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Abstract—A new mesh model for images that explicitly rep-
resents image discontinuities (i.e., image edges), called ERD,
is introduced. Then, two mesh-generation methods, known as
ERDED and ERDGPI, that select the parameters of this new
model for a given image are proposed. The proposed mesh-
generation methods are shown to be capable of producing image
approximations of higher quality than other competing strategies,
both in terms of squared error and subjective quality.

Index Terms—Image representation, nonuniform sampling,
triangle mesh, mesh generation, constrained Delaunay triangu-
lation.

I. INTRODUCTION

Traditionally, images are most often represented using uni-

form sampling on a lattice. Unfortunately, uniform sampling is

almost always suboptimal, placing too many sample points in

regions of slow variation and too few sample points in regions

of rapid change. This shortcoming has generated consider-

able interest in image representations based on nonuniform

sampling [1]–[6]. Nonuniform sampling can produce much

more compact representations of images, which is beneficial

in many applications. Furthermore, representations based on

nonuniform sampling are often better equipped to capture the

geometric structure inherent in images (namely, image edges).

Representations based on nonuniform sampling have proven to

be useful for many tasks, such as feature detection [7], pattern

recognition [8], computer vision [9], restoration [10], tomo-

graphic reconstruction [11], filtering [12], interpolation [13],

and image coding [14].

Of the many classes of representations based on nonuniform

sampling, (triangle) mesh models have become quite popular.

With a mesh model, a triangulation is used to partition the

image domain into triangle faces, and then an approximating

function for the image is constructed over each face of the

triangulation. Mesh models can be classified on the basis of

the type of triangulation employed (e.g., Delaunay [15], [16],

constrained Delaunay [17], or data dependent [16]) as well

as how the approximating function is constructed over the

triangulation (e.g., the continuity or smoothness of the approx-

imating function, and whether it interpolates the original data).

Traditionally, the overall approximating function is chosen to

be continuous (e.g., [15]–[17]). Most images, however, tend

to have a significant number of discontinuities (i.e., image

edges). Therefore, there is reason to believe that a model that
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allows for discontinuities in the approximating function may

be beneficial. In fact, this is one of the main motivations of

the work described herein. In order to employ a mesh model,

we need a means to select the model parameters so as to

obtain the best possible approximation of a given image. This

is the so called mesh-generation problem. Of the many mesh-

generation methods proposed to date, two highly effective ones

that are of particular interest herein are the error-diffusion (ED)

scheme of Yang et al. [15] and the greedy point-insertion (GPI)

scheme [18] (called “MGH” therein) which was inspired by

the work of Garland and Heckbert in [16].

In this manuscript, we introduce a new mesh model for

images, called ERD, that is based on constrained Delaunay

triangulations [19], and then propose two mesh-generation

methods, known as ERDED and ERDGPI, that employ this

model. With our ERD mesh model, the approximating function

is not required to be continuous everywhere, with disconti-

nuities being permitted across (constrained) edges of faces

in the triangulation. In this way, our model can explicitly

represent discontinuities (i.e., image edges), which, as we will

see, allows for much more compact image representations.

Although our proposed methods require more computation

time than the ED and GPI methods, this increase in time is

relatively small in absolute terms (i.e., a fraction of a second),

as shown later. This modest increase in computation time fits

with the goal of our work, which was to develop methods

that can produce better quality meshes than the ED and GPI

schemes, while still only requiring on the order of a few

seconds of computation time (as opposed to minutes/hours).

The remainder of this manuscript is structured as follows.

Section II presents some background information on mesh

models for images and briefly describes the (previously-

proposed) ED and GPI mesh-generation methods. Our new

ERD mesh model for images, which explicitly represents

discontinuities (i.e., image edges), is introduced in Section III,

and then Section IV proposes two mesh-generation methods

that utilize this new model, the ERDED and ERDGPI methods.

In Section V, we compare the performance of our proposed

ERDED and ERDGPI methods to several other competing

schemes. Through experimental results, our approaches are

shown to yield image approximations of significantly better

quality, in terms of squared error and subjective quality,

relative to competing methods. Finally, Section VI concludes

the manuscript with a summary of our key results. In passing,

we note that the work described herein has been partially

presented in our conference paper [20], which introduced an

earlier version of our ERDED method. Herein, we build on this

earlier work by proposing the entirely new ERDGPI method

as well as further refining the earlier version of the ERDED
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method from our conference paper.

II. MESH MODELS OF IMAGES

Before proceeding further, we need to introduce the formal

definition of a triangulation and some related concepts. Let

Z and R denote the sets of integers and real numbers,

respectively. A triangulation of a set V of points in R
2 is

a set T of triangles such that: 1) the union of the vertices of

all triangles in T is V ; 2) the interiors of any two triangles in

T are disjoint; and 3) the union of the triangles in T is the

convex hull of V . A triangulation is said to be Delaunay [21]

if each triangle in the triangulation is such that the interior of

its circumcircle contains no vertices. The Delaunay triangu-

lation of a set of points is unique if certain degeneracies are

handled appropriately (e.g., using a technique like preferred

directions [22]). Sometimes, we would like a triangulation of a

set of points to contain a certain prescribed set of line segments

as edges, called edge constraints. A triangulation with such

edge constraints is referred to as a constrained triangulation.

In the context of constrained triangulations, two points are

said to be visible to each other if the line segment joining

them does not intersect an edge constraint. A triangulation

of a set V of points with edge constraints E is said to be

constrained Delaunay [19] if each triangle in the triangulation

is such that: 1) the interior of the triangle does not intersect any

constraining line segment; and 2) no vertex inside the triangle’s

circumcircle is visible from any point in the interior of the

triangle. Essentially, a constrained Delaunay triangulation is a

triangulation that is as close as possible to being Delaunay,

subject to the constraint that certain edges must appear in the

triangulation.

Having formally introduced triangulations, we can now

explain how triangulations are used to build mesh models of

images. Consider an image φ defined on the rectangular region

Γ = [0,W −1]× [0,H−1]. We assume that φ is known only at

each of the points in Λ = {0,1, . . . ,W −1}×{0,1, . . . ,H−1}
(i.e., the points on a rectangular grid of width W and height

H). (Note that Λ = Γ∩Z
2 and Γ is the convex hull of Λ.) With

a mesh model, we choose a set P of points in Γ, called sample

points, where the points in P are not necessarily required to

be in Λ (i.e., the points at which the function φ is known).

Then, P is triangulated to partition the (continuous) image

domain Γ into triangle faces, and an approximating function

is constructed over each face in the triangulation. Finally, the

approximating functions for all of the faces are combined to

yield a function φ̂ that approximates φ over the entire image

domain Γ. The set P must include the extreme convex hull

points of Γ (i.e., the four corners of the image bounding box)

so that the triangulation of P covers all of Γ. As a matter of

terminology, the quantity |P|/ |Λ| is referred to as the sampling

density of the mesh model. In our work, the mesh-generation

problem can be succinctly stated as follows: Given an image φ
and a desired number N of sample points, find a mesh approx-

imation φ̂ of φ with N sample points (i.e., |P| = N) such that

the difference between φ̂ and φ is minimized. In our work, this

difference is measured using the mean squared error (MSE),

which is given by MSE = |Λ|−1
∑p∈Λ

(

φ̂(p)−φ(p)
)2
. The

MSE is usually expressed in terms of the peak signal-to-noise

ratio (PSNR), which is defined as PSNR = 20log10

(

2ρ−1√
MSE

)

,

where ρ is the sample precision in bits/sample. An increase

in the PSNR (in dB) by ∆p corresponds to a decrease in the

root MSE by the factor 10∆p/20. For example, a 2 dB increase

in the PSNR corresponds to a reduction in the root MSE by

a factor of 102/20 ≈ 1.2589.
What distinguishes different types of mesh models from one

another is: 1) which points in Γ are permitted to be chosen

as points in P; 2) how the triangulation of P is formed; and

3) how the approximating function is determined over each

face of the triangulation. The most commonly used mesh

model, which we refer to as the basic model herein, is quite

simple and employs Delaunay triangulations. With the basic

model, the sample points P are chosen as a subset of Λ, and
P is triangulated using the Delaunay triangulation. Over each

(triangle) face in the triangulation, φ̂ is defined as the unique

linear function that interpolates φ at the three vertices of the

face. Thus, the approximating function φ̂ is continuous and

interpolates φ at each point in P. Furthermore, this model is

completely characterized by the sample points P and φ(p) for
p ∈ P.

Although many mesh-generation methods have been pro-

posed for selecting the parameters of the basic model for a

given image, two particularly effective ones are the ED and

GPI methods mentioned earlier. The ED method [15] uses

Floyd-Steinberg error diffusion to distribute sample points

such that the local density of these points is proportional to

the maximum magnitude second-order directional derivative

(MMSODD) of the image. (The formula for the MMSODD

appears as equation (6) in [15].) Since the ED method has a

number of degrees of freedom, we note that, in our work, we

consider the variant of this method that employs a third-order

binomial filter for noise removal during MMSODD estimation,

a contrast sensitivity parameter γ of 1, and the serpentine

scan order for error diffusion. Also, the first- and second-order

derivative operators used in the calculation of the MMSODD

were approximated by filters with transfer functions 1
2
z− 1

2
z−1

and z− 2 + z−1, respectively. Lastly, we note that, during

filtering, signal boundaries are handled by zero extension (i.e.,

padding with zeros).

The GPI method [18] is iterative in nature. It starts with P

selected as the four corner points of the image bounding box.

Then, in each iteration, a new sample point is selected to be

added to P. The new sample point is selected in two steps.

First, the face in the triangulation with the greatest squared

error is selected. Then, the point in that face at which the

absolute error is greatest is chosen for addition.

III. PROPOSED MESH MODEL

The basic mesh model used by the ED and GPI schemes

(introduced earlier) is always associated with an approximating

function that is continuous. Images, however, often contain a

significant number of discontinuities (i.e., image edges). This

observation motivated us to propose a new mesh model that

explicitly represents discontinuities in images, known as the

ERD model (where ERD stands for “explicit representation of
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Fig. 1. The relationship between vertices, constrained edges, and wedges.
The (a) single-wedge and (b) multiple-wedge cases.

discontinuities”). Our ERD model makes use of constrained

Delaunay triangulations. Our model for the image φ is com-

pletely characterized by: 1) a set P = {pi} of sample points,

where pi = (xi,yi) ∈ Γ∩ 1
2
Z
2; 2) a set E of edge constraints

(i.e., a set of pairs of sample points from P); and 3) for each

sample point pi, one or more wedge values, where the term

“wedge value” will be defined precisely later. The quantities

P and E along with the associated wedge values are used to

determine the function φ̂ defined on Γ which approximates φ.
Note that, with our model, the sample points in P are chosen

on twice as fine a grid as the original image being represented

(i.e., Γ∩ 1
2
Z
2 as opposed to Γ∩Z

2). This is done in order to

allow for more accurate representation of image edges. As we

will see, φ̂ is chosen to interpolate φ at each point in Z
2∩P.

In what follows, we explain how φ̂ is defined in terms of P,

E, and the wedge values.

First, we construct a constrained Delaunay triangulation of

P with the constrained edges E, which serves to partition the

image domain Γ into triangle faces. The constrained edges are

chosen to correspond to image edges. For each vertex v ∈ P,

the set of faces incident on v is partitioned into what are called

wedges. In particular, a wedge is a set of consecutive faces

in a loop around a vertex v that are not separated by any

constrained edge. This definition is illustrated in Fig. 1. If the

number of constrained edges incident on the vertex v is zero

or one, all faces incident on v form a single wedge, as shown

in Fig. 1(a). Otherwise, if n constrained edges are incident on

v (where n ≥ 2), the faces incident on v form n wedges, as

shown in Fig. 1(b). Wedges are used to facilitate the modelling

of discontinuities (i.e., image edges). Since constrained edges

are chosen to correspond to image edges, a vertex v ∈ P that

has more than one wedge must be located along a discontinuity

(i.e., image edge). Each wedge of a vertex has associated with

it what is called a wedge value. The wedge value z of the

wedge w belonging to vertex v specifies the limit of φ̂(p) as

p approaches v from points inside the wedge w.

Now, we specify precisely how the function φ̂ is defined at

each point p ∈ Γ. There are two cases to consider: 1) p is not

on a constrained edge; 2) p is on a constrained edge.

Case 1. First, let us consider the case that p is not on a

constrained edge. Let f denote a face of the triangulation

with vertices pi = (xi,yi), p j = (x j,y j), and pk = (xk,yk) that

contains the point p. Let zi, z j, and zk denote the wedge values

for the face f corresponding to the vertices pi, p j, and pk,

respectively. Then, φ̂(p) = g(p), where the function g is the

unique linear interpolant (i.e., plane) that passes through the

points (xi,yi,zi), (x j,y j,z j), and (xk,yk,zk).
Case 2. Next, let us consider the case that p is on a

constrained edge. If p is not an endpoint of a constrained

edge, φ̂(p) is the average of the values on the two sides of

the image discontinuity (computed as in case 1). On the other

hand, if p is an endpoint of a constrained edge (i.e., a vertex

in the triangulation), φ̂(p) is the average of all wedge values

for (the vertex) p.

From the mesh model φ̂, a lattice-sampled image can be

reconstructed by straightforward rasterization algorithms. Due

to the fact that our ERD model explicitly represents disconti-

nuities, image edges could produce undesirable aliasing effects

if the samples of the (discrete) image reconstruction were

generated by simply evaluating φ̂ at points in Λ. Consequently,
in the case of our ERD model, rasterization is performed using

the well-known 4× 4 supersampling technique [23], as this

approach avoids such aliasing effects.

IV. PROPOSED MESH-GENERATION METHODS

Having introduced our ERD mesh model, we now propose

two mesh-generation methods, called ERDED and ERDGPI,

to be used in conjunction with this model. For a given image

φ sampled at the points of the rectangular grid Λ, each

of these methods selects the parameters of the model (i.e.,

P, E, and wedge values) so as to obtain the best possible

approximation of φ for a specified target number N of sample

points (i.e., |P|=N). Since the ERDED and ERDGPI methods

fit into the same general algorithmic framework, we first

introduce this framework. Then, we give the specifics of each

of these methods. The algorithmic framework employed by

both methods consists of the following steps:

1) Initial triangulation. Select initial values for P and

E. This determines the initial triangulation (i.e., the

constrained Delaunay triangulation of P with edge con-

straints E). Let N0 = |P| (i.e., N0 is the initial mesh size).

2) Initial wedge values. For each vertex v∈ P, calculate the

wedge value for each wedge of v.

3) Point selection. Select a new sample point p∗ to add to

the mesh.

4) Point insertion. Insert the point p∗ in the (constrained

Delaunay) triangulation. If p∗ is on a constrained edge,

split the edge at p∗ into two constrained edges, and

compute the wedge value for each wedge of the vertex

p∗. If p∗ is not on a constrained edge, the wedges remain

the same and no wedge values need to be recomputed.

5) Stopping criterion. If |P| < N, go to step 3 (i.e., add

another sample point to the mesh).

In the framework above, steps 1 and 2 choose an initial

coarse mesh of size N0, and steps 3 to 5 iteratively refine the

mesh by adding N−N0 sample points to the mesh. The initial

coarse mesh selection (i.e., steps 1 and 2) is performed in an

identical manner for both the ERDED and ERDGPI methods.

The two methods differ only in the approach used to refine

the mesh (i.e., steps 3 to 5). First, we describe in more detail

steps 1 and 2, which are identical for both the ERDED and

ERDGPI methods.
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Fig. 3. Selection of the initial triangulation. (a) Original image. (b) Binary
edge map. (c) Unsimplified polylines representing image edges. (d) Simplified
polylines representing image edges. (e) Initial triangulation (with constrained
edges denoted by thick lines).

A. Initial Coarse Mesh Selection

Recall that, with our ERD model, the sample points P are

chosen as a subset of Γ∩ 1
2
Z
2. That is, the grid on which the

sample points lie is a grid with its spacing in the horizontal

and vertical directions each reduced by half relative to the grid

Λ on which φ is originally sampled. Since the original image

φ is sampled on a W by H grid, this implies that the sample

points (in P) are chosen to fall on a (2W − 1) by (2H − 1)
grid. The relationship between these two grids is illustrated

in Fig. 2 for the case of a 4×4 image (i.e., W = H = 4). In

what follows, let φ̄ denote the function defined on Γ formed

by the bilinear interpolation [24] of φ. By definition, φ̄ satisfies

φ̄(p) = φ(p) for all p ∈ Λ.

Step 1. In step 1 of our framework, the selection of the initial

triangulation consists of four substeps, which are numbered

1.1 to 1.4 below. These substeps are described in detail in the

paragraphs that follow and are also illustrated by way of the

example shown in Fig. 3.

1.1) Locate edges. First, we employ the modified Canny

edge detector in [25] to locate edges in the image φ with

half-pixel resolution. To accomplish this, we apply the edge

detector to φ̄ sampled on the rectangular grid Γ ∩ 1
2
Z
2 to

produce a binary edge map of dimensions (2W−1)×(2H−1).
(An entry in the edge map is one if it corresponds to an edge

pixel, and zero otherwise.) Note that the grid on which φ̄ is

sampled here is twice as fine (in each dimension) as the grid

Λ on which the original image φ is sampled. By applying the

edge detector to this higher resolution version of the original

image, we can locate edges with half-pixel accuracy. The

edge detector works by computing the gradient magnitude and

direction and then using this information in conjunction with

hysteresis thresholding to select edge pixels. Two parameters

must be specified as input to the edge detector, namely, the low

and high thresholds for hysteresis thresholding, denoted herein

as τlow and τhigh, respectively. In our method, these edge-

detector thresholds are controlled by the parameters β and r.

The quantity τhigh is chosen such that the fraction of pixels

(from φ̄) whose corresponding gradient magnitude is greater

than or equal to τhigh is β (i.e., the edge detector will nominally

produce at least β
∣

∣Γ∩ 1
2
Z

∣

∣ edge pixels). Then, τlow is selected

as τlow = rτhigh. To reduce the effects of noise, a smoothing

operation (i.e., lowpass filter) is included in the convolution

kernel used for gradient calculation. That is, the filter used to

estimate each partial derivative is the composition of a first-

order derivative operator and smoothing operator, where the

first-order derivative operator is a filter with transfer function
1
2
z− 1

2
z−1 and the smoothing operator is a fifth-order binomial

filter [26]. Since edges in the edge map can be more than one

pixel wide, we apply the line thinning algorithm from [27]

to reduce the thickness of edges. The edge detection process

is illustrated in Fig. 3. In particular, given the input image

in Fig. 3(a), edge detection would produce a binary image

resembling that shown in Fig. 3(b), where edge pixels are

shown in black.

1.2) Construct polylines for edges. Having generated the

edge map, we next construct a polyline representation of each

edge in the edge map. To accomplish this, 8-connected edge

pixels in the edge map are joined (by line segments) to form

polylines. In cases where a polyline has one or more self-

intersections (excluding loops), the polyline is split at each

intersection point. In this way, the final set of polylines is

guaranteed not to have any self-intersections (excluding loops).

This process is illustrated in Fig. 3. Given the edge map shown

in Fig. 3(b), we would produce a set of polylines like that

shown in Fig. 3(c).

1.3) Simplify polylines. After polylines have been con-

structed to represent image edges, we need to simplify these

polylines. In other words, for each polyline we find a new

polyline with fewer vertices (i.e., control points) that well ap-

proximates the original polyline. To perform polyline simplifi-

cation, we employ the well known Douglas-Peucker (DP) [28]

algorithm. For a given polyline, the DP scheme repeatedly

(using a greedy approach) adds points to a trivial two-point

approximation of the polyline until the resulting approximation

error is less than a prespecified tolerance. In our method, each

polyline is simplified using the DP algorithm with tolerance

ε. Then, we discard any polylines with fewer than ℓ vertices,

where ℓ is a parameter of our method. Polylines with only

a few points are eliminated, as such polylines tend to be

associated with false edges introduced by noise and degrade

mesh quality. This process is illustrated in Fig. 3. Given the

set of polylines shown in Fig. 3(c), we would produce a set

of simplified polylines like that shown in Fig. 3(d).
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1.4) Select P and E from polylines. Having obtained the

set of simplified polylines, we now use those polylines in

order to select P and E. Since the extreme convex-hull points

of Λ (i.e., the four corner points of image bounding box)

must be included in P, these four points are always forced

to be included in P. We choose P as the union of all of the

polyline vertices and select E as the set of line-segments from

all of the polylines. Then, we form the constrained Delaunay

triangulation of P with edge constraints E. This process is

illustrated in Fig. 3. Given the simplified polylines shown

in Fig. 3(d), we would produce the triangulation shown in

Fig. 3(e), where constrained edges are denoted by thick lines.

Step 2. Having selected the initial triangulation, we now

need to choose the wedge values. In particular, for each wedge

w of each vertex v ∈ P, we must select the corresponding

wedge value z. The selection of z is performed in one of

two ways, depending on the number n of wedges associated

with the vertex v. If n = 1, we simply choose z as z = φ̄(v).
Otherwise (i.e., if n ≥ 2), we proceed as follows. Let f

denote the MMSODD of φ (which is calculated according

to equation (6) in [15]) and let d denote a unit vector in

the direction of the ray originating from v and bisecting the

wedge w. We select z as z = φ̄(v′), where v′ = v+ α∗d and

α∗ = argmaxα∈[1,1.5] f (v+αd). In other words, v′ is chosen as

the result of a local line search that maximizes the MMSODD

along the ray bisecting w. The line search is restricted to

α ∈ [1,1.5] in order to prevent v′ from falling far outside of

the (triangle) face with which w is associated. As a practical

matter, f (as defined above) is calculated with a fifth-order

binomial filter for smoothing.

Selection of β, r, ℓ, and ε. As seen above, the selection of

the initial triangulation (in step 1 of our framework) requires

the specification of the parameters β, r, ℓ, and ε. Since the best
choice for some of these parameters is dependent on both the

image being processed and the sampling density, the manual

selection of these parameters is quite tedious. For this reason,

we propose an automated scheme for parameter selection,

which was developed based on extensive experimentation with

many images (including all 41 images in our test set) over a

wide range of sampling densities. This automated scheme is

described below.

In our framework, we always choose r= 0.4. The remaining

parameters β, ℓ, and ε are chosen as described below. In what

follows, let N and D denote the number of sample points

(i.e., N = |P|) and the sampling density of the mesh model,

respectively.

As a matter of terminology, we refer to an image as simple

if it contains an abnormally low amount of edges. How we

select β, ℓ, and ε depends on whether the image is simple.

First, we make a determination of whether the image is simple.

To do this, we perform step 1 of our framework with the

fixed choices of β = 0.055, ℓ = 5, and ε = 1. If this results in

an initial triangulation where the number of vertices that are

endpoints of constrained edges is less than 0.001
∣

∣Γ∩ 1
2
Z
2
∣

∣,

the image is deemed to be simple; otherwise, it is deemed not

to be simple.

Next, we make an initial choice for β, ℓ, and ε. If the image

is not simple, we proceed as follows. Set ℓ = 5. If D> 0.01, set

TABLE I
CHOICE OF β FOR THE ERDED

METHOD

Samp. Density
(%) β

[0.00,0.20) 0.0095
[0.20,0.35) 0.0095
[0.35,0.75) 0.0118
[0.75,1.20) 0.0280
[1.20,2.50) 0.0550
[2.50,3.50) 0.0830
[3.50,5.00) 0.0950

TABLE II
CHOICE OF β FOR THE ERDGPI

METHOD

Samp. Density
(%) β

[0.00,0.20) 0.0110
[0.20,0.35) 0.0115
[0.35,0.75) 0.0118
[0.75,1.20) 0.0280
[1.20,2.50) 0.0550
[2.50,3.50) 0.0830
[3.50,5.00) 0.0950

ε = 1; otherwise, set ε = 2. Finally, make the initial choice of

β based on the sampling density as given by Tables I and II for

the ERDED and ERDGPI methods, respectively. If the image

is simple, we make the initial choice of β, ℓ, and ε as β = 0.03,
ℓ = 1, and ε = 1.

Next, we iteratively update β, ℓ, and ε. This is accomplished

by the following steps: 1) Perform edge detection (i.e., step

1.1 which uses β and r). 2) Perform polyline simplification

(i.e., steps 1.2 and 1.3 which uses ε and ℓ). If the number of

sample points on constrained edges is less than 0.35N, (i.e., too
few sample points are obtained), set ε = 1 and redo polyline

simplification. 3) If the actual number of constrained sample

points is greater than 0.7N, set β := 0.75β, set ℓ := 2ℓ, and
go to step 1 (i.e., the start of the loop). 4) Output the current

values of β, r, ℓ, and ε as the final selected values.

Comment on edge detector. In passing, we make a brief

comment with regard to the edge detector used in step 1.1 of

our ERDED and ERDGPI methods. For the purposes of these

methods, we only need to be able to detect relatively long

strong image edges, as such image edges are the ones that are

most advantageous to represent as explicit discontinuities with

our ERD model. Our choice to use the modified Canny edge

detector was motivated mainly by the desire to use the simplest

possible edge detector that would lead to reasonably good

results. This particular edge detector was found to work well

for the many images employed in our work. Because of this,

it is difficult to justify the use of a much more sophisticated

edge detector, as this would increase the computational cost

of our methods. The main advantage of the modified Canny

edge detector over the original Canny edge detector (in [29])

is that image edge intersections are better handled.

B. Mesh Refinement for the ERDED Method

As mentioned above, mesh refinement is performed differ-

ently in our ERDED and ERDGPI methods. In particular, in

step 3 of our framework, the strategy used to select the new

point p∗ to add to the mesh is different in these two cases.

In what follows, we describe how step 3 is performed in the

ERDED case.

Let S denote the set of sample points to be added to the

mesh. Since the initial mesh has size N0, we require that

|S| = N−N0. With the ERDED method, S is selected all at

once. So, if step 3 is being encountered for the first time, S

is chosen (in its entirety) before any other processing is per-

formed. Then (with S having been initialized), we arbitrarily

assign a point from S to p∗ and then let S := S \ {p∗}. As
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Fig. 4. Startup effect in error diffusion. Triangulation obtained (a) without
mirroring and (b) with mirroring.

for how S is initially chosen, we will describe this shortly.

Theoretically, it is possible for one or more of the points

in S to fall on a constrained edge. To avoid unnecessarily

complicating our ERDED method, we discard any such points.

Since it is extremely rare for this situation to arise, the impact

on the target sampling density is negligible.

The set S is chosen using the error-diffusion technique

from the ED method [15] as described earlier. In order to

permit the error-diffusion technique to work more effectively

with our ERDED method, we made several modifications to

this technique. First, the edge sensitivity parameter γ was

chosen as γ = 0.5 and the smoothing operator employed (for

MMSODD calculation) was selected as a fifth-order binomial

filter. Second, the density function d used for error diffusion

was modified. Instead of simply choosing d as the MMSODD,

d was chosen such that it equals the MMSODD at points

where the corresponding edge map entry (obtained from edge

location in step 1.1 of our framework) is zero, and zero

otherwise.

The third modification to the error diffusion scheme serves

to eliminate an undesirable startup effect. In particular, when

the number of sample points to be chosen is sufficiently low

(i.e., at low sampling densities), error diffusion will often result

in an abnormally low number of sample points being selected

in the region of the image processed first (namely, the top

of the image). This abnormally low number of sample points

leads to very high distortion in this region, degrading overall

performance. To eliminate this startup effect, we extend the

image to be processed by mirroring it about its first row so

as to obtain an image of twice the original height. Then, we

apply error diffusion to extended image, discarding any sample

points that are chosen in the mirrored region. To demonstrate

the benefit of this mirroring process, we provide an example in

Fig. 4. In particular, Figs. 4(a) and (b) show the triangulation

obtained without and with the use of mirroring. Observe

that in the no-mirroring case, an abnormally low number of

sample points is selected in the first few rows (i.e., top) of

the image, which ultimately leads to higher approximation

error. In contrast, the mirroring case does not suffer from this

problem.

C. Mesh Refinement for the ERDGPI Method

Now, we describe how step 3 of our proposed framework

is performed in the ERDGPI case. In the ERDGPI case,

TABLE III
TEST IMAGES

Image Size, Bits/Sample Description

bull 1024×768, 8 computer-generated bull [33]
ct 512×512, 12 CT scan of head [30]
glasses2 1024×768, 8 raytraced glasses [33]
lena 512×512, 8 woman [32]
mri 256×256, 11 MRI scan of head [30]
peppers 512×512, 8 collection of peppers [32]

a new point p∗ to add to the mesh is selected using the

process described in what follows. During mesh refinement

(i.e., steps 3 to 5 of our framework), we maintain the image

approximation φ̂ generated from the current mesh model. This

image approximation φ̂ is generated from the mesh model

parameters as specified in Section III. Each time a new point

is added to the mesh, the image approximation φ̂ is updated to

reflect the change in the mesh. For a face f in the triangulation,

let points( f ) denote all points in Λ belonging to f . Using the

current image approximation φ̂, we choose p∗ in two steps.

First, we select the face f ∗ with the greatest squared error.

That is,

f ∗ = argmax
f∈F

∑
p∈points( f )

(φ̂(p)−φ(p))2,

where F is the set of all faces in the triangulation. Then, we

select the point p∗ in f ∗ with the greatest absolute error. That

is,

p∗ = argmax
p∈points( f ∗)

∣

∣φ̂(p)−φ(p)
∣

∣ .

V. EVALUATION OF PROPOSED METHODS

Before proceeding further, a brief digression is in order

concerning the test data used herein. In our work, we employed

41 (grayscale) images that were taken mostly from standard

test sets, such as the JPEG-2000 test set [30], Kodak test

set [31], and USC image database [32]. Herein, we focus our

attention on the representative subset of six images listed in

Table III, which were deliberately chosen to include computer-

generated, medical, and photographic imagery.

Error diffusion startup in ERDED method. Earlier, in the

context of our ERDED method, we mentioned that error

diffusion can often exhibit an undesirable startup behavior and

to combat this problem we introduced a mirroring scheme.

Now, we present some results to demonstrate the effectiveness

of this mirroring scheme. For several test images and sampling

densities, we generated a mesh using the ERDED method with

and without mirroring and measured the resulting approxima-

tion error in terms of peak signal-to-noise ratio (PSNR). The

results obtained are shown in Table IV, with the best result

in each case being highlighted in bold. Clearly, the mirroring

scheme employed in our ERDED method is highly effective,

outperforming the approach without mirroring in 11/12 of the

test cases by a margin of up to 2.71 dB. It was due to this

excellent performance of mirroring that we chose to include

it in our ERDED method (as introduced earlier).

Comparison with ED and GPI methods. Having introduced

our proposed ERDED and ERDGPI methods, we now compare
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TABLE IV
EFFECTIVENESS OF THE STRATEGY FOR MITIGATING THE STARTUP

EFFECT IN ERROR DIFFUSION

Samp.
Density PSNR (dB)

Image (%) No Mirroring Mirroring

bull 0.125 21.97 24.68

0.250 28.28 28.86
0.500 34.69 35.15
1.000 39.22 39.02

lena 0.500 20.19 20.56
1.000 24.65 25.82
2.000 28.09 29.28

3.000 30.64 31.31

mri 0.250 11.56 12.55
0.500 22.46 24.79

1.000 28.69 30.33
2.000 32.13 33.14

their performance to that of two competing methods, namely

the ED and GPI schemes (described earlier). In terms of

computational complexity, the ERDED method is most com-

parable to the ED scheme, and the ERDGPI method is most

comparable to the GPI scheme. Therefore, we compare the

ERDED method to the ED scheme and the ERDGPI method

to the GPI scheme. For all 41 images in our test set and 7

sampling densities per image (namely. 0.125, 0.25, 0.5, 1, 2, 3,

and 4%), we used each of the ERDED, ED, ERDGPI, and GPI

methods to generate a mesh and then measured the resulting

approximation error in terms of PSNR. A representative subset

of the results obtained is shown in Table V for the ERDED

and ED methods and in Table VI for the ERDGPI and GPI

methods. In these tables, the best result in each test case is

highlighted in bold. The sampling densities for which results

are presented are chosen to be representative of the range that

would be typically used for each image in practice (which

may differ from image to image). Due to space constraints, it

is not possible to present results for all 41 ·7 = 287 test cases

herein.

ERDED versus ED. First, we compare the ERDED and

ED methods. From the results of Table V, we can see that

the ERDED method outperforms the ED scheme in 24/24

of the test cases, by a margin of 1.12 to 15.69 dB (with

a median of 3.77 dB). Subjective image quality was found

to correlate reasonably well with PSNR. As an example to

illustrate subjective quality, the image approximations for one

of the test cases from Table V is shown in Fig. 5. The

corresponding image-domain triangulations are also shown,

with constrained edges (in the ERDED case) denoted by thick

lines. Clearly, our ERDED method produces a vastly superior

image approximation (relative to the ED scheme), preserving

image edges much more faithfully. In passing, we note that in

our full set of 287 test cases (i.e., 41 images and 7 sampling

densities per image), our ERDED method produces a higher

quality mesh than the ED scheme in 284/287 (i.e., 99%) of

the test cases. So, when the complete set of test cases is

considered, our ERDED method clearly outperforms the ED

scheme overall.

ERDGPI versus GPI. Now, we compare the ERDGPI and

GPI methods. From the results of Table VI, we can see that

the ERDGPI method outperforms the GPI scheme in 23/24

of the test cases, by margin of up to 4.91 dB (with a median

of 1.08 dB). Again, subjective quality was found to correlate

well with PSNR. As an example to illustrate subjective quality,

the image approximations for one of the test cases from

Table VI is shown in Fig. 6. The corresponding image-domain

triangulations are also shown, with constrained edges (in the

ERDGPI case) denoted by thick lines. A close inspection of

the two image approximations shows that the ERDGPI method

more faithfully reproduces image edges and generally has less

significant distortion, relative to the GPI scheme. With the

ERDGPI method, the constrained edges in the triangulation

align well with image edges, allowing for better image-edge

reproduction. In passing, we note that in our full set of 287 test

cases (i.e., 41 images and 7 sampling densities per image), our

ERDGPI method produced a higher quality mesh than the GPI

scheme in 250/287 (i.e., 87%) of the test cases. So, when the

complete set of test cases is considered, our ERDGPI method

clearly outperforms the GPI scheme overall.

ERDED/ERDGPI versus ED/GPI. Generally speaking, the

margin by which our proposed ERDED and ERDGPI methods

outperform their respective counterparts (i.e., the ED and GPI

schemes) tends to be higher when: 1) the sampling density

is lower; and/or 2) the image being approximated is close to

being piecewise smooth (i.e., has relatively little texture). The

first of these two trends (i.e., item 1) is explained as follows.

As the sampling density increases, all methods (regardless of

how efficient they are) will ultimately converge to the same

MSE (namely, zero). Therefore, differences in efficiency of the

image representations being employed (i.e., the basic mesh

model versus the ERD mesh model) will tend to be more

pronounced at lower sampling densities. (In cases where the

ED method performs particularly poorly for an image, this

trend is sometimes not observed unless the sampling density

is chosen to have a value that is much higher than would

be used in practice.) The second of these two trends (i.e.,

item 2) is explained as follows. If an image is close to being

piecewise smooth, relatively more sample points are needed

to well capture image edges, making the approach used to

represent image edges more important. Since our proposed

methods use a model that more efficiently handles image edges

(i.e., the ERD model), our methods can more efficiently handle

images that are approximately piecewise smooth.

Comparison with GVS method. As an additional point of

reference, we compare our ERDED and ERDGPI methods to

the Garcia-Vintimilla-Sappa (GVS) scheme from [17], which

is based on constrained Delaunay triangulations. In [17], some

mesh-generation results are provided for three standard test

images (from the USC image database), namely, the house,

lena, and peppers images. Using our ERDED and ERDGPI

methods, we generated meshes to match the sizes of the

meshes produced in [17] and then measured the resulting

approximation error in terms of PSNR. Our results along with

the ones from [17] are given in Table VII for comparison.

Examining the results of this table, we can see that our

ERDED and ERDGPI methods each outperform the GVS

scheme in every case by a margin of 1.39 to 2.34 dB and 3.46

to 4.64 dB, respectively. Clearly, our ERDED and ERDGPI

methods are both superior to the GVS scheme.
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TABLE V
COMPARISON OF THE MESH QUALITY OBTAINED WITH THE ERDED AND

ED METHODS

Samp.
Density PSNR (dB)

Image (%) ERDED ED

bull 0.125 24.68 14.66
0.250 28.86 17.36
0.500 35.15 27.79
1.000 39.02 34.16

ct 0.125 15.63 12.99
0.250 25.97 13.23
0.500 30.06 17.47
1.000 36.51 20.82

glasses2 0.500 20.54 16.55
1.000 24.80 21.78
2.000 28.71 26.02
3.000 30.85 27.98

lena 0.500 20.56 17.60
1.000 25.82 22.45
2.000 29.28 26.90
3.000 31.31 28.54

mri 0.250 12.55 10.87
0.500 24.79 16.10
1.000 30.33 15.55
2.000 33.14 19.94

peppers 0.500 22.14 17.53
1.000 25.97 22.42
2.000 29.00 27.10
3.000 30.18 29.06

TABLE VI
COMPARISON OF THE MESH QUALITY OBTAINED WITH THE ERDGPI AND

GPI METHODS

Samp.
Density PSNR (dB)

Image (%) ERDGPI GPI

bull 0.125 35.47 30.56
0.250 38.33 35.30
0.500 40.16 38.72
1.000 41.39 40.95

ct 0.125 27.19 24.69
0.250 32.11 29.93
0.500 36.31 35.12
1.000 39.49 39.82

glasses2 0.500 24.94 23.65
1.000 28.56 27.01
2.000 32.11 31.00
3.000 33.86 33.53

lena 0.500 25.58 24.22
1.000 28.35 26.96
2.000 30.79 29.74
3.000 32.30 31.36

mri 0.250 27.14 26.34
0.500 29.55 29.07
1.000 33.01 32.14
2.000 35.21 35.08

peppers 0.500 25.99 24.66
1.000 28.40 27.49
2.000 30.42 29.99
3.000 31.50 31.19

TABLE VII
COMPARISON OF THE MESH QUALITY OBTAINED WITH THE ERDED,

ERDGPI, AND GVS METHODS

PSNR (dB)
Image Mesh Size ERDED ERDGPI GVS

house 1649 29.52 31.52 27.62
lena 7492 29.69 31.76 28.30
peppers 7224 28.82 31.12 26.48

Computational complexity. In passing, we note that our

ERDED and ERDGPI schemes are both quite modest in

terms of their computational requirements. For example, on

a notebook computer with a 2.7 GHz Intel Core i7 CPU and

8 GB of RAM, for the lena image and sampling densities in

the range 0.5% to 3%, the ERDED and ERDGPI methods have

the execution times given in Tables VIII and IX, respectively.

From these results, we can see that our ERDED and ERDGPI

methods require less than one second for an image like lena.

This is in stark contrast to the numerous mesh-generation

methods that take on the order of minutes to process an

image of this size, such as the scheme in [2]. In the above

tables, we have also included the execution times for the

ED and GPI methods for comparison to our ERDED and

ERDGPI methods, respectively. In this regard, it is important

to note that, while our ED and GPI implementations were

optimized for execution speed, our ERDED and ERDGPI

implementations were not. Consequently, the ED and GPI

methods have a very unfair advantage over our proposed

methods in this execution-time comparison. In spite of this,

our ERDED and ERDGPI methods still only require 0.553

to 0.631 seconds and 0.248 to 0.586 seconds longer than the

ED and GPI schemes, respectively. Considering the significant

improvement in mesh quality obtained with our methods,

TABLE VIII
TIME COMPLEXITY COMPARISON

FOR ERDED AND ED METHODS FOR

THE lena IMAGE

Samp.
Density Time (s)
(%) ERDED ED

0.5 0.572 0.019
1.0 0.599 0.020
2.0 0.617 0.025
3.0 0.663 0.032

TABLE IX
TIME COMPLEXITY COMPARISON

FOR ERDGPI AND GPI METHODS

FOR THE lena IMAGE

Samp.
Density Time (s)
(%) ERDGPI GPI

0.5 0.709 0.123
1.0 0.741 0.179
2.0 0.825 0.365
3.0 0.901 0.653

the fraction-of-a-second increase in execution time is quite

reasonable.

Additional comments. As seen earlier, the ERDED and

ERDGPI methods are able to produce considerably better

meshes than the ED and GPI schemes, respectively. This

better performance obtained with our methods is facilitated

by the more effective mesh model that they employ. Recall

that the ED and GPI schemes employ the basic model, which

uses a Delaunay triangulation and a continuous approximating

function, while our ERDED and ERDGPI methods employ the

ERD model, which uses a constrained Delaunay triangulation

and an approximating function that need not be continuous

along triangulation edges. As a consequence, our ERDED

and ERDGPI methods can represent image edges much more

efficiently, requiring many fewer sample points in the vicinity

of image edges. This ultimately allows our proposed methods

to produce meshes of higher quality than the ED and GPI

schemes. Also, as seen earlier, the ERDED and ERDGPI

methods also significantly outperform the GVS scheme. Al-

though the GVS scheme employs a mesh model that is

based on a constrained Delaunay triangulation, the associated

approximating function is continuous and each image edge is
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(a) (b)

(c) (d)

Fig. 5. Comparison of the ERDED and ED methods. Part of the image
approximation obtained for the bull image at a sampling density of 0.125%
with the (a) ERDED (24.68 dB) and (b) ED (14.66 dB) methods, and (c) and
(d) their corresponding triangulations.

(a) (b)

(c) (d)

Fig. 6. Comparison of the ERDGPI and GPI methods. Part of the image
approximation obtained for the bull image at a sampling density of 0.125%
with the (a) ERDGPI (35.47 dB) (b) GPI (30.56 dB) methods, and (c) and
(d) their corresponding image-domain triangulations.

represented using a two (approximately) parallel sets of edge

constraints, which greatly reduces the efficiency with which

image edges can be represented. Consequently, our ERDED

and ERDGPI methods are also able to significantly outperform

the GVS scheme.

VI. CONCLUSIONS

In this manuscript, we have introduced a new mesh model

for images, called ERD, that explicitly represents disconti-

nuities (i.e., image edges). Then, we proposed two different

mesh-generation methods, called ERDED and ERDGPI, that

select the ERD-model parameters for a given input image. To

demonstrate the effectiveness of our proposed approach, we

compared the quality of the image approximations obtained

with our ERDED and ERDGPI methods to that produced by

three other competing schemes, namely, the ED, GPI, and

GVS methods. Experimental results showed our ERDED and

ERDGPI methods to significantly outperform the ED and

GPI schemes, respectively, in terms of both squared error

and subjective quality. Moreover, our ERDED and ERDGPI

methods were also found to outperform the GVS scheme,

both in terms of squared error and subjective quality. Our

proposed methods are relatively fast, typically requiring less

than one second on modest hardware. As our methods yield

image approximations of superior quality and have modest

computational requirements, these methods can benefit the

many applications in which mesh models of images are

employed.
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