
Reversible Integer-to-Integer Wavelet Transforms
With Improved Approximation Properties

Peter W. van Vugt and Michael D. Adams
Dept. of Elec. and Comp. Eng., University of Victoria, Victoria, BC, Canada

Abstract— Reversible integer-to-integer (ITI) transforms that
approximate linear wavelet transforms have proven extremely
useful in signal coding applications. The coding efficiency achiev-
able with such reversible transforms, however, depends on how
well they approximate their parent linear transforms. In this
paper, a simple but effective method for constructing reversible
ITI wavelet transforms which better approximate their parent
linear transforms is proposed. Furthermore, the transforms
obtained with this new method are shown to have superior
performance for signal coding applications.

I. INTRODUCTION

Reversible integer-to-integer (ITI) wavelet transforms have
proven to be extremely useful in both lossless and lossy
signal coding applications, finding use in many practical
systems (e.g., the JPEG-2000 codec [1]). Such transforms are
invertible in finite-precision arithmetic (i.e., reversible), map
integers to integers (i.e., integer-to-integer) and approximate
linear wavelet transforms. It has been suggested [2] that the
approximation characteristics of reversible ITI transforms play
an important role in determining the effectiveness of such
transforms for signal coding applications. In practice, one
usually starts with a linear wavelet transform having certain
desirable properties from a signal coding perspective. Then,
one proceeds to find a (nonlinear) reversible ITI approximation
of this parent linear transform. In order for the desirable
properties of the parent transform to be preserved in its
reversible ITI version, this reversible version must closely
approximate the parent transform. In this paper, we propose
a method for constructing reversible ITI approximations of
linear wavelet transforms with reduced approximation error.
Moreover, we demonstrate that the transforms constructed
using our new method offer superior performance in signal
coding applications.

The remainder of this paper is structured as follows. To
begin, Section II briefly introduces some of the notation used
herein. The most common method for constructing reversible
ITI wavelet transforms is introduced in Section III, along with
its shortcomings. Then, Section IV proposes a new approach
for constructing reversible ITI wavelet transforms that yields
transforms with improved approximation properties. Next,
some experimental results are presented in Section V that
demonstrate the effectiveness of our proposed method. Finally,
in Section VI, we conclude with a summary of our work and
some closing remarks.

+

+

+

+

z

↓ 2

A1(z)A0(z) A2λ−1(z)A2λ−2(z)

· · ·

· · ·

Lifting Steps

x[n] y0[n]

y1[n]

| {z } | {z }

Polyphase Transform
Forward

↓ 2

Fig. 1. Lifting realization of forward one-level wavelet transform.

II. NOTATION AND TERMINOLOGY

Before proceeding further, some brief comments are in order
concerning the notation used herein. We denote the floor and
ceiling of a real number x as �x� and �x�, respectively. Ma-
trices and vectors are denoted using uppercase and lowercase
boldface letters, respectively. The n × n identity matrix is
denoted IIIn. As a matter of terminology, a unit triangular
matrix is a triangular matrix with all of its main-diagonal
elements equal to one. A matrix AAA is said to be unimodular
if |detAAA| = 1. For data with P -bits/sample, we define the
peak-signal-to-noise ratio (PSNR) as PSNR = 20 log10([2P −
1]/

√
MSE), where MSE denotes the mean squared error.

III. REVERSIBLE ITI WAVELET TRANSFORMS

To date, the most popular technique for constructing re-
versible ITI wavelet transforms is that proposed by Calderbank
et al. in [3]. We shall, henceforth, refer to this approach as the
conventional lifting (CL) method. With this method, one first
finds a lifting realization [4] of the linear wavelet transform
of interest. Then, rounding operations are carefully introduced
in order to obtain a reversible ITI mapping.

The lifting realization of a one-level wavelet transform is
shown in Fig. 1. Here, only the structure for the forward
transform is shown, as the inverse transform structure can be
trivially deduced by symmetry. In short, the forward transform
realization consists of a forward polyphase transform followed
by a number of lifting (i.e., ladder) steps, where the filters
{Ak} are called lifting filters. In the case of a multi-level
wavelet transform, the one-level structure (from above) is
simply employed in a recursive manner.

With the CL method, a reversible ITI mapping is constructed
from the lifting realization by inserting rounding operations at
the output of each lifting filter, yielding lifting steps each of the
form shown in Fig. 2, where Q denotes a rounding operator. In
order to handle finite-length signals, symmetric extension [5]
is usually employed. Since each of the lifting steps are

+

Q

x1−d[n] y1−d[n]

yd[n]xd[n] ±

A(z)

Fig. 2. Modified lifting step.

connected in series, the number of cascaded stages of rounding
equals the number of lifting steps. (Here, by “cascaded”, we
mean that rounding operations are applied in succession, so
that the rounding error from one calculation feeds into the
next.) Thus, as the number of lifting steps increases, the
approximation error introduced by rounding also increases.
Since the number of lifting steps increases with the lengths
of the associated analysis/synthesis filters as well as with the
number of wavelet decomposition levels, approximation error
grows as the transform becomes more “complex”. It would
be nice, however, if the rounding error could be made more
or less independent of transform complexity. Fortunately, this
goal is achievable, as we shall later demonstrate.

IV. TRANSFORMS WITH IMPROVED APPROXIMATION

PROPERTIES

Since any linear transform (in a N -dimensional space) can
be characterized by an N × N matrix AAA, we can describe
the wavelet transform in terms of the equation yyy = AAAxxx,
where xxx and yyy are N -dimensional vectors corresponding to
the transform input and output, respectively. In what follows,
we would like to examine the lifting realization of the CL
method from this transform-domain (rather than polyphase-
domain) perspective. As we shall see, this will allow us to
gain some new and useful insights into the CL method, as
well as develop a means by which to construct reversible ITI
wavelet transforms with improved approximation properties.

Before proceeding further, a brief digression is needed
in order to introduce three new types of matrices and
some of their properties. First, we denote as P(n) the
n × n permutation matrix that, when applied to the
n-dimensional vector [x0 x1 x2 ··· xn−1] , yields the vec-
tor [x0 x2 x4 ··· x2�n/2�−2 x1 x3 x5 ··· x2�n/2�−1] (i.e., the trans-
formed vector has its elements sorted such that the even-
indexed elements appear in ascending order first, followed
by the odd-indexed elements in ascending order). Second, we
denote as L(n, s,FFF), the n × n unit triangular matrix

L(n, s,FFF) =

⎧⎨
⎩

[
III�n/2� FFF

000 III�n/2�

]
for s = 0[

III�n/2� 000

FFF III�n/2�

]
for s = 1,

where FFF is evidently �n/2�×�n/2� if s = 0 or �n/2�×�n/2�
if s = 1. Third, we denote as S(n, k,vvv), the n×n matrix with
all main-diagonal elements equal to one, and all off-diagonal
elements equal to zero, except those in the kth row which are
given (in order) by the elements of the (n − 1)-dimensional
vector vvv. One can easily show that detL(·, ·, ·) = 1. Also, we
have the following result regarding the determinant of P(·).

Theorem 1. For any positive integer n, the permutation matrix
P(n) has the determinant given by detP(n) = (−1)�(n+1)/4�.

Proof. See Appendix.

With the above digression complete, we are now in a
position to revisit the lifting realization employed by the
CL method. To begin, we consider a one-level wavelet de-
composition. In this case, the (forward) transform has the
computational structure shown in Fig. 1. Let N denote the
block size of the transform. Consider now, the general form
of the linear operator (i.e., N ×N matrix) associated with this
transform. From the diagram, we can see that the first action
of the transform is to apply a forward polyphase transform,
which is equivalent to the permutation operator P(N). Next, a
number of lifting steps are successively applied. Each lifting
step, however, corresponds to a linear operator of the form
L(N, ·, ·). This is true regardless of how the lifting filters
are adjusted when filtering near signal boundaries (in order to
accommodate finite-length signals). Thus, a one-level wavelet
transform is characterized by the N × N matrix BBB given by

BBB = LLL2λ−1 · · ·LLL1LLL0PPP , (1)

where PPP = P(N) and LLLk ∈ L(N, ·, ·) for k = 0, 1, . . . , 2λ−1.
From Theorem 1, one can easily conclude that

detBBB = detP(n) = (−1)�(n+1)/4�. (2)

Now, let us consider the case of an L-level wavelet decom-
position (where L ≥ 1). Since an L-level wavelet transform
can be constructed by the recursive application of a one-level
transform, we have that an L-level transform is characterized
by the N × N matrix AAA given by

AAA =
L−1∏
k=0

[
BBBk 000
000 IIIN−nk

]
, (3)

where BBBk is a nk×nk matrix of the form of (1), n0 = N , and
nk = �nk−1/2� for k = 1, 2, . . . , L − 1. Using (3) and (2),
one can deduce that

detAAA =
L−1∏
k=0

detBBBk =
L−1∏
k=0

Δ(nk), (4)

where Δ(n) = (−1)�(n+1)/4� and nk is as defined above.
The above results are interesting as they formally show that
the transform matrix AAA is always unimodular and furthermore
provide a means to calculate the determinant of the matrix.

So far in this section, we have considered only the linear
versions of wavelet transforms. Now, we consider how the pro-
cess of creating reversible ITI mappings works when viewing
the CL method from this new transform-domain perspective.
Consider the N -input N -output network shown in Fig. 3,
where the {sk} are amplifier gains and Q denotes a rounding
operator. We shall refer to this network as a transform-
domain-lifting (TDL) step. In the absence of Q, we simply
have the linear system with transfer matrix S(N, j,sss), where
sss = [s0 ··· sj−1 sj+1 ··· sN−1]. When Q is included, however,
we have a reversible ITI network. Now, consider (1). In this

+

+++

±

x0

xj

xj+1

y0

yj−1

yj

yj+1

yN−1

xj−1

xN−1

s0 sj+1sj−1 sN−1

Q

· · ·· · ·
...

...
...

...

· · · · · ·
Fig. 3. Network for transform-domain lifting (TDL) step.

equation, each LLLk can be trivially decomposed into a product
of (approximately) N

2 matrices from S(N, ·, ·), where each
factor corresponds to one of the rows of LLLk having nonzero
off-diagonal values. Since, as was explained above, each
S(N, ·, ·) matrix is associated with a reversible ITI network
(i.e., a TDL step), we can create a reversible ITI wavelet
transform, by mapping each LLLk matrix to a sequence of TDL
steps. Consequently, a reversible ITI mapping derived in this
way will employ (approximately) NLλ

2 rounding operations in
total, or equivalently Lλ

2 rounding operations per input sample.

A. Building Better Transforms

Suppose that we have a linear wavelet transform that can
be converted to a reversible ITI mapping via the CL method.
In the previous section, we showed that such a transform is
represented by a matrix AAA of the form of (3), and furthermore
that AAA is unimodular. In what follows, we consider two
alternative factorizations of AAA that can be used to construct
reversible ITI mappings. In particular, we consider the tri-
angular elementary reversible matrix (TERM) and single-row
elementary reversible matrix (SERM) factorizations proposed
by Hao and Shi [6].

One can show [6] that any real unimodular N × N matrix
AAA has a factorization of the form

AAA = PPPLLLDDDUUUSSS, (5)

where PPP is a permutation matrix, LLL and UUU are lower and
upper unit triangular matrices, respectively, DDD =

[
IIIN−1 000

000 d

]
,

d = (detAAA)/(detPPP), and SSS ∈ S(N,N −1, ·). We refer to (5)
as a TERM factorization of AAA. Since LLL and UUU are both unit
triangular, each of these matrices can be further decomposed
into a product of N−1 matrices in S(N, ·, ·) (i.e., TDL steps).
In this way, each of the LLL, UUU , and SSS matrices can be converted
to TDL steps in order to obtain a reversible ITI mapping.
Furthermore, a reversible ITI mapping derived in this way will
have a total of 2N − 1 rounding operations, or equivalently
2N−1

N rounding operations per input sample (regardless of the
complexity of the parent linear transform).

One can also show [6] that any real unimodular N × N
matrix AAA has a factorization of the form

AAA = PPPSSSNSSSN−1 . . .SSS1SSS0, (6)

where PPP is a permutation matrix and SSSk ∈ S(N, ·, ·) for
k = 0, 1, . . . , N . We refer to (5) as a SERM factorization

of AAA. Since each SSSk matrix can be mapped to a TDL step, a
reversible ITI mapping derived from a SERM factorization will
consist of a permutation and N +1 TDL steps. Consequently,
a SERM-based ITI mapping will have a total of N + 1
rounding operations, or equivalently N+1

N rounding operations
per input sample (regardless of the complexity of the parent
linear transform).

Recall that the number of rounding operations per input
sample required in the case of CL-, TERM-, and SERM-based
reversible ITI transforms is given by Lλ

2 , 2N−1
N , and N+1

N ,
respectively, where N is the transform block size, L is the
number of decomposition levels, and λ is the number of lifting
steps (which is indirectly related to the complexity of the
transform). Observe that the number of rounding operations in
the TERM and SERM cases does not depend on the transform
complexity (i.e., λ and L). Furthermore, in practice, we
typically have N ≥ 128, L > 1, and λ ≥ 2. In such a scenario,
however, the TERM- and SERM-based transforms require
fewer rounding operations relative to the CL method. This
leads us to suspect that TERM- and SERM-based transforms
will have superior approximation properties. In fact, reversible
ITI wavelet transforms constructed using our SERM/TERM-
based method are superior, as we shall soon demonstrate.

V. EXPERIMENTAL RESULTS

Above, we claimed that the reversible ITI transforms con-
structed using our SERM/TERM-based design method have
superior performance. In what follows, we will substantiate
this claim through experimental results. Although our method
has potential application to many types of signals, we have
elected to consider audio data herein. Throughout our exper-
iments, six audio signals taken from the MATLAB Audio
Toolbox were used as test data (i.e., chirp, gong, handel,
laughter, splat, and train). The sample data was converted by
scaling and rounding to 8-bit signed integer values, and the
various audio sequences varied from approximately 10000 to
75000 samples in length. Since these sequences are relatively
long, they are transformed in a blockwise manner in all of
the subsequent experiments. In our experiments, we also often
consider the 9/7 wavelet transform [1], as this transform is
known to perform particularly well in signal coding applica-
tions.

A. Finding Good Factorizations

For a given N × N matrix AAA, the factorizations defined
by (5) and (6) are not unique, with the number of solu-
tions growing explosively with increasing N . Since different
factorizations yield distinct reversible ITI transforms and the
approximation properties of these transforms can differ greatly,
some means is needed for selecting good factorizations. In our
work, we have computed SERM and TERM factorizations
using the algorithms described in [6]. Of particular note,
however, we found that the heuristic briefly mentioned at the
end of Section VII in [6] is particularly effective at producing
transforms with good approximation characteristics.

TABLE I

COMPARISON OF THE THEORETICAL UPPER BOUND ON PAE FOR THE 9/7

WAVELET TRANSFORM WITH A BLOCK SIZE OF 12 (TERM CASE)

Levels Optimal Heuristic
1 1.827 1.842
2 1.942 2.004

The effectiveness of the aforementioned heuristic was con-
firmed as follows. For a given transform matrix AAA, we first
computed a factorization using the heuristic. Then, we ex-
haustively searched all possible factorizations for the one with
the best approximation goodness, where the goodness metric
being employed is an upper bound on the theoretical PAE. We
then compared the goodness metric of the transform obtained
with the heuristic to the global optimum obtained from the
exhaustive search. This process was repeated for numerous
wavelet transforms, and the heuristic method was observed to
consistently produce nearly optimal results. As an example,
the results obtained in the cases of one- and two-level 9/7
wavelet transforms (with a block size of 12) are shown in
Table I. In both of these cases, the goodness metric of the
transform obtained using the heuristic was within 3.5% of
the global optimum. Although such an experiment can only
be performed for small N (in order to avoid computational
intractability problems), it still provides some indication that
this heuristic-driven factorization method is quite effective.
Due to its effectiveness, we consistently employ the heuristic-
based factorization method throughout the remainder of this
paper.

B. Forward Transform Approximation Goodness

Now, we shall demonstrate the effectiveness of our proposed
SERM/TERM-based method for constructing reversible ITI
transforms with reduced approximation error. In what follows,
we consider three different reversible ITI versions of the one-
level 9/7 wavelet transform (with a block size of 512), one
generated with each of the CL-, TERM-, and SERM-based
approaches. For each of the reversible ITI transforms, we
applied the forward transform to an input (audio) sequence and
measured the difference between the resulting transform co-
efficients and those obtained with the parent linear transform.
The PAE and PSNR in each case are given in Table II(a).
As an additional point of reference, in the column labelled
“Round,” we have indicated the error incurred if one simply
rounds (to integer values) all of the coefficients of the linear
transform. This provides an approximate bound on the best
error performance that we can ever hope to achieve. For the
sake of interest, we have also provided a (loose) theoretical
upper bound on the PAE for each transform. The same process
from above was then repeated, except for a five-level wavelet
decomposition, yielding the results shown in Table II(b).

From the results in Table II, we can see that overall, in terms
of both PAE and PSNR, the SERM-based transform has the
best approximation error performance, followed by the TERM-
and CL-based transforms (in that order). Furthermore, by com-

TABLE II

COMPARISON OF THE APPROXIMATION ERROR FOR A (A) ONE-LEVEL AND

(B) FIVE-LEVEL 9/7 WAVELET TRANSFORM WITH A BLOCK SIZE OF 512.

(a)
PAE PSNR

Signal CL TERM SERM CL TERM SERM Round
chirp 1.769 1.551 1.197 54.90 54.94 56.92 59.95
gong 2.012 1.528 1.180 53.21 54.73 56.63 58.94
handel 2.008 1.627 1.357 52.67 54.64 56.65 58.93
laughter 2.059 1.564 1.151 52.66 54.68 56.70 58.92
splat 1.673 1.563 1.117 56.38 56.08 57.39 60.70
train 1.955 1.571 1.146 52.58 54.55 56.69 58.93
Mean 1.913 1.567 1.191 53.73 54.94 56.83 59.40
Theoretical† 2.806 1.842 1.722

†Theoretical upper bound on PAE

(b)
PAE PSNR

Signal CL TERM SERM CL TERM SERM Round
chirp 4.456 3.230 2.154 52.42 54.62 57.64 59.91
gong 5.958 2.949 2.497 50.37 54.54 56.58 58.91
handel 5.386 2.674 2.813 49.95 54.59 56.60 58.92
laughter 5.228 2.993 2.833 49.95 54.60 56.53 58.93
splat 4.043 2.034 2.216 53.23 55.76 58.34 60.61
train 4.089 2.366 2.352 49.87 54.61 56.66 58.89
Mean 4.860 2.708 2.478 50.97 54.79 57.06 59.36

paring the numbers in Tables II(a) and II(b), we can observe
that the difference in performance between the SERM/TERM-
based transforms and the CL-based transform grows as the
number of wavelet decomposition levels increases. Since,
in practice, one typically employs several levels of wavelet
decomposition, this further emphasizes the strength of our
method.

C. Transform Lossy Coding Performance

As indicated previously, reversible ITI transforms with
improved approximation characteristics have the potential to
offer superior performance in signal coding applications. In
what follows, we present some experimental results in order
to quantify the achievable performance gain.

In this experiment, we considered the same three reversible
ITI versions of the five-level 9/7 wavelet transform that were
examined previously (in Section V-B). For each transform, we
applied the forward transform to an audio signal, quantized
the resulting data (using scalar quantization), dequantized, and
then applied the corresponding inverse transform. In each case,
the distortion (i.e., difference between the reconstructed and
original signals) was measured using both PAE (i.e., peak
absolute error) and PSNR. This process was repeated for each
of the audio signals in our test set. In order to facilitate a
meaningful comparison, the same set of quantizer step sizes
was employed for all transforms.

The results of the above process are shown in Table III. As
an additional point of reference, we provide, in the column
labelled “Linear”, the PAE and PSNR obtained by simply
using the linear version of the transform in the above coding
system. This quantity provides an approximate indication
of the best performance that we can hope to achieve with
reversible ITI transforms. From the results in Table III, we

TABLE III

COMPARISON OF THE LOSSY CODING PERFORMANCE FOR A FIVE-LEVEL

9/7 WAVELET TRANSFORM WITH A BLOCK SIZE OF 512.

PAE PSNR
Signal CL TERM SERM Linear CL TERM SERM Linear
chirp 9 7 7 7 44.21 44.84 45.17 45.51
gong 11 9 9 8 40.84 41.93 42.10 42.47
handel 10 10 10 8 40.40 41.63 41.80 42.16
laughter 11 11 9 10 40.34 41.42 41.59 41.87
splat 9 7 8 8 44.26 45.00 45.18 45.49
train 9 7 7 7 40.86 42.11 42.26 42.53
Mean 9.83 8.50 8.33 8.00 41.82 42.82 43.02 43.34

can clearly see that, in terms of both PAE and PSNR, the
SERM-based transform performs best, followed by the TERM-
and CL-based transforms (in that order). In terms of PAE,
the SERM- and TERM-based transforms offer an average
improvement of about 1.5 and 1.33, respectively, over the CL-
based transform. In terms of PSNR, the SERM- and TERM-
based transforms yield an average improvement of about 1.2
dB and 1 dB, respectively, over the CL-based transform. From
the above results, it is evident that the transforms obtained with
our SERM/TERM-based method have superior performance
for lossy coding purposes. Furthermore, of our SERM- and
TERM-based approaches, the former is clearly the best.

VI. CONCLUSIONS

In this paper, we have proposed a new method for con-
structing reversible ITI versions of wavelet transforms based
on SERM and TERM factorizations. In particular, we showed
that, given any linear wavelet transform for which a re-
versible ITI version can be derived using the CL method,
it is also possible to generate reversible ITI versions using
SERM and TERM factorizations. We then proceeded to show
that the resulting SERM- and TERM-based reversible ITI
transforms have better approximation properties than those
produced by the CL method. Furthermore, we showed that
these improved approximation properties directly translate into
superior performance for lossy audio coding. Of the SERM-
and TERM-based approaches introduced herein, the SERM-
based approach was shown to produce the best transforms.
Clearly, the transforms obtained with our new method can
offer significant benefits for audio and other signal coding
applications.

APPENDIX

Proof of Theorem 1. Consider the quantity detP(n). One can
easily confirm that detP(n) = 1 for n ∈ {1, 2}. For n ≥ 3,
we implicitly construct the permutation P(n) by determining
a sequence of exchange operations that, when applied to the n-
dimensional vector xxx = [x0 x1 ··· xn−1], yields the desired per-
muted vector xxx′ = [x0 x2 x4 ··· x2�n/2�−2 x1 x3 x5 ··· x2�n/2�−1].

We produce xxx′ from xxx by way of an iterative algorithm as
follows. We partition the elements of xxx into two subblocks,
denoted as sss and uuu (i.e., xxx = [sss uuu]). The first subblock
sss contains elements that are correctly sorted relative to one
another with respect to the desired permutation P(n), while

[

sss
z}|{

x0

uuu
z }| {

x1 x2 · · · xn−1]

(a)

[

sss
z }| {

x0 x2 · · · x2k
| {z }

(k + 1) elements

x1 x3 · · · x2k−1
| {z }

k elements

uuu
z }| {

x2k+1 x2k+2 · · · xn−1]

(b)

[

sss
z }| {

x0 x2 · · · x2k
| {z }

(k + 1) elements

x1 x3 · · · x2k+1
| {z }

(k + 1) elements

uuu
z }| {

x2k+2 x2k+3 · · · xn−1]

(c)

Fig. 4. Incremental sorting process. (a) Initial state. The case of handling
of an (b) odd-indexed and (c) even-indexed element.

the second subblock uuu contains elements yet to be sorted. We
begin with xxx partitioned as shown in Fig. 4(a). Each iteration
of the algorithm then moves the first element in uuu to its
correct position amongst elements in sss through a sequence
of exchange operations. We have one of two cases, depending
on whether the index i of the element to be moved is odd or
even. These two cases are illustrated in Figs. 4(b) and 4(c),
respectively, where k =

⌊
i−1
2

⌋
and the boxed element is the

one to be moved from uuu to its correct relative position in sss.
First, let us suppose that i is odd (i.e., i = 2k + 1), which

corresponds to the scenario shown in Fig. 4(b). In this case,
the ith element is already in its correct position. Thus, no
exchanges are required. Now, let us suppose that i is even (i.e.,
i = 2k +2), corresponding to the scenario in Fig. 4(c). In this
case, we can move the ith element into its correct position
by successively exchanging it with each of the odd-indexed
elements to its left, which requires k + 1 =

⌊
i+1
2

⌋
exchanges.

Since this algorithm iterates for i = 1, 2, . . . , n − 1, the total
number of exchanges required is c =

∑n−1
i=1,i even

⌊
i+1
2

⌋
=

1
2

⌈
n
2

⌉
(
⌈

n
2

⌉ − 1). Since P(n) is the product of c exchange
matrices, we have that detP(n) = (−1)c which can be
simplified to detP(n) = (−1)�(n+1)/4�.

REFERENCES

[1] ISO/IEC 15444-1: Information technology—JPEG 2000 image coding
system—Part 1: Core coding system, 2000.

[2] M. D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet
transforms for image compression: Performance evaluation and analysis,”
vol. 9, no. 6, pp. 1010–1024, June 2000.

[3] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet
transforms that map integers to integers,” Applied and Computational
Harmonic Analysis, vol. 5, no. 3, pp. 332–369, July 1998.

[4] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting
steps,” Journal of Fourier Analysis and Applications, vol. 4, pp. 247–269,
1998.

[5] M. D. Adams and R. K. Ward, “Symmetric-extension-compatible re-
versible integer-to-integer wavelet transforms,” IEEE Trans. on Signal
Processing, vol. 51, no. 10, pp. 2624–2636, Oct. 2003.

[6] P. Hao and Q. Shi, “Matrix factorizations for reversible integer mapping,”
IEEE Trans. on Signal Processing, vol. 49, no. 10, pp. 2314–2324, Oct.
2001.

