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Abstract

Symmetric extension is explored as a means for constructing nonexpansive reversible integer-to-integer (ITI)

wavelet transforms for finite-length signals. Two families of reversible ITI wavelet transforms are introduced, and

their constituent transforms are shown to be compatible with symmetric extension. One of these families is then

studied in detail, and several interesting results concerning its member transforms are presented. In addition, some

new reversible ITI structures are derived that are useful in conjunction with techniques like symmetric extension.

Lastly, the relationship between symmetric extension and per-lifting-step extension is explored, and some new

results are obtained in this regard.

I. INTRODUCTION

During the last several years, reversible integer-to-integer (ITI) wavelet transforms [1–3] have become

a popular tool for use in signal coding applications, especially image compression (e.g., [4–9]). Such

transforms are invertible in finite-precision arithmetic (i.e., reversible), map integers to integers, and serve

as nonlinear approximations to conventional (i.e., linear) wavelet transforms [10]. Frequently, reversible

ITI wavelet transforms are defined in such a way as to operate on signals of infinite length. In practice,

however, we almost invariably deal with finite-length signals. Therefore, we require some means for

adapting reversible ITI wavelet transforms to handle such signals. In essence, we must address the well-

known boundary problem that can arise when any finite-length signal is filtered (as filtering is part of

the wavelet transform process). Furthermore, in signal coding applications, we almost always want to

employ a transform that is nonexpansive (i.e., maps a signal of length N to a signal of length no greater

than N). Therefore, we seek a solution to the boundary problem that yields nonexpansive transforms.

A similar boundary problem also arises in the case of conventional wavelet transforms, and numerous

solutions have been proposed for this case over the years. Unfortunately, many of these methods are not

easily applied or even useful in the reversible ITI case, as this case is complicated by both the nonlinear

nature of the transforms involved and the requirement that reversibility be maintained.

In this manuscript, we explore symmetric extension [11, 12] as a means for constructing nonexpansive

This work was supported by the Natural Sciences and Engineering Research Council of Canada.
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reversible ITI wavelet transforms. Although commonly used in the case of conventional wavelet trans-

forms, symmetric extension is more difficult to apply in the reversible ITI case. In our work, we explain

how this method can be utilized in the latter case. In addition, we consider the relationship between

symmetric extension and another extension method which we refer to as per-lifting-step extension.

The remainder of this manuscript is structured as follows. We begin, in Section II, by presenting the

basic notation and terminology used herein, and then proceed to discuss a few fundamentals of reversible

ITI wavelet transforms in Section III. Next, our attention shifts to symmetric extension. In Section IV,

we introduce this particular method and explain the conditions that must be satisfied in order for it to be

applicable. In Section V, we present two families of reversible ITI wavelet transforms, and then proceed

to demonstrate, in Section VI, that the transforms from these families are compatible with symmetric

extension (i.e., can be used with symmetric extension in order to handle finite-length signals in a nonex-

pansive manner). In Section VII, we study one of the two transform families more closely, and present

several interesting results concerning its constituent transforms. Afterwards, Section VIII proposes some

new reversible ITI structures that are useful in conjunction with techniques like symmetric extension. In

Section IX, we briefly introduce per-lifting-step (PLS) extension, and consider the relationship between

PLS extension and symmetric extension. Finally, we conclude, in Section X, with a summary of our

results and some closing remarks.

One particularly novel aspect of our work is our careful consideration of rounding operators and their

properties. Our close attention to rounding operators has led to many new insights, allowing us to develop

some entirely new ideas as well as extend some previously proposed ones. For example, through such

insights, we were able to extend a previously existing transform family in order to yield one of the two

families presented in this manuscript. This was possible, in part, due to a better understanding of why

the base filter bank for the original family preserves certain signal symmetries. Also, we were able to

derive several new reversible ITI structures (which are useful in conjunction with symmetric extension),

and provide an example of a transform utilizing these structures.

II. NOTATION AND OTHER PRELIMINARIES

Before proceeding further, a short digression concerning the notation used in this manuscript is ap-

propriate. The symbols Z and R denote the sets of integer and real numbers, respectively. Matrix and

vector quantities are indicated using bold type. The symbols IN and JN denote the N ×N identity and

anti-identity matrices, respectively, where the subscript N may be omitted when clear from the context.
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In the case of matrix multiplication, we define the product notation as follows:

∏N
i=M Ai

4
=











ANAN−1 · · ·AM+1AM for N ≥ M

I otherwise.

For a Laurent polynomial P(z), we denote the degree of P(z) as degP(z), and define this quantity as

follows. In the case that P(z) has the form P(z) = ∑N
i=M piz−i where N ≥ M, pM 6= 0, and pN 6= 0 (i.e.,

P(z) 6≡ 0), degP(z)
4
= N −M. In the case that P(z) is the zero polynomial (i.e., P(z) ≡ 0), we define

degP(z)
4
= −∞. Thus, for any two Laurent polynomials, A(z) and B(z), we have that deg(A(z)B(z)) =

degA(z)+degB(z).

The notation Z and Z−1 are used to denote the forward and inverse Z transform operators, respectively.

A signal x[n] is said to have symmetry if it satisfies

x[n] = (−1)Sx[2C−n] for all n ∈ Z,

for some choice of symmetry center C and symmetry type S, where C is an integer multiple of 1
2 and

S ∈ {0,1}. If S is zero, x[n] is said to be symmetric; if S is one, x[n] is said to be antisymmetric.

For α ∈ R, the notation bαc denotes the largest integer not more than α (i.e., the floor function), and

the notation dαe denotes the smallest integer not less than α (i.e., the ceiling function). The biased floor,

biased ceiling, truncation, biased truncation, and rounding-away-from-zero (RAFZ) functions are defined,

respectively, as

bfloorα 4
=
⌊

α+ 1
2

⌋

, bceilα 4
= dα− 1

2e,

truncα 4
=











bαc for α ≥ 0

dαe for α < 0,

btruncα 4
=











bfloorα for α ≥ 0

bceilα for α < 0,

and (1)

rafzα 4
=











dαe for α ≥ 0

bαc for α < 0,
(2)

where α ∈ R. One can show that, for all α ∈ R, the following relationships hold:

dαe = −b−αc and (3)

bceilα =











bfloor(α)−1 if α is an odd integer multiple of 1
2

bfloorα otherwise.
(4)
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(For a proof of the latter, see [3].) The mod and signum functions are defined, respectively, as

mod(x,y)
4
= x− ybx/yc and sgnα 4

=



























1 for α > 0

0 for α = 0

−1 for α < 0,

where x,y∈Z and α ∈R. In passing, we note that the mod function simply computes the remainder when

x is divided by y, with division being defined in such a way that the remainder is always nonnegative.

From (3) and the definition of the mod function, we trivially have the identities

bx/yc = x−mod(x,y)
y and dx/ye = x+mod(−x,y)

y for x,y ∈ Z and y 6= 0. (5)

A rounding operator Q is said to be integer-bias invariant if

Q(α+ x) = Q(α)+ x for all α ∈ R and all x ∈ Z.

Similarly, a rounding operator Q is said to be odd if

Q(α) = −Q(−α) for all α ∈ R.

One can show that a rounding operator cannot be both odd and integer-bias invariant [13]. In passing,

we note that the floor, biased floor, ceiling, and biased ceiling functions are integer-bias invariant (but not

odd), while the truncation, biased truncation, and RAFZ functions are odd (but not integer-bias invariant).

All rounding operators considered in this manuscript are tacitly assumed to be memoryless, time invariant,

and leave integer values unchanged. Any (reasonable) rounding operator will preserve signal symmetry

(but not necessarily signal antisymmetry), while any odd rounding operator will preserve both signal

symmetry and antisymmetry.

III. REVERSIBLE ITI WAVELET TRANSFORMS

The reversible ITI wavelet transforms considered in this manuscript are based on the lifting frame-

work [1, 2, 14, 15] and are associated with a uniformly-maximally-decimated (UMD) filter bank of the

form shown in Fig. 1. In the figure, the analysis and synthesis polyphase filtering networks each consist

of 2λ lifting-step filters {Ak}
2λ−1
k=0 and 2λ rounding operators {Qk}

2λ−1
k=0 . In the absence of the rounding

operators (i.e., the {Qk}), the system in Fig. 1 becomes a linear system, which corresponds to a con-

ventional wavelet transform. Furthermore, this linear system can be realized using a UMD filter bank in

its canonical form as shown in Fig. 2, where the {Hk}
1
k=0 and {Fk}

1
k=0 are analysis and synthesis filters,

respectively. To convert a system of the form shown in Fig. 2 to the form shown in Fig. 1, one needs to

solve the matrix factorization problem treated in [16, 17].
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Fig. 1. Lifting realization of a reversible ITI wavelet transform.

(a) Analysis filter bank and (b) synthesis filter bank.
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Fig. 2. The canonical realization of a con-

ventional wavelet transform. (a) Analysis

filter bank and (b) synthesis filter bank.

Perhaps it is worth nothing that, for the purposes of this manuscript, the term “wavelet transform” is

used to mean a transform associated with an octave-band filter bank, but without any implied constraints

on the underlying basis functions. This definition is somewhat more relaxed than the formal mathematical

definition of wavelet systems (which, for example, imposes constraints on the smoothness of the underly-

ing basis functions). Since our work is equally applicable regardless of whether the looser or more formal

definition is employed, we shall not dwell on this matter further.

IV. SYMMETRIC EXTENSION

In the case of conventional wavelet transforms, a popular technique for handing finite-length signals in

a nonexpansive manner is symmetric extension. The use of symmetric extension was first proposed by

Smith and Eddins [12], and subsequently received considerable attention in the literature (e.g., [11, 18–

24]). With this technique, a signal is extended so that it is both symmetric and periodic. Then, both the

symmetry and periodicity properties are exploited in order to obtain a transform that is nonexpansive.

Consider the UMD filter bank shown in Fig. 2 which computes a conventional wavelet transform. Sup-

pose that we have a finite-length signal x̂[n] defined for n = 0,1, . . . ,N−1. We then choose x[n], the input

to the analysis filter bank, as a symmetric extension of x̂[n]. Thus, the period of x[n] is (approximately)
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2N. In order to be able to handle finite-length signals in a nonexpansive manner, symmetric extension

must be employed with a transform that preserves signal symmetry. That is, the transform must be such

that an appropriately chosen symmetric input signal x[n] yields symmetric/antisymmetric subband signals

{yk[n]}1
k=0. Therefore, each of the subband signals {yk[n]}1

k=0 is symmetric/antisymmetric with a period

of (approximately) N. Since each of the subband signals {yk[n]}1
k=0 has symmetry, only (about) one half

of the samples of a single period are required to characterize the signal. In other words, we only need

(about) N
2 samples from each subband signal, for a total of N

2 + N
2 = N samples. Thus, a nonexpansive

transform is obtained.

As indicated above, symmetric extension requires a transform that preserves signal symmetry. Not

all conventional wavelet transforms satisfy this constraint. More importantly, even when a conventional

wavelet transform does preserve signal symmetry, a reversible ITI version of the same transform may

not (due to the addition of rounding operations). Therefore, applying the symmetric extension method in

the reversible ITI case is inherently more complicated. Fortunately, as we explain in this manuscript, it is

possible to construct reversible ITI wavelet transforms that are compatible with symmetric extension (i.e.,

satisfy the above symmetry preservation constraint). In fact, in the next section, we present two families

of such transforms.

V. TRANSFORM FAMILIES

In this manuscript, we consider two families of reversible ITI wavelet transforms that are compatible

with symmetric extension. Both are derived from the lifting-based parameterizations of linear-phase filter

banks presented in [25], and have the general form shown previously in Fig. 1.

Odd-Length Analysis/Synthesis Filter (OLASF) Family

The first family of reversible ITI wavelet transforms is associated with a linear-phase filter bank having

odd-length analysis/synthesis filters, and hence is referred to as the odd-length analysis/synthesis filter

(OLASF) family. For this family, the parameters of Fig. 1 are constrained as follows:

Ak(z) =











∑(Lk−2)/2
i=0 ak,i(z−i + zi+1) for even k

∑(Lk−2)/2
i=0 ak,i(z−i−1 + zi) for odd k,

(6)

for k = 0,1, . . . ,2λ− 1, where the {Lk}
2λ−1
k=0 are all even integers. The {Qk}

2λ−1
k=0 can be chosen as any

arbitrary rounding operators. Without loss of generality, we assume that none of the {Ak(z)}
2λ−2
k=1 are

identically zero (i.e., only A0(z) and A2λ−1(z) may be identically zero). In passing, we note that the “odd-

length” qualifier in the name “OLASF” refers to the length of the corresponding analysis/synthesis filters
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(i.e., the {Hk} and {Fk} in Fig. 2), not the lifting filters (i.e., the {Ak} above) which have even length.

One can show that any perfect-reconstruction (PR) linear-phase FIR filter bank with odd-length analy-

sis/synthesis filters has a corresponding OLASF parameterization, provided that the analysis and synthesis

filters are normalized appropriately (via a scaling and shift of their impulse responses). The proof is con-

structive by a matrix Euclidean algorithm (e.g., by using an algorithm based on that described in [16]).

Some well known members of the OLASF family that are useful for signal coding include the 5/3, 9/7-M,

5/11-A, 5/11-C, 13/7-T, 13/7-C, and 9/7-F transforms presented in [8].

Even-Length Analysis/Synthesis Filter (ELASF) Family

The second family of reversible ITI wavelet transforms is associated with a linear-phase filter bank

having even-length analysis/synthesis filters, and hence is referred to as the even-length analysis/synthesis

filter (ELASF) family. For this family, the parameters of Fig. 1 are constrained as follows:

Ak(z) =



























−1 for k = 0

1
2 + Â1(z) for k = 1

Âk(z) for k ≥ 2,

and (7a)

Qk is



























integer-bias invariant for k = 1

odd for k ≥ 2 and k even

arbitrary for k ≥ 2 and k odd,

(7b)

for k = 0,1, . . . ,2λ−1, where

Âk(z) = ∑(Lk−1)/2
i=1 âk,i(z−i − zi), (7c)

λ ≥ 1, and the {Lk}
2λ−1
k=1 are all odd integers. (The operator Q0 is simply chosen as the identity, since

the output of the filter A0 is always an integer.) Without loss of generality, we assume that none of

the {Âk(z)}
2λ−2
k=2 are identically zero (i.e., only Â1(z) and Â2λ−1(z) may be identically zero). In passing,

we note that the “even-length” qualifier in the name “ELASF” refers to the length of the corresponding

analysis/synthesis filters (i.e., the {Hk} and {Fk} in Fig. 2), not the lifting filters (i.e., the {Ak} above)

which have odd length.

The ELASF transform family is a generalization of ones commonly considered in the literature (e.g.,

[26]). Our proposed family is a generalization in two respects. First, in the case of transform families

with a similar structure, it is often suggested that the {Qk}
2λ−1
k=2 must all be chosen as odd functions. Such

a choice, however, is overly restrictive. The rounding operators {Qk}
2λ−1
k=2 only need to be chosen as odd

January 23, 2003 DRAFT
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Fig. 3. Two different reversible ITI approximations for the 6/14 transform. The analysis filter bank based on

the (a) commonly referenced parameterization and (b) our more general parameterization. Â1(z) = − 1
16 (z− z−1),

Â2(z) = 1
16

(

(z2 − z−2)−6(z− z−1)
)

, Q1 is integer-bias invariant, Q′
1 is arbitrary, and Q2 is odd.

functions for even k. Second, and more fundamentally, the related families commonly considered in the

literature (e.g., as in [26]) are essentially a special case of our proposed family with Â1(z) ≡ 0.

The additional flexibility afforded by the introduction of the Â1(z) parameter has important practical

implications. In many cases, by using our more general parameterization, the number of lifting steps

can be reduced by one. By reducing the number of lifting steps, the number of rounding operations is

also decreased, leading to a reduction in rounding error. Consider, for example, the two ITI filter banks

shown in Fig. 3. One can easily verify that both filter banks approximate the same linear transform,

namely the one associated with the 6/14 transform [8] which is known to be effective for image coding

purposes. Both filter banks are reversible, as both employ lifting/ladder networks for polyphase filtering,

but due to the nonlinearities introduced by rounding, the two filter banks are not equivalent. Comparing

the filter banks of Figs. 3(a) and 3(b), we can see that the former has one more rounding operation than

the latter. For this reason, the filter bank in Fig. 3(b) will normally have better approximation properties

(i.e., smaller rounding error) than the filter bank of Fig. 3(a). Although not immediately obvious, like

the filter bank in Fig. 3(a), the filter bank in Fig. 3(b) is also compatible with the symmetric extension

method, as we will show in a later section.

Only a subset of all transforms associated with PR linear-phase FIR filter banks with even-length anal-

ysis/synthesis filters belong to the ELASF family. Moreover, this subset is quite small. In this work, we

consider only those transforms belonging to the ELASF family because our interest lies with transforms

that are compatible with symmetric extension. As we will demonstrate later, transforms in the ELASF

family are compatible with this method. It is not clear, however, how (or even if) the compatibility issue

can be handled in the more general even-length analysis/synthesis filter case. (For example, the associated

matrix factorization problem has been studied in [27], but the scheme presented therein does not gener-
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ally yield transforms that are compatible with symmetric extension.) Notwithstanding the constrained

nature of the ELASF family, it still contains many practically useful transforms. Some well known mem-

bers of this family that are useful for signal coding include (minor variations on) the 2/6, 2/10, and 6/14

transforms discussed in [8] and the S transform [6].

Derivation of the Transform Families

In essence, the preceding families were derived by observing that if the forward polyphase transform

(i.e., shifting followed by downsampling) preserves symmetry and the subsequent lifting steps collectively

preserve symmetry, then the overall transform will also preserve symmetry and therefore be compatible

with symmetric extension. Fortunately, the forward polyphase transform does not pose much of a prob-

lem, as it is relatively easy to have this process preserve symmetry. The difficulty is in finding a general

set of lifting steps that collectively preserve symmetry. This is most easily achieved by requiring that

all/most of the lifting steps individually preserve symmetry. In turn, this is accomplished by choosing

all/most of the lifting step filters to have linear phase. The specifics of why this approach works will

become clear in the next section.

VI. COMPATIBILITY OF TRANSFORM FAMILIES WITH SYMMETRIC EXTENSION

In the previous section, we introduced the OLASF and ELASF families of reversible ITI wavelet trans-

forms. Now, we show that the transforms from these two families are compatible with symmetric exten-

sion (i.e., can be used with symmetric extension in order to handle finite-length signals in a nonexpansive

manner). Consider a filter bank of the form shown in Fig. 1 that is constrained to be of the OLASF

type as defined by (6) or ELASF type as defined by (7). Suppose that we are given a signal x̂[n] de-

fined for n = 0,1, . . . ,N − 1. By using symmetric extension, one can form a nonexpansive transform, as

demonstrated by the two propositions and accompanying proofs below.

Proposition 1 (Compatibility of the OLASF family with symmetric extension) Consider a filter bank

of the form shown in Fig. 1 that is constrained to be of the OLASF type as defined by (6). Suppose now

that we are given a signal x̂[n] defined for n = 0,1, . . . ,N −1. If we choose x[n], the input to the analysis

filter bank, as the symmetric extension of x̂[n] given by

x[n] = x̂[min(mod(n−K,2N −2),2N −2−mod(n−K,2N −2))], K ∈ Z (8)

(i.e., x[n] is defined such that x[n] = x[n + 2N − 2] and x[n] = x[2K − n] for all n ∈ Z), then 1) y0[n] is

completely characterized by its N0 samples at indices dK
2 e,d

K
2 e+ 1, . . . ,

⌊

K+N−1
2

⌋

; 2) y1[n] is completely

characterized by its N1 samples at indices dK−1
2 e,dK−1

2 e+ 1, . . . ,
⌊

K+N−2
2

⌋

; and 3) N0 + N1 = N (i.e., the

January 23, 2003 DRAFT
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transform is nonexpansive).

Proof: Consider the OLASF-type system associated with Fig. 1. Evidently, x[n] is (2N − 2)-

periodic and symmetric about K and K + N − 1 (with additional pairs of symmetry points following

from periodicity). From the properties of downsampling, one can show that u0[n] is (N − 1)-periodic

and symmetric about K
2 and K+N−1

2 , and v0[n] is (N −1)-periodic and symmetric about K−1
2 and K+N−2

2 .

Consider now the first lifting step (associated with filter A0). Since, from (6), the filter A0 has a group

delay of − 1
2 and the rounding operator Q0 preserves signal symmetry, the adder (at the output of Q0)

is summing two (N − 1)-periodic symmetric signals with the same symmetry centers. Thus, the adder

output, v1[n], is also (N − 1)-periodic and symmetric with the same symmetry centers, namely K−1
2 and

K+N−2
2 . Consider now the second lifting step (associated with filter A1). Since, from (6), the filter A1

has a group delay of 1
2 and the rounding operator Q1 preserves signal symmetry, both adder inputs are

(N −1)-periodic symmetric signals with the same symmetry centers. Therefore, the adder output, u2[n],

must also be (N−1)-periodic and symmetric with the same symmetry centers, namely K
2 and K+N−1

2 . By

repeating the above reasoning for each of the remaining lifting steps, we have that the {uk[n]}2λ−1
k=0 and

y0[n] are all (N −1)-periodic and symmetric about K
2 and K+N−1

2 . Likewise, the {vk[n]}2λ−2
k=0 and y1[n] are

all (N −1)-periodic and symmetric about K−1
2 and K+N−2

2 .

By examining the form of the various signals, we can see that the {uk[n]}2λ−1
k=0 and y0[n] are completely

characterized by the N0 samples at indices dK
2 e,d

K
2 e+1, . . . ,

⌊

K+N−1
2

⌋

, and the {vk[n]}2λ−2
k=0 and y1[n] are

completely characterized by the N1 samples at indices dK−1
2 e,dK−1

2 e+1, . . . ,
⌊

K+N−2
2

⌋

, where

N0
4
=
⌊

K+N−1
2

⌋

−dK
2 e+1 and (9)

N1
4
=
⌊

K+N−2
2

⌋

−dK−1
2 e+1. (10)

Using (5), we can further simplify (9) and (10) to obtain

N0 =



























N
2 for even N

N+1
2 for odd N, even K

N−1
2 for odd N, odd K,

and N1 =



























N
2 for even N

N−1
2 for odd N, even K

N+1
2 for odd N, odd K.

(11)

Thus, from (11), we have that, regardless of the parities of K and N, N0 + N1 = N. In other words, the

total number of independent samples in the transformed signal is always equal to the number of samples

in the original signal, and the resulting transform is, therefore, nonexpansive.

Proposition 2 (Compatibility of the ELASF family with symmetric extension) Consider a filter bank

of the form shown in Fig. 1 that is constrained to be of the ELASF type as defined by (7). Suppose
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x[n]

1
2 + Â1(z)

u2[n]

v2[n]

Q1

u1[n]

v0[n] v1[n]

u0[n]

Fig. 4. Base analysis filter bank for the ELASF family of transforms.

now that we are given a signal x̂[n] defined for n = 0,1, . . . ,N − 1. If we choose x[n], the input to the

analysis filter bank, as the symmetric extension of x̂[n] given by

x[n] = x̂[min(mod(n−K,2N),2N −1−mod(n−K,2N))], K ∈ Z (12)

(i.e., x[n] is defined such that x[n] = x[n + 2N] and x[n] = x[2K − 1− n] for all n ∈ Z), then 1) y0[n] is

completely characterized by its N0 samples at indices dK−1
2 e,dK−1

2 e+ 1, . . . ,
⌊

K+N−1
2

⌋

; 2) y1[n] is com-

pletely characterized by its N1 samples at indices dK
2 e,d

K
2 e+ 1, . . . ,

⌊

K+N−2
2

⌋

; and 3) N0 + N1 = N (i.e.,

the transform is nonexpansive).

Proof: Consider a transform in the ELASF family. Such a transform is associated with the filter

bank shown in Fig. 1 having the corresponding parameters given by (7). The base part of the analysis filter

bank has the form shown in Fig. 4. Now, let us consider the linear version of this filter bank as depicted

in Fig. 5. This filter bank can be represented in canonical form as shown in Fig. 2, where the transfer

functions of the lowpass and highpass analysis filters are denoted as H0(z) and H1(z), respectively. Using

the noble identities [28], we can show that

H0(z) = 1
2(z+1)+(z−1)Â1(z

2) and H1(z) = z−1. (13)

Due to the form of Â1(z) in (7), it follows from (13) that the filter H0 has an impulse response symmetric

about − 1
2 . From (13), the filter H1 has an impulse response that is antisymmetric about − 1

2 . Consequently,

in Fig. 5, if x[n] is generated using (12), we have that u2[n] is N-periodic and symmetric about K−1
2 and

v2[n] is N-periodic and antisymmetric with the same symmetry center as u2[n]. Since u2[n] and v2[n] are

N-periodic, it follows that both signals must also have another symmetry center at K+N−1
2 .

Now, suppose that we round the lowpass subband output u2[n] in Fig. 5, so as to obtain the system

shown in Fig. 6. For any (reasonable) rounding function, this process will maintain signal symmetry.

Moreover, if the rounding operator Q is integer-bias invariant, we can equivalently move the rounding

operator to the input side of the adder, resulting in the system in Fig. 4 (where Q1 = Q). Consequently,

in the case of the system in Fig. 4, if the input x[n] has the form of (12), u2[n] must be N-periodic
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v2[n]v0[n] v1[n]
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Fig. 5. Linear version of the base analysis filter

bank for the ELASF family of transforms.
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6
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?

z
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x[n]

1
2 + Â1(z)

u2[n]

v2[n]

u0[n] u1[n]

v1[n]v0[n]

Fig. 6. Modified base analysis filter bank for the

ELASF family of transforms.

and symmetric about K−1
2 and K+N−1

2 , while v2[n] must be N-periodic and antisymmetric with the same

symmetry centers as u2[n].

Now, let us return to the system in Fig. 1. From above, we have that u2[n] is N-periodic and symmetric

about K−1
2 and K+N−1

2 , and v2[n] is N-periodic and antisymmetric with the same symmetry points as u2[n].

Consider now the third lifting step (associated with filter A2). Since, from (7), the filter A2 has a group

delay of zero, and the rounding operator Q2 preserves signal antisymmetry (since it is odd), the adder

(at the output of Q2) is summing two N-periodic antisymmetric signals with the same symmetry centers.

Thus, the adder output is also N-periodic and antisymmetric with the same symmetry centers. Consider

the fourth lifting step (associated with filter A3). Since, from (7), the filter A3 has a group delay of zero,

and the rounding operator Q3 preserves signal symmetry, the adder is summing two N-periodic symmetric

signals with the same symmetry centers. Thus, the adder output is also N-periodic and symmetric with

the same symmetry centers. It is important to note that, for odd k, Qk need not be odd, contrary to the

suggestions of some, in the case of similar parameterizations. By repeating the above reasoning for each

of the remaining lifting steps, we have that the {uk[n]}2λ−1
k=2 and y0[n] are N-periodic and symmetric with

symmetry centers K−1
2 and K+N−1

2 , and the {vk[n]}2λ−2
i=1 and y1[n] are N-periodic and antisymmetric with

the same symmetry centers.

By examining the form of the various signals, we note that the {uk[n]}2λ−1
k=2 and y0[n] are completely

characterized by the N0 samples at indices dK−1
2 e,dK−1

2 e+1, . . . ,
⌊

K+N−1
2

⌋

, and the {vk[n]}2λ−2
k=1 and y1[n]

are completely characterized by the N1 samples at indices dK
2 e,d

K
2 e+1, . . . ,

⌊

K+N−2
2

⌋

, where

N0
4
=
⌊

K+N−1
2

⌋

−dK−1
2 e+1 and (14)

N1
4
=
⌊

K+N−2
2

⌋

−dK
2 e+1. (15)
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Using (5), we can further simplify (14) and (15) to obtain

N0 =



























N+1
2 for N odd

N
2 for N even, K even

N+2
2 for N even, K odd,

and N1 =



























N−1
2 for N odd

N
2 for N even, K even

N−2
2 for N odd, K odd.

(16)

Thus, from (16), we have that, regardless of the parities of K and N, N0 + N1 = N. In other words, the

total number of independent samples in the transformed signal is always equal to the number of samples

in the original signal, and the resulting transform is, therefore, nonexpansive.

In the above propositions, the parameter K serves to introduce a shift in the input signal x[n]. Since

downsampling is only periodically shift invariant (with a period of two), two different modes of behavior

are possible depending on the parity (i.e., evenness/oddness) of K. For both the OLASF and ELASF

families of transforms, it can sometimes be convenient, in practice, to choose the parameter K as zero.

This forces the first characteristic/independent sample for both subband signals to be located at an index

of zero, which may be convenient for bookkeeping purposes. In some applications, however, an arbitrary

(or nonzero) value for K may be desirable—hence, our motivation for considering the more general case

here.

VII. ELASF FAMILY: A CLOSER LOOK

Earlier, we introduced the ELASF family of transforms. In this section, we explore some of the char-

acteristics of transforms in this family. In particular, we consider the properties of the linear systems

associated with the ELASF family. Such results provide new insight into the transforms of the ELASF

family.

Consider the linear version of a filter bank of the form shown in Fig. 1(a) that is constrained to be of the

ELASF type as defined by (7). (By “linear version”, we mean the filter bank obtained by simply setting

all of the {Qk}
2λ−1
k=0 equal to the identity.) Let us represent the analysis filter bank in its canonical form (as

shown in Fig. 2(a)), where the transfer functions of the lowpass analysis, highpass analysis, lowpass syn-

thesis, and highpass synthesis filters are denoted as H0(z), H1(z), F0(z), and F1(z), respectively. Further,

we define the transfer matrix for part of the analysis polyphase filtering network as follows:

P(z)
4
=
[

P0,0(z) P0,1(z)
P1,0(z) P1,1(z)

]

(17)

=

(

λ−1

∏
k=1

[

1 Â2k+1(z)
0 1

][

1 0
Â2k(z) 1

]

)

[

1 Â1(z)
0 1

]

.

Using the noble identities [28] and straightforward algebraic manipulation, we can show
[

H0(z)
H1(z)

]

= P(z2)
[

1 1
2

0 1

]

[

1 0
−1 1

][

1
z

]

= P(z2)
[ 1

2 (z+1)

z−1

]

.
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For convenience, can rewrite the preceding equation as follows:

H0(z) = 1
2(z+1)P0,0(z

2)+(z−1)P0,1(z
2) and (18a)

H1(z) =(z−1)P1,1(z
2)+ 1

2(z+1)P1,0(z
2). (18b)

A detailed analysis of (17) reveals that P(z) has a number of important properties as given by the propo-

sition in Appendix I. Using this proposition, we can show that: 1) Z−1H0(z) and Z−1H1(z) both have

symmetry about − 1
2 and begin and end with pairs of coefficients that are either equal or equal in magni-

tude but opposite in sign; 2) H0 and H1 are always of even length, and cannot have the same length except

in the degenerate case where all of the {Âk(z)}
2λ−1
k=1 are identically zero; 3) the DC and Nyquist gains of

H0 and H1 are fixed and given by |H0(1)| = 1, |H0(−1)| = 0, |H1(−1)| = 2, and |H1(1)| = 0; and 4) by

swapping the analysis and synthesis filters (and renormalizing), one can always obtain a new filter bank

that is associated with a transform in the ELASF family1. A proof of the preceding four properties can be

found in Appendix II.

In what follows, we explain the significance of the above four properties. The first two properties

provide some insight into why the ELASF family only generates a subset of filter banks with even-length

analysis/synthesis filters. For example, from the second property, we can see that the ELASF family does

not include transforms associated with equal-length lowpass and highpass analysis (or synthesis) filters.

Furthermore, the first property implies that even in the unequal-length case, the ELASF family still does

not constitute a complete parameterization (e.g., due to the close relationship between the first/last two

samples in Z−1H0(z) and also Z−1H1(z)). The third property is of practical interest, since it is often

desirable for a reversible ITI wavelet transform to have a corresponding lowpass analysis filter with a DC

gain of one (which typically results in a transform with good dynamic range properties [8]). Moreover,

this property also demonstrates that the lowpass and highpass analysis filters always have reasonable

frequency responses (i.e., zeros at the Nyquist and DC frequencies, respectively). The fourth property is

also practically useful, since, in some cases, the “transposed” filter bank (i.e., the one with the analysis

and synthesis filters swapped) may also be effective for signal coding purposes.

VIII. NEW SYMMETRY-PRESERVING REVERSIBLE ITI STRUCTURES

As noted earlier, the preservation of signal symmetry is of critical importance when symmetric exten-

sion is to be employed. In this section, we further examine the problem of maintaining signal symmetry

in reversible ITI wavelet transforms.
1To date, this fact seems to have been overlooked (e.g., as in [26]).
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G(z)

Q
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-
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-

6
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Fig. 7. Lifting step.

j+ Q
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-
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c0[n]

c1[n]

- d0[n]

d1[n]

t[n]

Fig. 8. Modified lifting step.

j+ Q- -

6

-x y

α

Fig. 9. Network consisting of an

adder and rounding unit.

To begin, we consider one of the basic building blocks of such transforms, the lifting step. A lifting

step normally has the form shown in Fig. 7 and is invertible for any choice of Q. From the standpoint

of symmetry preservation, however, it can be advantageous to apply the rounding operator Q after the

adder as in Fig. 8. Unfortunately, the systems in Figs. 7 and 8 are only equivalent if Q is integer-bias

invariant. In certain circumstances, the choice of an odd Q is more appropriate (which implies Q is not

integer-bias invariant [13], as discussed before). In particular, such a choice is beneficial when dealing

with antisymmetric signals in the context of symmetric extension. Consider what happens in the systems

of both Figs. 7 and 8 when Q is odd and neither t[n] nor c0[n] have any particular symmetry but t[n]+c0[n]

is known to be antisymmetric. In the former case (i.e., Fig. 7), d0[n] will not normally be antisymmetric.

That is, antisymmetry is not preserved (by rounding). In the latter case (i.e., Fig. 8), however, d0[n] is

guaranteed to be antisymmetric (i.e., signal antisymmetry is preserved).

From the above discussion, we can see that using a modified lifting step as in Fig. 8 can sometimes be

advantageous. There is, however, one problem with such an approach. If Q is not integer-bias invariant,

it is not clear that the structure in Fig. 8 has an inverse. In what follows, we will examine this question of

invertibility more closely.

Consider again a network of the form shown in Fig. 8. Obviously, this network is invertible if we can

invert the network in Fig. 9, where x,y ∈ Z and α ∈ R. That is, mathematically, the network in Fig. 8

is invertible if we can invert (i.e., solve uniquely for x in terms of y) the equation y = Q(α + x), where

x,y ∈ Z and α is a real constant. We assert that this equation has an inverse if Q is chosen as either the

biased truncation or RAFZ function, but not if Q is chosen as the truncation function. This assertion is

shown to be correct by the proposition and accompanying proof below.
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Proposition 3: Consider the equations

y = trunc(α+ x), (19)

y = btrunc(α+ x), and (20)

y = rafz(α+ x), (21)

where x,y ∈ Z and α is a real constant. If α 6∈ Z, (19) is not invertible (i.e., one cannot always uniquely

solve for x in terms of y). For any α ∈ R, (20) and (21) are invertible, with their respective inverses given

by

x =











y−α− 1
2 sgny if α is an odd integer multiple of 1

2

y−bfloorα otherwise,
and (22)

x =











y−dαe for y ≥ 0

y−bαc for y < 0.

(23)

Proof: First, we show that (19) is not invertible: Since α 6∈ Z, from the definition of the floor

function, we have 0 < α− bαc < 1 which also implies −1 < α− bαc− 1 < 0. In turn, the preceding

two relationships imply, respectively, that trunc(α−bαc) = 0 and trunc(α−bαc−1) = 0. Thus, for any

α 6∈ Z, we have that trunc(α+x) = 0 for both x = −bαc and x = −bαc−1. Since two distinct values for

x both yield the same value for y, (19) cannot be invertible.

Next, we show that (20) is inverted by (22): Let us begin by considering the case that α is an odd

integer multiple of 1
2 . From the definition of the btrunc function in (1), we can rewrite (20) as

y =











⌊

α+ x+ 1
2

⌋

for α+ x ≥ 0

dα+ x− 1
2e for α+ x < 0.

Since α is an odd integer multiple of 1
2 , we know that α + x + 1

2 and α + x− 1
2 are both integers, and

we can rewrite the preceding equation as y = α + x + 1
2 sgn(α + x). From (20), we can deduce that

sgn(α + x) = sgny, since sgn(btrunc(α+ x)) = sgn(α + x) if |α+ x| ≥ 1
2 which must be the case here.

Consequently, we can solve for x to obtain x = y−α− 1
2 sgny. Thus, we have proven (22) to be correct

in the case that α is an odd integer multiple of 1
2 .

Now let us consider the case that α is not an odd integer multiple of 1
2 . Using (1) and (4), we can

rewrite (20) as y = bfloor(α+ x) = x+bfloorα. Solving for x, we obtain x = y−bfloorα. Thus, we have

proven (22) to be correct in the case that α is not an odd integer multiple of 1
2 . Therefore, (20) is inverted

by (22).
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Lastly, we show that (21) is inverted by (23): Using the definition of the RAFZ function in (2), and

solving for x, we obtain

x =











y−dαe for x+α ≥ 0

y−bαc for x+α < 0.

(24)

From the definition of the RAFZ function, however, we know that sgn(rafzα) = sgnα for all α ∈ R (i.e.,

the RAFZ function preserves signedness). Consequently, we have that sgn(x + α) = sgny, and (24) can

be simplified to obtain (23). Thus, (21) is inverted by (23).

From the above proposition, we consequently have that the modified lifting step in Fig. 8 can be in-

verted if Q is chosen as the biased truncation or RAFZ function, but not if Q is chosen as the truncation

function. We can exploit this knowledge in order to gain increased flexibility in the construction of

symmetry-preserving reversible ITI networks.

For example, consider the linear-phase analysis filter bank shown in Fig. 10, where Â1(z) is of the

form given in (7c). Due to the linear-phase property of the analysis filters, this linear filter bank is

compatible with symmetric extension. In particular, one can show that if x[n] is generated using (12),

then y0[n] is symmetric and y1[n] is antisymmetric. We can, therefore, obtain a symmetry-preserving

ITI version of this filter bank by simply rounding the output of the highpass subband signal using an

odd rounding function (since signal antisymmetry must be preserved). In so doing, we obtain the new

structure shown in Fig. 11, where Q is a rounding operator. Since Q is odd, however, Q cannot be integer-

bias invariant. Consequently, we cannot equivalently move the rounding unit before the adder. We know

from our previous results, however, that if Q is chosen as either the biased truncation or RAFZ function,

the resulting filter bank (in Fig. 11) must be invertible. Furthermore, in each case, the corresponding

inverse filter bank can be easily deduced by using Proposition 3 (from above). Thus, we have, in effect,

constructed a new symmetry-preserving base filter bank, similar to (but distinct from) the one used in

the ELASF family. Moreover, the newly proposed reversible ITI structures may also prove useful for the

construction of other more general symmetry-preserving reversible ITI transforms.

IX. RELATIONSHIP BETWEEN SYMMETRIC EXTENSION AND PER-LIFTING-STEP EXTENSION

Although symmetric extension is quite popular, other extension schemes can also be devised. For

example, one extension technique which can be used in conjunction with lifting-based transforms is the

per-lifting-step (PLS) extension method. We have mentioned this technique briefly in [8] and used it

in the SBTLIB [29] and JasPer [30, 31] software. More recently, this method has also been described

in [26, 32] (under the name of “iterated extension” or “interleaved extension”).

January 23, 2003 DRAFT



18

- -
?

?

-

6

6

?

?

- - -

--

z

↓2

↓2 j+

1

j+

x[n]
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(b)
Fig. 12. Structure of a lifting step in the case of PLS extension. (a) Forward lifting step and (b) inverse lifting step.

With PLS extension, signal extension is performed at the input to each lifting-step filter rather than

being performed at the input to the filter bank. That is, each lifting step on the analysis side of the filter

bank has the form shown in Fig. 12(a). In the diagram, p0[n] and q0[n] represent intermediate lowpass

channel signals, p1[n] and q1[n] represent intermediate highpass channel signals, and Q is a rounding

operator. On the synthesis side of the filter bank, the lifting step of Fig. 12(a) has a corresponding inverse

of the form shown in Fig. 12(b). Clearly, the same extension values can be generated on both the analysis

and synthesis sides (since p1−d[n] = q1−d [n]). Thus, this scheme can generate reversible transforms. For

example, one might extend the lifting-step filter input to the left by repeating its leftmost sample and to

the right by repeating its rightmost sample. In what follows, we refer to this simple case of PLS extension

as constant PLS extension.

Consider again a system of the form shown in Fig. 1. In Section VI, we carefully examined the

symmetry properties of the signals {uk[n]}2λ−1
k=0 , {vk[n]}2λ−2

k=0 , y0[n], and y1[n]. In the OLASF case, all of

these signals are symmetric, while in the ELASF case, all of these signals are symmetric/antisymmetric,

except u0[n], u1[n], and v0[n]. Therefore, we can equivalently define symmetric extension in terms of PLS

extension in which case the input to each lifting-step filter is extended by symmetric extension (with the

appropriate choice of symmetry type and centers). This general equivalence is, for example, exploited

in the SBTLIB software [29] and also briefly noted in [26]. In what follows, however, we would like to
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more carefully examine the equivalence in the special case of OLASF transforms with length-2 lifting-

step filters.

Suppose that we have a filter bank of the form shown in Fig. 1 that is constrained to be of the OLASF

type as defined by (6) with Lk ≤ 2 for k = 0,1, . . . ,2λ−1. In this case, we assert that symmetric extension

(using (8) with K = 0) is equivalent to constant PLS extension. In the case of both symmetric extension

and constant PLS extension, the signals {uk[n]}2λ−1
k=0 and y0[n] are completely characterized by their sam-

ples at indices n = 0,1, . . . ,
⌊

N−1
2

⌋

and the signals {vk[n]}2λ−2
k=0 and y1[n] are completely characterized by

their samples at indices n = 0,1, . . . ,
⌊

N−2
2

⌋

. Furthermore, both extension methods yield the same u0[n]

and v0[n] for n over their characteristic sample indices.

Consider the lifting steps involving the filters {Ak} for even k. When filtering with the filter Ak, uk[n]

only ever requires right extension by one sample (if at all) in order to obtain the value for uk[
⌊

N+1
2

⌋

].

Suppose first that N is even. In the case of symmetric extension, the symmetry center of uk[n] at N−1
2 is

an odd multiple of 1
2 , so the sample obtained by extension is equal to uk[

N−2
2 ]. This, however, is the same

result obtained by constant PLS extension. Finally, if N is odd, one less sample needs to be computed

for vk+1[n] than uk[n], and uk[n] need not be extended at all. Thus, symmetric extension is equivalent to

constant PLS extension for the lifting steps involving the filters {Ak} for even k.

Consider the lifting steps involving the filters {Ak} for odd k. When filtering with the filter Ak, vk[n]

always requires left extension by one sample in order to obtain the value for vk[−1]. In the case of

symmetric extension, since a symmetry center of vk[n] is − 1
2 , the sample obtained by extension is equal

to vk[0]. Clearly, this is the same result obtained by constant PLS extension. If N is odd, vk[n] must

also be right extended by one sample in order to obtain the value for vk[
N−1

2 ] (since one fewer sample is

associated with vk[n] than uk+1[n]). In the case of symmetric extension, the symmetry center N−2
2 is an

odd multiple of 1
2 , so the sample obtained by extension is equal to vk[

N−3
2 ]. Again, this is the same result

that is obtained from constant PLS extension. Thus, symmetric extension is equivalent to constant PLS

extension for the lifting steps involving the filters {Ak} for odd k.

Combining the above results for both sets of lifting-step filters, we see that constant PLS extension is

equivalent to symmetric extension for the specific case considered (i.e., OLASF family, length-2 filters,

K = 0). Since the implementation of constant PLS extension is simpler than the classic implementation

of symmetric extension, this equivalence is potentially quite useful. For example, both of the filter banks

defined in the JPEG-2000 Part-1 standard (i.e., [4]) are of the form assumed above. Therefore, one can

exploit the equivalence between symmetric extension and constant PLS extension in order to simplify
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JPEG-2000 codec implementations. For example, this equivalence has been employed by the JasPer

software [30, 31] since at least version 0.044.

X. CONCLUSIONS

In this manuscript, we considered symmetric extension as a means for constructing nonexpansive re-

versible ITI wavelet transforms for finite-length signals. We explained how symmetric extension, com-

monly used in the case of conventional wavelet transforms, can be applied in the reversible ITI case. Two

families of reversible ITI wavelet transforms were introduced (i.e., the OLASF and ELASF families), and

the transforms from these families were shown to be compatible with symmetric extension. For the more

constrained of the two families (i.e., the ELASF family), we characterized the transforms belonging to

this family. That is, we showed that: 1) such transforms are associated with analysis filters having trans-

fer functions of a highly structured form; 2) the DC and Nyquist gains of the analysis filters are fixed (at

useful values), independent of the choice of free parameters; and 3) if a particular filter bank is associated

with a transform in the ELASF family, then so too is its “transposed” version. By better understanding

the characteristics of this transform family, one can hope to better utilize it in signal coding applications.

During the course of our work, we also derived some new reversible ITI structures that are useful in

conjunction with techniques like symmetric extension. We also examined the relationship between sym-

metric extension and PLS extension. For OLASF transforms associated with length-2 lifting-step filters,

we showed that symmetric extension is equivalent to constant PLS extension. This fact can be exploited

in order to reduce the complexity of JPEG-2000 Part-1 codec implementations.

APPENDIX

I. PROPERTIES OF P(z)

Proposition 4: Suppose that we have a product of the form

P(N)(z) =

[

P(N)
0,0 (z) P(N)

0,1 (z)

P(N)
1,0 (z) P(N)

1,1 (z)

]

= ∏N−1
i=0 Ai(z) (25)

where

Ai(z) =











JD
[

1 Ai(z)
0 1

]

JD for even i

JD
[

1 0
Ai(z) 1

]

JD for odd i,
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N ≥ 0, D ∈ {0,1}, Ai(z) 6≡ 0 and Z−1Ai(z) is antisymmetric about 0, for i = 0,1, . . . ,N −1. (Recall from

Section II that J denotes the anti-identity matrix.) Then, P(N)(z) must be such that

Z−1P(N)
0,0 (z) and Z−1P(N)

1,1 (z) are symmetric about 0, (26a)

Z−1P(N)
0,1 (z) and Z−1P(N)

1,0 (z) are antisymmetric about 0, (26b)

for N 6= 0:











degP(N)
0,0 (z) < degP(N)

0,1 (z), degP(N)
1,0 (z) < degP(N)

1,1 (z) for D = 0

degP(N)
0,0 (z) > degP(N)

0,1 (z), degP(N)
1,0 (z) > degP(N)

1,1 (z) for D = 1,

(26c)

for N 6= 0:











degP(N)
0,0 (z) < degP(N)

1,0 (z), degP(N)
0,1 (z) < degP(N)

1,1 (z) for (D+N) even

degP(N)
0,0 (z) > degP(N)

1,0 (z), degP(N)
0,1 (z) > degP(N)

1,1 (z) for (D+N) odd,

(26d)

degP(N)
0,0 (z) 6= P(N)

0,1 (z),degP(N)
0,0 (z) 6= P(N)

1,0 (z),degP(N)
1,1 (z) 6= P(N)

0,1 (z),degP(N)
1,1 (z) 6= P(N)

1,0 (z), (27)

degP(N)
0,0 (z) ≥ 0,degP(N)

1,1 (z) ≥ 0, (28)

for i, j ∈ {0,1}, degP(N)
i, j (z) is even, except when P(N)

i, j (z) ≡ 0, and (29)

P(N)
0,0 (1) = 1, P(N)

1,1 (1) = 1. (30)

Proof: The first part of the proof is by induction on N. There are two main cases to consider: D = 0

and D = 1.

In what follows, we consider the case of D = 0. First, consider the cases of N = 0,1,2. For these three

cases, respectively, P(N)(z) is given by
[

1 0
0 1

]

,
[

1 A0(z)
0 1

]

, and
[

1 A0(z)
A1(z) 1+A0(z)A1(z)

]

. (31)

In the first two of the above three cases, we can easily confirm that (26) is satisfied. In the third case,

(26) can also be shown to hold by using reasoning similar to that which follows. In the interest of brevity,

however, we will not explicitly demonstrate this here.

To complete the inductive process, we must now show that if (26) holds for N = K then (26) also holds

for N = K +1. Thus, we begin by assuming that (26) is satisfied for N = K. From (25), we can write

P(K+1)(z)
4
=

[

P(K+1)
0,0 (z) P(K+1)

0,1 (z)

P(K+1)
1,0 (z) P(K+1)

1,1 (z)

]

= AK(z)P(K)(z)

=















[

1 AK(z)
0 1

]

[

P(K)
0,0 (z) P(K)

0,1 (z)

P(K)
1,0 (z) P(K)

1,1 (z)

]

for even K

[

1 0
AK(z) 1

]

[

P(K)
0,0 (z) P(K)

0,1 (z)

P(K)
1,0 (z) P(K)

1,1 (z)

]

for odd K

=















[

P(K)
0,0 (z)+AK(z)P(K)

1,0 (z) P(K)
0,1 (z)+AK(z)P(K)

1,1 (z)

P(K)
1,0 (z) P(K)

1,1 (z)

]

for even K
[

P(K)
0,0 (z) P(K)

0,1 (z)

P(K)
1,0 (z)+AK(z)P(K)

0,0 (z) P(K)
1,1 (z)+AK(z)P(K)

0,1 (z)

]

for odd K.
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Thus, the expression for P(K+1)(z) can have one of two forms depending on the parity (i.e., even-

ness/oddness) of K.

Consider (26a). First, suppose that K is even. Since P(K)
0,0 (z) and AK(z)P(K)

1,0 (z) both have a coefficient

sequence that is symmetric about 0, their sum P(K+1)
0,0 (z) must also have a coefficient sequence with the

same symmetry. Thus, by observing P(K+1)
1,1 (z) = P(K)

1,1 (z), we have proven that (26a) holds for N = K +1

when K is even. In a similar manner, we can also show that (26a) holds for N = K +1 when K is odd.

Consider (26b). First, suppose that K is even. Since P(K)
0,1 (z) and AK(z)P(K)

1,1 (z) both have a coefficient

sequence that is antisymmetric about 0, their sum P(K+1)
0,1 (z) must also have a coefficient sequence with

the same symmetry. Thus, by noting P(K+1)
1,0 (z) = P(K)

1,0 (z), we have proven that (26b) holds for N = K +1

when K is even. Using similar reasoning, we can also show that (26b) holds for N = K + 1 when K is

odd.

Consider now (26c) and (26d) when K is even. Since P(K)
0,0 (z) and AK(z)P(K)

1,0 (z) both have a coefficient

sequence centered about 0 and degP(K)
0,0 (z) < degP(K)

1,0 (z), the terms with the lowest and highest powers of

z in P(K+1)
0,0 (z) are contributed exclusively by AK(z)P(K)

1,0 (z). Consequently, we have

degP(K+1)
0,0 (z) = degAK(z)P(K)

1,0 (z) = degAK(z)+degP(K+1)
1,0 (z). (32)

Since P(K)
0,1 (z) and AK(z)P(K)

1,1 (z) both have a coefficient sequence centered about 0 and degP(K)
0,1 (z) <

degP(K)
1,1 (z), the terms with the lowest and highest powers of z in P(K+1)

0,1 (z) are contributed exclusively by

AK(z)P(K)
1,1 (z). Consequently, we have

degP(K+1)
0,1 (z) = degAK(z)P(K)

1,1 (z) = degAK(z)+degP(K+1)
1,1 (z). (33)

From (32) and (33), we have degP(K+1)
0,0 (z)−degP(K+1)

0,1 (z) = degP(K+1)
1,0 (z)−degP(K+1)

1,1 (z). This, how-

ever, implies that (26c) holds for N = K + 1 when K is even. From (32), since degAK(z) > 0, we have

degP(K+1)
0,0 (z) > degP(K+1)

1,0 (z), proving that the first relevant part of (26d) holds for N = K + 1 when K

is even. From (33), since degAK(z) > 0, we have degP(K+1)
0,1 (z) > degP(K+1)

1,1 (z), proving that the second

relevant part of (26d) holds for N = K +1 when K is even.

Consider now (26c) and (26d) when K is odd. Since P(K)
1,0 (z) and AK(z)P(K)

0,0 (z) both have a coefficient

sequence centered about 0 and degP(K)
0,0 (z) > degP(K)

1,0 (z), the terms with the lowest and highest powers of

z in P(K+1)
1,0 (z) are contributed exclusively by AK(z)P(K)

0,0 (z). Consequently, we have

degP(K+1)
1,0 (z) = degAK(z)P(K)

0,0 (z) = degAK(z)+degP(K+1)
0,0 (z). (34)

Since P(K)
1,1 (z) and AK(z)P(K)

0,1 (z) both have a coefficient sequence centered about 0 and degP(K)
0,1 (z) >

degP(K)
1,1 (z), the terms with the lowest and highest powers of z in P(K+1)

1,1 (z) are contributed exclusively by
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AK(z)P(K)
0,1 (z). Consequently, we have

degP(K+1)
1,1 (z) = degAK(z)P(K)

0,1 (z) = degAK(z)+degP(K+1)
0,1 (z). (35)

From (34) and (35), we have degP(K+1)
1,0 (z)− degP(K+1)

1,1 (z) = degP(K)
0,0 (z)− degP(K)

0,1 (z). This, how-

ever, implies that (26c) holds for N = K + 1 when K is odd. From (34), since degAK(z) > 0, we have

degP(K+1)
0,0 (z) < degP(K+1)

1,0 (z), proving that the first relevant part of (26d) holds for N = K + 1 when K

is odd. From (35), since degAK(z) > 0, we have degP(K+1)
0,1 (z) < degP(K+1)

1,1 (z), proving that the second

relevant part of (26d) holds for N = K +1 when K is odd.

From above, we have shown that if (26) holds for N = K, then it also holds for N = K +1. The case of

D = 1 can be handled in a similar fashion (but is omitted in the interest of brevity). This completes the

inductive part of the proof.

Since, for i = 0,1, . . . ,N − 1, Z−1Ai(z) is antisymmetric, Ai(1) = 0 and Ai(1) = I. Thus, P(N)(1) =

IN = I, and this implies that P(N)
0,0 (1) = 1 and P(N)

1,1 (1) = 1. Thus, we have that (30) holds for any N.

Also, we have that (26a) and (26b) together imply (29) holds. The relationship (27) holds for N > 0

as a result of (26c) and (26d), while the N = 0 case can be trivially confirmed. Lastly, (28) holds since

from earlier results we can deduce that degP(N+1)
i, j (z)≥ degP(N)

i, j (z), and we know that degP(0)
0,0 (z)≥ 0 and

degP(0)
1,1 (z) ≥ 0.

II. PROOF OF ELASF FAMILY PROPERTIES

Proof of Property 1: First, let us consider the form of Z−1H0(z). For convenience, we denote the first

and second terms in the expression for H0(z) in (18a) as B(z) and C(z), respectively (i.e., B(z)
4
= 1

2(z +

1)P0,0(z2) and C(z)
4
= (z− 1)P0,1(z2)). Due to the form of P0,0(z2) (from (26a)), B(z) has a coefficient

sequence b[n] that is symmetric about − 1
2 with adjacent pairs of samples being equal in value (i.e., b[2n] =

b[2n−1]). Likewise, due to the form of P0,1(z2) (from (26b)), C(z) has a coefficient sequence c[n] that is

symmetric about − 1
2 with adjacent pairs of samples being equal in magnitude but opposite in sign (i.e.,

c[2n] = −c[2n− 1]). Suppose that P0,1(z) 6≡ 0. In this case, from (29), (28), and (27), we know that

degP0,0(z2) and degP0,1(z2) must differ by a nonzero integer multiple of 4. Since H0(z) = B(z)+C(z),

H0(z) must have a coefficient sequence that is symmetric about − 1
2 and begins and ends with pairs of

coefficients that are either equal or equal in magnitude but opposite in sign. In the degenerate case, in

which P0,1(z) ≡ 0, we simply have H0(z) = 1
2(z+1). Lastly, using an argument similar to that above, we

can also show that Z−1H1(z) has the form stated.
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Proof of Property 2: By considering the forms of P0,0(z) and P0,1(z) in (18a), we can see that

degH0(z) = 1+2max(degP0,0(z),degP0,1(z)). (36)

Since, by (29), degP0,0(z) is always even and degP0,1(z) is even (except when P0,1(z) ≡ 0), we have that

degH0(z) is odd. Thus, H0 is an even-length filter. Similarly, using (18b), we can show that

degH1(z) = 1+2max(degP1,1(z),degP1,0(z)). (37)

Since, by (29), degP1,1(z) is always even and degP1,0(z) is even (except when P1,0(z) ≡ 0), we have that

degH1(z) is odd. Thus, H1 is an even-length filter.

If at least one of the {Âk(z)}
2λ−1
k=1 is not identically zero, (26c) implies that two cases are possible:

1) degP0,0(z) > degP0,1(z) and degP1,0(z) > degP1,1(z); or 2) degP0,0(z) < degP0,1(z) and degP1,0(z) <

degP1,1(z). In the first case, we have from (36) and (37) that degH0(z) = 1+2degP0,0(z) and degH1(z) =

1 + 2degP1,0(z). From (27), however, we know that degP0,0(z) 6= degP1,0(z). Therefore, degH0(z) 6=

degH1(z). In the second case, we have from (36) and (37) that degH0(z) = 1+2degP0,1(z) and degH1(z) =

1 + 2degP1,1(z). From (27), however, we know that degP0,1(z) 6= degP1,1(z). Therefore, degH0(z) 6=

degH1(z). By combining the results for the above two cases, we have that degH0(z) 6= degH1(z), ex-

cept in the degenerate case where all of the {Âk(z)}
2λ−1
k=1 are identically zero (resulting in degH0(z) =

degH1(z) = 1).

Proof of Property 3: From (26b) and (30), we have

P0,1(z
2)|z=±1 = 0, P1,0(z

2)|z=±1 = 0, (38)

P0,0(z
2)|z=±1 = 1, and P1,1(z

2)|z=±1 = 1. (39)

Using (38) and (39), we can deduce from (18) that |H0(1)| = 1, |H0(−1)| = 0, |H1(−1)| = 2, and

|H1(1)| = 0.

Proof of Property 4: In the case of the original filter bank, the analysis polyphase matrix, E(z), is given

by

E(z) =
(

∏λ−1
k=1

[

1 Â2k+1(z)
0 1

][

1 0
Â2k(z) 1

])[

1 Â1(z)
0 1

]

(40)
[

1 1
2

0 1

]

[

1 0
−1 1

]

.

Suppose that we now construct a new filter bank with the lowpass and highpass analysis filters H ′
0(z)

and H ′
1(z), respectively, where H ′

0(z) = α0zF0(z) and H ′
1(z) = α1zF1(z). In other words, the new analysis

filters are chosen to be renormalized versions of the synthesis filters from the original filter bank. Further

assume that we continue to employ the same polyphase representation for the new filter bank. Let us
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denote the new analysis polyphase matrix as E′(z). From the definition of the polyphase representation,

we can show

E′(z) =
[

α0 0
0 α1

]

(

E−1(z)
)T

J. (41)

(Again, recall from Section II that J denotes the anti-identity matrix.) Substituting (40) in (41), we obtain

E′(z) =
[

α0 0
0 α1

](

∏λ−1
k=1

[

1 0
−Â2k+1(z) 1

][

1 −Â2k(z)
0 1

])

(42)
[

1 0
−Â1(z) 1

][

1 0

−
1
2 1

]

[

1 1
0 1

]

J.

Suppose now that we choose α0 = 1
2 and α1 = −2. In this case, we can rewrite (42) as follows:

E′(z) =
[ 1

2 0
0 −2

](

∏λ−1
k=1

[

1 0
−Â2k+1(z) 1

][

1 −Â2k(z)
0 1

])

[

1 0
−Â1(z) 1

][

1 0

−
1
2 1

]

[

1 1
0 1

]

J

=
[ 1

2 0
0 −2

](

∏λ−1
k=1

[

1 0
−Â2k+1(z) 1

][

1 −Â2k(z)
0 1

])

[

1 0
−Â1(z) 1

][

2 0

0 −
1
2

][

1 1
2

0 1

]

[

1 0
−1 1

]

=
(

∏λ−1
k=1

[

1 0
4Â2k+1(z) 1

][

1 1
4 Â2k(z)

0 1

])[

1 0
4Â1(z) 1

]

[

1 1
2

0 1

]

[

1 0
−1 1

]

.

Thus, the new analysis polyphase matrix, E′(z), (corresponding to the swapped or “transposed” filter

bank) has the same general form as the original one E(z) (given by (40)). Therefore, the new filter bank

is also associated with a transform in the ELASF family.
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