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Abstract

A flexible mesh-generation framework for image representation baseclauiay triangulations is pro-
posed. By fixing the various degrees of freedom available within this freme two mesh-generation
methods, known as ID1 and ID2, are derived. These two methods anegb perform extremely well,
producing meshes of significantly higher quality than state-of-the-agnsek at relatively low compu-
tational cost. Furthermore, the ID1 and ID2 methods each provide a mischarereby mesh quality
can be increased (or decreased) in return for a correspondireage(or decrease) in computational cost.
Lastly, we demonstrate that one component of our proposed methodd, lzadlgpoint replacement, can be
used as a postprocessing optimization step that, when added to other gisepimposed mesh-generation
methods, yields meshes of much greater quality.
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1. Introduction

In recent years, there has been a growing interest in image reprézesithat employ adaptive (i.e.,
nonuniform) sampling [1-7] as such representations can, in many applgatiase numerous advan-
tages over traditional lattice-based sampling, including greater compa&ndshe ability to facilitate
methods that yield higher quality results or have lower overall complexity. Safntlee many applica-
tions that can benefit from adaptive sampling include: feature detectjppg@ern recognition [9], com-
puter vision [10], restoration [11], tomographic reconstruction [12krfng [13], and imag&ideo cod-
ing [7, 14-19]. Although many classes of adaptively-sampled imagesepiaions have been proposed
to date [20-23, 1, 24-27], those based on Delaunay triangulationgphaven to be particularlyféective
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[6, 28, 2, 4, 3, 29, 30], and are the focus of our work herein. ttento employ a triangle-mesh represen-
tation of an image, a means is needed to construct such a representatioigiarbitrary lattice-sampled
image. That is, we must be able to select a good subset of the original spoipie of an image from
which to form a mesh model (of the image). This is the so cattegdh-generation problem

To date, numerous mesh-generation schemes have been proposegldondy-triangulation-based
mesh models of images. Some such methods include the MGH scheme [28] (Inspitee work of
Garland and Heckbert [31]), therror-di ffusion (ED) scheme of Yang et al. [29], thgreedy-point re-
moval (GPR) scheme of Demaret and Iske [3] (called “adaptive thinning” thereirg,thka GPRFS-ED
scheme [6]. Of these methods, the GPR and GPRFS-ED schemes ardgrfyrtimteworthy as they rep-
resent state-of-the-art mesh-generation techniques. For example,riecdnt paper [1, Figures 4 and 5],
the GPR scheme (called “adaptive thinning” therein) was shown to yield me$hastly superior quality
in comparison to all of the other methods considered. The main disadvarftdyge GPR scheme is its
extremely high computational and memory requirements. More recently, th& &FR scheme [6] was
shown to produce, in many cases, meshes of only slightly lower quality th&RRescheme, but at a very
substantially reduced computational and memory cost.

In this manuscript, we propose a flexible new framework for mesh generaliy fixing the various
degrees of freedom available within this framework, we derive two meslergtion methods, known as
ID1 and ID2 (where the “ID” in each name stands for incremédéremental). As we shall see later,
these two mesh-generation methods perform extremely well, producing sneshigher quality than the
state-of-the-art GPR and GPRFS-ED schemes at relatively low compuatiatimst. Furthermore, our ID1
and ID2 methods each provide a mechanism whereby mesh quality can basiedr(or decreased) in
return for a corresponding increase (or decrease) in computatiomgliexity. Moreover, we show that one
component of our proposed mesh-generation methods, called badgqmadement (BPR), can be used as a
postprocessing step to improve upon the quality of meshes produced byhieusly-proposed schemes
such as the ED method. In passing, we note that the work described hasgieen partially presented in
the author’s conference paper [32]. The ID1 and ID2 methods pembberein, however, produce much
higher quality meshes than the so-callBiT method from this earlier conference paper, as demonstrated
later by experimental results.

The remainder of this manuscript is organized as follows. First, Sectionalintes the mesh model for
image representation employed in our work. Then, Section 3 presentsapasgd computational frame-
work for mesh generation, with Section 4 proceedingfferisome guidance as to how this framework can

be dficiently implemented. Our ID1 and ID2 mesh-generation methods (derivadtfre proposed frame-
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work) are presented in Section 5, along with some details as to how they btaiaed. In Section 6, our
methods are evaluated and shown, through experimental results, tcenmdshes of higher quality than
state-of-the-art methods at relatively low computational cost. Finally, $ec¢tmncludes the manuscript
with a summary of our key results.

Before proceeding further, a brief digression is in order regardiadge$t images used in our work. For
the purposes of evaluation herein, we consider a set of 40 (graygualges, consisting of photographic,
medical, and computer-generated imagery. For the most part, the imagdssaréomn well-known image
collections, with 24 taken from the Kodak test set [33], 11 taken from BieE2000 test set [34], and 3
taken from the USC image database [35]. With the exception of statisticétisresken over our entire test
set, the experimental results presented herein focus on the small reptiesesubset of images listed in

Table 1, which were deliberately chosen to include photographic, medichtcmputer-generated imagery.
[Table 1 about here.]

Lastly, a brief comment is appropriate regarding some of the notation emglottdd manuscript. The

cardinality of a sef is denotedS|. Also, when presenting algorithms, the symbet™is used to denote

variable assignment.

2. Mesh Model for Image Representation

In the context of this work, a mesh model of an imagiefined o\ = {0, 1,...,W-1}x{0,1,...,H-1}
(i.e., a rectangular grid of widtiv and heightH) is completely characterized by: 1) a $&& {pi)}|"; of
sample points; and 2) the sét= {z,-}!Z'l of the corresponding sample values (iz.= ¢(p;)). The setP
is always chosen to include the extreme convex hull pointa ¢fe., the four corner points of the image
bounding box) so that the triangulation Bfcovers the entire image doma FromP andZ, a unique
interpolantdp is constructed as follows. First, we form the Delaunay triangulatio, afhich is ensured
to be uniquely determined (frof alone) by employing the preferred-directions scheme [37]. Then, for
each facef of the triangulation, we construct the unique linear function that interpolatsthe three
vertices off. By combining the interpolants from each of the faces, we obtain the conmpiecewise-
planar interpolantyp. As a practical matter, since the sample values of the final image approximation
must be integer, the final (integer-valued) interpokamiat the pointp is given bygp(p) = round@p(p)),
where round denotes rounding to the nearest integer. Since the vetities triangulation are nothing
more than sample points, often the terms “sample point” and “vertex” are usadhangeably herein.

As a matter of terminology, theampling density of the mesh model is defined #3/|Al. In passing,
3



we note that our interest in Delaunay triangulations arises from their gumukpies for approximation.
The Delaunay triangulation maximizes the minimum interior angle of all triangles inimgtriation, thus
avoiding sliver triangles to whatever extent is possible. This leads to theummlariangulation being
optimal for controlling error bounds in approximation applications [38] sasthe one considered herein.
Having defined the above mesh model, the mesh-generation problem thaidvessaherein can be
succinctly stated as follows: For a given target numiesf sample points (wherdl € [4,|A]]), choose
P c A such that|P] = N and the mesh approximation erre{P) is as small as possible—ideally, a
global minimum. In our work, the mean squared error (MSE) is used as tbereetric, so that(P) =
|A|‘1ZpeA(<$p(p) - ¢(p))2. Herein, the MSE is typically expressed in terms of the peak-signal-to-noise
ratio (PSNR), which is defined @&SNR = 20 log,,(M/ VMSE), whereM = 2° — 1, andp is the sample
precision in bitgssample. Finding goodomputationally-efficient methods for solving the above problem is

quite challenging, since problems like this are known to be NP hard [39].

3. Proposed Mesh-Generation Framework

Having introduced the particular mesh model for image representation assaroar work, we are
ready to present our proposed computational framework for meshajeme Let¢ denote an image sam-
pled at the points\ (which form a rectangular grid). Our framework is iterative in nature @ocks by
making repeated updates to a mesh approximatiop by alternating between two distinct processing
phases: one that adds sample points to the mesh and one that deletes sammpliegno the mesh. As
input, our framework takes the following information, in additiongtol) a subser’ of the sample points
A from which to form an initial mesh approximation ¢f 2) the target numbeN of sample points that
should be present in the mesh to be generated (Wker§4, |Al]); and 3) a sequend@i}i'-=0 (whereL > 1)
with o = |I, andn. = N, known as agrowth setpoint sequencewhich specifies ajrowth schedule
for the approximating mesh (i.e., how the size of the mesh should evolve byngrewd shrinking as the
framework is applied). As will be seen later, the growth setpoint sequesssntially specifies the mesh
size at the end of each sample-point addjti@tetion phase (mentioned above). Note that this sequence
does not have to be (and normally is not) monotonically increasing (or manatigrdecreasing). In order
to either force or prevent certain pointsAnfrom appearing in the final mesh, the notion of mutability of
a point is introduced. A poinp € A is said to bemutable if it is permitted to be added to or deleted from
the mesh as our framework is applied. A point that is not mutable (i.e., a poir¢ iméish that cannot be

deleted from the mesh or a point not in the mesh that cannot be added to tidsrszsd to bemmutable.



Before we can proceed further, it is necessary to introduce some additdefinitions and notation.
For a setS of points inA, mutable§) denotes the set of all mutable points3n Let ¢s be the interpolant
corresponding to the mesh with sample poiBtsLet rs(p) denote the approximation error at the point
p for the mesh with sample poin8 (i.e., rs(p) = #s(p) — ¢(p)). In what follows, letP denote the
sample points in the current mesh approximatio.oEach pointp € A is assigned t@xactly one face
in the Delaunay triangulation d®, which is denoted fac@j. If p is strictly inside a facef, we define
face() = f; otherwise (for points on edges or vertices), the method of [40] is useaditpuely assigm
to exactly one face. The set of all pointp satisfying facef) = f (i.e., all points belonging to the face
f) is denoted pointd(). The squared error computed over all points in the facedenoted as faceEifr(
(i.e., faceErrf) = X peanpoints() r3(p)). For a given facef, the set of all mutable points in the face that
are not currently in the mesh are calleandidate points (of the facef) and is denoted candg((i.e.,
candsf) = mutable((A \ P) N points(f))).

With the above definitions in place, our computational framework then comdigie following steps:

1. Initialize mesh. Leti := 0. LetP :=T. Mark all extreme convex hull points df as immutable (so that

they cannot be later deleted from the mesh) and mark all other pointaghmutable.

2. Top of main loop. If i = L (i.e., no more setpoints are available), outpus the sample points of the
final mesh, and stop. IP| < 741, go to step 3 (i.e., increase mesh size)Pif> ni+1, go to step 4 (i.e.,

decrease mesh size); otherwise, go to step 5 (i.e., bottom of main loop).
3. Increase mesh size. While |P| < 7,1, add a point to the mesh by performing @ptimal add (optAdd)
operation, which consists of the following steps:

(a) Selecta facd* in which to insert a new point as given by

f* = argmaxfaceErr(),
fet

where0U is the set of all faces containing at least one candidate point. That ii,fat@s in which a
point could be inserted,* is the one with the greatest squared error. Next, select a (mutable)gioint

in f* to add to the mesh as given by

p* = selCand{™),
where selCand is a function that embodies the candidate-selection paoddssa free parameter of our
framework. As for how selCand might be chosen, we defer this disqussitl later in Section 5.1.

(b) LetP:= PuU{p*}(i.e., addp* to the mesh).

Go to step 5 (i.e., bottom of main loop).



4. Decrease mesh size. While |P| > 7,1, delete a point from the mesh by performing@stimal delete

(optDel) operation, which consists of the following steps:

(a) Let thesignificance (with respect to deletion) of a (mutable) poipte P, denoted sigDelf), be
defined as

sigDel(p) = > (rhyp (@ ~ r3(a)). (1)

geRNA
whereR is the region in the triangulatiorffacted by the deletion gf. That is, sigDelp) is the amount

by which the squared error increasep iere deleted from the mesh. Then, select the pwind delete
from the mesh as

>k

p* = argmin sigDel(p). 2)
pemutableP)

That is, we choose to delete the mutable point having the least significancéh@.@oint that, when

deleted, results in the least increase in squared error).

(b) LetP:= P\ {p*} (i.e., deletep* from the mesh).

5. Bottom of main loop. Leti := i+ 1. Go to step 2 (i.e., top of main loop).

Our framework, as specified above, provides a number of degrée®dbm by leaving open the choice
of each of the following: 1) the initial medh 2) the growth schedul{e;i}i';o, and 3) the candidate-selection
policy selCand. Of course, in order to produce a concrete (i.e., fubbgiipd) mesh-generation method,
each of the above choices needs to be fixed. As for what specificeshwiight be fective, we defer this
discussion until later in Section 5.

Computational Considerations. In passing, we would like to note that there is a fundamental asymmetry
in the manner in which the optAdd and optDel operations are defined in awefwork. In particular, a
higher degree of symmetry could have been obtained by simply choosingititgpto insert as

Sk

p*= argmax sigAdd(p), 3)
pemutable(\\P)

where sigAddp) is the amount by which the squared error decreases when theggisiatided to the mesh.
Such a choice, however, would be problematic from a computational siemidBecause the evaluation of
the sigAdd function in (3) requires a significant amount of computation amébtimula in (3) requires the
repeated evaluation of sigAdd for all points in the set mutab\&) which is typically very large in practice
(on the order of the number of samples in the original image), the amountgdutation associated with
the choice ofp* given by (3) would be much too large to lead to a practical method. So, in, sher

asymmetry in the optAdd and optDel operations has been arrived at gbbgitely for computational

reasons.



Additional Remarks. It is important to note that our proposed framework is fundamentally greedy
nature. That is, the choice of which point to Adkelete in a given step is made without regard to how
this choice &ectslater steps. Consequently, this framework does not guarantee a globally optilagbn.
Practically speaking, however, msomputationally-tractable algorithm likely exists for producing a globally
optimal solution, since mesh-generation problems like the one addressed nimatiisscript are NP hard.
Next, it is important to understand that the (probably suboptimal) resultupestifrom this framework
is very heavily dependent on the choice of initial mesh, growth schedule, and candidate-selectiory.polic
Furthermore, computational complexity is also strongly influenced by thegireg choices.

For a fixed initial mesh and candidate-selection policy, a practically limitless nuofilggowth sched-
ules is possible. Diierent choices of growth schedule lead tffatient mesh quality and computational
complexity tradefi's, however. For example, suppose that we are given an initial meshghsaimple
pointsI’, where|l'| = 4, and we wish to produce a mesh with= 104 sample points. Two possible growth
schedules that could be used to accomplish this correspond to the folldiyipgrform two optAdd opera-
tions followed by one optDel operation, repeated 100 times; or 2) pei266optAdd operations followed
by 100 optDel operations, only once. Although both scenarios havathe total number of optAdd and
optDel operations, the quality of the resulting mesh in each case could icalladlifferent. Also, for
reasons that will become clearer later in Section 4, it is more computatioffiatiget to group optAdapt-

Del operations of the same type together. Therefore, scenario 2 frowe avould most likely require less
computation.

In passing, we note that the family of methods generated by our prop@see\iiork includes as very-
trivial special cases the GPR and GPRFS-ED schemes mentioned edréeGPR method is obtained by
choosingl’ = A and the growth setpoint sequence{|@$, N} (whereN < [I). The GPRFS-ED method is
obtained by choosing with the ED scheme such that = min{4N, |A|} and the growth setpoint sequence as
{IT', N} (whereN < |I']). The preceding special cases are very trivial in the sense thattheyneolve point
deletion, since in both casék< [I'|. The major benefit of our proposed framework and the contribution of

the work presented herein, however, come from allowing both point additid deletion.

4. Implementation of Proposed Mesh-Generation Framework

Although our proposed mesh-generation framework is conceptually simgéementing it in a com-
putationally éficient manner is tricky and requires careful software design. A naiveemmgntation could

easily require several orders of magnitude more computation than is stricigsery. Below, wefter



some guidance as to how our mesh-generation framework cdtidiergly implemented, by describing the
particular implementation strategy that we employed.

The mesh-generator state consists primarily of the following: 1) the Delatigangulation data struc-
ture, which maintains the mesh geometry and connectivity information; 2yettex priority queue, a
heap-based priority queue with an entry for each mutable point currenifyeimesh, where the entry for
the pointp has priority— sigDel(p); 3) theface priority queue, a heap-based priority queue with an entry
for each facef in the mesh satisfying faceEf{ > 0 (i.e., faces with a strictly positive error), where the
entry for facef has priority faceErr); 4) thevertex scan list a doubly-linked list with an entry for each
vertex whose priority requires updating due to changes in the mesh. Ifellosvs, we now describe how
the optAdd and optDel operations can be implemented.

To perform an optAdd operation, we proceed as follows: 1) Removeatteeviith the highest priority
from the face priority queue, lettinfydenote the face removed. The potio be added to the mesh is then
selCandf). 2) Insertp in the triangulation, lettindRk denote the region in the triangulatioffected by the
insertion ofp. 3) For each facd in R, recompute faceErf() and update accordingly the priority éfon
the face priority queue. 4) For each mutable veqén R, addp to the vertex scan list for (possible) later
updating of its priority.

To perform an optDel operation, we proceed as follows: 1) For eadexp on the vertex scan list,
removep from the list, recompute sigDgdj, and update accordingly the priority of the vertgxon the
vertex priority queue. 2) Remove the vertex with the highest priority fronvéngex priority queue, letting
p denote the vertex removed. The vertex to be deleted isph&) Deletep from the triangulation, letting
R denote the regionfiected by the deletion gb (namely, the faces incident qu). 4) For each facd in
R, recompute faceErf() and update accordingly the priority éfon the face priority queue. 5) For each
mutable vertexp in R, addp to the vertex scan list for (possible) later updating of its priority. To recampu
sigDel(p) for a given mutable vertep, we temporarily deletg from the triangulation, and compute the
resulting change in the mesh approximation error over the redteatad by point deletion (namely, the
faces incident om).

As the description above implies, the computation associated with updating teg peprity queue
(e.g., re-evaluating sigDel values for vertices) is deferred until thdtrissabsolutely needed (namely, when
an optDel operation is about to be performed). In situations where multipheddpoperations are per-
formed without an intervening optDel operation, this deferred procgssin save a considerable amount
of computation. This savings results from avoiding vertex-priority updtdtaswould later be rendered

unnecessary by other optAdd operations. Lastly, in order to furthileiceecomputational complexity, we
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employ two additional optimizations: 1) the face priority queue is not initialized tmélfirst optAdd

operation; and 2) the vertex priority queue is not initialized until the first eptperation. These optimiza-
tions save considerable time when the mesh-generation process beging avitrde number of optAdd
operations without an intervening optDel operation; or 2) a large nunftaptbel operations without an

intervening optAdd operation.

5. Proposed Mesh-Generation Methods and Their Development

As seen earlier, our proposed computational framework for meshaj@reprovides several degrees of
freedom by leaving open the choices of initial mesh, growth scheduleamtidate-selection policy. Thus,
in order to arrive at a concrete mesh-generation method, we need todixdbgrees of freedom by making
specific choices for each of the preceding items. Rather than simply statirigpahehoices that were
made in the case of the concrete mesh-generation methods proposed in tidsmpaifwhich have yet to
be introduced), we will instead describe several of the choices that @emisidered in the development of
these methods, along with the rationale of how we selected from amongst thesn.dbing, we hope to
provide the reader with additional insight into both our proposed mesérgion framework (introduced
earlier) as well as our concrete mesh-generation methods (yet to beuiceid

The remainder of Section 5 is structured as follows. To begin, Section éskmis several choices of
growth schedules and candidate-selection policies considered in ok Mext, Section 5.2 introduces an
algorithm that can be employed as a postprocessing step to mesh generatidarito further improve
mesh quality. In Section 5.3, we proceed to study the relative merits of theisarimicegdeas introduced
in Sections 5.1 and 5.2. This leads us to recommend particular combinationsi@dsthat correspond to

our two proposed concrete mesh-generation methods, which are formediguned in Section 5.4.

5.1. Initial Mesh, Growth Schedules, and Candidate-Selection Policies

With regard to the choice of initial mesh, we limit our attention herein to schemestéitafrom a mesh
consisting of the (four) extreme convex hull pointsAaf We have found many such schemes to be highly
effective with relatively low computational cost.

Growth Schedules. Of the many growth schedules studied in our work, we consider only fexgim
Of these four schedules, the most basic isittmemental (1) growth schedule which has a setpoint

sequencér;}-, given by

no=I1 and n1=N.



This schedule simply results M — |I'| optAdd operations (and no optDel operations) being performed. The
remaining growth schedules are somewhat more complicated, involving kétticband optDel operations.

Thebelow (B) growth schedulehas the setpoint sequen{cﬁa}i'-:0 given by

N - [ai/Z(N -~ |F|)J i even
i =
N i odd

wherea € (0,1) andL = 1+ 2|-log,(N —|I)]. In the case of this schedule, the mesh size oscillates
betweerN and values below, with the amplitude of oscillation decaying exponentially at a rate given by
the damping parameter. Theabout/circa (C) growth schedulehas a setpoint sequenbnz}iLZO given by
ni =N+ (1" "N -1,

wherea € (0,1) andL = 2+ 2|-log,(N — [[')|. In the case of this schedule, the mesh size oscillates about
N (i.e., both above and beloiN), with the amplitude of oscillation decaying exponentially at a rate given
by the damping parametet Lastly, theabove (A) growth schedulehas a setpoint sequen{:ys;}i'-:0 given
by

|| i=0

M =4N ieveni 20 4)

N+ o0 D2(N - |r7)| i odd
wherea € (0,1) andL = 2+ 2|-log,(N —[I')]. In the case of this schedule, the mesh size oscillates
betweenN and values aboval, with the amplitude of oscillation decaying exponentially at a rate given
by the damping parametet. For comparison purposes, the number of optAdd operations, the nurhber
optDel operations, and the total operation count are given in Tableeafdr of the growth schedules. The

information in this table will be used later in order to guide the selection of the danppirametet.
[Table 2 about here.]

Candidate Selection Policies. Of the many candidate-selection policies studied in our work, we present
only four herein, chosen on the basis of their simplicity /an@ffectiveness. The first (and simplest) of

these four policies is thpeak-absolute-error (PAE) policy, which chooses the selCand function as

selCand() = argmax|de(p) - 4(p)| . 5)
pecandsf)

That is, of all candidate points in the face, this policy selects the point atwh&absolute error is great-

est. The second policy, known as theak-weighted-absolute-error (PWAE) policychooses the selCand

function as

selCand() = arg ma;(d(p) |#p(p) - ¢(p)| . (6)

pecandsf

10



whered(p) denotes thenaximum magnitude second-order directional derivative (MMSODD of ¢ at
p. In other words, of all candidate points in the face, this policy selects time aiowhich the MMSODD-
weighted absolute error is greatest. As a practical matter, i (§)computed as given by [29]

d[(x, )] = maxXja(x.y) + B(x V)l (X, y) = B Y)I}, (7
wherea(xy) = 1Z4(xY) + Z20(x y)] andB(xy) = A Zd(6Y) - 25606 V2 + [mé(x Y)I2. The
partial-derivative operators in the preceding equation are formedtfretensor product of one-dimensional

derivative operators, where the discrete-time approximations of thdiomemsional first- and second-order
derivative operators are computed using the filters with transfer fum:%izm %Z‘l andz-2+z1, respec-
tively. Furthermore, the partial-derivative operators are applied to attrad version of (rather thanp
directly), where the smoothing operator employed is the tensor producbajfrie-dimensional filters with
transfer functionz“(% + %2_1)8 (i.e., a ninth-order binomial lowpass filter with zero-phase and unity DC
gain). During convolution, domain boundaries are handled by zerosate(i.e., the signal is padded with
zeros).

In the PWAE policy, the weighting of the absolute errordfi.e., the MMSODD) is motivated by the
fact that the MMSODD is typically large in locations where the placement ofmgpkapoint would be
desirable. For example, the MMSODD has a double response to image atigesng maxima just to each
side of an image edge. This behavior is illustrated by the simple example in Fighrert the figure, it is
evident that the locations where the MMSODD is large are likely to be gooéplacselect a sample point.
Due to this behavior, there is reason to believe that the MMSODD-weightsiab error in (6) could be
an dfective means for candidate selection. As we will see later, this suspicicectirtdirns out to be well

founded.
[Figure 1 about here.]

The third candidate-selection policy, known asdpgroximate local squared-error minimizer (ALSEM)

policy, chooses the selCand function as

selCandt) = arg max Z (r%(q)—réu{p}(Q)) 8
PES  gepoints(f)

whereS is a subset of candg), chosen as follows. lfcandsf)] > 18, S is chosen as the 9 poinfs €
candsf) for which d(p) 'q?p(p) - ¢(p)| is greatest (wherd(p) is as defined in (6)) in addition to 9 other
randomly-chosen (distinct) points from canfls(otherwise,S = candsf). (The values of 18 and 9 were
chosen based on considerable experimentation involving a variety of imadessampling densities.) In (8),
the summation corresponds to the reduction in the squared eparafe added to the mesh, computed only

locally over the points im\ that belong to the facé.
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The PAE and PWAE candidate-selection policies have very low computateaghtead. This follows
from the simplicity of the expression being maximized in each of (5) and (6)atiRe to the PAE and
PWAE policies, the ALSEM policy has a much higher computational cost. Thigpatational disparity
motivates the last candidate-selection policy, known asitieid policy . The hybrid policy simply em-
ploys the PWAE policy until the first growth-schedule setpainis reached, with the ALSEM policy being
used thereafter. By using the less-computationally costly PWAE policy initigipputational cost can be

significantly reduced (relative to the ALSEM policy).

5.2. Bad-Point Replacement (BPR)

In the preceding section, several options for growth schedules artidedie-selection policies were
presented. Before proceeding further, we need to introduce a bgsrittam that is beneficial in the con-
text of our proposed mesh-generation framework. As a matter of termipaognutable) poinp in the
mesh is said to bbad, if sigDel(p) < O (i.e., the deletion op would not cause an increase in the mesh
approximation error). Clearly, bad points are undesirable since theisinalin the mesh either increases
the mesh approximation error (if sigDp)( < 0) or leaves the mesh approximation error unchanged (if
sigDel(p) = 0). As it turns out, with our framework, when the target number of points&lfi achieved
and the mesh-generation process would normally terminate, there is thelgg$ldt some bad points will
be present in the mesh. Depending on the choice of initial mesh, growttiidehand candidate-selection
policy, the number of bad points could, in fact, be quite large. At first, it mégletm counterintuitive that
deleting points from the mesh could actuadlscrease the approximation error. The mesh approximation
error, however, depends not only on the sample points, but also theggpaf the triangulation associated
with these points. Therefore, removing a point could, for example, ctrssngulation edge that crosscuts
an image edge to be eliminated, thus having the potential to reduce approxinradion e

To combat the degradation in mesh quality caused by the presence of inésl pee have devised
a technique for eliminating such points called theed-point-replacement (BPR)method. This method
works by deleting bad points and substituting other new points in their plaé¢gisltione in such a way as
to not result in any net change in the number of points in the mesh (i.e., the nofmtiy@Add operations
and number of optDel operations employed are equal). This method is idtemte performed as a final
postprocessing step in the mesh-generation process, after a mesh witigéhadanber of points has been
obtained. In more detail, the BPR method consists of the following steps: I}ket « and letc := 0.

2) Letn := 0; while the pointp that would be deleted from the mesh by the next optDel operation satisfies

sigDel(p) < 0, perform an optDel operation (to delgtg mark p as immutable, and let .= n+ 1. 3) If
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n > 0, performn optAdd operations. 4) Ih > nyg, letc := c+ 1. 5) Letngg :=n;if n=0o0rc > 3,
stop; otherwise, go to step 2. In step@is marked as immutable in order to prevgnirom being added
back to the mesh in subsequent iterations, which could cause the algoritlewoimé trapped in an infinite
loop, repeatedly cycling through the same sequence of optAdd and agiBreltions. The counteris used
to allow the algorithm to terminate early in the case that convergence is abnosiaalywhich has been
observed to occur occasionally for some very simple synthetic images.

Although the BPR scheme was initially developed as a tool for potential use imelsb-generation
methods proposed later in this manuscript, it is important to note that our BPR dnedinobe used as
a postprocessing step added to other arbitrary (i.e., not necessanlgdd&om our framework) mesh-
generation methods in order to improve the resulting mesh quality. That is,wel@a mesiM produced
by another arbitrary method, usé as the initial mesh for our framework, and then simply invoke our BPR
scheme to produce the new mdgh. Provided thatVl had some bad points (which is the case for many
methods), we can expect the new méshto be of higher quality than the original mebh As we will see
later, some previously proposed schemes, although dffitetiee, often produce meshes with a significant

number of bad points.

5.3. Analysis of the Available Options

Having introduced numerous options (i.e., growth schedules, candielatgisn policies, and BPR)
that could be used to construct a concrete mesh-generation method, wewdtudy each of these options
more carefully. Through this analysis, a better understanding of thesissu®unding these options can be
obtained, which will ultimately allow for the formulation of moré&ective mesh-generation methods.

Comparison of Growth Schedules. To begin, let us examine the impact of the choice of growth schedule
on mesh quality. To do this, we fix the candidate-selection policy to be PWA&hldishe use of BPR, and
then select from amongst the various growth schedules under catgidefnamely, the |, B, C, and A
growth schedules). In order to place the B, C, and A growth schednlapgroximately equal footing, the
damping parameter is chosen in each case, through the use of Table 2 (for @rgsuch that the three
growth schedules yield (approximately) the same total number of opopatidel operations. In particular,
we have chosen the damping parametexrs 0.625, 0.25, and 0.4 for the B, C, and A growth schedules,
respectively.

For all 40 images in our test set and 6 sampling densities, we generated asimgsbach of the various
growth schedules and measured the resulting mesh approximation erronsrofed?SNR. Individual results

for three specific images (namely, those listed in Table 1) are given in Téh)e Also, for each of the
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240 test cases (i.e., 40 images with 6 sampling densities per image), the PSNiRhpace of the four
approaches was ranked from 1 (best) to 4 (worst), and the avemdggtamdard deviation of the ranks were
computed for each sampling density as well as overall, with the results shavablie 3(b). (The standard
deviations are the numbers shown in parentheses in the table.) To assigtlizinig trends, in each row of
the tables, the best and second-best results are shdvoldrandgray italic, respectively. Examining the
statistical results of Table 3(b), we can see that the standard deviateab aery small and in many cases
zero, meaning that the rankings are very consistent across test Chsady, from the table, the A growth
schedule ranks best, followed (in order) by the C, B, and | growthdidbs. The results for individual test
cases shown in Table 3(a) can be seen to be consistent with the statistitisl, igith the A growth schedule
faring best, outperforming the C, B, and | growth schedules by marginp t§ 0.21 dB, 0.31 to 0.69 dB,
and 1.91 to 4.61 dB, respectively. It is worth noting that the | growth sdlegukrforms especially poorly,
producing results that are very substantially worse (i.e., by more than thdBgven its closest competitor
(namely, the B growth schedule). Although we have elected to preseisrésr one particular choice of
candidate-selection policy (namely, PWAE), we have observed similarstkeitid other candidate-selection
policies. Based on the above results, we recommend the use of the A gahetiuse.

As we saw above, the | growth schedule performs quite poorly relativestottier growth schedules.
There is, however, a good reason for this behavior, as we shall xo\aie. The | growth schedule starts
with a nearly empty mesh (of only four sample points) and achieves the targét sieeonly by adding
points (i.e., points areever deleted). Because the underlying framework is greedy in nature, theding
approach has a fundamental weakness. Since the framework is giteetlly unavoidably make some
bad decisions regarding points to #dlelete, and such bad choices lead to a degradation in mesh quality.
Therefore, in order to achieve the highest possible mesh quality, a mech&mneeded for allowing bad
decisions to be reversed. In the case of the | growth schedule, noreadanism exists. If the decision
to add a particular point turns out later to have been a bad one, there igynfomthe point to be deleted.
For similar reasons, a growth schedule based solely on point deletion (ivétier adding points) is also
fundamentally weak. In contrast, the B, C, and A growth schedules akebetween the addition and
deletion of points. Thus, if a bad choice is made in adding a point, the chaicefeatively be undone
by later deleting the same point. Similarly, if a bad choice is made in deleting a poirdhdiee can be
effectively undone by later adding the same point. Consequently, growtdidekehat alternate between
the addition and deletion of points are fundamentally more robust to the baéwkshioherent in a greedy
framework. In fact, it was precisely the preceding observation that atetivour proposal of a mesh-

generation framework that is basedlmith the addition and deletion of points.
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To better illustrate the shortcomings of a growth schedule that only involveadti#ion of points,
we consider an example. For a simple color-wheel image, a mesh with a samgtisigycbf 0.09% was
generated using each of the | and B growth schedules. The recdesdtimmages and corresponding image-
domain triangulations are shown in Figure 2. The | growth schedule, stdrtinga nearly empty mesh
(having only four sample points), simply adds points until the target numbsairaple points is achieved.
From the resulting triangulation, shown in Figure 2(b), we can see thatritue$s leads to an undesirable
clustering of points. Although the B growth schedule also starts in an ideffdishion to the | growth
schedule, initially obtaining exactly the same triangulation as in Figure 2(b) amhsit stopping as in
the case of the | growth schedule, the B growth schedule continues to dabtt@dd points, leading to
the final triangulation shown in Figure 2(d). Observe that the poor desisiotially made, which led to
an undesirable clustering of points, have been undone, resulting inlg saperior triangulation. This
example clearly demonstrates the importance of having a mechanism whewdiby lead decisions to
adddelete points can be reversed.

The above explains the poor performance of the | growth schedule.relé@/e performance of the
remaining three growth schedules (namely, B, C, and A) is strongly infacebyg the average mesh size
associated with each growth schedule. In particular, in the case of theddCA growth schedules, the
average mesh size is below, approximately equal to, and above the tangieeiiN of points, respectively.
Having a larger average mesh size is advantageous, &®iis anore possibilities for the points that are
eventually chosen for the final mesh. The A growth schedule, which leakigfhest average mesh size

performs best, while the B growth schedule, which has the lowest averegje size, performs worst.
[Table 3 about here.]
[Figure 2 about here.]

Recall that each of the B, C, and A growth schedules are associated \@damping parametet.
Therefore, one might reasonably wonder wh& this parameter has on mesh quality. In the case of all
three growth schedules, the clear trend is for mesh quality to improveésagcreased. To more concretely
demonstrate this behavior, we provide some experimental results in Tableigltable shows the mesh
guality obtained for the A growth schedule with thredfelient choices of damping parameter The
tendency for mesh quality to increase withis clearly evident in these results. The above behavior can
be easily explained. As increases, the oscillations in mesh size decay more slowly, resulting in more

alternations between adding and deleting points. This provides more opippffior bad choices to be
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undone, yielding higher mesh quality. Of course, the higher mesh qualityscatrtbe cost of increased
computational complexity. As a consequence of the above behavior, bingrdikerent choices fow, we

can tradeff mesh quality against computational complexity.
[Table 4 about here.]

Comparison of Candidate-Selection Policies. Next, we examine the impact of the choice of candidate-
selection policy on mesh quality. To do this, we fix the growth schedule to be Atlngtlamping parameter
a = 0.4, disable the use of BPR, and then select from amongst the varioudatmsdelection policies under
consideration (namely, the PAE, PWAE, ALSEM, and hybrid policies).dHiat0 images in our test set and
6 sampling densities, we generated a mesh using each of the various teuséigation policies and then
measured the resulting mesh approximation error in terms of PSNR. Indiviesidts for three specific
images (namely, those listed in Table 1) are given in Table 5(a). Also, thr efathe 240 test cases (i.e.,
40 images with 6 sampling densities per image), the PSNR performance of theafwlidate-selection
policies was ranked from 1 (best) to 4 (worst), and the average andasthdeviation of the ranks were
computed for each sampling density as well as overall, with the results shdlablie 5(b). (The standard
deviations are the numbers shown in parentheses in the table.) Again, trembesecond-best results in
each case are shownliold andgray italic, respectively.

Examining the statistical results averaged across all images as shown in5{lapleve can see that
the ALSEM policy clearly performs best, followed by (in order) the hybRVYAE, and PAE policies. A
more detailed analysis shows that the PAE policy is worst in28B(97%) of the test cases (with one rare
exception being the case of thall image at a sampling density of 1.0% as shown in Table 5(a)). Also,
the hybrid policy was observed to perform better than the PAE and PWAiEgwin 238240 (99%) of
the test cases. Looking at the results for individual test cases shovable 5(a), we can see that the best
result is consistently produced by either the ALSEM or hybrid policy. Irtipaar, the ALSEM policy
beats the PAE and PWAE policies by margins of 0.20 to 1.07 dB and up to 1.1fsi@ctively, while
the hybrid policy beats the PAE and PWAE policies by margins of 0.47 to 0.95ndB)&8 to 0.77 dB,
respectively. Although best on average (as shown by the resultsotd 5éb)), the ALSEM policy is not
always best in every individual case. In particular, for some imagegsampling densities, the hybrid policy
can sometimes perform better than the ALSEM policy. Typically, this tends tpdmajm instances where
the PWAE policy also beats the ALSEM policy (e.g., the cases otthendbull images in Table 5(a)).
Although the above results are specifically for the A growth schedule hweld note that similar trends

were observed for the other growth schedules as well. As we will see tlageALSEM policy typically
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requires about 25% to 50% more computation than the hybrid policy. For tve abasons, we recommend
the use of both the ALSEM and hybrid policies. The ALSEM policy is bestwawerage) mesh quality
is the only consideration, while the hybrid policy is best when computatiomaptaxity also needs to be
taken into account. Unlike the PAE and PWAE policies, the ALSEM and hylwiidips directly consider
the change in approximation error (i.e., squared error) that resultsddutimg a new point to the mesh.
By directly taking this error into account, the ALSEM and hybrid policies dle & make moreféective

choices (at candidate selection), leading to higher-quality meshes.
[Table 5 about here.]

Utility of Bad-Point Replacement (BPR). Now, we consider thefiectiveness of the BPR scheme intro-
duced earlier. To accomplish this, we fix the growth schedule to be | andititiédate-selection policy to be
PWAE, and then allow BPR to be either used or not used. For all images tagiwet and several sampling
densities, we generated a mesh both with and without using BPR and metmuresulting approximation
error in terms of PSNR. A representative subset of the results is showabla 6. From these results, it
is clear that BPR has the potential tfiey a significant improvement in mesh quality, relative to not using
BPR. In particular, for the results given, BPR beats no BPR by a margihait 0.81 to 2.90 dB. Although
the results shown here are specifically for the | growth schedule andER3AAdidate-selection policy, BPR
was also found to be beneficial for other combinations of growth schesaleeandidate-selection policy
as well. Essentially, BPR has the potential to improve mesh quality any time thabbad are present.
For other choices of growth schedule and candidate-selection poliaylthber of bad points is sometimes
smaller, and the benefit of BPR is less pronounced. This said, hoviles®es,is no harm in always including
BPR, as it incurs essentially no extra computational cost in the case thatimmints are present in mesh.

For this reason, we recommend that BPR always be employed.
[Table 6 about here.]

5.4. Proposed Mesh-Generation Methods

Equipped with a good understanding of thféeetiveness of the various growth schedules, candidate-
selection policies, and BPR, we are now in a position to introduce the twoetentiesh-generation meth-
ods proposed herein. Earlier, we found the A growth schedule, thé&eEM &1d hybrid candidate-selection
policies, and BPR to be mosffective. So, not surprisingly, our methods utilize the preceding choices.
The first of our proposed mesh-generation methods, known as ID1ogsithe A growth schedule, hybrid

candidate-selection policy, and BPR. The second method, known asslizizntical to the ID1 method,
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except that the ALSEM candidate-selection policy is employed instead oftiv@tpolicy. Since the ID1
and ID2 methods both employ the A growth schedule, a choice must be matthe fdamping parameter

a associated with this growth schedule. For both the ID1 and ID2 methodspmimally chooser = 0.4,

as experimentation has shown this valuedpfo provide good performance at a reasonable computational
cost. The ID1 and ID2 methods are intended fieosomewhat dierent tradefis between mesh quality
and computational complexity, as will be seen later.

Having introduced our proposed ID1 and ID2 mesh-generation methwadspw comment on the dif-
ferences between these methods and the GPR, GPRFS-ED, and ID&ieschtroduced earlier. As we
have seen, the ID1 and ID2 methods are not based exclusively on efgsnrent or exclusively on mesh
simplification. With these two methods, as part of the mesh-generation prpo@stss areboth added to
and deleted from the mesh. In particular, the ID1 and ID2 schemes stad witiial mesh consisting of the
(four) extreme convex-hull points of the image domain, and then add deie ge@ints according to a growth
schedule that is carefully designed to yield high-quality meshes. Unlike thamd ID2 schemes, the GPR
and GPRFS-ED methods are basedusively on mesh simplification. The GPR and GPRFS-ED methods
start with very large meshes, and themy delete points until the desired sampling density is achieved.
Points arenever added to the mesh with these schemes. In the case of the GPR scheme, the isitisd me
chosen to consist of all sample points of the original image, while in the cabe &PRFS-ED scheme, the
initial mesh is chosen as a subset of the sample points of the original imaggaunsanror difusion process
(without any need for geometric algorithms). Since the GPR and GPRFS-HEibdseonly exclusively
delete points, no mechanism exists for undoing bad decisions (of pointed)elds experimental results
later confirm, this inability to reverse bad decisions limits the performance of tihheshods. In contrast,
the ID1 and ID2 methods do notf$er from this shortcoming. Lastly, the IDDT method from our earlier
conference paper [32] is obtained from the mesh-generation frarkgwoposed herein by choosing the
candidate-selection policy as PWAE, the growth schedule as Bavith3, and the use of BPR. As one
might suspect (and is later confirmed by experimental results), the IDDToohgt@rforms quite poorly
relative to the ID1 and ID2 schemes, due to its choice of a poorer perfgrraimdidate-selection policy and

growth schedule.

6. Evaluation of the Proposed Methods

Having introduced our ID1 and ID2 mesh-generation methods, we nowam@ntipeir performance to
that of the state-of-the-art GPRFS-ED and GPR schemes (mentioned)éargems of both mesh quality

and computationahemory complexity. For convenience, in what follows, we denote our |0l 1Bx2
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schemes with the damping parameteas ID1¢@) and ID2g), respectively. In our evaluation, we consider
the performance of our ID1(0.4) and 1D2(0.4) schemes (i.e., the IDlIR&dnethods with the damping
parameter chosen as the nominal valu.0Since, as was demonstrated earlier, higher mesh quality can
be obtained by increasing the damping parametased in the ID1 and ID2 methods, we also consider
the ID1(0.9) scheme in our evaluation in order to show what range of peslity performance is possible

if one is willing to incur greater computational cost. The implementations of the GHRF and GPR
methods used in this evaluation are taken from [6] (and are writter-i#) CThe software implementing our
ID1 and ID2 methods was developed by the author and is also writtes+ &s an aside, we recall that,
for the mesh-generation problem being addressed herein, the meshiaggiron of an image is required
to interpolate the original image at each of the mesh sample points. Consegtlen®PR method does
not employ a scheme like the least squares approximation technique désoriBg In passing, we note
that although the GPR scheme is known for producing very high quality mestteis used for comparison
purposes herein, if one is willing to incur additional complexity, another sththe-art method proposed
in [41], called AT, can produce even much higher quality meshes than the original GPR sememe
possibly other methods considered herein.

Mesh Quality. For all 40 images in our test set and 7 sampling densities, we used eachvafitines
methods under consideration to generate a mesh, and then measurediltiregrasproximation error in
terms of PSNR. Individual results for three specific images (namely, tlisiee in Table 1) are given
in Table 7(a). For each of the 280 test cases (i.e., 40 images with 7 samplisigieeper image), the
PSNR performance of the six methods was ranked from 1 (best) to 6tjywamd the average and standard
deviation of the ranks were computed for each sampling density as welkealpwith the results shown in
Table 7(b). (The standard deviations are the numbers shown in pasestinethe table.) In the tables, the
best and second best results in each row are indicatedldyandgray italic, respectively. To demonstrate
that the ID1 and ID2 methods proposed herein make a very substanttabotion beyond the IDDT
method from the author’s earlier conference paper [32] (mentioned gtiocBel), results for the IDDT
method are also included in these tables for comparison purposes.

To begin, we compare the ID1 and ID2 methods to the IDDT scheme. Fronwetietisal results given
in Table 7(b), we can see that the ID1 and ID2 methods outperform th& i&zbeme by a wide margin,
with the IDDT scheme having a much poorer average ranking (with relativelystandard deviation). In
fact, a more detailed analysis of the results shows that the ID1(0.9), H)2¢éhd ID1(0.4) methods beat
the IDDT scheme in 28280 (100%), 27280 (99%), and 28@80 (100%) of the test cases. Examining

the results for the individual test cases in Table 7(a), we observe #dbthand ID2 methods beat the
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IDDT scheme by a margin of 0.20 to 2.12 dB. Thus, the ID1 and ID2 methqulesent a very substantial
contribution beyond the author’'s conference paper which proposetDIdT scheme. Since the ID1 and
ID2 methods are clearly superior to the IDDT scheme, we will not consi@diXBT scheme further in our
evaluation.

Now, we compare the ID1 and ID2 methods to the GPRFS-ED and GPR scheinsédet us consider
the statistical results taken across all 40 test images as given in Tabl&@féxymall standard deviations in
the table are indicative that the rankings are fairly consistent acrogstest. Examining this table, we see
that: 1) the ID1(0.9) method ranks best overall (with rank 1.04) anddie=ich sampling density; 2) the
ID2(0.4) method ranks second best overall (with rank 2.16) and dgebest at each sampling density;
and 3) the ID1(0.4) method ranks third best overall (with rank 3.46), thést at 47 of the sampling
densities, and third best at all sampling densities above 0.5%. The fachéh#D1(0.9) and ID2(0.4)
methods quite consistently rank in first and second place, respectiveliggested by their corresponding
low standard deviations (nearly all of which are below 0.5). Furthern@meore detailed analysis shows
that: 1) the ID1(0.9) method beats the GPRFS-ED and GPR schemeg2828000%) and 27280 (99%)
of the test cases, respectively; 2) the ID2(0.4) method beats the GERFE®d GPR schemes in 2280
(99%) and 26280 (96%) of the test cases, respectively; 3) the 1D1(0.4) method teatSPRFS-ED
and GPR schemes in 2280 (75%) and 18280 (66%) of the test cases, respectively. As the results of
Table 7(b) suggest, the relative performance of the ID1(0.4) methaiivesta the GPR scheme improves
as the sampling density increases. In fact, for sampling densities abovet&¥1(0.4) method beats
the GPR scheme in 14850 (91%) of the test cases. As we shall see later, at sampling densities be
0.5%, the GPR scheme requires over 23 times more computation time and over 190ntingememory
relative to the ID1(0.4) method. So, in any cases where these lower sardplisgies might be of practical
interest, the extreme savings in (computational and memory) complekésed by the ID1(0.4) method
(relative to the GPR scheme) more than compensates for the performéecerie between the 1D1(0.4)
and GPR methods. Thus, in terms of average behavior, our ID1(0.2j01®) and 1D2(0.4) methods are
clearly superior to the state-of-the-art GPRFS-ED and GPR schemesolo, in our ID1¢) method,
asa is varied from 0.4 to 0.9, we obtain a very substantial improvement in mesh qualitiye cost of
increased computational complexity. Thus, we ciatively trade@ mesh quality against computation
time by varyinga.

Next, let us consider results for the individual test cases as giverbie Téa). From these results, we
can see that: 1) the ID1(0.9) method is the clear winner, performing be@tdh & st cases, being beaten by
only 0.02 dB in one instance (namely, tbe image at a sampling density of 4%); 2) the ID2(0.4) method
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is second best overall, ranking second and third f21and @21 of the cases, respectively; 3) the ID1(0.4)
method is third best overall, ranking fifsécond and third place in&BL and 1121 of the cases, respectively.
These observations are consistent with the statistical results abovedtden7{b). A close examination of
the numbers reveals that: 1) the 1D1(0.9) method beats the GPRFS-ED #hddBBmes by margins of
0.26 t0 6.17 dB and 0.30 to 1.92 dB, respectively; 2) the 1D2(0.4) methad bea GPRFS-ED and GPR
schemes by margins of 0.11 to 5.49 dB and 0.16 to 1.24 dB, respectivelye 3D1{0.4) method beats
the GPRFS-ED and GPR schemes by margins of 0.04 to 5.73 dB and up to 1.48sgBctively. So, in
terms of the individual test cases, our ID1(0.4), ID1(0.9), and IRB(hethods are also clearly superior to
the GPRFS-ED and GPR schemes (sometimes by margins of a few dB). Téerixperformance of our
ID1(0.4) and ID2(0.4) methods relative to the GPR scheme is particularly gsipeegiven that, as we will
see later, they require very substantially less (often by more than anairdexgnitude) computation and
memory.

In the above evaluation, PSNR was found to correlate reasonably wellswitjective quality. For
the benefit of the reader, however, we provide an example illustratinguttjecsive quality achieved by
the various methods. In particular, for one of the test cases involvinguhe image from Table 7(a), a
small part of each image reconstruction is shown under magnification ind=g8juExamining this figure
closely, we can see that the reconstructions produced by the ID1D2{}.4), and ID1(0.9) methods in
Figures 3(a) to (c) are better than those obtained from the GPRFS-EBRRdschemes in Figures 3(d)
and (e). In particular, the reconstructions from the GPRFS-ED and $&R&mnes (especially the former)
tend to have more disturbing triangle-tooth artifacts along image edges thagctrestructions produced

by our proposed methods.

[Table 7 about here.]

[Figure 3 about here.]

Computational Complexity. Next, we consider the computational complexity of the various mesh-
generation methods under consideration. For the purposes of thistevalw@mputational complexity is
measured in terms of execution time. Before proceeding to present aasiragptal results, we need to
make one very important comment regarding the various software implementasied in our evaluation.

In particular, the implementations of the GPRFS-ED and GPR methods froradél in our evaluation)
are much more highly optimized for execution speed than the software that imggeme ID1 and 1D2

methods. Although our software was carefully designed to be reasogféibignt, little éfort was made to
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optimize the code beyond this basic level Gi@ency. Even more importantly, our software was designed
to be general enough to handle any concrete mesh-generation metleddbasur framework (from Sec-
tion 3). Because our code had to handle this very general case, tin textehich specific cases (such as
the ID1 and ID2 methods) could be optimized was severely limited. So, for theakasons, the imple-
mentation of the GPRFS-ED and GPR methods has a very unfair advantagesrofeexecution time. This
very important fact must be taken into consideration when interpreting {heriexental results presented
in what follows.

For the several test cases from Table 7(a) involvingléea image, the time required for mesh gener-
ation was measured, yielding the results shown in Table 8. (These meastsemeee made on relatively
mediocre hardware, namely a seven-year old notebook computer with a2.theIl Pentium 4 and 1 GB
of RAM.) As mentioned earlier, the GPRFS-ED and GPR methods can be vigsveery-trivial special
cases of our framework. In fact, our software implementation of our ctatipnal framework also sup-
ports both of these methods. So, for the GPRFS-ED and GPR methodsovigepiwo sets of numbers.
The first set was obtained with the implementation from [6], while the secdndigen in parentheses, is
obtained by using our implementation (i.e., as a special case of our versateode).

To begin, let us focus only on the first set of numbers for the GPRF&DGPR methods. The main
observations that we want to make are as follows. First, in spite of the 1D)140d 1D2(0.4) methods
producing better quality meshes than the GPR scheme (as seen earlie)heltes results are obtained
with much less computation time. (Again, keep in mind that the GPR scheme hasaanadvantage,
being more highly optimized.) In particular, the ID1(0.4) and 1D2(0.4) metiade execution times about
0.04 to 0.56 times and 0.06 to 0.68 times those of the GPR scheme, respectivelyd Sa spite of the
ID1(0.4) and 1D2(0.4) methods producing significantly better quality meftasthe GPRFS-ED scheme
(as seen earlier), this better quality does not come at the cost of anafrdegnitude (i.e., ten times)
more computation. The computational cost is, in fact, quite reasonableisTbat ID1(0.4) and ID2(0.4)
methods have execution times about 1.27 to 2.02 times and 1.77 to 2.45 times thoseG6fRRS-ED
scheme, respectively. (Again, keep in mind that the GPRFS-ED schenanhatdair advantage, being
more highly optimized.) Third, we observe that for the IB}L(nethod, asr increases (from 0.4 to 0.9),
so too does computation time. A similar behavior is also exhibited in the case of &{e)lMethod.
Thus, in our ID1 and ID2 methods, by varyingwe can tradefd between mesh quality and computational
complexity.

Now, let us also consider the second set of numbers (in parenthesebefGPRFS-ED and GPR

methods. Observe that the execution times for the GPRFS-ED and GPR sciwensggnificantly higher
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in the case of our implementation (i.e., the numbers in parentheses) than ineta tas implementation
from [6] (i.e., the numbers not in parentheses). Thi$edénce in execution times shows that the two
implementations are not equally optimized, as we indicated above. Following thisflr@@asoning, we
argue that if our ID1 and ID2 methods were implemented with a level of optimizatjoal to the GPRFS-
ED and GPR schemes, it is quite likely that our 1D1(0.4) method would be féserthe GPRFS-ED
scheme, and our ID2(0.4) method would likely be only marginally slower thaeyven comparable in
speed to, the GPRFS-ED scheme. In this sense, our ID1(0.4) and4p2¢@emes compare very favorably
to the GPRFS-ED scheme in terms of computational complexity.

Memory Complexity. Lastly, it is worthwhile to briefly comment on the memory complexity of the
various mesh-generation methods. The amount of memory required byk#uwse methods is largely
determined by the peak mesh size (i.e., the maximum number of sample points in the FFoesim image
of width W and heightH, and a sampling density (where typicallyD < %) = 8%), the peak mesh size
for each of the GPRFS-ED and GPR schemesD8V&H and WH, respectively. In the case of our ID1
and ID2 methods, the peak mesh size ®3¥2H. So, all of our proposed methods have a peak mesh size
that is smaller than in the cases of the GPRFS-ED and GPR schemes by éa&dirses (independent of
sampling density) and 6.25 to 400 times (for sampling densities from 8% to 0.12&8pgctively.

[Table 8 about here.]

BPR and Other Mesh-Generation Methods. Earlier, we mentioned that our BPR scheme can be added
as a postprocessing step to other previously-proposed mesh-gemeratiwds in order to produce meshes
of higher quality. Now, we provide an example to substantiate this claim. In piartieve consider the ED
method (mentioned earlier). As it turns out, the ED method typically produceleseghere about 50%
of the sample points are bad. (Note that, in this context, we mean “bad” in tedisgense introduced
previously in Section 5.2.) Thus, the ED method can potentially benefit fromsb®f our BPR scheme.
With this in mind, we propose a modified version of the ED method, calfgomized ED (OED), which
includes our BPR scheme as a postprocessing step. That is, the OED fiesthehploys the ED scheme
to produce a mesh with the desired number of sample points, and then ourcBEResis applied to the
resulting mesh. For all 40 images in our test set and 7 sampling densities §28ages in total), each of
the ED and OED methods was used to generate a mesh and the resulting nresinggtjpn error was
measured in terms of PSNR. Individual results for three images are igiviable 9, with the best result in
each case indicated bold. Examining the results of the table, we find the OED method outperforms the

ED scheme in each case, by margins of about 2.95 to 16.48 dB. Furtheamoee detailed examination
23



of the results for all 280 test cases (i.e., 40 images with 7 sampling densitiesgugr) shows that the OED
method outperforms the ED scheme in ZHBD (100%) of the test cases, by margins varying from about 2
to 17 dB. Clearly, the addition of the BPR scheme to the ED method (resulting i@BDr method) has
led to a very marked improvement in mesh quality. From these results, it is ctdanuhBPR method has
potential value in further optimizing meshes produced by other (previqusiyesed) methods. In passing,
we note that the BPR postprocessing step added (to the ED scheme) in them@E@d only adds a few
seconds of extra computation time for an image sucheaa. So, the increase in mesh quality does not

come at an exorbitant computational cost.

[Table 9 about here.]

7. Conclusions

In this manuscript, we have proposed a flexible new mesh-generationWmaknéor image represen-
tation, along with two concrete methods derived from this framework, knoyiine names ID1 and ID2.
Through experimental results, the ID1 and ID2 methods were shownfarpeextremely well, producing
meshes of significantly higher quality than the state-of-the-art GPRFSIEBGRR methods at a reasonably
modest computational cost. Furthermore, the ID1 and ID2 methods eaddgemeans whereby mesh
guality can be increased (or decreased) in return for a corresppindirease (or decrease) in computational
cost (i.e., by varying the damping parametgr This computational scalability makes our methods suitable
for a wide range of applications withféiéring computational constraints. One component of our proposed
methods, called BPR, was shown to be highlgetive as a postprocessing step to improve upon the results
produced by other mesh-generation methods. In particular, this posgsing strategy was shown to yield
much higher quality meshes when applied to the previously-proposed Enschn short, the methods
that we have proposed can benefit the numerous applications whete/alyasampled image representa-
tions are needed. Moreover, by further exploring the many other algudbossibilities that our proposed
framework dords, we are optimistic that it will be possible to derive even mdiecéve mesh-generation

schemes.
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Figure 1: MMSODD example. (a) Full image, showing a rectangular regianterest. (b) Region of interest under magnification
and the (c) corresponding MMSODD.
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‘,a

Figure 2: The reconstructed images obtained fonitle=1 image at a sampling density of 0.09% using the (a) | (21.49 dB) an
(c) B (31.87 dB) growth schedules and (b) and (d) their correspgridangulations.
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(d) (e)

Figure 3: Comparison of the subjective mesh-quality for the variousadsthPart of the reconstructed image obtained for the
bull image at a sampling density of 0.125% using each of the (a) ID1(048@3dB), (b) 1D2(0.4) (34.36 dB), (c) ID1(0.9)
(35.04 dB), (d) GPRFS-ED (28.87 dB), and (e) GPR (33.12 dBhous.
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Table 1: Testimages

Name] Size, BitgSample] Description

bull | 1024x 768, 8 computer-generated, cartoon bull [36]
ct 512x 512, 12 tomography [34]

lena |512x512,8 woman [35]

32



Table 2: Operation counts for the various growth schedules, wher8l — |, £ = Llogw dJ, andg =

Growth optAdd optDel Total Total Count,
Schedulg| Count Count Count Larged
B ~pd | ~(B-1d |~ (B-1d| ~(§2)d
C ~26d |~ (a+1)pd |~ (@+3)pd| ~(¥2)d
A ~B+1d|  ~pd |~ (B+1d| ~(E2)d
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Table 3: Comparison of the mesh quality obtained with the various growthdstds. (a) PSNRs for three specific images.

(b) Rankings averaged across 40 images.

(@)

Image

Samp.
(%)

Density|
I

PSNR (dB)
B [C |A

bull

0.125
0.250
0.500
1.000

29.82
34.74
38.07
40.65

34.0734.37
37.7938.29
40.5941.04
42.51142.99

ct

0.250
0.500
1.000
2.000

29.9]
35.37
39.49
43.40

32.7032.97
37.5438.12
41.5941.85
45.37/45.77

lena

0.500
1.000
2.000
3.000

23.99
27.19
29.81
31.23

25.8926.37
28.4629.02
31.1231.60
32.51|33.06

(b)
Samp.
Density| Mean Rank
%) |1 B C A
0.125 [[4.00 (0.00)3.00 (0.00)1.95 (0.16) 1.02(0.16)
0.250 {|4.00 (0.00)3.00 (0.00)2.00 (0.00) 1.00(0.00)
0.500 ||4.00 (0.00)3.00 (0.00)1.98 (0.16)[1.02(0.16)
1.000 | 4.00 (0.00)3.00 (0.00)1.98 (0.16) 1.02(0.16)
2.000 ||4.00 (0.00)3.00 (0.00)1.95 (0.16) 1.02(0.16)
3.000 ||4.00 (0.00)3.00 (0.00)1.95 (0.22)/1.05(0.22)
Overall|4.00 (0.00)3.00 (0.00)1.95 (0.16) 1.02(0.16)

The standard deviation is given in parentheses.
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Table 4: Hrect of varying the damping parametem the A growth schedule
Samp. PSNR (dB)
Density a

Image| (%) 0.4 |06 |09
bull [0.125 [ 34.43[34.54| 34.54
0.250 || 38.38| 38.48 | 38.86
0.500 || 41.25|41.36|41.45
1.000 || 43.14|43.18|43.32
ct 0.250 |[[33.0133.02]33.25

Tena [0.500 [[26.51] 2657 26.63
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Table 5: Comparison of the mesh quality obtained with the various candidgetion policies. (a) PSNRs for three specific

images. (b) Rankings averaged across 40 images.
a

36

Samp.
Density PSNR (dB) (b)
Image| (%) PAE [PWAE[ALSEMT|Hybrid| [Samp.
bull [0.125 [[33.65/34.43 [34.36 [34.60 Density Mean Rank
0.250 |/ 38.23/38.38 |38.97 |38.89 (%) PAE PWAE ALSEM [Hybrid
0.500 |41.22(41.25 |42.25 |41.95 0.125 [[3.88(0.40)3.08 (0.35) 1.05(0.32)[ 2.00 (0.23)
1.000 ||43.17/43.14 |44.24 |43.91 0.250 {/3.97 (0.16)3.00 (0.23) 1.05(0.32)| 1.98 (0.16)
ct 0.250 [[32.79/33.01 |32.99 [33.26 | |0.500 |[|4.00(0.00)2.97 (0.16) 1.12(0.40)| 1.90 (0.30)
0.500 |/ 37.5838.16 |37.97 |38.24 | |1.000 |[3.97 (0.16)2.97 (0.28) 1.20(0.52)| 1.85 (0.36)
1.000 |/41.30[41.91 |41.80 |42.05 | |2.000 |[3.95(0.32)2.92(0.35)1.27(0.64)| 1.85(0.43)
2.000 |45.33/45.75 |45.59 [45.85 | |3.000 |/4.00 (0.00)2.92 (0.27)1.30(0.61) 1.77 (0.42)
lena [0.500 [[26.30[26.51 [27.05 [26.99 Overall][ 3.96 (0.23) 2.98 (0.28) 1.17(0.49)[ 1.89 (0.34)
1.000 1/28.8329.10 |29.56 | 29.51 "The standard deviation is given in parentheses.
2.000 |[31.49/31.78 |32.12 |32.15
3.000 |/ 32.9833.20 |33.65 |33.63




Table 6: Hrect of using BPR on mesh quality
Samp.
Density|| PSNR (dB)
Image| (%) No BPR| BPR
bull [0.125 [[29.82 [32.72
0.250 |/ 34.74 |36.78
0.500 |/ 38.07 |39.92
1.000 |[40.65 |42.09
ct 0.250 [[29.91 [31.11

Tena [0.500 [[23.99 [25.34
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Table 7: Comparison of the mesh quality for the various methods. (aRB3dt three specific images. (b) Rankings averaged
across 40 images.
(@)

Samp. PSNR (dB)
Density GPRFS
Image| (%) ID1(0.4)| ID2(0.4) | ID1(0.9)| ED GPR | IDDT

bull |[0.125 || 34.60 34.36 [35.04 [28.87 |[33.12]33.86
0.250 || 38.89 |38.97 39.43 |35.88 |38.23|37.53
0.500 | 41.95 |42.25 42.40 |39.78 |41.87]40.48
1.000 [[43.91 |44.24 44.37 |43.50 |[43.99|42.43
2.000 | 45.80 |46.09 46.23 | 45.65 |45.81|44.39
4.000 || 48.29 |48.42 48.55 |47.98 |48.24|47.04
8.000 | 52.03 |52.04 52.24 |51.48 |51.88|51.14
ct 0.125 [[2851 [28.73 29.15 [23.94 [28.17|27.54
0.250 || 33.26 32.99 |33.42 |30.38 |32.15/32.25
0.500 | 38.24 3797 |38.39 |36.86 |37.22]|37.59
1.000 || 42.05 41.80 |42.12 |40.73 |41.35/41.42
2.000 | 45.85 4559 | 4593 |44.63 |45.33]/45.39
4.000 ||50.24 |50.05 |50.22 49.62 | 49.79|49.72
8.000 | 55.18 55.08 |55.19 |54.81 |54.89|54.63
lena [0.125 [[22.26 |22.45 22.92 [19.70 |21.90]20.80
0.250 || 24.55 |24.67 2530 [23.05 |24.42|23.25
0.500 | 26.99 |27.05 2751 ]26.21 |26.66|25.81
1.000 | 29.51 |29.56 29.90 [29.05 |29.12]|28.54
2.000 | 32.15 32.12 |3241 |31.95 |31.82|31.09
4.000 |[34.68 |34.69 34.95 |34.56 |34.39|33.56
8.000 || 37.23 |37.30 37.45 |37.19 |36.99|36.06

(b)

Samp. Mean Rank
Density GPRFS-
(%) ID1(0.4) |ID2(0.4) |ID1(0.9) |ED GPR IDDT

0.125 [3.88 (0.56) 1.08 (0.42)| 1.15(0.36)| 5.47 (0.64) 3.10 (0.67)| 5.43 (0.55)
0.250 |3.72(0.64) 2.05(0.32)| 1.05(0.22)| 5.20 (0.56) 3.28 (0.68)| 5.70 (0.52)

0.500 | 3.62(0.90) 2.12 (0.40)| 1.02(0.16)| 4.93 (0.62)| 3.45 (0.64)| 5.85 (0.43)
1.000 | 3.50 (0.96) 2.20 (0.46)| 1.00(0.00)| 4.10 (1.01)| 4.30 (0.76) 5.90 (0.38)
2.000 |3.38(0.81) 2.22(0.48)| 1.00(0.00)| 3.83 (0.93)| 4.70 (0.72)| 5.88 (0.46)
4.000 |3.17 (0.87) 2.25(0.49)| 1.02(0.16)| 3.92 (0.83)| 4.68 (0.66)| 5.95 (0.22)
8.000 |2.92(0.69) 2.30(0.52)| 1.02(0.16)| 4.12 (0.88) 4.72 (0.45)| 5.90 (0.50)
Overall | 3.46 (0.84Y 2.16 (0.46)| 1.04(0.19) 4.51 (1.01) 4.03 (0.94)[ 5.80 (0.47)

"The standard deviation is given in parentheses.
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Table 8: Comparison of the computation time for the various methods in figeofdhelena image

Samp. Time (S)
Density GPRFS
(%) || 1D1(0.4) | ID2(0.4) | 1D1(0.9) ED GPR

0.500 1.847] 2.769] 9.050] 1.205 (1.852)42.996 (212.343
1.000 2.576| 3.734| 14.623| 1.862(2.550)42.670(211.359
2.000 4.143| 5.660| 26.201] 3.196 (4.409) 42.126 (211.094
4.000 7.377) 10.576] 56.260| 5.766 (9.335) 41.049 (209.105
8.000|| 22.097| 26.891| 240.891] 10.935 (26.124) 39.305 (206.994
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Table 9: Comparison of the mesh quality for the ED and OED methods (fee gpecific images).
Samp.
Density|| PSNR (dB)
Image| (%) ED [ OED
bull | 0.125 || 15.54] 32.02
0.250 || 20.59| 36.44
0.500 || 25.89] 40.15
1.000 || 33.34| 42.20
2.000 || 37.56| 44.06
4.000 || 41.51|46.23
8.000 || 44.85| 49.76
ct 0.125 || 16.61] 26.72
0.250 || 17.81| 30.70

Tena | 0.125 [[13.78/20.37
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