation function φ̂P is obtained from

φ̃P using rounding as φ̂P = round
(
φ̃P

)
. Standard rasterization techniques [53] can be

used to generate φ̂P from the mesh model.
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Triangle-mesh modelling of images is illustrated in Figure 2.10. An image such as that

of Figure 2.10(a) may be viewed as a surface where the brightness of the sample points

corresponds to their height above the plane as shown in Figure 2.10(b). In Figure 2.10(c),

a mesh model of the image is created by selecting a subset of the original sample points

and triangulating them, which creates a partition of the image domain. The resulting

triangle-mesh model of the image is shown in Figure 2.10(d). Figure 2.10(e) shows the

reconstruction of the image obtained by rasterizing the mesh model.

The metric used to measure error between the original image φ and its approximation

φ̂ that we aim to minimize is the mean squared error (MSE) ε defined as

ε = |Λ|−1
∑
p∈Λ

(φ̂(p)− φ(p))2.

The MSE is typically expressed in terms of the PSNR for convenience, which is given by

PSNR = 20 log10

(
2ρ − 1√

ε

)
,

where ρ is the sample precision in bits. The PSNR is a logarithmic representation of the

MSE relative to the dynamic range of the signal, with higher PSNR values corresponding

to better quality.

2.6 Grid-Point to Face Mapping

Let Γ (T ) denote the set of all integer grid points falling inside or on the boundary of

a triangulation T . For various reasons that will become clear later, a mapping between

points of the grid and faces of the triangulation is needed. The scheme from [53] was

modified slightly for this purpose in our work.

Given an image φ and a triangulation T of the image domain, the scheme uniquely

maps each point p ∈ Γ (T ) to a face f ∈ F(T ) as follows:

1. If p is strictly inside a face f , map p to the face f .

2. If p is on an edge e, excluding the endpoints of e:

(a) If e is horizontal, map p to the face below e unless no such face exists, in which

case p is mapped to the face above e.
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(a)
(b)

(c)
(d)

(e)

Figure 2.10: Mesh model of an image. (a) The original (raster) image. (b) The original
image viewed as a surface. (c) A triangulation of the image domain. (d) The resulting
triangle mesh. (e) The reconstructed image obtained by rasterizing the mesh model.
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(b) If e is not horizontal, map p to the face to the left of e. If no such face exists,

map p to the face to the right of e.

3. If p is a vertex:

(a) If p is the right endpoint of a horizontal edge e, map p to the face below e,

unless no such face exists, in which case map p to the face above e.

(b) If p is not the right endpoint of any horizontal edge, map p to the face to the

left of p, unless no such face exists, in which case map p to the face to the

right of p.

Figure 2.11 shows an example to better illustrate the above mapping rules. In Fig-

ures 2.11(a) and 2.11(b), an image φ is defined on a rectangular grid {0...9} × {0...5}.
A subset {vi}6

i=0 of the points of the rectangular grid is selected and a triangulation of

these points is constructed. The triangulation is shown superimposed on the grid. In

order to help with understanding the mapping strategy used, each of the grid points in

Figure 2.11(b) is marked with a symbol showing to which face it is mapped. For example,

the grid point p0 is mapped to the face f0 as per rule 1 since the point is strictly inside

the face f0. The point p1 is on the horizontal edge v2v5 but is not one of its endpoints.

Since no face exists below the edge v2v5, the point p1 is mapped according to rule 2a,

to the face f3 that is above the edge. The point p2 is on the non-horizontal edge v4v5

which means that rule 2b applies, and the point is mapped to the face f2 on the left of

the edge v4v5. Rules 3a and 3b apply to the grid points v2 and v6, respectively. Hence,

the points v2 and v6 are mapped to the faces f3 and f5, respectively.

2.7 Error Diffusion

Error diffusion is a technique originally introduced by Floyd and Steinberg [38] for the

purpose of image dithering. Yang et al. proposed using Floyd-Steinberg error diffusion

with a feature map based on the MMSODD of an image (introduced in Section 2.3) to

adaptively distribute points in the image domain [36]. The set of points generated have

a spatial density that is approximately proportional to the amount of detail in a given

region of the image. Given an image φ of width W and height H sampled on the set Λ

of points (where |Λ| = WH), and a desired number N of points, error diffusion selects a

subset PN from Λ, where |PN | ≈ N , as follows:

1. Compute the MMSODD d(φ) of the image using (2.1).
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Figure 2.11: Example of grid point to face mapping. (a) A triangulation of a set of
points on the rectangular grid, and (b) the mapping of the grid points to faces of the
triangulation.
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2. Compute the feature map σ from the MMSODD as

σ(x, y) =

(
d(x, y)

A

)γ
,

where A = max [d(φ)] and γ is a positive constant sensitivity parameter.

3. In order to select approximately N sample points, compute the error diffusion

threshold ρ as

ρ =
1

2N

[
W∑
i=1

H∑
j=1

σ(i, j)

]
.

4. Generate a binary image b defined on the same image domain as φ from the feature

map σ using error diffusion with the threshold value ρ.

5. Select each sample point (x, y) of the image b that satisfies the condition b(x, y) 6= 0.

The error diffusion method above has some degrees of freedom. In our work, they are

fixed to specific choices based on the recommendations and conclusions of past work [33,

36, 42]. The feature map sensitivity parameter is set to γ = 1. Non-leaky error diffusion

with the serpentine scan order is used. A smoothing filter is normally applied to the

image during the MMSODD computation to reduce the effects of noise. Its selection was

left as a free parameter for our work.

Figure 2.12 shows an example of the results produced by error diffusion. The MM-

SODD in Figure 2.12(b) is first (i.e., in step 1) computed from the image in Figure 2.12(a).

Floyd-Steinberg error diffusion is then (i.e., in steps 4 and 5) used to select the sample

points shown in Figure 2.12(c). The density of the points is clearly higher around image

edges which correspond to areas in the image content with more detail.

2.8 Poisson Disk Sampling

A random distribution of sample points with white noise properties can lead to clustering

of points, or large gaps with few samples. On the other hand, blue noise samples are

randomly and uniformly distributed in the spatial domain. Blue noise is valuable in

a variety of imaging and rendering applications due to the fact that it does not exhibit
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(a)

(b)

(c)

Figure 2.12: (a) An image, (b) its MMSODD, and (c) the sample points selected by error
diffusion.
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(a) (b)

Figure 2.13: Example of uniform Poisson disk sampling. (a) Sample points generated
using uniform Poisson disk sampling, and (b) the boundaries of the exclusion disks.

aliasing artifacts, unlike uniform sampling [54–59]. Instead, frequencies above the Nyquist

limit appear as noise of the correct average intensity, which is much more acceptable to

the human visual system [54, 58, 60, 61].

Poisson disk sampling is a method for generating a set of points with blue noise

properties. The basic idea is that constraints are placed on the minimum distance between

any two samples in the set of points. For a constant minimum distance value d, the

constraints result in a disk of exclusion with radius d around each sample point, where

another sample cannot be placed. Figure 2.13 shows an example of sample points with

blue noise properties selected using Poisson disk sampling. The circles in Figure 2.13(b)

illustrate the boundary of the exclusion disks around the sample points in 2.13(a). Several

techniques have been proposed for Poisson disk sample generation [62]. The two that are

most well know are the dart throwing [54, 63, 64], and relaxation [65] methods.

The choice of the radius value clearly affects the total number of sample points that

may be selected from the image domain. A smaller radius results in samples that are

closer together, which leads to a larger set of sample points. Conversely, the samples

are spaced further apart with a larger radius, which leads to fewer sample points. If

the samples are not all chosen to have the same minimum distance, the distribution of

points may be adjusted for different regions of the sampling domain. For this purpose,

a radii function may be used during the evaluation of the suitability of candidates for

addition to the set of sample points. Such an approach is often referred to as adaptive

Poisson disk sampling [40, 66, 67]. An example is shown in Figure 2.14 where the radius
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(a) (b)

Figure 2.14: Example of adaptive Poisson disk sampling. (a) Visual representation of
the radii function used, and (b) sample points generated based on the radii function.

is chosen to be proportional to the y-coordinate (but does not change along the x-axis).

The function may be visualized as the value map in Figure 2.14(a) where a darker value

represents a smaller radius. The sample points generated from the radii function are

shown in Figure 2.14(b).

2.9 Incremental/Decremental Mesh-Generation

Framework

In [20], Adams proposed a highly-flexible computational framework for generating triangle-

mesh models of images with Delaunay connectivity. It is iterative in nature, alternating

between two distinct processing phases: a mesh refinement phase that adds sample points

to the mesh, and another mesh simplification phase whereby sample points are removed

from the mesh. The alternation is performed according to a predetermined sequence

{ηi}L−1
i=0 of length L, referred to as a growth schedule. The number of vertices in the

mesh tracks the values in the growth schedule at each iteration.

Before we can proceed further, some additional notation and terminology need to

be introduced. The face f to which a point p is uniquely mapped, based on the rules

described in Section 2.6, is denoted face(p). The set of all points that are mapped to a face

f (i.e. the points satisfying face(p)=f) is denoted points(f). Let φ̂S be the interpolant
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corresponding to the mesh with sample points S. Let rS(p) denote the approximation

error at the point p for the mesh with sample points S (i.e., rS(p) = φ̂S(p)− φ(p)). Let

P denote the sample points in the current mesh approximation of φ. Consequently, the

error over a face f , denoted faceErr(f), is the sum of the errors of the points contained

in f (i.e. faceErr(f)=
∑

p∈Λ∩points(f) r(p)), and the total mesh model approximation error

is
∑
p∈Λ

r(p). A point is said to be immutable if it is not allowed to be removed from or

added to the mesh during the mesh-generation process; otherwise it is mutable. The

subset of mutable points in a given set S is denoted mutable(S). A point p ∈ Λ that

is mutable but is not currently in the mesh is said to be a candidate point. The set of

candidate points for a given face f are denoted cands(f) (i.e., cands(f) = mutable((Λ\P )

∩ points(f)).

With the necessary background in place, we can now describe the computational

framework. Given an image φ, a subset Γ of the sample points from which to construct the

initial mesh, a growth schedule {ηi}L−1
i=0 , and a desired mesh size N (where N ∈ [4, |Γ |]),

as input, the framework generates a triangle-mesh model of φ of the specified size that

minimizes the total approximation error. The framework consists of the following steps:

1. Select initial mesh points. Obtain the initial subset P of the sample points as

P := Γ .

2. Initialize mesh. Create a mesh consisting of the extreme convex-hull points of Λ.

Then insert the points in P (from step 1) into the mesh. Mark the extreme convex-

hull points as immutable so that they cannot be removed from the mesh, and mark

all of the other points as mutable. Let i := 0.

3. If i = L (i.e. no more points in the growth schedule remain), go to step 7; otherwise,

proceed. If |P | < ηi+1, go to step 4 to increase the mesh size. If |P | > ηi+1, go to

step 5 to decrease the mesh size. If |P | = ηi+1, go to step 6 (bottom of the main

loop).

4. Increase mesh size. While |P | < ηi+1, add a point to the mesh by performing an

optimal add (optAdd) operation which consists of the following steps:

(a) Select a face f ∗ in which to insert a new point as given by

f ∗ = arg max
f∈0

faceErr(f),

where 0 is the set of all faces that have at least one candidate point.
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(b) Select a point p∗ in the face f ∗ to add to the mesh, as given by

p∗ = selCand(f ∗),

where selCand is a function that embodies the candidate-selection policy, and

is a free parameter of the framework.

(c) Add p∗ to the mesh (i.e. let P := P ∪ {p∗}).

(d) Go to step 6.

5. Decrease mesh size. While |P | > ηi+1, delete a point from the mesh by performing

an optimal delete (optDel) operation, which consists of the following steps:

(a) Let the significance (with respect to deletion) of a (mutable) point p ∈ P ,

denoted sigDel(p), be defined as

sigDel(p) =
∑

q∈(R∩Λ)

(r2
P\{p}(q)− r2

P (q)),

where R is the region in the triangulation affected by the deletion of p. That is,

sigDel(p) is the amount by which the squared error increases if p were deleted

from the mesh. The point p∗ to delete from the mesh is then selected as

p∗ = arg min
p∈mutable(P )

sigDel(p).

(b) Delete p∗ from the mesh (i.e. let P := P\{p∗})

(c) Go to step 6.

6. Restart main loop. Let i := i+ 1. Go to step 3 (i.e. the top of the main loop).

7. Postprocess mesh. Optionally, perform some postprocessing steps; then stop.

As introduced above, the framework has several free parameters. A more detailed

discussion of the parameters is deferred to Section 3.2.

2.10 Previously-Proposed Mesh-Generation Methods

The greedy point removal (GPR) scheme of Demaret and Iske [17] is a mesh-generation

method based on simplification that starts from a mesh containing all the sample points

in the image domain. Points are then removed iteratively from the mesh, one at a time,

until the desired mesh size is achieved. The method takes advantage of the locality

property of deletion in Delaunay triangulations (described in Section 2.4). The point

selected for removal from the mesh in each iteration is the one that causes the mesh
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approximation error to increase the least following its removal from the mesh. The point

is therefore chosen optimally from the whole mesh at a given iteration. Nevertheless, the

point deletion policy is greedy.

The IDDT scheme proposed in [20] is an incremental/decremental method derived

from the computational framework previously described in Section 2.9. It starts from a

mesh containing only the four extreme convex-hull points of the image domain, and then

alternates between mesh refinement and mesh simplification. The particular sequence of

inserting points into, and deleting points from, the mesh is determined by the growth

schedule. The growth schedule oscillates between values that are equal to the target

mesh size, and values that are below it. The amplitude of the oscillations below the

target mesh size decay exponentially according to a parameter of the method denoted

by α. More concretely, the growth-schedule setpoints are given by

ηi =

N − bαi/2(N − |Γ |)c i even

N i odd,

where Γ is the set of initial mesh points, α ∈ (0, 1), and L = 1 + 2b− logα(N − |Γ |)c.
The policy for selecting the point to insert into a given face f (i.e. selCand(f)) is known

as the peak-weighted-absolute-error (PWAE), which is defined as

arg max
p∈cands(f)

d(p)|φ̂P (p)− φ(p)|,

where d(p) is the MMSODD of φ at the point p.

Based on the same computational framework as the IDDT scheme, the ID1 and ID2

methods are a more effective alternative, yielding higher quality meshes. The ID1 and

ID2 methods use what is known as growth schedule A, which has setpoints that alternate

between values that are above the desired mesh size and the desired mesh size. The initial

mesh is chosen as the trivial case of the extreme convex-hull points. Then, the mesh size

oscillates between values that are equal to the desired mesh size, and values that are

greater with an exponentially decaying amplitude. Growth schedule A is given by

ηi =


|Γ | i = 0

N i even, i 6= 0

N + bα(i−1)/2(N − |Γ |)c i odd,
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where α ∈ (0, 1) and the growth schedule length is L = 2 + 2b− logα(N − |Γ |)c.
As for selecting the insertion candidate point, the ID1 and ID2 methods use the

so-called hybrid candidate-selection policy and the approximate local squared-error min-

imizer (ALSEM) policy, respectively. The ALSEM policy selects the candidate point

iteratively by estimating the effect of multiple point insertions. A more detailed descrip-

tion is deferred to Section 3.2.4. The hybrid candidate selection chooses the candidate

point using the PWAE policy during the initial part of the growth schedule, and later

switches to the ALSEM policy, which is more computationally expensive. This allows the

ID1 method to be faster, at a small penalty in terms of quality of the generated mesh.

On the other hand, the ID2 method uses the ALSEM policy exclusively which makes the

method slower. Nevertheless, both the ID1 and ID2 schemes perform significantly better

than competing schemes such as the GPR method in terms of mesh model quality and

computation cost.

The IDDT, ID1, and ID2 methods use a postprocessing step known as bad point

replacement (BPR) that replaces bad points from the mesh after the application of the

growth schedule is over. A bad point is a mutable point in the mesh whose deletion from

the mesh does not cause the approximation error to increase (i.e., sigDel(p) ≤ 0). The

BPR technique iteratively replaces bad points with new ones so that the total number

of points in the mesh remains unchanged.
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Chapter 3

Proposed Mesh-Generation Methods

and Their Development

3.1 Overview

In this chapter, we introduce some aspects of Adams’ framework in more detail, including

its free parameters. We also describe the various choices for the free parameters that

were considered for experimentation, including new choices that we proposed. Next, the

image data used for analysis and evaluation purposes is briefly discussed. Subsequently,

we evaluate the effect of the different choices for the free parameters on the quality of

the generated mesh model. Finally, we proposed the IID1 and IID2 methods, which have

lower and higher complexity, respectively, by fixing the framework’s degrees of freedom

based on the results of the experimental analysis.

3.2 Free parameters and Options Considered

As mentioned earlier in Section 2.9, the computational framework used as the basis for

our mesh-generation methods has several free parameters. In what follows, we describe

the framework’s free parameters and the different choices considered for each of them.

Before proceeding further, some comments regarding the computational framework

are in order. First, the framework is fundamentally greedy in that it only considers the

current state and the immediate consequences of actions when selecting points to add to,

or remove from, the mesh. As a result, the generated mesh is not guaranteed, or expected,

to be a globally optimal solution. The fact that a non-global optimum is produced is an
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acceptable compromise given that the mesh-generation problem addressed in our work is

known to be NP hard.

Additionally, it is clear that the manner in which the framework selects points for

insertion and deletion is asymmetric. The point selected during a point deletion phase is

the one that causes the error to increase the least. This is a greedy approach that yields

a locally optimal solution for a particular iteration. On the other hand, the process by

which the insertion candidate point is selected is not even likely to be locally optimal.

Evidently, the framework could be made more symmetric by selecting for insertion the

point that causes the approximation error to decrease the most as given by

p∗ = arg max
p∈mutable(Λ\P )

[
sigAdd(p)

]
,

where sigAdd(p) denotes the amount by which the mesh approximation error decreases

when the point p is added to the mesh. Unfortunately, computational considerations

make such a choice problematic. First, the connectivity changes following the insertion

of a point into a Delaunay triangulation are typically not local, unlike the case of point

deletion. As a result, on average, a larger proportion of the image needs to be scan

converted to compute the change in approximation error following the insertion of a

given point. Moreover, the set of mutable points (i.e., mutable(Λ \P )) for which sigAdd

is evaluated, is typically much larger than the set of points evaluated for deletion using

sigDel. Furthermore, given the greedy nature of the framework, such a drastic increase

in computational cost is highly unlikely to yield a proportionate increase in the quality

of the generated mesh.

The specific sequence of point deletions and insertions, which is determined from the

growth schedule, has a significant impact on the performance. That is, the effect of two

growth schedules that have the same total number of point insertions and deletions is

typically quite different. For example, consider two growth schedules X and Y . With X,

2000 points are inserted into the mesh, and then 1000 points are removed. With Y , points

are inserted by alternating between adding 20 points and removing 10 points for a total

of 100 times. Applying both growth schedules to an initial mesh Γ consisting of the four

extreme convex-hull points of the image domain will typically yield completely different

results in terms of quality of the generated mesh and computational cost, even though

the growth schedules have the same numbers of point insertions and deletions. From

an implementation viewpoint, grouping point insertion operations together and grouping

point deletions together is normally more efficient as we shall see later in Section 3.4.4,
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for reasons discussed in [21].

Another factor that greatly influences performance is the choice of the initial mesh. As

stated earlier, the way insertion candidate points are selected tends to be sub-optimal in

the long run due to the nature of the selection process and the greediness of the algorithm.

Starting with a coarse initial mesh exacerbates this problem because the point-insertion

policy has a larger window wherein it can insert multiple sub-optimal choices, which can

steer the mesh-generation process into a bad direction from which it is unable to recover.

Insertion-candidate selection policies that choose a point based on some measure relating

to the approximation error are particularly prone to this problem. This is due to the fact

that the error throughout the mesh is generally so large initially that the approximation

error for a particular point is not indicative of how a good a choice it is. On the other

hand, a non-trivial initial mesh can have significant benefits. Seen from an optimization

perspective, the closer the starting point for the search process is to an optimal solution,

the more likely it is that optimal solution will be reached and the less likely it is that

the algorithm will be trapped in a bad local minimum. Another advantage of using a

non-trivial initial mesh is that the computational cost of inserting and deleting points is

higher the smaller the mesh size is. With fewer vertices in the triangulation, the faces

are larger in proportion to the size of the image domain. The face-scanning operations to

update the errors and select candidate points are therefore more computationally costly.

Given the above comments, the motivation behind certain choices of the framework’s

free parameters considered for experimentation will hopefully be clearer, and we are able

to proceed.

3.2.1 Selection of Initial Mesh

The choices considered for selecting the point set Γ from which to construct the initial

mesh fall into two categories. The first category of policies are primarily meant to achieve

improvements in terms of computational cost compared to using a trivial mesh of the

extreme convex-hull points. This is achieved by using an initial mesh with a size that

is close to the target mesh size, and with a point distribution that avoids large faces

throughout the image domain. The second category of policies is such that the initial

mesh points are chosen to give a good initial approximation of the image using a content-

adaptive approach, while computational cost is secondary.

The desired initial mesh size passed to the initial point-set selection policy is defined

as a proportion of the target mesh density for the mesh-generation framework in the form
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of a ratio α. More formally, we have

Γ = initMesh(φ, αD),

where initMesh is the initial point-set selection policy and D is the target density. This

particular way of choosing the initial mesh size is due to the fact that good choices for

the value of this parameter typically depend on the target mesh size. It also allows the

computational cost of the initial mesh to be more consistently proportional to the overall

computational effort for mesh generation. Finally, the value of the parameter can be

fixed more easily when deriving the methods to propose. It should be noted that the

desired initial mesh density parameter is only meant as a rough guide to the policies.

Consequently, depending on the particular policy chosen and rounding considerations,

|Γ | may only be approximately equal to |αDΛ|.
In what follows, we introduce the choices considered for the initial point-set selection

policy. All the choices considered for the initial mesh are newly proposed for the mesh-

generation framework we are using. The random selection and error diffusion-based

policies have been used in some other previously-proposed mesh-generation methods such

as [42] and [33]. The other policies are new choices we adapted from other applications

for the purpose of our work. The choices are as follows:

• Random. Points are selected randomly from a uniform distribution within the

image domain. Some mesh-generation methods have shown this to be a poor

choice [42] when used with a mesh-simplification only approach. Consequently,

it is primarily used as a point of reference when evaluating the performance of the

other choices.

• Uniform grid. Sample points are selected such that they are spaced uniformly

in the image domain, subject to the limitations imposed by integer coordinates.

Effectively, this corresponds to uniform subsampling of the image domain. This

approach results in an initial mesh with faces that are roughly equal in area, and

therefore have a similar number of mutable points in them. Since the error of a face

may be influenced by the number of points it contains, this ensures that the effect

of the size of a face on its error is reduced. Consequently, the first point insertions

and deletions during mesh generation can be directed at the regions in the mesh

with the most error and which would benefit most.

Essentially, the image domain D = [0,W − 1] × [0, H − 1] is split into M equally

sized blocks. Then, the corners of the blocks are selected as the sample points.

Let wM and hM be the width and height of each block. Then the image width
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and height will be split into W
wM

and H
hM

equally sized intervals, respectively. The

number of blocks is therefore

M =
W

wM

H

hM
,

and the number of points corresponding to the corner points of the blocks is

N = round

[(
W

wM
+ 1

)(
H

hM
+ 1

)]
.

If the blocks dimensions are chosen to have the same aspect ratio as the image, the

number of points is

N = round

[(
W

wM
+ 1

)(
H

H
W
wM

+ 1

)]
= round

[(
W

wM
+ 1

)2
]
.

Hence, we have that wm = W√
N−1

hm = H
W
wm.

,

where N is the desired number of initial sample points (i.e., N = |αDΛ|). Conse-

quently, spacing points along the x and y directions by wM and hM , respectively,

as defined above, would approximately give the total number of points desired. An

example is shown in Figure 3.1 to better illustrate the process. In Figure 3.1(a), the

image domain is split into M equally sized blocks. The width and height of each

block are wM and hM , respectively. The corner points of the blocks are marked

with circles. The corner points are selected as the sample points leading to the

initial point set shown in Figure 3.1(b).

• Jittered grid. Points are placed approximately uniformly across the image domain

with the approach used in uniform sampling above. Each point pi is then displaced

along the x and y directions by xi and yi (xi ∈ Z and yi ∈ Z) respectively. The

displacement amounts xi and yi are random and small enough to ensure that a

point pi remains within the vicinity of its original position (i.e., within ±wM

2
and

±hM
2

where wM and hM are as defined previously for the uniform grid). This is a

form of stochastic sampling that has applications in image-rendering. It is used as
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Figure 3.1: Selection of the uniform grid sample points. (a) The image domain divided
into equally sized blocks and (a) the sample points selected.

an approximation to a uniform Poisson disk distribution due to its computational

efficiency [54]. As a result, it has the anti-aliasing properties of stochastic sampling

in addition to the benefits associated with a uniform grid.

• Error diffusion. Use the process described earlier in Section 2.7. The choices con-

sidered for the smoothing filter applied prior to the computation of the MMSODD

are the binomial filter and the bilateral filter.

• Adaptive Poisson-disk sampling. Use the process described in Section 2.8. The

mapping function that creates the radii map % from the input image for adaptive

Poisson disk sampling consists of the following steps:

1. Apply a 7th-order binomial smoothing filter to the input image φ to reduce

the effect of noise in subsequent filtering operations.

2. Apply an image transform f to the smoothed image to create a map (i.e.

bivariate function) whose values correlate with the level of detail. The options

considered are:

– gradient

– Laplacian

– maximum magnitude second order directional derivative (MMSODD)
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3. Compute the normalized map f̃ as

f̃(p) =
f(p)−min

q∈Λ
[f(q)]

max
q∈Λ

[f(q)]−min
q∈Λ

[f(q)] + ε
,

for p ∈ Λ, so that all values are in the range [0, 1]. The value ε is a very small

decimal (i.e., ε ≈ 0) that prevents division by zero in the unlikely case where

max
q∈Λ

[f(q)] = min
q∈Λ

[f(q)].

4. Apply a range inversion transform that flips the normalized values from the

previous step within the range [0, 1]. The transform is defined as

g(p) = 1− f̃(p).

The reason for this range inversion is that larger values in the normalized map

f̃ , which was computed in the previous step, correspond to more detail. On

the other hand, a smaller radius is needed in order to place more points in a

region of the image with more detail using Poisson disk sampling.

5. Apply a sensitivity adjustment function h(p) = [g(p)]γ to the values in the

map, where γ is a sensitivity adjustment parameter. This causes the difference

between the values in the radii map % to increase or decrease, thereby adjusting

the number of points that are selected.

• Subset of points with greatest detail. For a desired number of sample points

N = |αDΛ|, a subset of the sample points is selected based on the input image

as follows:

1. Apply a 7-th order binomial smoothing filter to the input image φ to reduce

the effect of noise in subsequent filtering operations.

2. Derive a detail image f from the smoothed image using one of the following

transforms:

– gradient

– Laplacian

– MMSODD

3. Create a histogram H of the detail image with a sufficiently large bin count β

in order to cover the whole range of values without lumping too many distinct

values together in a single bin (e.g., β = 1024). The histogram is organized

such that bin 0 contains the largest values,
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4. Initialize the index of the current bin i := 0 and the current sample count

C := H[0].

5. If C ≥ N , go to step 7.

6. Increment i and update the sample count C := C +H[i+ 1]. Go to step 5.

7. Set the threshold θ to the value associated with the histogram bin at index i.

8. Select all sample points from the detail image f that have a value greater than

or equal to the threshold θ.

The three policies are collectively referred to as the subset policies for short. The

recursive part of the algorithm above basically tries to extract the N sample points

that have the highest values (i.e., the most detail) from the detail image. Clearly,

the actual number of sample points selected will depend on the number of bins used

as well as the extent to which values overlap.

An illustration of the set of sample points selected by the various choices of policies

considered is shown in Figure 3.2.

3.2.2 Growth Schedule

In [21], four growth schedules named A, B, C, and I were considered. The A growth

schedule was selected by the author for the ID1 and ID2 methods, while the B growth

schedule was used in the earlier IDDT method. These growth schedules work reasonably

well and they can be used to cover a large number of test cases that may be of interest by

changing their α parameter. Nevertheless, these growth schedules are not well suited for

the larger non-trivial initial meshes that are being considered in our work. Consequently,

we chose to create four new growth schedules that are able to cover an even wider range

of test cases, while still keeping with the idea behind each of the original schedules.

One difference is that our definitions of the growth schedules do not consider the size

of the initial mesh. In addition, the length of the growth schedule is manually set and

determines the number of alternations between sequences of point insertions and deletions

before convergence to the target mesh size.

In what follows, we describe our four new growth schedules.

• Incremental (I′). Depending on the size of the initial mesh,
∣∣∣N − |Γ |∣∣∣ consecutive

point additions or point deletions are performed to reach the target mesh size N .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Examples of the sample points generated by each of the choices considered
for generating the initial set of points. (a) Random, (b) uniform grid, (c) jittered grid,
(d) error diffusion, and (e) Poisson-disk sampling policies. Subset of points with greatest
detail policies with (f) gradient, (g) Laplacian, and (h) MMSODD detail image.
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The growth schedule has a fixed length L = 2 and its setpoints are given byη0 = |Γ |

η1 = N.

Examples are shown in Figure 3.3 for two cases of growth schedule I′. The horizontal

dashed line represents the target mesh size to which the size converges and the

circular markers show the setpoints of the growth schedule. Two cases are shown:

1) when the initial mesh is smaller than the target mesh (i.e., α < 1), and 2) when

the initial mesh is larger than the target mesh (i.e., α > 1).

• Circa (C′). The mesh size oscillates about the target mesh size N with exponential

decay. The number of oscillations is equal to the growth schedule length L. The

growth schedule setpoints are given by

ηi = N + (−1)i
⌊
NAe

−4i
L−1

⌋
,

where A is an amplitude parameter and L is the growth schedule length. The

parameters of the growth schedule will be discussed later in this section because

they are common to types A′, B′, and C′. Figure 3.4 illustrates the evolution of

the mesh size and the setpoints (circular markers) for two cases of the C′ growth

schedule: with an initial mesh size that is 1) smaller and 2) larger than the target

mesh size.

• Above (A′). The mesh size oscillates between the target mesh size N and exponen-

tially decaying values above N . The number of oscillations above N is equal to the

growth schedule length L. The growth schedule setpoints are given by

ηi =

N +
⌊
NAe

−4i
L−1

⌋
i even

N i odd.

Examples of the evolution of the mesh size for growth schedule A′ is shown in

Figure 3.5. The two cases illustrated are for an initial mesh obtained with: 1) α < 1

and 2) α > 1.

• Below (B′). The mesh size oscillates between the target mesh size N and values
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below it, converging to N . The growth schedule setpoints are given by

ηi =

N −
⌊
NAe

−4i
L−1

⌋
i even

N i odd.

Examples of the evolution of the mesh size for growth schedule B′ is shown in

Figure 3.6. The two cases illustrated are for an initial mesh obtained with: 1) α < 1

and 2) α > 1.

The amplitude parameter A of growth schedules A′, B′, and C′ defines the amplitude

of the oscillations. A higher value leads to more points being added to/removed from the

mesh during each phase of point insertions/deletions in the growth schedule. The ampli-

tude of the oscillations is determined by NA (i.e., proportional to the target mesh size)

in the equations, so that the value of A can be fixed more easily when deriving a method

to work consistently with different image sizes. The length parameter L determines the

number of setpoints in the growth schedule sequence. With the two parameters A and

L, the number of insertion/deletion phases, and the number of operations in each phase

can be controlled independently. Such an approach is advantageous because, as previ-

ously mentioned, the length and number of insertion/deletion phases impact the quality

of the generated mesh and the computational cost in different ways. This differs from

the original growth schedules A, B, and C with which the number of setpoints and the

amplitude of oscillations could not be controlled directly or independently.

The formulas for growth schedules A′, B′, and C′ are set such that the oscillations

have decayed considerably by the end. The last setpoint is designed to be within less

than 2% of the initial amplitude. As seen in what follows, the decaying oscillations term

becomes (for i = L− 1)

Ae
−4i
L−1 = Ae

−4(L−1)
L−1 = Ae−4 = 0.0183A =

1.83

100
A.

The decision to have the growth schedule end within 2% of the target mesh size is due

to efficiency considerations. This is based on the fact that operations beyond that point

have a noticeable computational cost with minimal impact on the quality of the generated

mesh. This is to be expected given that frequent alternation between insertions and

deletions is inefficient. The value of the exponent term was rounded to 4 for convenience.

In passing, we note that, since we aim for a final mesh size that is exactly equal to N ,

growth schedules A′ and B′ are constrained to length values that are even so that the



41

(a) (b)

Figure 3.3: Evolution of the mesh size, and the setpoints for I′ growth schedule with
(a) α < 1 and (b) α > 1.

(a) (b)

Figure 3.4: Evolution of the mesh size, and the setpoints for C′ growth schedule with
(a) α < 1 and (b) α > 1.
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(a) (b)

Figure 3.5: Evolution of the mesh size, and the setpoints for A′ growth schedule with
(a) α < 1 and (b) α > 1.

(a) (b)

Figure 3.6: Evolution of the mesh size, and the setpoints for B′ growth schedule with
(a) α < 1, and (b) α > 1.
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last setpoint is ηL−1 = N (i.e., i = L − 1 is odd). In the case of growth schedule C′, a

final round of point insertions or deletions is performed to bring the mesh size to N since

the Ae
−4i
L−1 term is not zero for i = L− 1.

3.2.3 Face Selection Policy

The policy used for selecting the face in which a point is to be inserted is fixed in the

original framework formulation. We elected to consider the following choices as well in a

bid to improve the quality of the mesh generated:

• Sum of squared-errors (SSE). The chosen face f ∗ is the one with the highest ap-

proximation error measured in SSE. The SSE forms the basis of the MSE which is

used to measure the total mesh approximation error. As a result, it seems intuitive

that it should be used for the face selection policy as well, since that would have

the most impact on the total mesh error. This policy is also used in the original

framework and selects f ∗ as

f ∗ = arg max
f∈0

[
faceErr(f)

]
,

where 0 is the set of all faces that have at least one candidate point, and the face

error faceErr is defined as

faceErr(f) =
∑

p∈points(f)

(
φ̃(p)− φ(p)

)2

.

• Sum of absolute errors (SAE). The chosen face f ∗ is the one with the highest ap-

proximation error measured in terms of SAE. The SSE above is used as a measure

of approximation error in many modelling applications due to some of its mathe-

matical properties. One of its weaknesses, however, is that outlier values such as

noise can easily affect the quality of the model. In the case of photographic images,

noise is frequently present which means the quality of the mesh model can suffer.

The SAE is a good alternative to the SSE because it is less susceptible to the effect

of outliers. The policy selects f ∗ as

f ∗ = arg max
f∈0

[
faceErr(f)

]
,

where 0 is the set of all faces that have at least one candidate point, and the face
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error faceErr is defined as

faceErr(f) =
∑

p∈points(f)

∣∣∣φ̃(p)− φ(p)
∣∣∣.

• Highest level of detail (HLoD). A detail image Dφ is derived from the original image

using an image transform. The values in Dφ correlate with the amount of detail

in corresponding regions of the original image. The level of detail for each face is

given by

detailLevel(f) =
∑

p∈points(f)

∣∣∣Dφ(p)
∣∣∣.

The face f ∗ is selected as

f ∗ = arg max
f∈0

[
detailLevel(f)

]
,

where 0 is the set of all faces that have at least one candidate point. The choices

considered for creating the detail image are:

1. gradient;

2. Laplacian; and

3. MMSODD.

The motivation behind this policy is the observation that faces and regions of the

mesh model that benefit the most from inserting more points are those with more

detail (i.e., edges, texture). As more points are inserted using this policy, the

faces in regions of high detail become increasingly smaller thereby improving the

approximation.

3.2.4 Candidate Selection Policy

The policy selCand chooses a candidate point p∗ from within the face f ∗ to insert into

the mesh. The policies considered are as follows

• Peak absolute error (PAE). Of all the candidate points in the face, the policy selects

the point that has the highest absolute error. The candidate selection function
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selCand is defined as

selCand(f) = arg max
p∈cands(f)

[
|φ̃P (p)− φP (p)|

]
.

This is considered a baseline since it is a commonly used policy in mesh-generation

schemes.

• Approximate local squared-error minimizer (ALSEM), proposed in [21]. The func-

tion selCand that embodies the policy is defined as

selCand(f) = arg max
p∈S

∑
q∈points(f)

(
r2
P (q)− r2

P∪{p}(q)
)
, (3.1)

where S is a subset of cands(f). With d(p) denoting the MMSODD of the point p,

S is chosen as follows:

– If | cands(f)| > 18, S is chosen as the 9 points p ∈ cands(f) for which

d(p)|φ̂P (p) − φ(p)| is greatest, in addition to 9 other randomly-chosen (dis-

tinct) points.

– Otherwise, S = cands(f).

In (3.1), the summation corresponds to the reduction in the squared error if p were

inserted into the mesh, computed only locally over the points that are in points(f).

In other words, a simulation of the insertion of point p into the mesh is performed

with the assumption that no changes to the mesh occur outside the face f . The

connectivity update is therefore assumed to be a simple splitting of the face by

connecting the newly added vertex with the three pre-existing vertices of the face

f . In the case where p is on an edge e, the insertion of p is assumed to result in the

splitting of f into two triangles by connecting with a new edge the newly added

vertex and the existing vertex of f that is opposite e. Figure 3.7 shows an example

of the ALSEM policy. In Figure 3.7(a), the point p is a candidate point for the

face f that is shaded. When computing the local change error change over f , the

ALSEM policy assumes that the insertion of p only results in the creation of the

new edges that are in dashed lines. In Figure 3.7(b), the correct connectivity change

following the insertion of p into the mesh is shown. The face f , which no longer

exists in the triangulation, and into which the point p was inserted is represented

by the shaded area for reference.
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p

(a)

p

(b)

Figure 3.7: Assumed connectivity change in the ALSEM candidate selection policy. (a)
The point considered for insertion into the shaded face, and the connectivity update
assumed by ALSEM (dashed lines). (b) The actual Delaunay connectivity after inserting
the point into the face.

• Peak gradient magnitude. Selects the candidate point that has the highest gradient

value in the face. With G(p) denoting the magnitude of the gradient of the image

at point p, the function selCand is defined as

selCand(f) = arg max
p∈cands(f)

[
G(p)

]
.

• Peak Laplacian magnitude. Selects the candidate point that has the highest Lapla-

cian magnitude in the face. With ∇(p) denoting the value of the Laplacian of the

image at point p, the function is defined as

selCand(f) = arg max
p∈cands(f)

∣∣∣∇(p)
∣∣∣.

• Peak MMSODD. Selects the candidate point that has the highest MMSODD value

in the face. With d(p) denoting the (nonnegative-valued) MMSODD of the point p,

the policy selCand function is defined as

selCand(f) = arg max
p∈cands(f)

[
d(p)

]
.

The motivation behind the gradient, Laplacian, and MMSODD-based policies is the

observation that points are best inserted around strong edges of the image. This is due
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to the fact that, when a sufficient number of points is placed in this manner, edges of the

triangulation coincide with edges in the image which helps to reduce the approximation

error.

3.2.5 Postprocessing

In what follows, we consider two choices for the postprocessing step of the mesh-generation

framework. The two choices are aimed at dealing with bad points in the final mesh:

• Bad point replacement (BPR). This strategy, which was introduced in [21] and

briefly described in Section 2.10, removes bad points from the mesh and inserts

new points so that the total number of points remains unchanged. It consists of

the following steps:

1. Let nold :=∞ and let c := 0.

2. Let n := 0; while the point p that would be deleted from the mesh by the

next optDel operation satisfies sigDel(p)≤ 0, perform an optDel operation (to

delete p), mark p as immutable and, and let n := n+ 1.

3. If n > 0, perform n optAdd operations.

4. If n ≥ nold, let c := c+ 1.

5. Let nold := n; if n = 0 or c ≥ 3, stop; otherwise, go to step 2.

• Bad point deletion (BPD). We consider a postprocessing algorithm known as bad

point deletion. This is a simplified version of the bad point replacement strategy.

The modified policy removes bad points, which are the result of the suboptimality

of the candidate-selection policies, without replacing them with new ones. The

motivation behind this simplification is the fact that point insertions, which are

performed in BPR, do not necessarily decrease the error, and may in fact increase

it. On the other hand, point deletion operations in bad point replacement are

guaranteed to not increase the approximation error. As BPD only removes points

from the mesh, the mesh density of the result is less than or equal to the target

mesh density. As a result, it is only suitable for instances where small gains in mesh

quality are deemed more important than obtaining a mesh with an exact size. The

bad point deletion algorithm consists of the following steps:



48

1. If mutable(P ) = ∅, go to step 5. Otherwise, update the significance with

respect to deletion of the mutable points that are in the mesh (i.e., sigDel(p)

for p ∈ mutable(P )). As stated previously, sigDel(p) is the amount by which

the squared error increases if p were deleted from the mesh.

2. Select the point p∗ defined as

p∗ = arg min
p∈mutable(P )

sigDel(p).

3. If sigDel(p∗)≤ 0, go to step 4. Otherwise, go to step 5.

4. Remove p∗ from the mesh. Go to step 1.

5. Return P and terminate.

3.3 Test Data

Before proceeding to present experimental results, a brief digression is in order regarding

the test images we used. In our work, we employed 50 images, taken mostly from standard

data sets, such as the Kodak test set [68], JPEG-2000 test set [69], and USC image

database [70]. During the analysis of the free parameters, we use a subset of the data

set consisting of 40 images for statistical analysis. For the evaluation of the proposed

methods, the full set of 50 images listed in Table 3.1 is used, with the extra 10 images

serving as a validation data set. Such an approach allows us to reduce the likelihood

of overfitting the data when developing the mesh-generation methods. In the remainder

of the thesis, when presenting results for individual test case, we focus on the small

representative subset of the test images listed in Table 3.2. The images in the set represent

a variety of image types: photographic, medical, and computer-generated imagery.

3.4 Analysis of Options Available

We introduced the mesh-generation framework earlier in Section 2.9 as well as its degrees

of freedom and the choices considered for each of them in Section 3.2. In what follows,

we examine the effect the various choices have on the framework’s performance. Based

on the results of this analysis, we make recommendations regarding a particular set of

choices for the parameters, leading to the two specific mesh-generation methods proposed

herein.
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Table 3.1: Images in the test data set

Image Dimensions Bit depth Description
aerial2 2048×2048 8 Aerial photography
bike 2048×2560 8 Photographic image
cats 3072×2048 8 Photographic image
chart 1688×2347 8 Computer-generated document
cmpnd1 512×768 8 Computer-generated document
cr 1744×2048 10 CR scan of abdomen
elev 1201×1201 12 Elevation map
gold 720×576 8 Photographic image
hotel 720×576 8 Photographic image
mat 1528×1146 8 Photographic image
mri 256×256 11 MRI scan of head
tools 1524×1200 8 Photographic image
us 512×448 8 Abdominal ultrasound
water 1465×1999 8 Photographic image
woman 2048×2560 8 Photographic image
x ray 2048×1680 12 X-ray
kodim01 768×512 8 Photographic image
kodim02 768×512 8 Photographic image
kodim03 768×512 8 Photographic image
kodim04 512×768 8 Photographic image
kodim05 768×512 8 Photographic image
kodim06 768×512 8 Photographic image
kodim07 768×512 8 Photographic image
kodim08 768×512 8 Photographic image
kodim09 512×768 8 Photographic image
kodim10 512×768 8 Photographic image
kodim11 768×512 8 Photographic image
kodim12 768×512 8 Photographic image
kodim13 768×512 8 Photographic image
kodim14 768×512 8 Photographic image
kodim15 768×512 8 Photographic image
kodim16 768×512 8 Photographic image
kodim17 512×768 8 Photographic image
kodim18 512×768 8 Photographic image
kodim19 512×768 8 Photographic image
kodim20 768×512 8 Photographic image
kodim21 768×512 8 Photographic image
kodim22 768×512 8 Photographic image
kodim23 768×512 8 Photographic image
kodim24 768×512 8 Photographic image
animal 1238×1195 8 Computer-generated
bull 1024×768 8 Computer-generated image
checkerboard 512×512 8 Computer-generated image
checkerboard aa 512×512 8 Computer-generated image
ct 512×512 12 CT scan of head
glasses2 1024×768 8 Computer-generated scene
lena 512×512 8 Photographic image
muttart 1912×761 8 Photographic image
peppers 512×512 8 Photographic image
wheel 512×512 8 Computer-generated image
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Table 3.2: Images in the representative data set

Image Dataset Dimensions Bit
depth

Description

bull Misc. 1024×768 8 Computer-generated bull
ct Misc. 512×512 12 CT scan of head
lena Misc. 512×512 8 Photographic image of woman

3.4.1 Face-Selection Policy

First, we study the effect of the face-selection policy in step 4 of the framework from

Section 2.9 on the quality of the mesh. To do this, we fix the initial mesh to the extreme

convex-hull points of the image domain, the candidate-selection policy to be PAE, the

growth schedule to be A′ with L = 15 and A = 1, and disable the use of BPR/BPD.

Then, we select from amongst the five face-selection policies under consideration, namely,

SSE, SAE, and gradient-, Laplacian-, and MMSODD-based HLoD. For each of the 40

images in our test set and six sampling densities per image (for a total of 240 test

cases), we generated a mesh using each of the face-selection policies, and measured the

approximation error of the reconstruction in terms of PSNR. Individual results for the

three images in Table 3.2 are given in Table 3.3(a). In addition, the PSNR results

obtained with each of the policies over the entire test set were ranked from 1 (best) to 5

(worst). Subsequently, the average and standard deviation of the ranks were computed

across each sampling density as well as overall. The rankings are given in Table 3.3(b).

The best result in each of the test cases is typeset in bold.

Examination of the statistical results shows that SSE clearly performs best with an

average overall rank of 1.09, followed by SAE with an overall rank of 1.94. The remaining

policies are on approximately equal footing, although the MMSODD and gradient policies

do slightly better than the Laplacian policy. A more detailed analysis shows that SSE is

best in 221/240 (92%) of the test cases. Since the goal is to minimize the approximation

error which is measured using the squared error, it is not surprising that the error-based

face-selection policies together (i.e., SSE and SAE) perform best in 238/240 (99%) of

the test cases. Nevertheless, the idea of selecting faces in regions of the image with high

levels of detail in order to partition them into smaller triangles appears to have been well

founded. This is demonstrated by the fact that the PSNR for the gradient, Laplacian,

and MMSODD policies is not far behind the results obtained with SSE and SAE in
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(a) (b)

(c) (d)

Figure 3.8: Comparison of the subjective mesh quality obtained for the lena image at a
sampling density of 1% with the (a) SSE and (c) SAE policies, and the corresponding
meshes (b) and (d), respectively.

some test cases. The individual results shown in Table 3.3(a) are consistent with the

statistical results. For example, SSE outperforms SAE in 16/18 (89%) of the test cases

with a margin of 0.01 dB to 1.52 dB. We should also mention that the PSNR was found

to correlate reasonably well with subjective image quality. Furthermore, all five policies

have similar computational complexity so the quality of the approximation is the deciding

factor. Consequently, we deem the SSE policy to be most effective and recommend its

use in the framework.

Examples of the results obtained with each of the choices considered for the face-

selection policy and the corresponding triangulations are shown in Figures 3.8 and 3.9.
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Table 3.3: Comparison of the mesh quality obtained with the various choices of face-
selection policies. (a) PSNR for three specific images. (b) Average rankings across
the 40 images in the data set.

(a)

Image
Sampling
density (%)

PSNR (dB)
SSE SAE Gradient Laplacian MMSODD

bull 0.125 33.69 33.19 31.51 31.50 31.56
0.250 38.36 36.83 35.31 35.52 35.71
0.500 41.26 39.81 39.74 38.50 39.98
1.000 43.17 42.07 42.02 42.12 42.20
2.000 45.15 44.19 44.10 44.46 44.46
3.000 46.56 45.96 45.45 45.97 45.89

ct 0.125 28.53 28.51 27.81 27.43 27.67
0.250 32.73 33.02 31.90 30.73 31.18
0.500 37.73 37.31 36.31 36.11 36.25
1.000 41.40 41.11 40.11 40.36 39.98
2.000 45.44 45.13 43.94 44.41 44.24
3.000 47.97 47.69 46.35 45.61 45.48

lena 0.125 21.41 21.44 20.90 20.30 20.19
0.250 23.99 23.84 23.12 22.63 22.86
0.500 26.32 25.94 25.55 25.05 25.25
1.000 28.87 28.50 28.15 27.68 28.24
2.000 31.55 31.21 30.96 30.58 31.05
3.000 33.01 32.70 32.41 32.13 32.53

(b)

Sampling
density (%)

Mean Ranka

SSE SAE Gradient Laplacian MMSODD
0.125 1.28 (0.60) 1.95 (0.71) 4.03 (1.00) 4.05 (0.81) 3.70 (0.91)
0.250 1.15 (0.36) 1.85 (0.36) 3.85 (0.83) 4.25 (0.84) 3.90 (0.74)
0.500 1.08 (0.27) 1.95 (0.32) 3.65 (0.74) 4.50 (0.68) 3.83 (0.84)
1.000 1.03 (0.16) 1.98 (0.42) 3.73 (0.85) 4.30 (0.72) 3.93 (0.86)
2.000 1.00 (0.00) 1.98 (0.42) 3.95 (0.81) 4.18 (0.90) 3.83 (0.78)
3.000 1.00 (0.00) 1.95 (0.32) 4.08 (0.73) 4.13 (1.04) 3.73 (0.78)

Overall 1.09 (0.32) 1.94 (0.44) 3.88 (0.84) 4.23 (0.85) 3.82 (0.82)

aThe standard deviation is given in parentheses.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Comparison of the subjective mesh quality obtained for the lena image at a
sampling density of 1% with the (a) gradient, (c) Laplacian, (e) and MMSODD policies,
and the corresponding meshes (b), (d), and (f), respectively.
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3.4.2 Candidate-Selection Policy

Now, we evaluate the choices for the candidate-selection policy in step 4 of the framework

from Section 2.9, and how they affect performance. We fix the free parameters of the

framework as follows: the extreme convex-hull points of the image domain for the initial

mesh, SSE for the face-selection policy, growth schedule A′ with L = 4 and A = 4, and

disable the use of BPR/BPD. Then, we select amongst the choices under consideration

for the candidate selection policy which are PAE, ALSEM, gradient, Laplacian and MM-

SODD. The test cases used are the same as previously described: 40 images with six mesh

densities per image between 0.125% and 3%. The mesh-quality results for individual test

cases as well as the statistical results for the full data set are shown in Table 3.4. In each

case, the best and second best results are typeset in bold and italic fonts, respectively.

We begin by examining the individual mesh-quality results obtained with each of

the candidate-selection policies as given by Table 3.4(a). The ALSEM policy performs

best in 15/18 (83%) of the test cases. For lower mesh densities, the margin by which

the ALSEM policy outperforms the other choices can be quite large, even compared to

the second-best performing choice. The difference in PSNR gradually decreases as the

size of the target mesh increases. Based on the individual PSNR results, we cannot

discern a clear choice for the second best performer. The PAE policy consistently ranks

second for densities of 0.25% and lower, and is not too far behind the ALSEM policy for

higher densities. On the other hand, the level-of-detail policies have mixed performance

depending on the mesh density and the image used. Nevertheless, the MMSODD policy

is relatively consistent compared to the gradient and Laplacian policies when it comes to

mesh quality relative to the ALSEM policy.

Now, we examine the statistical ranking results in Table 3.4(a). The previous conclu-

sion that the ALSEM policy performs best is confirmed by its average rank of 1.19 with

a low standard deviation value of 0.60. The previous observation that the PAE policy

performs acceptably at low densities only is confirmed by its average rank that gradually

declines from 2.95, for test cases with a density of 0.125%, to 3.63 at 3%. The statistical

results for the MMSODD policy show that it is consistently the second-best choice for

mesh densities of 0.25% and higher. Its rank gradually improves as the density increases

which was also observed in the individual results. Despite the clearly superior perfor-

mance of the ALSEM policy, the recommendation of a choice for the candidate-selection

policy is actually not quite as straightforward as it may appear. The reason is that the

ALSEM policy has the downside of noticeably higher computational cost compared to
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the other choices. The selection of one candidate-selection policy for the framework is

even more problematic when we consider the fact that, in certain cases, the MMSODD

policy is able to achieve results that are very close or better than the ALSEM policy,

with a typically much smaller computational cost. For these reasons, we recommend

both choices and the task of selecting which one to use will fall upon the user depending

on whether mesh quality or computational cost is more important.

3.4.3 Growth Schedule

Next, we examine how the choice of growth schedule affects performance. We fix the ini-

tial mesh to the extreme convex-hull points of the image domain, the face-selection policy

to be SSE, the candidate-selection policy to be PAE, and disable the use of BPR/BPD.

Then, we select from amongst the growth schedules under consideration, namely, I′, A′,

B′, and C′. The growth schedules will normally have a significantly different number

of operations if the growth schedule length and amplitude parameters, when applicable,

are chosen the same. Consequently, we try to put the growth schedule on equal footing

by fixing the amplitude parameter A to 0.5, and adjusting the length parameter L so

that they have an approximately equal total number of operations. Growth schedule I′

has no parameters, but it does have the same target mesh size. The length value set for

each growth schedule type and an example of the corresponding count of insertion and

deletion operations for a test case with a target mesh size of 10004 are listed in Table 3.5.

We can see that the individual as well as total operations counts are suitably close for

growth schedules A′, B′, and C′, especially considering that we are constrained to an

integer schedule length value.

Let us consider the statistical results for the rank of each of the growth schedules

in Table 3.6(b). The clear winner is growth schedule A′ with an average rank of 1.02

across the 240 test cases. It is followed by growth schedules C′, B′ then I′, with ranks of

2.00, 2.88 and 3.94, respectively. The standard deviations are all very small for growth

schedule A′ (i.e., less than or equal to 0.34), and only marginally higher for the other

choices, confirming that these rankings are consistent across different images in the data

set as well as the different mesh densities. Looking at the results in more detail, we

find that growth schedule A′ performs best and second best in 235/240 (98%) and 4/240

(1.7%) of the test cases, respectively. The results for the individual test cases are shown

in Table 3.6(a). The PSNR data in this table clearly validates the observations from

the statistical data, with growth schedule A′ outperforming the B′, C′, and I′ growth
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Table 3.4: Comparison of the mesh quality obtained with the various choices of candidate-
selection policies. (a) PSNR for three specific images, and (b) average rankings across
the 40 images in the data set.

(a)

Image
Sampling
density (%)

PSNR (dB)
PAE ALSEM Gradient Laplacian MMSODD

bull 0.125 33.55 34.60 27.11 32.32 32.16
0.250 38.20 39.07 31.88 36.89 37.43
0.500 41.53 42.37 38.93 40.63 41.18
1.000 43.50 44.30 43.81 42.91 43.89
2.000 45.44 46.13 46.05 44.92 45.80
3.000 46.87 47.41 47.35 46.33 47.08

ct 0.125 28.16 28.62 25.54 25.28 27.54
0.250 32.65 32.89 28.37 30.00 32.54
0.500 37.52 37.78 32.78 35.95 37.80
1.000 41.33 41.76 38.85 41.31 42.05
2.000 45.24 45.68 44.82 45.52 45.74
3.000 47.95 48.24 47.71 48.08 48.09

lena 0.125 21.79 22.57 20.14 20.41 20.64
0.250 24.33 24.72 22.25 22.71 23.39
0.500 26.58 27.08 25.11 24.98 26.64
1.000 28.88 29.61 27.98 27.87 29.43
2.000 31.57 32.20 31.25 30.96 32.15
3.000 33.16 33.72 33.25 32.68 33.64

(b)

Sampling
density (%)

Mean Ranka

PAE ALSEM Gradient Laplacian MMSODD

0.125 2.95 (0.93) 1.15 (0.58) 2.90 (1.13) 4.73 (0.60) 3.28 (0.88)
0.250 3.30 (0.99) 1.20 (0.61) 2.90 (1.17) 4.73 (0.75) 2.85 (0.74)
0.500 3.48 (0.78) 1.33 (0.89) 3.00 (1.15) 4.70 (0.82) 2.43 (0.78)
1.000 3.53 (0.78) 1.25 (0.71) 2.93 (1.14) 4.58 (1.08) 2.20 (0.79)
2.000 3.60 (0.84) 1.10 (0.30) 3.00 (1.04) 4.55 (1.11) 2.00 (0.60)
3.000 3.63 (0.84) 1.13 (0.33) 2.93 (1.00) 4.50 (1.18) 2.08 (0.80)

Overall 3.41 (0.89) 1.19 (0.60) 2.94 (1.10) 4.63 (0.94) 2.47 (0.89)

aThe standard deviation is given in parentheses.
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Table 3.5: Length value used for evaluating growth schedules A′, B′, C′, and I′, and the
associated number of operations with a target mesh size of 10000.

Growth
schedule

Schedule length Insertions count Deletions count Total count

I′ - 10000 0 10000
A′ 9 17862 7767 25629
B′ 17 17479 7566 25045
C′ 5 17862 7767 25629

schedules by margins of 0.13–0.62 dB, 0.11–0.71 dB and 1.44–2.97 dB, respectively. The

performance of growth schedule I′ is substantially worse than all of the other choices,

and this was found to be generally true regardless of the number of operations growth

schedule I′ is able to perform. This is somewhat expected considering growth schedule

I′ exclusively performs either point insertions or point deletions, which is known to be

less effective. Since growth schedule A′ is the clear winner, we recommend it for the

growth-schedule free parameter of the framework.

3.4.4 Growth Schedule Length and Amplitude

The choice of the length and amplitude parameters of growth schedules A′, B′, and C′ is

best considered jointly since the two parameters are interdependent. The initial mesh is

fixed to the extreme convex-hull points of the image domain, the face-selection policy to

SSE, the candidate-selection policy to MMSODD, the growth schedule to A′ and disable

the use of BPR/BPD. The growth schedule length L and amplitude A parameters are

then varied. For reasons of simplicity, we will focus on one particular test case of the lena

image with a target mesh density of 1%. We note, however, that the trends observed were

found to be consistent across the entire data set at the various densities. In Figure 3.10,

each test case with a particular combination of values for L and A is indicated by a marker

(i.e., square, circle, triangle, and asterisk). The x-coordinate of a marker corresponds to

the value of L used in the test case that is represented by the marker. In Figure 3.10(a),

the y-coordinate of a marker corresponds to the PSNR of the reconstruction of the mesh

generated in the test case represented by the marker. In Figure 3.10(b), the y-coordinate

corresponds to the total execution time for the test case represented by the marker. In

both figures, test cases that are represented by the same marker symbol (e.g., asterisk)

are those for which A was set to the same value. The lines connecting the markers are
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Table 3.6: Comparison of the mesh quality obtained with growth schedules I′, A′, B′,
and C′. (a) PSNR for three specific images. (b) Average rankings across the 40 images
in the data set.

(a)

Image
Sampling
density (%)

PSNR (dB)a

A′ (9) B′ (17) C′ (5) I′

bull 0.125 33.49 33.34 33.37 30.74
0.250 37.84 37.44 37.57 35.29
0.500 40.81 40.46 40.57 38.77
1 42.76 42.31 42.52 41.07
2 44.78 44.30 44.49 43.07
3 46.27 45.69 45.96 44.54

ct 0.125 28.24 27.64 27.79 25.27
0.250 32.52 32.39 31.80 30.00
0.500 37.61 37.19 37.33 35.18
1.000 41.34 41.06 41.22 39.67
2.000 45.25 44.98 45.13 43.79
3.000 47.88 47.54 47.74 46.30

lena 0.125 21.04 20.61 20.79 19.01
0.250 23.47 22.85 23.16 21.66
0.500 25.9 25.50 25.78 24.27
1.000 28.49 27.98 28.32 26.87
2.000 31.32 30.80 31.04 29.75
3.000 32.77 32.29 32.51 31.33

aThe schedule length is given in parentheses next to the schedule type.

(b)

Sampling
density (%)

Mean Ranka

A′ B′ C′ I′

0.125 1.05 (0.22) 2.95 (0.31) 3.98 (0.15) 3.98 (0.15)
0.250 1.07 (0.34) 2.90 (0.37) 4.00 (0.00) 4.00 (0.00)
0.500 1.02 (0.15) 2.90 (0.37) 4.00 (0.00) 4.00 (0.00)
1.000 1.00 (0.00) 2.86 (0.47) 4.00 (0.00) 4.00 (0.00)
2.000 1.00 (0.00) 2.83 (0.54) 3.86 (0.65) 3.86 (0.65)
3.000 1.00 (0.00) 2.86 (0.52) 3.79 (0.78) 3.79 (0.78)

Overall 1.02 (0.18) 2.88 (0.44) 2.00 (0.30) 3.94 (0.42)

aThe standard deviation is given in parentheses.
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merely added to help with visualization of the trends. That is, the lines do not represent

continuity in the data and they are not necessarily indicative of expected results for test

cases that are in-between data markers.

By examining Figure 3.10(a), we can make several observations. First, for a fixed

growth schedule amplitude A, increasing the growth schedule length L typically leads to

an increase in the PSNR of the approximation. We obtain diminishing returns for the

mesh quality, however, as the rate of increase of the PSNR that results from a higher

value of L diminishes. For example, the gradients (i.e., rate of increase of the PSNR)

for L = 8 are typically steeper than the gradients for L = 35. Furthermore, the rate of

increase of the PSNR resulting from increasing the value of L decreases with A. That

is, for a given L, the gradients are steeper with smaller values of A. For example, the

gradients for A = 0.5 are much higher than they are for A = 2 throughout the range of

L in our test cases. The second observation is that, for a fixed L, increasing A typically

improves the PSNR. As with the first observation, we have diminishing returns and the

benefits are smaller the greater the value of L. Increasing A from 0.5 to 2, for instance,

leads to a greater increase in PSNR when L = 4 than it does when L = 40.

Now looking at Figure 3.10(b), we see that computational cost increases with A and

L. The rate of increase of the computational cost when L is varied depends on the value

of A. For example, the gradient (i.e. rate of increase of the execution time) for L = 35 is

higher with A = 3 than it is with A = 0.5. A similar observation can be made regarding

the effect of changing A.

When both figures are considered together, we can make the observation that com-

putational cost keeps increasing as the two parameters are increased, while the PSNR

eventually saturates. Consequently, the ratio of computational cost to PSNR of the gen-

erated mesh will vary greatly depending on the choice of the parameters. For instance,

let us examine the test case where A = 1 and L = 40, we will refer to it as C1. The

mesh generated has a PSNR of 28.79 dB with an associated execution time of 5.88s. In

the PSNR plot (i.e. Figure 3.10(a)), using the horizontal dashed line as a guide, we can

see that a mesh with a very similar PSNR (28.81 dB) to that of C1 can be obtained

using a L = 4 and A = 2. We will refer to this second case as C2. Now, let us exam-

ine the timing plot (i.e. Figure 3.10(b)). We find that C2 has a computational cost of

2.75s. Consequently, we are able to achieve a similar mesh quality to C1 in less than half

the computation time of C1 by using different values for the parameters of the growth

schedule. In some instances, a higher mesh quality is of more importance than reducing

computational cost. Using the horizontal and vertical dashed lines as guides, we can also
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see that for the case C3 where the A = 3 and L = 13, a higher quality mesh associated

with a PSNR of 29.09 dB can be obtained.

The reason for these results is that grouping point insertions together and point

deletions together is typically more effective than frequently alternating between the

two. The specific cause is an implementation detail into which we will not delve, but an

explanation can be found in the paper introducing the framework [20]. The observations

are crucial and are used to our advantage in deciding on what particular values should

be chosen for the parameters. Based on further experimentation, we determined that,

for growth schedule A′ which we recommended earlier, and parameter values of A = 3

and L = 4 or L = 6 generally provide a good compromise between mesh quality and

performance.

3.4.5 Initial Mesh

In what follows, we consider the effectiveness of the various choices of the initial mesh

in step 1 of the mesh-generation framework from Section 2.9. For this purpose, we

perform an experiment. In this experiment, the face-selection policy is fixed to SSE, the

candidate-selection policy to PAE, the growth schedule to A′ with A = 3 and L = 4,

and the use of BPR/BPD is disabled. Subsequently, we select amongst the choices of

initial mesh point selection policies. A gradient-based radii map is selected for use with

adaptive Poisson disk sampling following a preselection process. For the three images in

our representative test set and six sampling densities per image, we generated a mesh

using each of the eight policies considered for the selection of the initial mesh points, and

then we measured the approximation error of the reconstruction in terms of PSNR. The

mesh-quality results for individual test cases are presented in Table 3.7.

By examining the results in Table 3.7, we observe that the variation between the

PSNR values is relatively small. In fact, if we exclude the results of the adaptive Poisson-

disk sampling choice for reasons that we will explain shortly, the difference between the

PSNRs of the highest and worst performing choice has median and average values of

0.22 dB and 0.23 dB, respectively. This shows that the effect of the choice of initial

mesh on the quality of the results is not as significant as that of the choices for other free

parameters. In fact, choices that select the initial points randomly, or based on a uniform

or jittered grid in a non-adaptive way, often perform similar to adaptive point selection

such gradient-based choices. As long as the points are reasonably scattered across the
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Figure 3.10: Comparison of the effect of L and A on (a) the PSNR of the approximation
and (b) the execution time.
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Table 3.7: Comparison of the mesh quality obtained for three specific images with the
various choices of initial mesh considered.

Image

Samp.
density
(%)

PSNR (dB)

ED
Subseta

Random
Uniform
Grid

Jittered
Grid

Poisson
DiskG. L. M.

bull 0.125 33.75 33.70 33.46 33.51 33.46 33.48 33.59 33.81
0.250 38.45 38.21 38.36 38.31 38.18 38.39 38.27 38.00
0.500 41.55 41.51 41.61 41.55 41.53 41.60 41.51 40.79
1.000 43.55 43.45 43.43 43.49 43.55 43.55 43.56 42.41
2.000 45.44 45.39 45.35 45.40 45.45 45.40 45.43 45.51
3.000 46.92 46.81 46.82 46.79 46.86 46.85 46.82 46.89

ct 0.125 28.52 28.48 28.86 28.38 28.46 28.32 28.55 28.14
0.250 32.64 32.78 32.86 32.68 32.64 32.67 32.73 32.84
0.500 37.30 37.35 37.51 37.41 37.50 37.50 37.27 37.54
1.000 41.27 41.35 41.28 41.26 41.48 41.44 41.43 41.41
2.000 45.37 45.41 45.24 45.28 45.27 45.36 45.31 45.00
3.000 47.87 47.86 47.82 47.84 47.85 47.84 47.85 47.37

lena 0.125 21.77 21.46 21.68 21.79 21.84 21.75 21.63 22.16
0.250 24.17 23.98 24.18 24.04 24.36 24.21 24.29 24.36
0.500 26.53 26.34 26.45 26.54 26.60 26.53 26.61 26.73
1.000 28.99 28.69 29.01 29.01 29.05 29.01 29.03 29.24
2.000 31.69 31.55 31.62 31.65 31.62 31.70 31.72 31.58
3.000 33.24 33.05 33.13 33.06 33.20 33.25 33.13 32.88

aG., L. and M. stand for the gradient, Laplacian and MMSODD-based variants, respectively.

image domain, performance is typically good. In passing, we note that these observations

are valid for growth schedules with large amplitudes and small length values such as those

used in the test cases in this section. The impact of the initial mesh varies with the specific

growth schedule used, and generally the choice of initial mesh does affect performance.

In the case of adaptive Poisson-disk sampling, no direct mechanism exists for controlling

the number of points selected in the implementation used in our work. In the test cases

of Table 3.7, the number of samples selected by adaptive Poisson disk sampling were

typically much larger than those generated by the other choices of initial mesh policies

despite careful tuning of its free parameters. Furthermore, the computational cost of

Poisson disk sampling is prohibitive even in the cases where it performs best, resulting

in execution time penalties of up to an order of magnitude. This leads us to recommend

Floyd-Steinberg error diffusion for the selection of the initial mesh points, as we found

it during additional testing to be the most consistent across different image types and

densities.
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3.4.6 Postprocessing

In what follows, we evaluate the impact of choosing the bad point deletion (BPD) tech-

nique for step 7 of the mesh-generation framework. To do this, we perform an experiment

where we fix the free parameters of the framework as follows: face-selection policy to SSE,

the candidate-selection policy to MMSODD, the growth schedule to A′ with A = 4 and

L = 4. For all 40 images in our test set and for six sampling densities (totalling 240

test cases), we generated a mesh both with and without BPD. Then, we computed the

difference, in terms of PSNR, between the approximation error of the reconstruction for

each test case with BPD and the corresponding test case without it. For each density

as well as the overall results, we calculate statistics relating to the percentage of cases

that BPD increases the quality of the mesh, in addition to the minimum, median, and

maximum difference values. The results are shown in Table 3.8.

By examining the results, we find that BPD typically only changes the PSNR of a

small proportion of the test cases. Although not immediately clear, we note that BPD

affects fewer of the test cases as the target mesh density increases. Furthermore, the

extent of change generally also decreases as mesh density increases. The results are

somewhat to be expected with the growth schedule of type A′ that we are seeing as the

growth schedule always ends with a series of points deletions. Bad points, by definition,

have a negative deletion significance value (i.e., sigDel < 0). Consequently, they are

the first to be removed from the mesh when a sequence of point deletions starts. As

the density or A increases, the last sequence of point deletions becomes longer, which

decreases the likelihood that bad points are left when the mesh-generation framework

reaches the step where BPD is applied.

We evaluate the effect of enabling bad point replacement (BPR) on mesh quality using

an experimental procedure similar to that used for BPD. We fix the free parameters of

the framework as follows: face-selection policy to SSE, the candidate-selection policy to

MMSODD, the growth schedule to A′ with A = 4 and L = 4. For each of the 40 images

in our test set and for six sampling densities, we generated a mesh both with and without

BPR. Then, we computed the PSNR differences between the approximation error of the

reconstructions for the test cases with BPR and those without it. For each density as

well as the overall results, we calculate statistics relating to the percentage of test cases

where the difference is not zero (i.e., the cases where BPR leads to a change in the mesh

quality), in addition to the minimum, median, and maximum difference. The statistical

results are shown in Table 3.9,
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Table 3.8: Statistical results for the change in PSNR when bad point deletion (BPD) is
applied.

Sampling
density (%)

PSNR Change
Incidence (%) Minimum (dB) Median (dB) Maximum (dB)

0.125 30.0 0.0005 0.0042 0.1469
0.250 27.5 0.0006 0.0031 0.4043
0.500 30.0 0.0002 0.0016 0.0192
1.000 25.0 0.0001 0.0009 0.039
2.000 22.5 0.0001 0.0002 0.0192
3.000 22.5 0.0001 0.0002 0.0008

Overall 26.25 0.0001 0.0012 0.4043

A first observation is that, for some test cases, the use of BPR leads to a decrease in

the PSNR of the approximation. This is the result of inserting new points, which is not

guaranteed to decrease the error in BPR. Furthermore, we note that the number of test

cases for each mesh density as well as overall where the PSNR changed after applying

BPR is higher than with BPD even though both apply to the same test cases (i.e., test

cases that have bad points). The reason is that BPD only removes points that do not

lead to a decrease in PSNR. As a result, it changes the PSNR of a smaller subset of the

test cases to which it is applied. Looking at the minimum, median, and maximum of the

PSNR change, we can see that the impact of BPR on the quality of the approximation

typically reduces as the mesh density increases. This is due to the fact that a single point

tends to have a lower incidence on the overall mesh connectivity and, subsequently, the

approximation quality as the size of the mesh increases. Finally, we observe that, for

test cases where the mesh quality improves, the PSNR increase is typically higher than

with BPD. Given that the increase in mesh quality in many test cases is quite significant

relative to the potential decrease in other test cases, we recommend the use of the BPR

technique in the postprocessing step of the framework.

3.4.7 Image Filter

A smoothing filter needs to be applied to the image before the computation of the MM-

SODD, gradient and Laplacian to reduce the effect of noise. The choice of filter si-

multaneously affects error diffusion used for selecting the initial mesh, as well as the

MMSODD-based and ALSEM candidate-selection policies. In what follows, we evaluate
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Table 3.9: Statistical results for the change in PSNR when bad point replacement (BPR)
is applied

Sampling
density (%)

PSNR Change
Incidence (%) Minimum (dB) Median (dB) Maximum (dB)

0.125 35 -1.1696 -0.0904 2.1261
0.250 37.5 -0.4102 -0.0615 7.9005
0.500 35 -0.1953 -0.0201 1.0997
1.000 45 -0.659 -0.0218 0.0131
2.000 75 -0.1238 0.0002 0.0202
3.000 37.5 0.0004 0.0040 0.0127

Overall 44.17 -1.1696 -0.00625 7.9005

the impact of the choice of filter as well as filter parameters. To this effect, we perform

an experiment. In this experiment, we fix the candidate-selection and the face-selection

policies to be PAE and SSE, respectively, the growth schedule to be A′ with A = 3 and

L = 4, and disable the use of BPD. We select amongst the choices of filter type as well

as filter parameters, and generate a mesh for each of the 40 images in our data set with

six sampling densities. We evaluate in terms of PSNR the approximation error of the

reconstruction of the mesh generated in each of the test cases. For the binomial filter, we

vary the filter order, and for the bilateral filter we vary the range and space parameters

simultaneously. A preliminary selection round was used to select a subset of parameters

to consider for each filter type. Binomial filters of orders 5, 7, 9, 11, and 13 were eval-

uated from which the values 5, 7, and 9 were selected. Similarly, nine combinations of

parameter values for the bilateral filter were evaluated and narrowed down to three. The

subset of results selected for each filter were compiled into a single list, ranked from 1

(best) to 6 (worst) for each test based on the PSNR, and then the ranks were averaged.

The ranking results for each density and overall are presented in Table 3.10.

Upon examination of the results, we notice that the binomial filters consistently out-

perform the bilateral filters in all the test cases. This is the case for the averages over

all images as well as per density. The binomial filters have similar overall average ranks

and standard deviation values. Looking at the results in more detail, we are not able to

discern any clear trends. We can conclude that there is no consistent best choice, and

an order value in the range 5–9 for the binomial filter should perform reasonably well

in most cases. Since the binomial filter of order 7 ranks slightly better than the other

choices, we recommend it as the smoothing filter in our work.
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Table 3.10: Statistical comparison of the choices for the filter type and parameter values

Samp.
density
(%)

Mean Ranka

Binomialb Bilateralc

5 7 9
0.10 0.25 0.25
12 12 18

0.125 2.43 (1.35) 2.75 (1.45) 2.55 (1.36) 4.73 (1.32) 3.93 (1.61) 4.63 (1.46)
0.250 2.65 (1.08) 2.15 (1.37) 2.25 (1.19) 4.75 (1.24) 4.30 (1.42) 4.90 (1.22)
0.500 2.45 (1.50) 2.55 (1.30) 2.80 (1.40) 4.48 (1.30) 4.10 (1.85) 4.63 (1.31)
1.000 2.55 (1.57) 2.80 (1.43) 2.75 (1.45) 4.65 (1.41) 4.03 (1.94) 4.15 (1.33)
2.000 2.85 (1.29) 2.38 (1.69) 3.00 (1.59) 4.35 (1.66) 4.05 (1.92) 3.78 (1.59)
3.000 2.75 (1.78) 2.75 (1.35) 2.55 (1.43) 4.15 (1.73) 4.10 (2.05) 3.70 (1.52)

Overall 2.61 (1.45) 2.56 (1.43) 2.65 (1.41) 4.52 (1.45) 4.08 (1.80) 4.30 (1.47)

aThe standard deviation is given in parentheses.
b5, 7, and 9 are the binomial filters’ orders
c0.10 and 0.25 are values of the range parameter. 12 and 18 are values of the space parameter.

3.5 Proposed Methods

In the preceding sections, we studied how various choices of the free parameters of the

mesh-generation framework affect performance. With the insight obtained from that

analysis, we are able to introduce the two mesh-generation methods proposed herein.

The growth schedule and face-selection policy A′ and SSE, respectively, were consistently

found to be the most effective choices compared to the alternatives. Hence, unsurpris-

ingly, they have been selected for the methods we are proposing. The recommendation

of the ALSEM and MMSODD candidate-selection policies as two choices with different

trade-offs between mesh quality and computational cost motivates us to propose two

methods. The first method called IID1 uses the lower complexity MMSODD candidate-

selection policy, and the second method called IID2 uses the higher complexity ALSEM

policy. The IID1 method aims for faster execution times and so the values of its A′ growth

schedule parameters A and L were chosen as A = 3 and L = 4. The higher complexity

IID2 method, which prioritizes mesh quality, is identical to the IID1 method, except that

it uses L = 6 and the ALSEM policy. Since in the case of an even L, the growth schedule

A′ has one setpoint appended to it to reach the actual mesh size desired, a value of L = 6

is effectively only one step up from L = 4. As for the remainder of the free choices for

the two methods, Floyd-Steinberg error diffusion is used to select the initial mesh points

with a density of 1%, a 7th-order binomial filter is selected for smoothing prior to the

MMSODD calculation, and the use of the bad point replacement technique is enabled.
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Chapter 4

Evaluation of the Proposed Methods

4.1 Overview

4.2 Evaluation of the Proposed Methods

Having introduced the proposed IID1 and IID2 mesh-generation methods, we now eval-

uate their performance in terms of mesh quality and computational cost by comparing

them to other well-known schemes. The implementations used for this purpose were

developed by the author of this thesis and were written in C++. (For more details about

the software, see Appendix A). Our performance comparison focuses, in particular, on

the GPR, IDDT, ID1, and ID2 methods because they produce Delaunay meshes and

use a linear interpolant, similar to our methods. Furthermore, the other methods can be

easily derived from the same mesh-generation framework used herein by choosing the free

parameters appropriately. This has the benefit of ensuring that the comparison that we

are performing is fair. In passing, we note that the ID1 and ID2 methods have a param-

eter α for adjusting the length of the growth schedule, thereby increasing or decreasing

the computational cost with a corresponding increase or decrease in mesh quality. In our

comparison, we use α = 0.4 which is the value advocated in [21]. We also note that, by

comparing the performance of our methods against that of the state-of-the-art IDDT,

ID1, and ID2 schemes, we are also indirectly showing that they outperform schemes such

as the MGH [71], OMGH [20], ED [36], OED [20] and GPRFS-ED [42] methods, to which

the IDDT, ID1, and ID2 methods have been shown to be superior [20, 21].
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4.3 Mesh Quality

For mesh quality evaluation, we employ the full set of 50 images as introduced earlier

in Section 3.3 with seven sampling densities (between 0.125% and 4%) per image for a

total of 50 × 7 = 350 test cases. We used each of the methods under consideration to

generate a mesh model for each of the images in our data set. Then, we measured the

approximation error of the mesh reconstruction in terms of PSNR. The individual results

for a representative subset of the images (namely, those listed in Table 3.2) are shown in

Table 4.1(a). For each of the 350 test cases, the PSNR performance of the six methods

(i.e. IID1, IID2, ID1, ID2, IDDT, GPR) was ranked from 1 (best) to 6 (worst). The

average and standard deviation were then calculated for each density as well as overall

with the result presented in Table 4.1(b). The best and second best result in each case

are typeset in bold and italic, respectively.

We begin by comparing the IID1 and IID2 methods to the IDDT scheme. The overall

statistical results in Table 4.1(b) show that the IID1 and IID2 methods outperform the

IDDT scheme at all sampling densities. In fact, the IDDT method has the worst average

rank of 5.69 amongst all six methods. Looking at the full results in more detail, we

find that the IID1 and IID2 methods beats the IDDT scheme in 332/350 (95%) and

342/350 (98%) of the test cases, respectively. By examining the results for the individual

test cases in Table 4.1(a), we see that the IID1 method beats the IDDT scheme in 19/21

of the test cases by a margin of 0.04–1.31 dB, and the IID2 method beats the IDDT

scheme in 21/21 of the test cases by 0.33–2.36 dB. This is consistent with the overall

statistical results.

Next, we compare the performance of the proposed methods to the GPR method.

Examining the statistical results in Table 4.1(b), we observe that the IID2 method out-

performs the GPR method consistently across all of the sampling densities, whereas the

IID1 method ranks similarly or better on average than the GPR scheme for target densi-

ties of 0.5% and higher. More detailed analysis of the results shows that the IID2 method

beats the GPR method in 346/350 (99%) of the test cases. The IID1 method outperforms

the GPR scheme in 221/350 (63%) of the test cases across all densities. As expected, the

performance of the IID1 method improves considerably for higher densities. It is able to

beat the GPR method in 117/150 (78%) of the test cases for densities of 2% and higher.

Now, we consider the individual results in Table 4.1(a). We see that these individual

results are consistent with the overall statistical results. The IID2 method outperforms

the GPR scheme in all cases, while the IID1 method has mixed results in comparison but
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Table 4.1: Comparison of the mesh quality for the various methods. (a) PSNRs for three
specific images. (b) Rankings averaged across 50 images.

(a)

Image
Sampling
density (%)

PSNR (dB)
IID1 IID2 ID1 ID2 IDDT GPR

bull 0.125 31.14 34.18 34.90 34.56 33.85 33.51
0.250 37.63 39.15 38.87 38.76 37.51 38.18
0.500 41.45 42.24 41.84 42.24 40.42 41.89
1.000 43.81 44.22 43.91 44.27 42.50 43.97
2.000 45.73 46.09 45.79 46.13 44.46 45.83
3.000 47.08 47.37 47.15 47.37 45.78 47.14
4.000 48.23 48.44 48.26 48.44 46.97 48.24

ct 0.125 27.71 28.88 28.62 28.60 27.52 28.22
0.250 32.30 33.09 33.27 32.99 32.43 32.38
0.500 37.77 37.87 38.20 37.88 37.44 37.44
1.000 42.07 41.79 41.97 41.74 41.37 41.45
2.000 45.62 45.59 45.83 45.69 45.25 45.32
3.000 47.96 48.10 48.30 48.17 47.74 47.88
4.000 49.91 49.99 50.16 50.07 49.63 49.80

lena 0.125 20.43 22.76 22.03 22.50 20.39 22.08
0.250 23.73 24.90 24.68 24.84 23.18 24.38
0.500 26.75 27.19 26.93 27.10 25.82 26.59
1.000 29.40 29.58 29.44 29.62 28.46 29.09
2.000 32.10 32.22 32.15 32.17 31.05 31.78
3.000 33.63 33.73 33.59 33.64 32.50 33.37
4.000 34.66 34.71 34.62 34.72 33.49 34.42

(b)

Sampling
density (%)

Mean Rank a

IID1 IID2 ID1 ID2 IDDT GPR

0.125 4.92 (0.57) 1.36 (0.94) 3.72 (0.86) 2.08 (0.57) 5.64 (1.16) 3.28 (0.83)
0.250 4.74 (0.69) 1.38 (0.81) 3.68 (1.04) 2.06 (0.68) 5.70 (1.04) 3.44 (0.93)
0.500 4.02 (0.84) 1.42 (0.84) 3.70 (1.36) 2.04 (0.70) 5.78 (0.91) 4.02 (0.94)
1.000 3.58 (0.95) 1.38 (0.67) 3.46 (1.28) 2.02 (0.74) 5.70 (1.20) 4.46 (0.99)
2.000 3.12 (0.77) 1.32 (0.65) 3.38 (1.18) 1.96 (0.73) 5.68 (1.20) 4.64 (1.05)
3.000 3.10 (0.81) 1.40 (0.83) 3.22 (1.23) 1.98 (0.65) 5.68 (1.20) 4.70 (0.99)
4.000 3.18 (0.80) 1.38 (0.67) 3.20 (1.26) 1.96 (0.67) 5.68 (1.20) 4.70 (0.99)

Overall 3.81 (1.06) 1.38 (0.77) 3.48 (1.19) 2.01 (0.67) 5.69 (1.13) 4.18 (1.11)

aThe standard deviation is given in parentheses.
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typically performs better at higher densities and with medical and photographic images.

Such performance from the IID1 and IID2 methods is particularly impressive considering

that, as we will see later, they are noticeably less computationally expensive than the

GPR method.

Now, let us compare the IID1 and IID2 methods to the ID1 and ID2 methods. To do

this, we examine the statistical results in Table 4.1(b). The IID2 method is clearly best

overall with rank 1.38 and a relatively small standard deviation of 0.77. The competing

ID2 method is second best with rank 2.01 and a small standard deviation as well (0.67).

The results for the IID2 and ID2 methods are consistent across all sampling densities with

very little deviation from the mean. The ID1 method is third best overall followed closely

by the IID1 method in fourth position, with average ranks of 3.48 and 3.81, respectively.

The performance of the ID1 and IID1 methods varies with sampling density. The average

ranking of both is typically worse at low densities and then gradually improves as the

mesh density increases. The IID1 method, however, has a larger spread of ranking values

across the range of mesh densities, going from noticeably worse than the ID1 method at

0.125% to performing better than the ID1 or equally well on average at sampling densities

of 2% and higher. A more detailed analysis of the results shows that the IID2 method

beats the ID1 and ID2 methods in 310/350 (89%) and 281/350 (80%) of the test cases,

respectively. The IID1 method performs better than the ID1 method in 165/350 (47%)

of the test cases, which increases to 65% for densities of 2% and higher. The individual

PSNR results in Table 4.1(a) are consistent with the conclusions from the statistical

analysis. We also note that, although the ID2 method beats our IID2 method in some

test cases, the difference is typically small. In 8/10 (80%) of the test cases where the

ID2 method beats our IID2 method, the difference in PSNR is 0.08 dB or less. We have

found this to be a consistent occurrence across the test cases.

Finally, comparing the individual results of our methods in Table 4.1(a), we see that

the IID2 method outperforms the IID1 scheme in 19/21 (90%) of the test cases. This is

consistent with the statistical results in Table 4.1(b). Nevertheless, the IID1 method is

able to beat, or comes very close to, the IID2 scheme at times. Examining the results in

more detail, we find this to be the case in 20/350 (6%) of the test cases. This happens

with images that have strong edges, such as photographic images, at densities of 1% and

higher, which highlights one of the strengths of the MMSODD candidate-selection policy.

Overall, we have found that one of our two method performs best out of all methods that

were considered in our evaluation in 263/350 (75%) of the test cases.

In the above evaluation, PSNR was found to correlate reasonably well with subjective
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quality. For the benefit of the reader, however, we include some examples illustrating

the subjective quality achieved by the various methods. The examples are chosen to

contain a variety of image types. For each example, we show a small part of the image

reconstruction under magnification as well as the corresponding triangulation. Since the

IID2 and ID2 methods are higher complexity methods, while the IID1 and ID1 methods

are lower in complexity, the examples are grouped together according to their complexity

for easier comparison. We begin by examining one of the test cases from Table 4.1(a),

specifically the computer-generated bull image with a sampling density of 0.5% shown

in Figures 4.1 and 4.2. We can clearly see that the image approximations produced by

our IID1 and IID2 methods are similar to those produced by the ID1 and ID2 methods,

respectively. The PSNR difference of 0.39 dB between the approximations of the IID1

and ID1 methods are barely perceptible and are less significant than one would expect

from the PSNR difference alone. Furthermore, the quality of the image approximations

produced by the IID2 and ID2 methods are also clearly superior to those of the IID1 and

ID1 methods, with smoother gradients and sharper, more accurate contours.

Figures 4.3 and 4.4 show another set of examples which are for the photographic lena

image with a sampling density of 2%. The PSNR values for these test cases are very close,

with a difference of 0.12 dB between the worst performing IID1 method and the best

performing IID2 method. The image approximations are visually similar overall. Upon

closer inspection, however, we notice slightly higher quality with the higher complexity

IID2 and ID2 methods over the other two methods. The gradients over the skin are

smoother and the contours are preserved better. We also observe that the approximation

generated using our IID1 method, compared to the ID1 method, is able to capture facial

features slightly more accurately despite being marginally worse by 0.05 dB in terms of

PSNR. Consequently, we can say that the approximations produced by the IID1 method

are typically visually similar to those produced using the ID1 scheme.

4.4 Computational Cost

Next, we briefly evaluate the computational cost (i.e. execution time) of the methods

in our comparison. For this purpose, we provide a representative subset of timing mea-

surements collected using a 5 year old laptop with a 2.4GHz Intel Core i7 processor and

4GB of RAM. For the images in Table 3.2 and six sampling densities per image, the time

required for mesh generation for each of the methods was measured. Five runs were per-

formed in each case with the execution time for each one measured individually. Then,
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(a) (b)

(c) (d)

Figure 4.1: Part of the image approximation obtained for the bull image at a sam-
pling density of 0.5% with the proposed (a) IID1 method (41.45 dB), and (b) the ID1
method (41.84 dB), and (c) and (d) their corresponding triangulations.
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(a) (b)

(c) (d)

Figure 4.2: Part of the image approximation obtained for the bull image at a sam-
pling density of 0.5% with the proposed (a) IID2 method (42.24 dB), and (b) the ID2
method (42.24 dB), and (c) and (d) their corresponding triangulations.
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(a) (b)

(c) (d)

Figure 4.3: Part of the image approximation obtained for the lena image at a sam-
pling density of 2% with the proposed (a) IID1 method (32.10 dB), and (b) the ID1
method (32.15 dB), and (c) and (d) their corresponding triangulations.
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(a) (b)

(c) (d)

Figure 4.4: Part of the image approximation obtained for the lena image at a sam-
pling density of 2% with the proposed (a) IID2 method (32.22 dB), and (b) the ID2
method (32.17 dB), and (c) and (d) their corresponding triangulations.
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Table 4.2: Comparison of the computational cost for the various methods.

Image
Sampling
density (%)

Execution Time (s)
IID1 IID2 ID1 ID2 IDDT GPR

bull 0.125 4.0 8.8 5.0 11.5 3.2 125.4
0.250 5.4 11.1 8.0 16.3 4.3 117.5
0.500 7.2 16.0 16.1 26.7 7.5 116.1
1.000 9.9 22.6 24.0 38.5 11.4 115.2
2.000 14.8 31.4 30.3 45.4 16.1 112.3
4.000 24.4 41.2 29.6 45.2 22.0 109.7

ct 0.125 1.1 2.7 1.4 3.4 0.9 38.9
0.250 1.2 3.2 1.8 4.0 1.1 39.2
0.500 1.8 4.0 2.4 5.2 1.5 36.6
1.000 2.7 5.4 3.0 6.0 1.9 37.4
2.000 4.2 7.2 4.1 7.6 2.6 36.8
4.000 7.1 12.2 6.7 11.1 4.0 35.3

lena 0.125 1.1 3.0 1.6 3.6 1.2 39.1
0.250 1.2 2.9 1.7 4.1 1.2 39.1
0.500 1.6 3.9 2.5 4.9 1.4 38.7
1.000 2.5 5.3 3.3 6.3 2.0 37.5
2.000 4.1 7.8 4.7 8.6 2.7 37.3
4.000 7.1 12.7 7.6 11.9 4.3 36.8

the median value of the runs for each case was determined. The results are presented in

Table 4.2.

At first glance, we can see that the execution time for all methods is monotonically

increasing with the sampling density except for the GPR scheme for which has the oppo-

site. The result is expected given that the GPR method is a mesh-simplification scheme

and therefore requires more operations for a smaller target mesh size. Furthermore, the

performance of the GPR method is clearly the worst. It is slower than all of the other

methods in all cases, and its execution time is high even at very low densities. Exam-

ining the results more closely, we see that the computational cost of our two methods

is typically lower than that of competing methods of similar complexity. In particular,

our IID1 method typically beats the ID1 and ID2 methods at most densities in our test

cases. Compared to the IDDT method, our IID1 method alternates between being faster

and slower depending on the mesh density and particular image. This performance is

particularly noteworthy when we recall that the IID1 method is able to achieve approx-

imation qualities that are typically noticeably better than the IDDT method, and often

close to those of higher complexity methods. For example, in the case of the lena image

with a mesh density of 2%, the execution time of the IID1 method is 47%, 13%, 52%
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and 89% lower than that of the IID2, ID1, ID2 and GPR methods, respectively, but

the PSNR of the corresponding approximation is only marginally lower (0.05–0.12 dB)

compared to the first three methods, and 0.32 dB higher compared to the GPR method.

As for the IID2 method, it has an execution cost lower than that of the GPR method

by margins of 62–93% across the test cases. Additionally, the computational cost of the

IID2 method is lower than or similar to that of the competing ID2 method in all of the

test cases. More specifically, the IID2 method is able to achieve a reduction in execution

time of 9–41% in 15/18 (83%) of the test cases. It is able to achieve the most savings

in the test cases with low densities and those with large images. Furthermore, the IID2

method has lower or similar computational cost compared to the lower complexity ID1

method for the bull image with densities of 0.5–2%. The computational cost of our IID2

method is particularly impressive considering that it has the best ranking in terms of

mesh quality by a decent margin. These computational cost results are consistent with

the observations we made earlier in Section 3.4 that better efficiency can be achieved

using growth schedules with a higher value for the amplitude parameter and a smaller

value for the length parameter.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have studied image representation using triangle-mesh models. In

particular, we have proposed two new mesh-generation methods, derived by fixing the

degrees of freedom of the incremental/decremental mesh-generation framework of [20].

As the framework has several free parameters, we first evaluated how different choices

of these parameters affect mesh quality. The results of the analysis were used to rec-

ommend specific choices for these parameters, which led to the proposal of two new

mesh-generation methods, known as IID1 and IID2.

Through experimental results, our proposed IID1 and IID2 methods were shown to

outperform competing mesh-generation methods of similar complexity, namely the ID1,

ID2, IDDT, and GPR methods. In particular, we demonstrated that our proposed meth-

ods are more efficient, yielding higher quality image approximations for a given compu-

tational cost. The higher complexity IID2 method was shown to achieve better quality

approximations than the ID2 and GPR methods, with lower or similar computational

cost. The lower complexity IID1 method was shown to trade a typically small penalty

in image approximation for lower computational cost. The different trade off between

computational cost and approximation quality allows our two methods to be useful in a

wide range of applications. As part of our work, we proposed better choices for some of

the free parameters of the mesh-generation framework, namely: a new growth schedule

A′, a MMSODD-based candidate-selection policy, and Floyd-Steinberg error diffusion for

the selection of the initial mesh points. These choices were shown to typically lead to an

increase in mesh quality or reduction in computation time or both. The IID1 method uses
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all three of our newly proposed choices for the free parameters, while the IID2 method

uses the newly proposed initial mesh and growth schedule.

5.2 Future Work

As part of the work presented in this thesis, we covered numerous possible choices for

the various free parameters of the incremental/decremental mesh-generation framework

of [20]. Nevertheless, further work on certain areas could still prove beneficial. In what

follows, we discuss some of the areas that we feel are most promising.

In Section 3.2, we introduced adaptive Poisson-disk sampling (PDS) as a choice for

selecting the initial mesh points. The radii map used with adaptive Poisson-disk sampling

and its mapping function were developed by the author based on extensive experimen-

tation. The performance of PDS was somewhat mixed and we opted not to select it as a

choice due to its computational cost relative to the return on mesh quality. The imple-

mentation we used is based on a state-of-the-art algorithm [72], currently considered to

be one of the most efficient methods for generating Poisson-disk samples. Nevertheless,

we believe the computational cost of PDS could be reduced and the quality of its results

could be improved and made more consistent by developing an improved choice for the

mapping function. In particular, the normalization procedure we used is quite basic and

does not account for the energy in the image. With fixed parameter values, this leads to

too few samples being selected with certain images and too many with others, resulting

in the mixed results that we observed. Alternatively, since the properties of true PDS

are not quite needed in our application, another option worth exploring is the use of a

different (and faster) approach for adaptive sampling with blue-noise properties.

Another choice we considered for the initial mesh is Floyd-Steinberg error diffusion,

which we eventually selected for our two proposed methods. Error diffusion has several

degrees of freedom (e.g., scan order and sensitivity) which we fixed based on the con-

clusions of previous research. These choices are, however, not necessarily optimal in the

context of the computational framework that we used. Mesh quality could potentially be

improved with different choices for the free parameters. In particular, reduction of the

start-up effect that often affects error diffusion is worth investigating.

Finally, for efficiency reasons, we generated the MMSODD of the image once and used

it in all the choices that are based on the MMSODD. As a result, the binomial smoothing

filter we applied to the image before computing the MMSODD affects all of the choices

that are based on the MMSODD, such as the candidate-selection policies (e.g., ALSEM)
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and error diffusion for the selection of the initial mesh points. Performance of the mesh-

generation methods is likely to benefit from using distinct versions of the MMSODD that

are computed from copies of the image that are smoothed differently for the different

applications. For example, an edge-preserving bilateral filter with σr = 1 and σs = 1

might be a good choice for smoothing the image while computing the MMSODD used

in error diffusion, whereas a 9-th order binomial filter might be better suited for the

MMSODD used in the ALSEM candidate-selection policy.
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Appendix A

Software User Manual

A.1 Introduction

During the course of the research presented in this thesis, the author, with considerable

help from his supervisor, Dr. Michael Adams, developed a software framework for the

mesh-generation methods proposed herein. In addition, the software allows for other

variations that were considered during experimentation, as well as some existing schemes

such as the GPR [17], GPRFS [42], ID1 [21], and ID2 [21], and IDDT [20] methods,

which are based on Delaunay triangulations. The software implementation was written

in C++ and consists of over 9000 lines of code. It makes use of some fairly involved data

structures and algorithms to optimize performance. The Poisson-disk sampling imple-

mentation was ported from Java [73] to C++ and modified for the purposes of our work.

It is based on the Fast Poisson Disk Sampling algorithm of Bridson [72]. The bilateral

filter implementation was obtained from [74]. Additionally, the software implementa-

tion relies heavily on the Computational Geometry Algorithm Library (CGAL) [75], the

Signal Processing Library (SPL) [76] and its extension SPLEL, and some of the Boost

libraries [77].

The software framework has several degrees of freedom, with many possible choices

for each, in order to maximize flexibility. The software package consists primarily of

two executable programs: generate_mesh and rasterize_mesh. The generate_mesh

program reads a grayscale image from standard input or a file specified by the user, and

creates a mesh model of the image with the desired sampling density based on the method

and method-specific parameters that were passed to the program. The rasterize_mesh

program takes, as input, the set of points and corresponding function values that comprise
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the mesh model, and then creates a raster image reconstruction. In the remainder of this

appendix, information relating to the software will be provided in more detail including

how to build and use the software.

A.2 Building the Software

The software needs to be built before it can be used. The standard make utility program

is used for this purpose for the sake of simplicity and robustness. In order to create the

executable files, make compiles and links the necessary source files based on a set of rules

defined in the Makefiles provided. The software was developed and tested on Linux but

does not use platform-specific features. Consequently, in theory, it is not restricted to

UNIX-like platforms or specific hardware, but some of its dependencies (e.g., libraries)

may have such constraints. The build process requires a C++ compiler that complies

with the C++11 version of the standard, but C++14 is recommended. The GCC C++

compiler version 4.8 or greater is recommended. Alternative compilers supporting C++11

could also be used but they have not been tested. The Clang compiler may be used with

a simple change of the compiler command in the Makefile, while other compilers may

require more extensive changes. As stated previously, the software uses some libraries

which need to be installed first: CGAL, Boost, SPL, and SPLEL. The following versions

of these libraries were used by the author and are known to work:

• CGAL version 4.7

• Boost version 1.58

• SPL version 1.1.24

• SPLEL version 1.1.36

Other version combinations, especially newer releases, may very well work but this

cannot be guaranteed. The libraries are assumed to be located in a standard system

path. If this is not the case, the correct paths need to be manually set in the Makefile

using the following variables:

• CGAL PATH for CGAL

• BOOST PATH for Boost
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• SPL PATH for SPL and SPLEL

Once the prerequisites are satisfied, the software may be built by setting the work-

ing directory to the top level of the source-code tree, and then running the following

commands:

make clean

make

The make clean command is optional, although considered good practice. The build

process may be accelerated by enabling multithreading for make using the -j N option

where N is the number of threads desired. A value up of 4 is considered reasonable on

a modern processor, for example: make -j4. The above commands should create the

executables generate_mesh and rasterize_mesh in the directories in which the source

code of the programs is located.

A.3 File Formats

Given that the rasterize_mesh program is meant to rasterize mesh models created by

generate_mesh, the input of the former is the output of the latter. This format is referred

to herein as the mesh model format. Conversely, the input to generate_mesh and the

output of rasterize_mesh are images containing the original data and the reconstructed

model, respectively. These images use the format described in what follows.

A.3.1 Image Format

The generate_mesh program takes as input an image that complies with the set of graph-

ics formats defined by the Netpbm project [78], sometimes collectively named the portable

anymap format (PNM). Black and white, grayscale, and color images are all supported

in the PNM format, but the author’s software only supports black and white images,

and grayscale images of arbitrary bitdepths. The grayscale variants are often referred

to portable as gray map (PGM) format, hence associated with the “.pgm” extension.

The reconstructed model output of the rasterize_mesh program is also generated in

the PGM format.
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A.3.2 Mesh Model Format

A slightly modified version of the Object File Format (OFF) [79] is used for outputting

the mesh model generated by the generate_mesh program, and used as input to the

rasterize_mesh program. Given that the OFF format is commonly used for storing

meshes, a major advantage of the format is the ability to use a number of existing software

for visualization and manipulation of the mesh data (e.g., GeomView). The OFF format

is a raw representation of the data (i.e., uncompressed) with space-separated values in

plain text, following a header consisting of the keyword OFF. The modification to the

original OFF format consists of the insertion by the generate_mesh program of some

additional data before the OFF keyword. The data consists of the width, height, and

maximum possible brightness value of the original image. The width and height allow

for a reduction of the computational cost during rasterization. The maximum possible

brightness value, which is extracted from the original image, is important because it

allows support for multiple bit-depths, which the mesh-generation software supports. It

ensures that the reconstruction output has the same brightness range as the original

image. Given that the custom header only affects the beginning of the file, the rest of

the data in the mesh file remains completely compatible with the original object file

format. Consequently, the OFF-formatted data may be easily extracted for use with

other software that is OFF-compatible. In summary, the mesh model has the following

format:

WIDTH HEIGHT

MAX_VALUE

{OFF_DATA}

where {OFF DATA} represents the pure OFF data for the mesh model, the contents of

which begin with the keyword OFF.

A.4 Detailed Software Description

As previously stated, the software consists of two programs: generate_mesh and

rasterize_mesh. The generate_mesh program is used for mesh-generation, whereas

the rasterize_mesh program is used for rasterization of the mesh model. In the sec-

tions that follow, a detailed description of the command line interface for each program

is given.
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A.4.1 The generate_mesh Program

Synopsis

generate_mesh [OPTIONS] < input_file > output_file

Description

The generate_mesh program reads an image in the PNM format from standard input,

and writes a mesh model of the image to standard output. The generate_mesh program

consists of three main functional blocks: the initial mesh selection block, the mesh sim-

plification and refinement block, and the postprocessing block. The first block selects

the initial-mesh points using an approach that does not use meshes. In other words, a

subset of the sample points of the original image is generated either adaptively based

on the image content, or in an open-loop fashion (e.g., randomly). The set of sample

points that constitute the output of this block are used to seed the initial mesh. The

mesh simplification and refinement block which comes second works iteratively on the

mesh to create a model of the image with the desired sampling density. The sequence

of insertions and deletions is determined from the growth schedule setpoints which the

size of the mesh tracks. The final block performs postprocessing on the generated mesh

model. In the software, it implements bad point replacement and bad point deletion. If

a mesh encoding method were used, it would be part of this block.

Due to the multitude of free parameters and their hierarchical structure, a nam-

ing convention that naturally shows this hierarchy was used. A sub-parameter “Y”

of a parameter “X” is indicated by an option named “X.Y”. For example, param-

eters relating to the initial mesh generation block are prefixed with “init.”, and

init.prefilter.bilateral.range denotes the “range” option sub-parameter associ-

ated with the init.prefilter.bilateral parameter.

Options

In what follows, $arg denotes the value of the argument of an option.

--help

Print a help message listing all the free parameters and the supported

values for these parameters.

--density $arg
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Set the desired output mesh density as a percentage of the total num-

ber of samples in the original image to $arg (e.g., $arg=8 for 8%).

Valid values for $arg are as follows: 0 < $arg ≤ 100

--init.density.ratio $arg

Set the initial mesh density scaling factor to $arg. The actual initial

mesh density is the product of the target density value and the value

of the initial mesh density scaling factor. Therefore, a value that less

than 1 leads to an initial mesh with fewer points than the final mesh.

Valid values for $arg are as follows: density ∗ $arg <= 100%

--init.generator $arg

Set the method used for generating the initial point set to $arg.

Valid values for $arg are:

- none: same effect as init.density.ratio=0. An initial-mesh gen-

eration method is not used. The iterative mesh generation starts with

the trivial mesh consisting of the four extreme convex-hull points of

the image domain.

- all samples: Creates an initial mesh that contains all the sample

points of the input image. Used by mesh refinement methods such as

the GPR method.

- random: The initial point set is selected randomly within the image

domain. The x and y coordinates are generated independently from 2

distinct random values.

- random2: The initial point set is selected randomly within the image

domain. The x and y coordinates are extracted from a single random

value.

- uniform: Distributes points uniformly along the width and height

of the image domain so that a coarse grid is created. The number of

points and uniformness of the grid are limited by the constraints of

the integer lattice.

- jittered: Distributes points evenly across the image domain. A

uniform grid is first created then every point is moved by a small

amount along the x and y coordinates.

- ed: Generates the initial mesh points using the error diffusion (ED)

method.
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- subset: Selects the points with the highest values in the subset im-

age. Requires specification of the following: init.subset.type

- poisson: Selects the initial sample points based on adaptive Poisson

disk sampling. The points density in a region are based on the radii

map which is created from the base radii map using a mapping func-

tion. The mapping function converts the radii values into a suitable

range and applies some transformations to improve their characteris-

tics. Requires specification of the following:

init.poisson.map.type, init.poisson.map.filter order,

init.poisson.map.power, init.poisson.map.range max,

init.poisson.map.min dist

--init.prefilter $arg

Set to $arg the type of smoothing filter to apply to the input image

before it is used in operations that benefit from smoothing (e.g.,

gradient).

Valid values for $arg are as follows:

- none: no smoothing filter applied.

- linear: binomial filter.

Requires specification of the following:

init.prefilter.linear.order

- bilateral: bilateral filter.

Requires specification of the following:

init.prefilter.bilateral.range, init.prefilter.bilateral.space

--init.prefilter.linear.order $arg

Set the order of the binomial smoothing filter to $arg.

Valid values for $arg are as follows: positive odd integers

--init.prefilter.bilateral.range $arg

Set the range parameter of the bilateral smoothing filter to $arg.

Valid values for $arg are as follows: positive

--init.prefilter.bilateral.space $arg

Set the range parameter of the bilateral smoothing filter to $arg.

Valid values for $arg are as follows: positive

--init.poisson.map.type $arg



88

Set to $arg the type of transform to be applied to the input image

to create the base radii map for the adaptive Poisson disk sampling

initial mesh.

Valid values for $arg are as follows: gradient, laplacian, mmsodd

--init.poisson.map.filter order $arg

Set to $arg the order of the binomial filter used to smooth the base

radii map in adaptive Poisson disk sampling before the mapping func-

tion is applied to it.

Valid values for $arg are as follows:positive odd integers

--init.poisson.map.power $arg

Set the exponent parameter of the Poisson disk sampling radii map

mapping function to $arg.

--init.poisson.map.range max $arg

Set the maximum range parameter of the Poisson disk sampling radii

map mapping function to $arg.

--init.poisson.map.min dist $arg

Set the minimum distance range parameter of the Poisson disk sam-

pling radii map mapping function to $arg.

--init.subset.type $arg

Set to $arg the type of transform to apply to the input image to create

a value map to be used with threshold-based subset point selection.

Valid values for $arg are as follows: gradient, laplacian, mmsodd

--initial mesh only

Exit after creating the initial mesh. If mesh-generation parameters

(e.g., growth schedule type) are set, they are ignored.

--growth.schedule $arg
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Set the type of growth schedule to $arg.

Valid values for $arg are as follows:

- A: “Above” (A′) new growth schedule.

Requires specification of the following: growth.schedule.length,

growth.schedule.amp

- B: “Below” (B′) new growth schedule.

Requires specification of the following: growth.schedule.length,

growth.schedule.amp

- C: “Circa” (C′) new growth schedule.

Requires specification of the following: growth.schedule.length,

growth.schedule.amp

- I: “Incremental” (I′) new growth schedule

- IDDT A: Original A growth schedule used in the IDDT, ID1, and ID2

methods.

Requires specification of the following:

growth.schedule.iddt.alpha

- IDDT B: Original B growth schedule used in the IDDT, ID1, and ID2

methods.

Requires specification of the following:

growth.schedule.iddt.alpha

- IDDT C: Original C growth schedule used in the IDDT, ID1, and ID2

methods.

Requires specification of the following:

growth.schedule.iddt.alpha

- IDDT I: Original I growth schedule used in the IDDT, ID1, and ID2

methods.

Requires specification of the following:

growth.schedule.iddt.alpha

--growth.schedule.length $arg

Set the growth schedule length to $arg.

Valid values for $arg are as follows: positive integers

--growth.schedule.amp $arg
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Set the overshoot amplitude parameter of the growth schedule. It is

specified as a percentage of the target density. That means that the

first set point is: ($arg + 100%) ∗ density. For example, the first

setpoint for an amplitude value of 120 is 2.2 times the size of the

target mesh size.

Valid values for $arg are as follows: positive

--growth.schedule.iddt.alpha $arg

Set the alpha parameter of the IDDT growth schedules to $arg.

Valid values for $arg are as follows: 0 < $arg < 1

--select.face $arg

Set the policy for selecting the face into which a point will be inserted

to $arg.

Valid values for $arg are as follows:

- sse: Select the face with the highest sum-of-squared errors.

- sae: Select the face with the highest sum-of-absolute errors.

--select.candidate $arg

Set to $arg the policy for selecting the candidate point for insertion

into the mesh from the points inside a given face.

Valid values for $arg are as follows:

- pae: Select the point with the highest (peak) absolute error.

- pwae: Select the point with the highest (peak) weighted absolute

error.

- alsem: Select the point based on the approximate local squared-error

minimizer (ALSEM) policy.

- gradient: Select the point with the highest gradient magnitude

value.

- laplacian: Select the point with the highest Laplacian magnitude

value.

- mmsodd: Select the point with the highest MMSODD value.

--sig.del $arg

Set the policy for selecting the candidate point for deletion from the

mesh to $arg.

Valid values for $arg are as follows:

- opt: Optimal point that reduces the error the most (or increases it

the least).
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--bpr

Enable bad point replacement. Mutually exclusive with the --bpd

option.

--bpd

Enable bad point deletion. Mutually exclusive with the --bpr option.

--output psnr

Enable outputting the PSNR of the generated mesh model instead of

the actual model data to the standard output stream. If not set, the

PSNR is written to the error stream.

A.4.2 The rasterize_mesh Program

Synopsis

rasterize_model --input $input_mesh_model \

--output $output_reconstructed_model \

[--original_image $original_image]

rasterize_model [--original_image $original_image] \

< $input_mesh_model \

> $output_reconstructed_model

Description

The rasterize_mesh program reconstructs a raster image from a mesh model using

Delaunay triangulation with preferred directions. The input mesh model and output

image conform to the formats described previously. The standard and the extended OFF

mesh model formats are both supported. The data may be read from/written to standard

input/output, from/to files, or a combination of the two. If a file path is specified for an

option, the corresponding input/output from a standard stream is ignored. In all cases

however, status information is printed to the standard error stream. The program can

also, optionally, calculate the PSNR of the mesh model’s rasterization result, and write

it to the error stream. The original image needs to be set using the --original image

option. It should be noted that the mesh connectivity specified in the input data is
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ignored by the program. The reason being that Delaunay triangulation with preferred

directions determines connectivity from the vertices solely.

Options

--input $file Set the path of the file from which to read the input

mesh model to $file. The parameter is optional,

and if not set the data is read from standard input.

--output $file Set the path of the file to which the mesh ras-

terization result should be written to $file. The

parameter is optional, and if not set the data is

output to standard output.

--original image $file Set the path of the original image from which the

mesh model was created to $file. The parameter

is optional, and if set the PSNR is written to the

error stream

A.5 Examples of Mesh-Generation Methods

The methods proposed in the thesis as well as other previously proposed methods that

were referenced in previous chapters can be derived from the framework by setting the

program options appropriately. To guide the reader, we provide some examples in what

follows.

1. For the image in the file $image, a mesh-model with a sampling density of 0.125%

may be generated using the proposed IID2 method with the command:

generate_mesh --density 0.125 --init.density 1 --init.prefilter linear \

--init.prefilter.linear.order 9 --init.generator ed \

--growth.schedule A --growth.schedule.length 5 \

--growth.schedule.amp 300 --select.candidate alsem \

--select.face sse --sig.del opt --bpr < $image

2. For the image in the file $image, a mesh-model with a sampling density of 1% may

be generated using the proposed IID1 method with the command:

generate_mesh --density 1 --init.density 1 --init.prefilter linear \
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--init.prefilter.linear.order 7 --init.generator ed

--growth.schedule A --growth.schedule.length 13 \

--growth.schedule.amp 300 --select.candidate mmsodd \

--select.face sse --sig.del opt --bpr < $image

3. For the image in the file $image, a mesh model with a sampling density of 0.25% may

be generated using the GPR method (described in Section 2.10) with the command:

generate_mesh --density 0.25 --init.density 1 --init.prefilter none \

--init.generator all_samples --growth.schedule I \

--growth.schedule.length 2 --growth.schedule.amp 1 \

--select.candidate pae --select.face sse --sig.del opt < $image

4. For the image in the file $image, a mesh model with a sampling density of 0.5% may

be generated using the IDDT method (described in Section 2.10) with the command:

generate_mesh --density 0.5 --init.density 0 --init.prefilter linear \

--init.prefilter.linear.order 9 --init.generator none \

--growth.schedule B --growth.schedule.length 14 \

--growth.schedule.amp 99.95 --select.candidate pwae --select.face sse \

--sig.del opt --bpr < $image

5. For the image in the file $image, a mesh model with a sampling density of 3% may

be generated using the ID2 method (described in Section 2.10) with the command:

generate_mesh --density 3 --init.density 0 --init.prefilter linear \

--init.prefilter.linear.order 9 --init.generator none \

--growth.schedule IDDT_A --growth.schedule.iddt.alpha 0.4 \

--select.candidate alsem --select.face sse --sig.del opt \

--bpr < $image

6. The mesh-model contained in the file $model may be rasterized and written to stan-

dard output using the command:

rasterize_mesh < $model

or
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rasterize_mesh --input $model

7. The mesh-model contained in the file $model may be rasterized and written to a file

$output output using the command:

rasterize_mesh < $model > $output

or:

rasterize_mesh --output $output < $model

or:

rasterize_mesh --input $model --output $output

8. For a mesh-model of the image $original that is contained in the file $model, the

PSNR of the reconstruction may be computed using the command:

rasterize_mesh --input $model --original_image $original
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