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Abstract

In earlier work, Yang et al. proposed a highlffextive technique for generating triangle-mesh models of
images, known as the errorfilision (ED) method. Unfortunately, the ED method, which chooses triangu-
lation connectivity via a Delaunay triangulation, typically yields triangulationshictvmany triangulation
edges crosscut image edges, leading to increased approximatiorirethos. paper, we propose a compu-
tational framework for mesh generation that modifies the ED method to useela¢adent triangulations
(DDTs) in conjunction with the Lawson local optimization procedure (LOR) laas several free parame-
ters. Based on experimentation, we recommend two particular choices $erjheameters, yielding two
specific mesh-generation methods, known as MED1 and MED2, which nifikeedt tradefis between
approximation quality and computational cost. Through the use of DDTs &nldQP, triangulation con-
nectivity can be chosen optimally so as to minimize approximation error. As patravork, two novel
optimality criteria for the LOP are proposed, both of which are shown to diatpe other well known
criteria from the literature. Through experimental results, our MED1 amDRImethods are shown to
yield image approximations of substantially higher quality than those obtained witB@Dhmethod, at a

relatively modest computational cost.
Keywords: Image representations; nonuniform sampling; triangle meshes; dataeggperiangulations;

error difusion.

1. Introduction

In real-world applications, images are typically nonstationary. Conséguaniform sampling of im-

ages (such as with a truncated lattice) is usually far from optimal, with the santgimgity inevitably being
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too high in some regions while too low in others. This has led to an interest in irepgesentations based
on nonuniform (i.e., content-adaptive) sampling. By choosing the sampltspo a manner dependent on
the image content, the number of samples can be greatly reduced. This saralde sount can often be
exploited in applications in order to reduce computational cost. Moreowesaimple data can often better
capture the geometric structure inherent in images (such as image edgesjné applications, this can
be exploited in order to obtain better quality results. Some applications in whigmiform sampling has
proven useful include: feature detection [1], pattern recognitiond@puter vision [3], restoration [4],
tomographic reconstruction [5], filtering [6], interpolation [7, 8], and im&gleo coding [9-15].

Many general approaches to nonuniform sampling have been pfmdate. Some of the more popu-
lar approaches include: inverse distance weighted methods [16, dig; lbasis function methods [16, 17];
Voronoi and natural-neighbor interpolation methods [16]; and finite-emmethods [16, 17], including
triangle meshes based on Delaunay triangulations [18—21], constragladray triangulations [22], data-
dependent triangulations [23-28, 18, 29, 30], and geodesic trigiand431]. Two excellent survey papers
[16] and [17] present a good overview of the numerous generabappes to nonuniform sampling.

One particularly &ective approach to nonuniform sampling ieved by triangle meshes. In this ap-
proach, the (nonuniformly chosen) sample points are triangulated, partgitme image domain into tri-
angular faces, and then an approximating function is constructed osterfaaze of the triangulation. One
key difference between the various triangle-mesh-based approaches is indyoselict the triangulation
connectivity (i.e., how the vertices of the triangulation are connected bgs@¢ddhe most common ap-
proach is to choose the connectivity by using a Delaunay triangulationlf8&lich a case, the connectivity
is determined solely by the set of sample points being triangulated. By chcarsiagpropriate technique
for handling degeneracies, such as preferred directions [33]iqaeitriangulation can be obtained. Ex-
amples of mesh-generation methods that are based on Delaunay triangudaéigrientiful in literature, a
few examples of which are [18—-21]. Another approach to choosingitreguilation connectivity isféered
by data-dependent triangulations (DDTs). With a DDT, the triangulation connectivity can be chosen in
an arbitrary manner, using information in the dataset from which the points taémgulated were cho-
sen. Since, unlike the Delaunay case, the connectivity of a DDT may keeharbitrarily, DDTs fier

much greater flexibility than Delaunay triangulations. This said, howevanaxdivity selection is often a



challenging task. Typically, optimization techniques are employed for thisogerpvith the most common
such technique, by far, being thacal optimization procedure (L OP) of Lawson [34]. Examples of mesh-
generation methods based on DDTs include [23-28, 18, 29, 30]. Hppseaches make heavy use of the
LOP or variants thereof, such as tloek-ahead L OP (LLOP) [29].

In [19], Yang et al. proposed a simple technique for generating triamgleh models of images, known
as theerror-diffusion (ED) method. Although this method has proven highfiieetive, it has the weakness
that it often yields triangulations in which a significant number of (triangultexdges crosscut image
edges (i.e., discontinuities in the image), leading to a degradation in approximatéty. This weakness
can be attributed to the fact that the ED method employs a Delaunay triangutatitobsing triangulation
connectivity. In this paper, we propose a computational framework fehrgeneration that modifies the ED
method to use DDTs in conjunction with the LOP. By using DDTs instead of Dalatrrangulations, we
are able to better exploit triangulation connectivity in order to obtain highalitywapproximations. Using
our framework, we derive two specific mesh-generation methods kneWwtE®1 and MED2, which make
different tradefis between approximation quality and computational cost. As we will show lateV|BED1
and MED2 methods yield image approximations of substantially higher quality tlese thbtained with
the ED method in terms of botbeak-signal-to-noise ratio (PSNR) and subjective quality, at a relatively
modest computational cost. For example, in terms of PSNR, our MED1 and2Mi#bhods outperform
the ED method, on average, by 3.26 and 3.81 dB, respectively. As partrovork, we propose two
novel optimality criteria for use with the LOP. Both of these criteria are showsutperform numerous
other well known criteria from the literature. In passing, we note that thd wescribed herein has been
partially presented in our conference paper [35]. The work hereimetier, adds a number of new elements
beyond our conference paper, such as: considering the use di@® broposing two new highlyfkective
optimality criteria for the LOP, and exploiting one of these criteria in order toiol@re dfective mesh-
generation schemes. Furthermore, as will be demonstrated later, the emeshtgpn method proposed in
our conference paper, henceforth referred to as the CCCG mettoahliges meshes of significantly lower
quality than those obtained with the MED1 and MED2 methods proposed herein.

The remainder of this paper is organized as follows. To begin, Sectioov2des some background

information on triangle meshes for image representation and introduces synmeekhods related to our



work. In Section 3, we begin by introducing our computational frameworkniesh generation. Then,
we consider how the free parameters of this framework should be cliosmder to achieve the best
performance, leading to the proposal of our mesh-generation metho8d Miad MED2. In Section 4,
the performance of our mesh-generation methods are evaluated. FiraliprSs concludes with a brief

summary of our work and some closing remarks.

2. Background

Before proceeding further, a brief digression is necessary in tmdetroduce some basic notation and
terminology employed herein. The cardinality of a Seis denotedS|, and the 2-norm of a vectoris
denoted|v||. Thetriangulation of a setP of points is a seT of (nondegenerate) triangles such that: 1) the
union of the vertices of all triangles if is P; 2) the interiors of any two triangles if are disjoint; and
3) the union of the triangles if is the convex hull oP.

In the context of our work, an image is an integer-valued funcfidlefined on the domaih= [0, W —

1] x [0,H - 1] and sampled on the truncated two-dimensional integer lattice {0,1,...,W — 1} x
{0,1,...,H — 1} (i.e., a rectangular grid of widtt/ and heightH). A (triangle) mesh model af consists
of: 1) a setP = {p;} of sample pointswhereP c A; 2) a triangulationl of P; and 3) the function values
{z = ¢(p;)} for pi € P. In order to ensure that the triangulatidncovers all points im\, P must always
be chosen to include all of the extreme convex hull points @fe., the four corner points of the image
bounding box). As a matter of terminology, teigeandsampling densityof the model are defined 48|
and|P| /|A|, respectively.

The above mesh model is associated with a funafidghat approximates, whereg is determined as
follows. First, we construct a continuous piecewise linear funegithat interpolates at each poinp; € P.
More specifically, for each facé in the triangulationT, ¢ is defined to be the unique linear function that
interpolatesp at the three vertices df. Since¢ is integer valued, we wish for its approximatigrto be
integer valued as well. Thus, we define the approximafiém terms ofé asé(p) = round@(p)), where
round denotes an operator that rounds to the nearest integer.

In our work, for a given model size (i.e., number of sample points), we teefind a model to minimize



¢, the diference betwees and¢ as measured by theean squared error (M SE), where

e=IA " (3(p) - o))’ (1)

peA

For convenience, we will express the MSE in terms of the PSNR, which iss#efis®SNR = 20 log;o[(2° -
1)/ /€], wherep is the number of bits per sample used by the (integer-valued) imagénding compu-
tationally eficient methods to solve the above problem is extremely challenging, as problentisigilare
known to be NP-hard [36].

ED Method. As mentioned earlier, one highlytective method for generating mesh models of images
is the ED method [19]. Since our work builds on the ED method, it is helpful ieflprintroduce this
method here. Given an imageand a desired mesh si2& the ED method constructs a mesh modeg of
with the setP of sample points, as follows:

1. Sample-point selection. Selget with |P| = N, using Floyd-Steinberg error filision [37]. This

is done in such a way as to ensure that the poin® &me distributed with a density approximately
proportional to the maximum-magnitude second-order directional deévatiy.

2. Triangulation. TriangulatP using a Delaunay triangulation.

In step 1, the seP is always chosen to include all extreme convex-hull points of the image domhbis
ensures that the triangulation produced in step 2 covers the entire imageddirace several variants
of the ED scheme are presented in [19], it is worth noting, for the sakeropleteness, that we consider
the variant with the following characteristics herein: 1) a third-order binbiitier is used for smoothing;
2) non-leaky error dfusion is used with a serpentine scan order; 3) the sensitivity paragnistehosen as
1; and 4) the error diiusion algorithm is performed iteratively in order to achieve exactly the adksimber
of sample points. Since, in our work herein, we require that the approxignatirction (i.e. ) interpolate
the original (i.e. ), we consider only the variant of the ED method that satisfies this interpoladimdijtion.
(That is, the variant that employs a least-squares fit is not considered.)

LOP. Before proceeding further, it is necessary to interject some additi@e&bipound related to trian-
gulations. An edge of a triangulation is said to biéippableif e has two incident faces (i.e., is not on the
triangulation boundary) and the union of these two faces is a strictly cajuedkrilateraly. For a flippable

edgee, anedge flipis an operation that replaces the edga the triangulation by the other diagorélof
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g, as shown in Figure 1.
[Figure 1 about here.]

The fact that every triangulation of a set of points is reachable fromyetber triangulation of the same
set of points via a finite sequence of edge flips [38] motivated Lawsorofmge the so called LOP [34].
The LOP [34] is an optimization technique, based on edge flips, that is useatdettt the connectivity
of a triangulation so as to be optimal in some sense. In practice, the LOP igefridyused to choose
triangulation connectivity in the case of DDTs. As a matter of terminology, adbfgpedgee is said to
be optimal if it satisfies some prescribed edge-optimality criterion. In turn, a trianguldtiesaid to be
optimalif every flippable edge iif is optimal. In order to produce an optimal triangulation, the LOP simply
applies edge flips to flippable edges that are not optimal, until the triangulatigiisal (i.e., all flippable
edges are optimal).
Cost-Based Criteria. Most frequently, the edge-optimality criterion is specified indirectly through
some measure of triangulation cost. Let triC@3tdenote the cost of the triangulatidn A flippable edge

ein the triangulatior is then said to beptimal if
triCost(T) < triCost(T”), 2

whereT’ is the new triangulation obtained by applying an edge flip tio the triangulatiorT). That is, the
flippable edgee is deemed optimal if applying an edge flipeavould not result in a strict decrease in the
triangulation cost. In turn, the triangulation cost triCost is specified by idgfe cost measure for all edges
in the triangulation. Let edgeCo%t(e) denote the cost of the edgén the triangulationT. Then, triCost is

defined as

triCost(T) = Z edgeCostl, e), (©)

ec&(T)

where&(T) denotes the set of edgesTh That is, the cost of a triangulation is simply the sum of its
corresponding edge costs. As a matter of terminology, we refer to a tt@igguoptimality criterion
employing (2) (where triCost is of the form of (3)) asst based By far, cost-based criteria are most

commonly used in conjunction with the LOP, several examples of which caouinel in [23, 39, 25, 26]. A
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particularly important criterion of this type suared error (SE) [25, 26]. With the SE criterion, the edge
e is deemed optimal if applying an edge flipeavould not cause a strict decrease in the MSE as defined
by (1).

Heuristic-Based Criteria. More recently, the work [30] introduced a type of triangulation optimality
criterion that is not associated with any underlying triangulation cost fum¢tie., a function of the form
of (3)). With this type of criterion, a cost is assigned to each flippable.edgteedgeCosT(, €) denote the

cost of the edge in the triangulationT. The flippable edge s said to beoptimal if

edgeCosfl, €) < edgeCosf[’, ¢), (4)

where€ is the new edge produced by applying an edge flip emd T’ is the corresponding new trian-
gulation (withe’). As a matter of terminology, we refer to a triangulation optimality criterion usin@g¢4
heuristic based

Additional Remarks on the LOP. At this point, it is worthwhile to make a few additional remarks
about the LOP. The first comment to be made is with respect to algorithm termindfia cost-based
optimality criterion is employed, the LOP must terminate after a finite number of sésgsirfing the
algorithm is implemented in a numerically robust manner). This is an indireceqoesice of the fact that
the LOP only flips an edge if doing so would result istdct decrease in the triangulation cost. In contrast,
if a heuristic-based optimality criterion is used (regardless of whether the rimeplation is numerically
robust), the LOP can potentially become trapped in a cycle, repeating thessmuence of edge flips
indefinitely. This is due to the fact that, in the absence of a well-defined trfatign cost function, it
is possible to make inconsistent decisions about the optimality of an edge. irRuactsistent decisions
can result in cycles. From a practical standpoint, this potential cycling idsas not pose any significant
problems for two reasons. First, when performing the LOP, it is easy td &eing trapped in a cycle by
simply tracking how many times each edge is tested for optimality and if the couahfedge exceeds a
particular threshold some special action can be taken, such as ignorieddbdor the remainder of the
LOP or terminating the LOP early. Second, the mdifedive heuristic-based criteria only rarely result in
cycles. Therefore, breaking cycles when they do occur has little impattteoresult produced by the LOP.
In the implementation employed in our work, in the case of heuristic-basedayriter limit the number of
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times an edge may be tested for optimality to 15. If this count is exceeded, tharedgestion is simply
ignored for the remainder of the LOP.

The second remark to make about the LOP concerns the optimal triangulattongitoduces. For any
optimality criterion of practical interest (other than the Delaunay criterion §32), the optimal solution
produced by the LOP is almost never uniquely determined. The nonumgsiehthe solution is important
because it implies that some optimal solutions may be (and, in practice, are)mttiehthan others. The
optimum produced will typically depend (often very heavily) on the initial tridagon to which the LOP
is applied.

LLOP. Suppose that the LOP is used in conjunction with a cost-based optimality critelrothis
case, if a triangulatio is optimal, then no single edge flip can result in a new triangulation with strictly
lower cost tharl. If, however, more than one edge flip is allowed, it can no longer beagteed that
the triangulation cost will not strictly decrease. In this sense, the LOP ardyagtees a locally (but not
necessarily globally) optimal triangulation. Since some local minima will, in pradtees a much lower
cost than others, it would be advantageous to have some means to regllikelifhood of converging to
a poor local minimum. This observation motivated Yu et al. to propose the sal ddl@P [29]. The
LLOP is similar to the LOP in that the LLOP applies edge-flip-based transforngatim a triangulation
until the triangulation is optimal. The LLOP, howeverftdrs from the LOP in two key respects. The first
difference is that, instead of only allowing the triangulation to be transformed imgle £dge flip in each
step, the triangulation can be transformed by: 1) a single edge flip; ore2)ueesce of two edge flips, where
the two edges involved share a common face. The secdiaatice is that the definition of triangulation
optimality is changed to the following: A triangulatidnis said to beoptimal if the application of a single
transformation of one of the two above types cannot produce a newut&iuy whose cost is strictly less
than that ofT . By being allowed to apply sequences of two edge flips (instead of jusidlgil edge flips),
the LLOP is able to reduce the likelihood of converging to a very poor locahmim. In éfect, when trying
to minimize the triangulation cost, the LLOP considers thiea of not just single edge flips (like the LOP)
but also sequences of two edge flips. In practice, the LLOP usuallypesda better local optimum (i.e.,
a triangulation with lower cost) than the LOP. The disadvantage of the LLORuistttypically requires

more computation time and can be quitéidult to implement in a numerically robust manner. Since the



LLOP fundamentally relies on the existence of a triangulation cost functienl.tP can only be used
in conjunction with optimality criteria that are cost based. In other words, ti@R_cannot be used with

heuristic-based optimality criteria.

3. Proposed Approach and Its Development

Having introduced the necessary background, we now turn our attentiotroducing the two mesh-
generation methods proposed in this paper. As explained earlier, the E@deiboses triangulation
connectivity using a Delaunay triangulation. Experimentally, however, swe lobserved that selecting
the connectivity in this way results in a mesh in which triangulation edges oftssaut image edges
(i.e., discontinuities in the image), leading to a degradation in approximation quiity.motivated us to
consider choosing triangulation connectivity in a more flexible manner, @sPiQT instead of a Delaunay
triangulation.

In what follows, we will first introduce our general computational fraragwfor mesh generation,
which has several free parameters. Then, by advocating two partitidines for these parameters, we will
arrive at the two specific mesh-generation methods proposed hergialyl®lED1 and MED?2. Since it is
helpful for the reader to see how we arrived at these choices, wdprseignificant detail in this regard,

including some experimental results.

3.1. Computational Framework for Mesh Generation
Given an image and a desired mesh sikeas input, our general computational framework for mesh
generation produces a mesh modepdfaving the seP of sample points, withP| = N, and the associated

triangulationT. To accomplish this objective, our framework performs the following (ireox.d

1. Sample-point selection. Seldetusing the same sample-point selection strategy in step 1 of the ED

method (as introduced earlier in Section 2).

2. Initial mesh construction. For each pom P using the order specified by insOrder, where insOrder
is a free parameter of the framework:

(&) Insertp in the triangulationT. This is accomplished by deleting any faces contairprend

retriangulating the resulting hole. This point-insertion process is illustrateurd-2.



(b) Adjust the connectivity ol by applying the LOP (as described in Section 2) with the triangu-
lation optimality criterion chosen as insOptCriterion, where insOptCriterion iseafarameter
of our framework.
3. Final connectivity adjustment. Adjust the connectivityToby applying either the LOP or LLOP, as
specified by the parameter fcaMethod, with the optimality criterion chosen ésSEquared error).
If fcaMethod is LOP, the LOP is employed in this step; otherwise (i.e., if fcabtéth LLOP), the
LLOP is used.

[Figure 2 about here.]

In step 2b of the above framework, the choice of the triangulation optimalityrioriténsOptCriterion
is critical, as diferent choices of insOptCriterion will typically lead to vastlyfdring meshes. One of the
optimality criteria considered in our work is the SE criterion introduced in Se@ioWe also considered
numerous other criteria, which we will introduce shortly. Before procegturther, however, there is a
very important comment that we must make regarding our above framev@ince our objective is to
produce a mesh that minimizes the MSE (as given by (1)), this suggestshiels” solution of choos-
ing the optimality criterion insOptCriterion as SE and simply skipping final convigctidjustment (i.e.,
step 3) altogether. In other words, the obvious solution would be to simply optifoizsquared error
using the LOP after the insertion of each point in step 2. As it turns out, thi®a solution performs
extremely poorly. This poor performance is due to an interplay betweehnipsartion and the SE criterion
in step 2b, which leads to triangulations with many poorly-chosen sliver (ireg,thuin) triangles, severely
degrading approximation quality. Irffect, this interplay causes the mesh-generation optimization process
to converge to an extremely poor local optimum. To combat this problem, ouewark allows the param-
eter insOptCriterion to be chosentlérently from SE, and then adds a final-connectivity-adjustment step
employing the SE criterion in order to reduce the squared error for thetiesh.

Insertion Order. Recall that step 2 of our framework (i.e., initial mesh construction) utilizes #he p
rameter insOrder, which specifies the order in which points are to be idsertee triangulation. In our
work, we considered numerous possible choices for the insertioniost®rder, including:

1. randomized order: the extreme convex-hull points followed by the rengapoints in randomized

order;
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2. xy-lexicographic order: the extreme convex-hull points followed k& imaining points in xy-

lexicographic order;

3. farthest-point first order: the extreme convex-hull points followethle remaining points prioritized

such that the point most distant from the vertices in the triangulation is indegednd

4. closest-point first order: the extreme convex-hull points followethkyremaining points prioritized

such that the point nearest another vertex in the triangulation is inseded fir
Detailed experiments showed randomized order (i.e., item 1 above) to be fiextive. In particular,
we found that, relative to randomized order, no one of the other insertasroconsidered was able to
consistently produce higher quality meshes at lower or comparable compatatast. Consequently, we
advocate that insOrder always be chosen as randomized order,eaaslswme that this choice is always
made for the remainder of this paper.

Optimality Criteria. Recall that step 2b of our framework (i.e., connectivity adjustment aftert po
insertion) utilizes the parameter insOptCriterion, which determines the parttcalagulation optimality
criterion used for connectivity adjustment. In our work, we considereddliowing twelve possibilities
for the choice of the optimality criterion insOptCriterion:

1. squared error (SE), as given by Equation 1 in [25] and Section 2 in [26];

. (preferred-direction) Delaunay, as specified in Section 2 in [33]Settion 11.2 in [34];

. angle between normals (ABN), as defined by Equation 3 in [23];

. jump in normal derivatives (JND), as specified in Section 3.1 in [23];

2
3
4
5. deviationsfrom linear polynomials (DLP), as given in Section 3.1 in [23];
6. distancesfrom planes (DP), as defined in Section 3.1 in [23];
7. absolute mean curvature (AMC), as specified in Section 2.2 in [39];
8. Garland-Heckbert hybrid (GHH), as described in Algorithm IV and Section 4.5.1 in [18] and
Section 1l.B in [30];
9. shape-quality-weighted SE (SQSE), as defined in Section Il1.B in [30];
10. JND-weighted SE (JNDSE), as specified in Section 111.B in [30];
11. edge-length-weighted SE (EL SE), which is newly proposed herein; and

12. minimum-angle-weighted SE (MASE), which is newly proposed herein.

11



The first ten of the above criteria are well known criteria taken from thealitiee, while the remaining
two (namely, ELSE and MASE) are newly proposed in this paper. In theesttef brevity, we will only
present herein the formal mathematical definitions of the two new criteria. d&fisitions of the other
optimality criteria can be found in the references provided above. Of theriddtia (i.e., the first ten) the
SE, Delaunay, ABN, JND, DLP, DP, and AMC criteria are all cost bgsed employ (2)), the SQSE and
JNDSE criteria are heuristic based (i.e., employ (4)), and the GHH criteriatybrid of two cost-based
criteria.

Before formally defining the ELSE and MASE criteria, we must first intredsmme additional notation.
For a triangulationT, letI'(T) denote the set of all integer lattice points falling inside or on the boundary
of T. For a given triangulatioft, let face- denote a function that maps each pqirt I'(T) to exactly one
face inT, where this function is defined as follows.gdfis strictly inside a facd in T, facer(p) = f (i.e.,p
is mapped tdf). Otherwise (i.e., ifpis on an edge or a vertex ), the method of [40] is used to uniquely
mapp to exactly oneface inT. The set of all pointg € I'(T) satisfying face(p) = f is denoted pointg(f).
With this notation in place, we can now proceed to present the ELSE and MA®Ea.

The ELSE and MASE criteria are both heuristic based (i.e., employ (4))reldre, each of these
criteria is completely specified in terms of an edge-cost function. For alfipalgee in the triangulation

T, the edge-cost functions for the ELSE and MASE criteria are givepedively, by

edgeCosgt, (T, €) = [l [B(T, fi) + 5(T, f;)] and (5a)
B(T, i) + B(T, )
min{a(f).6(f)}

edgeCosjiase(T.€) = (5b)

where

BT.H= > (#p-o) .

pepoints; (f)

fi and f; denote the two faces incident & 6(f) denotes the minimum interior angle of the fateand
points; is as defined earlier.

Final Connectivity Adjustment. In step 3 of our framework, the fcaMethod parameter is used to
select whether the LOP or LLOP is used for final connectivity adjustmeat/ing the ability to choose

12



between the LOP and LLOP provides us with more flexibility to traffdoetween mesh quality and com-
putational cost. In case the reader might be wondering why we did not sitoilar flexibility to choose
between the LOP and LLOP for connectivity adjustment after point insefitien in step 2b), we explain
our rationale for this decision in what follows. The overriding reasorHisr decision was that, as we shall
see later, all of the mostfective triangulation optimality criteria during point insertion (i.e., in step 2b)
are heuristic based, and such criteria cannot be used with the LLOBeQaently, allowing the use of the
LLOP during point insertion would not facilitate the development of a bettehrgeseration method. To
a much lesser extent, our decision was also influenced by computatiohabosglerations. In particular,
much more time is typically spent performing connectivity adjustment in step 2btéh than in step 3.
Thus, the increase in computational cost resulting from replacing the LitbRhe LLOP in step 2b is much
higher than that of replacing the LOP with the LLOP in step 3. Due to thesedhssvother) factors, our

framework only accommodates the use of the LOP in step 2b.

3.2. Selection of Free Parameters

As seen above, our computational framework for mesh generation legsftee parameters, namely,
1) the insertion order insOrder, 2) the triangulation optimality criterion insQe@rn, and 3) the method
fcaMethod used for final connectivity adjustment. For the reasonsmiexs earlier, we advocate choosing
insOrder as randomized order. In what follows, we study ffieces of making various choices for the
two remaining parameters (namely, insOptCriterion and fcaMethod). Bastilscanalysis, we ultimately
recommend two particular choices for these parameters, leading to ourdpa@sgd mesh-generation meth-
ods.

Test Data. Shortly, we will have the need to present some experimental results obtaitedarious
test images. So, before proceeding further, a brief digression isseyein order to introduce the test
images that we employed. In our work, we have used 40 images, taken nmostlgtindard test sets such
as [41], [42], and [43]. For the most part, the results that we prdsenain focus on the representative
subset of these images listed in Table 1. This particular subset was dioosentain a variety of image

types (i.e., photographic, medical, and computer-generated imagery).

[Table 1 about here.]
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Triangulation Optimality Criterion During Point Insertion. To begin, we study how the choice
of triangulation optimality criterion insOptCriterion in step 2b of our framewoflle@s mesh quality.
Since the best choice of optimality criterion might possibly be dependent etheththe final-connectivity-
adjustment method fcaMethod is chosen as LOP or LLOP, we treat thesase®separately. For fcaMethod
being chosen as each of LOP and LLOP, we proceeded as followsak€brof the 40 images in our test
set and five sampling densities per image (for a total of318 200 test cases), we generated a mesh using
each of the twelve choices for insOptCriterion under consideration, andured the resulting approxima-
tion error in terms of PSNR. In each of the test cases, the results obtaitrethe/twelve methods were
ranked from 1 (best) to 12 (worst). Then, the average and standwaation of these ranks were computed
across each sampling density as well as overall. These ranking resuffivem in Tables 2(b) and 3(b) for
the cases of fcaMethod being chosen as LOP and LLOP, respecindiyidual results for three specific
images (namely, the ones listed in Table 1) are provided in Tables 2(a) @nfdBicaMethod being chosen
as LOP and LLOP, respectively. In each of these tables, the be#itiresach row is shown in bold font.

First, let us examine the results for the case that fcaMethod is chosenRag-tdin the ranking results
in Table 2(b), we can make several observations: 1) the ELSE critertbe idear winner (with an overall
rank of 1.16), followed by the MASE and JNDSE criteria (with overall mok2.50 and 2.85, respectively);
2) the MASE criterion yields better results than the JNDSE criterion, exddpigh sampling densities
where the two criteria are comparable; and 3) the worst performerseailand DP criteria (with overall
ranks of 10.88 and 11.74, respectively). Observation 3 supportsaolier claim that the SE criterion leads
to extremely poor results (when used during point insertion). To add tereditson 1, it is worth noting
that a more detailed examination of the results shows that the ELSE criterfonmpgibest and second best
in 187/200 (94%) and 200 (2%) of the test cases, respectively. This observation is in agneeviie the
fact that the standard deviations for the rankings for the ELSE critermate small (e.g., 0.89 or less).
For that matter, most of the standard deviations in the table are relatively smahting that the actual
ranking results tend to be reasonably close to the average rank. Tis fes the individual test cases,
shown in Table 2(a), are consistent with the ranking results. For exathpl&LSE criterion is the best,
outperforming the second and third best criteria, MASE and JNDSE, irbaéist cases by 0.01to 1.77 dB
and 0.04 to 4.15 dB, respectively. Moreover, the MASE criterion outypers the INDSE criterion in 125
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of the test cases by 0.01 to 2.38 dB. In the preceding results, PSNR wastfmcorrelate reasonably well
with subjective quality. It is worthwhile to note that the two best performing atELSE and MASE
are newly proposed herein. This shows that our ELSE and MASE critsyeecially the former, make an

important contribution beyond well-known criteria from the existing literature.
[Table 2 about here.]

Now, let us consider the results for the case that fcaMethod is choderOds As we will see momen-
tarily, the trends in this case are, for the most part, similar to those for thgusaséudied above. Examining
Table 3(b), we observe that: 1) the ELSE criteria is the clear winner (witivarall rank of 1.44) followed
by the MASE and JNDSE criteria (with overall ranks of 2.41 and 3.46,ewsly); and 2) the SE and
DP criteria are the worst performers (with overall ranks of 11.31 andi7l tespectively). To add to obser-
vation 1, a more detailed analysis of the results shows the ELSE criterionftompdrest and second best
166200 (83%) and 1/200 (6%) of the test cases, respectively. This observation is in agntevita the
fact that the standard deviations for the rankings for the ELSE criter®muaite small (e.g., 1.19 in the
overall case). For that matter, most of the standard deviations in the tabtelatively small, indicating
that the actual ranking results tend to be reasonably close to the avarkgeésompared to the case when
fcaMethod is chosen as LOP, we observe that the MASE criterion oatpesfthe JNDSE criterion even
more consistently (i.e., the two criteriafidir more in terms of their overall rankings). The results for in-
dividual test cases shown in Table 3(a) are consistent with the precediking results. For example, the
ELSE criterion is the best, outperforming the second and third best critéASE and JNDSE, in 135 of
the test cases by 0.01 to 2.22 dB and 0.01 to 2.61 dB, respectively, andNBE btiterion outperforms the
JNDSE criterion in 1215 of the test cases by 0.01 to 0.84 dB. Again, in the preceding resultf} RaHl

found to correlate reasonably well with subjective quality.
[Table 3 about here.]

As the above experimental results demonstrate, regardless of whetfieatf@mnnectivity-adjustment
method fcaMethod is chosen as LOP or LLOP, the best performance indéapgroximation quality is ob-
tained by choosing the triangulation optimality criterion insOptCriterion as EL&Er€efore, we advocate

this particular choice for insOptCriterion in our framework.
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In the experimental results above, we also saw that, regardless of wtietfieal-connectivity-adjustment
method fcaMethod is chosen as LOP or LLOP, selecting the triangulation optirréiésion insOptCriterion
as SE leads to meshes of extremely poor quality. Earlier, we indicated thaettasibr is due to an inter-
play between point insertion and the SE criterion, which leads to triangulatibhnsnany poorly-chosen
sliver triangles. To illustrate this phenomenon, we present two example$oothe parameter fcaMethod
being chosen as each of LOP and LLOP. For consistency, the examplagan from the results presented
earlier in Tables 2 and 3, and correspond to the lena image at a samplinty @¢1286. For the parame-
ter fcaMethod being chosen as each of LOP and LLOP, the results ab&i@eshown in Figures 3 and 4,
respectively. Each figure shows part of the image approximation andtresponding image-domain trian-
gulation obtained when insOptCriterion is chosen as SE. For comparispogaes; the result obtained with
the ELSE criterion (which performs very well) is also shown. First, let uster the example in Figure 3.
Examining Figure 3(b), we can see that the image-domain triangulation obtaitrethe SE criterion has
a large number of poorly-chosen sliver triangles, which leads to vetydrgr in the corresponding image
approximation in Figure 3(a). In contrast, viewing Figures 3(c) andyd)pbserve that the ELSE criterion
does not sfiier from this problem. Now, moving our attention to the second example in Figwre 4an
see that a similar pattern of behavior is obtained as in the first example. Algai8E criterion yields a

triangulation with many poorly-chosen sliver triangles, which severelyadiss approximation quality.

[Figure 3 about here.]

[Figure 4 about here.]

As for why the SE criterion typically yields triangulations with many poorly-@rosliver triangles,
this can be attributed to the combination of two factors. First, the SE criteriohmteexplicitly consider
triangle shape and, therefore, does not have any direct mechanipme¥enting the creation of bad sliver
triangles or eliminating such triangles once they are present. Second, tbet&ton is also unable to
account for triangle shape in an indirect manner, due to the shortsigisedfthe LOP and LLOP. (The
shortsightedness of the LOP and LLOP follows from the fact that a decs@de at any given step in
each of these algorithms considers the impact of that decision only in trentstep, not irall subsequent
steps.) In practice, the above two factors conspire to produce a pdtteehavior with the SE criterion that
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resembles the following. When a new point is inserted in the triangulation,ex sliangle will sometimes
result. In such a case, since the SE criterion does not directly consateglé shape, the SE criterion will
often be unable to eliminate the sliver triangle. Thus, as more points are thgettes triangulation, the
number of sliver triangles tends to grow significantly. In turn, as the numibgliver triangles grows, the
number of unflippable edges also tends to increase. This leads to sliveglégaending to have fewer
flippable edges (on average). This, in turn, makes it mdfeedit to eliminate sliver triangles, once present.
In this manner, a very large number of sliver triangles are obtained.uBedhe number of sliver triangles
produced is so abnormally large, it is not surprising that the number bftsaagles that are poorly chosen
is also high.

In the experimental results above, we saw that the ELSE and MASE critafiarm best in terms of
mesh quality. This excellent performance is made possible by the fact ttabéthese two criteria has
a direct dependence dooth triangle shape and squared error. The dependence on squareis eritical
for achieving high mesh quality, while the dependence on triangle shape istamptor avoiding large
numbers of poorly-chosen sliver triangles. In the case of the ELSHionitdriangle shape is implicitly
considered by the criterion’s dependence on edge length, which pnbdizger edges. In the case of the
MASE criterion, triangle shape is considered by the criterion’s depa@den minimum interior angle,
which penalizes smaller interior angles. By accounting for triangle shap&UBE and MASE criteria are
able to avoid the bad-sliver problem that plagues the SE criterion.

Method for Final Connectivity Adjustment. Next, we study how the choice of the final-connectivity-
adjustment method fcaMethod in step 3 of our framework (which can be &i@Rror LLOP) dfects mesh
quality. To do this, we fix the insOptCriterion parameter to be ELSE and pdageéollows. For each of
the 40 images in our test set and five sampling densities per image (for a tdt 5f= 200 test cases),
we generated a mesh using each of the two choices for fcaMethod wmgderation (namely, LOP and
LLOP), and measured the resulting approximation error in terms of PSN&l ¢h these 200 test cases,
the LLOP outperformed the LOP by a margin of 0.09 to 2.30 dB, with the avereggin being 0.56 dB.
Individual results for three images (namely, the images listed in Table 1)\ae iy Table 4. Examining
this table, we see that the LLOP outperforms the LOP in all cases by a ma@i80ofo 0.93 dB. Although

we have only shown results for one choice of the fixed parameter insi@gt@n (i.e., ELSE), we found

17



similar results with other choices. Thus, from above, we conclude thaisaigpthe parameter fcaMethod
as LLOP (as opposed to LOP) yields higher mesh quality. This said, howesenust point out that this
choice entails a tradéioin terms of computational cost. As noted earlier (in Section 2), the LLOP has a
higher computational cost than the LOP. For example, for the test case tdrth image at a sampling
density of 2%, we found the LOP and LLOP to have computation times of abéQtskeconds and 2.30
seconds, respectively. More generally, we have found the LLOP foaljy require a computation time
that is about 1.4 to 1.7 times that of the LOP. Thus, the best choice for tamptar fcaMethod depends on

the most appropriate tradédetween mesh quality and computational cost for the application at hand.

[Table 4 about here.]

3.3. Proposed Methods

Above, we have considered how various choices for the free paresretaur computational framework
for mesh generation (namely, the insertion order, triangulation optimality critesizd final-connectivity-
adjustment method)f&ect mesh quality. This led us to conclude that the triangulation optimality criterion
insOptCriterion and the insertion order insOrder are best chosen &8 &h&randomized order, respec-
tively. Whether the final-connectivity-adjustment method fcaMethod shibeldhosen as LOP or LLOP
is less clear cut, due to a tradebetween mesh quality and computational cost. As a result, we chose to
propose two methods, known as MED1 and MED2, where the first metteod lvaver computational cost
relative to the second. The MED1 and MED2 methods both employ the basesHor insOptCriterion
and insOrder as identified above (i.e., ELSE and randomized ordegctasby). For the final-connectivity-
adjustment method fcaMethod, however, the MED1 method uses the LOFh(lndsdower computational
cost), while the MED2 method uses the LLOP (which has higher computatiosgl. cin passing, we
note that the CCCG method (from our conference paper [35] discessédr in Section 1) is equivalent
to using our framework with the insOptCriterion, insOrder, and fcaMettrardrpeters chosen as JINDSE,
randomized order, and LOP, respectively. As we will see later, due te@®iithe lessféective INDSE
triangulation optimality criterion, our CCCG method produces poorer quality esetstan our MED1 and

MED2 methods proposed herein.
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4. Evaluation of Proposed Methods

Having introduced our MED1 and MED2 mesh-generation methods, we oowpare their perfor-
mance to that of the ED scheme in terms of mesh quality. To demonstrate the out EfiEDMED?2
methods make a significant contribution beyond the CCCG scheme from oigreoce paper [35] (dis-
cussed in Section 1), we also consider the CCCG method in this evaluatiodditioa, we make a few
comments regarding the computational cost of our proposed methodsofflhare implementations of the
methods used in this evaluation were developed by the authors of this paperitten in G-+. For test
data, we employ the same set of 40 images described earlier in Section F2thumbeading “Test Data”).

Mesh Quality. For all 40 images in our test set and five sampling densities per image (forl aftota
40-5 = 200 test cases), we used each of the various methods under comsideyagenerate a mesh,
and then measured the resulting approximation error in terms of PSNRidnaivesults for three specific
images (namely, the images listed in Table 1) are given in Table 5.

To begin, we compare the MED1 and MED2 methods to the CCCG scheme. Exgriirimesults
for the individual test cases in Table 5, we see that the MED1 and MED2oakethoth outperform the
CCCG scheme in all 15 test cases by margins of 0.04 to 4.15 dB and 0.36 toBl.83sdectively. Next,
we comment on the full set of results for all 200 test cases (i.e., 40 imagesiveithampling densities
per image). In the full set of results, we found that the MED1 and MED2 nastloitperform the CCCG
scheme in 19200 (i.e., 96%) and 19800 (i.e., 99%) of the test cases, respectively. Thus, our MED1
and MED2 methods are clearly superior to the CCCG scheme. This demonstattidéise MED1 and
MED2 methods proposed herein represent a substantial contributiomdbélye CCCG scheme from our
conference paper [35]. Since the MED1 and MED2 methods are clagrgrisr to the CCCG scheme, we
will not consider the CCCG scheme further in our evaluation.

Now, we compare the MED1 and MED2 methods to the ED scheme. Examiningsiniésréor the
individual test cases in Table 5, we see that the MED1 and MED2 methdlsbiperform that ED scheme
in all 15 test cases, by margins of 1.94 to 8.46 dB and 2.24 to 9.14 dB, teghed\ext, we consider the
full set of results taken across all 200 test cases (i.e., 40 images wittafiygliag densities per image). In
the full set of results, we found that the MED1 and MED2 methods both yiglieh quality meshes than
the ED scheme in all 200 test cases. More specifically, the MED1 methodfautped the ED scheme by
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a margin of 1.93 to 8.46 dB with an average margin of 3.26 dB, while the MED2 methtperformed the
ED scheme by a margin of 2.23 to 9.14 dB with an average margin of 3.81 dB, ffeuMED1 and MED2
methods clearly yield meshes of very substantially higher quality, relative t6Dh@ethod.

Next, we compare the performance of the MED1 and MED2 methods. Exanilmengsults from the
individual test cases in Table 5, we can see that the MED2 method beat&ihé Method in all 15 test
cases by a margin of 0.30 to 0.93 dB. In the full set of results, we fourtdhbaMED2 method yields
higher quality meshes than the MED1 method in all 200 test cases, by a mafiddb 2.30 dB with an
average margin of 0.56 dB. Therefore, the MED2 method consistently yiedhes of higher quality than
the MED1 method. This behavior is due to the MED2 method using the nfi@etige LLOP (instead of

the LOP) for final connectivity adjustment.

[Table 5 about here.]

In the above results, PSNR was found to correlate reasonably well vidjactive image quality. For
the benefit of the reader, however, we include an illustrative example ah fotlows. For one of the test
cases in Table 5 (namely, the lena image at a sampling density of 2%), pad iofidilge approximation
and the corresponding image-domain triangulation obtained for each oftlmy methods is shown in
Figure 5. Examining this figure, we can see that the image approximationsgedy our MED1 and
MED2 methods (in Figures 5(a) and (b), respectively) are clearly ofhniuigher quality than the one
produced by the ED scheme (in Figure 5(c)), with image details such as irdgggoentours being much
better preserved in the MED1 and MED2 cases. In order to more cleahlighitgsome of the more subtle
differences between the results for our MED1 and MED2 methods, we showhéf same test case) the
results for a smaller region of interest under greater magnification in F&yuBg carefully comparing the
image approximations for our MED1 and MED2 methods in Figures 6(a) ande@pectively, we can see
that there are a few places where image details (such as edges andgoat®glightly better preserved by
our MED2 method than our MED1 scheme, one example being the (image) letgettze top of the hat.
The improved performance in the MED2 case is largely due to triangulaticesdmzing better aligned with
image edggsontours. So, in terms of subjective quality, our MED1 and MED2 methoglbath vastly
superior to the ED scheme, with our MED2 method yielding slightly better qualityabamMED1 scheme.
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[Figure 5 about here.]
[Figure 6 about here.]

Computational Cost. Next, we briefly consider the computational costs of our MED1 and MED2
methods. For the purposes of making timing measurements, we employed vesgtrhatdware, namely
an eight-year-old notebook computer with a 2.00 GHz Intel Core2 Duo0TZEU and 1.0 GB of RAM.
On this machine, our MED1 and MED2 methods typically require only a fewrskcof computation time
for images like lena from Table 1. In particular, for the lena image and samgéngities in the range
0.5 to 4% (as in Table 5), the MED1 and MED2 methods required 0.95 to 2.@6deand 1.38 to 3.30
seconds, respectively. For cases like this, our MED1 and MED2 metypidally increase the computation
time relative to the ED scheme by only 0.3 to 1.1 seconds and 0.7 to 2.4 se@suistively. In absolute
terms, this incremental cost is very small when one considers the vertastiasimprovement in mesh
quality obtained with our methods. Furthermore, when viewed in the broaéext of the many mesh-
generation techniques proposed to date in the literature, our MED1 and®Mtglthods are quite low in
terms of computational cost. For example, some other methods, which acdk drasechniques such as
simulated annealing or simplification of very large meshes, can easily requirputation times on the
order of minutes or more.

Typically, the computation time for our MED2 method was found to be about 1.47tdirhes that
of our MED1 scheme. So, our MED2 method is more computationally expensitie this higher cost
coming from the use of the LLOP (instead of the LOP) during final conviectadjustment. As we saw
earlier, our MED2 method yields higher quality meshes than our MED1 sch8mewhether our MED1
or MED2 method is more attractive for a particular application, depends mpeiational constraints. In
applications that are sensitive even to small increases in computationabeoMED1 method would be

more appropriate, while our MED2 method would be preferred otherwise.

5. Conclusions

In this paper, we have proposed a computational framework for meshrajem that modifies the ED

method to use DDTs in conjunction with the LOP. By using DDTs in conjunction wgh_tBP (instead of
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Delaunay triangulations), triangulation connectivity can be chosen optinta#lg o minimize approxima-
tion error. Using our computational framework, we derived two specifehrgeneration methods known as
MED1 and MED2. Through experimental results, our MED1 and MED2 methigete shown to produce
image approximations of much higher quality than the ED method, both in terms dR R8N subjective
guality, at a relatively modest computational cost. In particular, our MEWRINMED2 methods were shown
to outperform the ED method by margins of 3.26 to 3.81 dB on average. Oumstioods allow dter-
ent tradeffs to be made between computational cost and approximation quality, allowingraposed
mesh-generation approach to be useful over a broader range lafagipps with difering computational
constraints. As part of our work, we proposed two novel optimality criteriae used in conjunction with
the LOP, namely the ELSE and MASE criteria. These two criteria were showatperform other well
known criteria from the literature. Of our two newly proposed criteria, th&E criterion was found to
perform best and was used as a key component of our MED1 and Migit?ods. Since the LOP is used
in many diferent applications and MSE (as in (1)) is a frequently employed error métécELSE and
MASE criteria proposed herein have the potential to be useful in a mueldéreange of contexts than the
particular mesh-generation methods proposed herein. By allowing highétygmeshes to be generated at
relatively low computational cost, the MED1 and MED2 methods are of gtéey to the many applica-
tions that employ mesh models of images. Furthermore, our new optimality criteS& &nd MASE, can
be exploited by future mesh-generation schemes that employ the LOP in@@aidtieve improved results.
Lastly, we make one further comment regarding the applicability of our methottss manuscript, we
have focused our attention on the generation of mesh models of luminancesi(hagemages for which
the image function value corresponds to light intensity). It is worth notingyelver, that our methods
can be used to generate mesh models of other types of bivariate funclon®e of these other types of
functions include: 1) digital elevation maps, which are employed in geogragormation systems; and
2) range images, which are used in robotics, gaming, and other applicaBomse our mesh-generation
methods produce high-quality meshes while not requiring excessive amfldomputation time (like the
minutes or tens of minutes needed by some schemes), our methods may reavegely over some of the
previously-proposed approaches for these other types of data™ais, our proposed mesh-generation

methods are not only useful for traditional image-processing applicatimrisare of potential benefit in
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other areas as well.
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Figure 1: An edge flip. (a) Part of the triangulation containing a flippabieed(b) The same part of the triangulation afednas
been flipped to yield the new edge
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Table 1: Testimages

Image| Size, BitgSample Description

bull |1024x 768, 8 cartoon anima
cr 1744x 2048, 10 | x-ray [41]
lena |512x512,8 woman [42]
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Table 2: Comparison of the mesh quality obtained with the various choidgamgulation optimality criterion insOptCriterion in
the case that fcaMethod is LOP. (a) PSNRs for three specific imageRafikings averaged across 40 images.

(a)
Samp.
Density PSNR (dB)
Image (%) SE | Del. |[ABN | JND | DLP | DP |AMC | GHH |SQSE JNDSE MASE | ELSE
bull 0.5 |24.73/31.44/28.44 30.49 29.7225.96| 31.42/30.22| 31.59| 31.37 | 33.75|35.52

1.0 ||26.89/38.85/31.91 38.34/33.4230.73 39.00,37.82 38.69| 38.78 | 39.43| 39.99
2.0 | 30.53/42.12/34.87|42.26|39.52/25.93/41.94/41.36| 42.36| 42.36 | 42.49|42.72
3.0 ||31.9343.42 36.24/43.36/39.35/29.91/43.08 43.41 43.61| 43.66 | 43.83|43.97
4.0 |31.2344.34/34.97/44.17/41.40/31.92/44.07|44.23| 44.49| 44.53 | 44.62|44.72
cr 0.5 | 31.19 34.40 30.38/34.45/32.42/30.23| 34.22/34.30| 34.81| 34.84 | 34.92| 35.11
1.0 ||32.4136.33/33.01 36.35/34.42/31.16/36.37/36.48 37.13| 37.16 | 37.22|37.31
2.0 | 33.33/38.68/34.34]38.36| 36.33| 32.52| 38.24| 38.75| 38.95| 39.01 | 39.00| 39.10
3.0 |34.1239.57,34.95/39.32/36.96| 33.78/39.17/39.62 39.76| 39.82 | 39.80| 39.87
4.0 ||35.6340.10 39.29 39.89 37.56/33.54/39.70,40.19 40.31| 40.36 | 40.33|40.42
lena 0.5 ||17.61]21.17/19.22/20.55|19.61 18.07/20.51| 21.20| 21.75| 21.82 | 21.83| 21.96
1.0 ||21.50/25.2120.69 24.9121.86/19.91 24.58/25.30| 25.89| 25.92 | 25.94| 26.13
2.0 {/20.72/29.48/24.36|29.09|26.25|21.04/27.67|29.26| 29.91| 29.99 | 30.06 | 30.14
3.0 ||23.4331.26/24.62 30.9927.22 22.34/30.15/31.21| 31.58| 31.62 | 31.71|31.72
4.0 |23.67/32.39 26.3032.17/29.13/24.06|31.45|32.47| 32.78| 32.84 | 32.87|32.88

(b)

Samp.
Density| Mean RanR

(%) SE | Del. | ABN | JND | DLP | DP |AMC | GHH | SQSH JNDSE MASE |ELSE
0.5 |/10.20| 5.83| 9.78 | 8.10| 8.90|11.40| 7.30| 5.13| 3.85| 3.43 | 2.83 | 1.28
(1.42)|(1.30)[(1.47)/(1.67)[(1.62)| (1.22)|(1.68)| (1.73)[ (1.22)| (1.66) | (1.53)|(0.89)
1.0 |/ 10.95f 6.05|10.03| 7.60| 9.10|11.75/ 6.95| 5.35| 3.80| 2.98 | 2.28 | 1.18
(0.80)| (1.18)| (0.57)| (0.80)| (0.49)| (0.49)( (1.26)| (0.79)| (0.64)| (0.79) | (0.63) |(0.67)
2.0 |/10.98| 5.80|10.00| 7.08| 9.10|11.90| 7.85| 5.30| 3.75| 2.75 | 2.43 | 1.08
(0.47)|(0.40)| (0.50)| (0.52)((0.37)((0.30)((0.42)((0.64)| (0.54)| (0.66) | (0.70)|(0.35)
3.0 |[|11.18] 5.90|10.00] 6.95| 9.03|11.80| 8.00| 5.13| 3.88| 2.58 | 2.43 | 1.15
(0.44)[(0.37)| (0.22)| (0.22)| (0.16)| (0.40)| (0.00)| (0.46)| (0.40)| (0.67) | (0.54) |(0.69)
4.0 | 11.10] 5.88|10.03| 7.03| 9.03|11.85| 7.98| 5.10| 3.85| 253 | 2,55 | 1.10
(0.44)| (0.33)| (0.27)| (0.16)| (0.16)| (0.36)( (0.16)| (0.37)| (0.53)| (0.55) | (0.59) | (0.62)
All 10.88 5.89| 9.97| 7.35| 9.03 |11.74| 7.62 | 5.20| 3.83| 2.85 | 2,50 | 1.16

(0.88)[(0.84)|(0.76)| (0.97)| (0.79)| (0.67)| (1.05)|(0.94)| (0.72)| (1.01) | (0.90)|(0.67)
aThe standard deviation is given in parentheses.
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Table 3: Comparison of the mesh quality obtained with the various choidgamgulation optimality criterion insOptCriterion in
the case that fcaMethod is LLOP. (a) PSNRs for three specific imageRafkings averaged across 40 images.

(a)
Samp.
Density PSNR (dB)
Image (%) SE | Del. |[ABN | JND | DLP | DP |AMC | GHH |SQSE JNDSE MASE | ELSE
bull 0.5 |26.68/34.31/31.70 35.24/31.83/29.98/34.72/33.10| 33.75| 33.88 | 34.72|36.20

1.0 ||30.67/40.4136.9340.12/37.30,35.76/40.30,40.01) 40.15| 40.17 | 40.56|42.78
2.0 |33.73/43.27/39.05/43.37/41.25|31.54]43.39|42.69| 43.23| 43.23 | 43.38| 43,51
3.0 ||34.91/44.43 39.85/44.4342.30,34.84/44.51) 44.32| 44.39| 44.40 | 44.52|44.58
4.0 | 33.76/45.20 40.25/45.15/44.3436.72/45.22/45.05| 45.19| 45.21 | 45.29|45.33
cr 0.5 | 32.73 35.88 32.68 35.65|34.05| 32.50| 35.65| 35.76| 35.95| 35.91 | 35.92| 36.04
1.0 ||34.13/37.7135.10 37.18/35.92/33.19 37.55/37.72/ 37.77| 37.78 | 37.78|37.82
2.0 |{34.83/39.36/36.51/39.19/37.92/34.76| 39.19 39.35| 39.40| 39.41 | 39.42|39.43
3.0 | 35.6840.14/37.16/40.0138.5935.99/39.99/40.12 40.17| 40.18 | 40.18|40.19
4.0 ||37.1040.65 38.33/40.5338.96/ 35.63/40.52/40.63| 40.69| 40.70 | 40.70|40.72
lena 0.5 /18.80 22.51/20.6821.76|20.86/ 22.03| 22.03) 22.47| 22.28| 22.43 | 22.45|22.53
1.0 ||23.18/26.4123.22/26.33/23.97/26.17|26.17|26.39| 26.48| 26.51 | 26.57 | 26.63
2.0 |/22.6430.55/27.23/30.30]28.7730.24| 30.24( 30.08| 30.57| 30.58 | 30.60| 30.68
3.0 ||26.44/32.18 27.8932.13/29.35/31.79|31.79,32.10| 32.27| 32.26 | 32.29 | 32.26
4.0 |25.94/33.38 29.8233.23/31.03|33.09 33.09 33.30| 33.39| 33.42 | 33.44 | 33.42

(b)

Samp.
Density| Mean RanR

(%) SE | Del. | ABN | JND | DLP | DP |AMC | GHH | SQSH JNDSE MASE |ELSE
0.5 |/10.98| 4.40| 9.68| 7.65| 8.95|11.00| 6.15| 5.60| 4.60| 4.33 | 2.98 | 1.70
(1.33)/(1.69)[(1.13)|(1.75)[ (1.75)| (1.76)| (2.34)| (2.07)[ (2.00)| (1.89) | (1.37)|(1.36)
1.0 |[11.48] 455|9.88| 7.78| 9.00|11.43] 6.60| 5.78| 3.90| 3.60 | 2.33 | 1.70
(0.59)| (1.18)| (0.60)| (0.79)| (0.89)| (0.54)( (1.61)| (1.25)| (1.04)| (1.43) | (0.96) |(1.65)
2.0 |/11.33] 5.05| 9.83| 7.25| 9.18|11.68| 7.28| 6.05| 3.58| 3.18 | 2.48 | 1.15
(0.47)|(0.77)|(0.38),(0.83)[(0.38)| (0.47)| (1.07)| (0.77)[ (1.20)| (0.77) | (0.77)|(0.65)
3.0 ||11.38/ 5.05| 9.93| 7.05| 9.08 | 11.63| 7.68| 5.98 | 3.70| 3.15 | 2.10 | 1.30
(0.48)| (0.38)| (0.26)| (0.67)| (0.26)| (0.48)[ (0.85)| (0.57)| (0.81)| (0.91) | (0.54) | (1.03)
4.0 |[11.38 5.00| 9.98| 7.03| 9.03 |11.63| 7.78 | 5.95| 3.68| 3.05 | 2.18 | 1.35
(0.48)| (0.55)| (0.16)| (0.47)| (0.16)| (0.48)[ (0.82)| (0.63)| (0.88)| (0.74) | (0.83)|(0.91)
All 11.31 4.81| 9.86| 7.35| 9.05|11.47) 7.10| 5.87| 3.89| 3.46 | 241 | 1.44

(0.77)[ (1.06)| (0.62)| (1.05)| (0.91)| (0.94)| (1.59)|(1.21)| (1.31)| (1.32)| (0.99)|(1.19)
aThe standard deviation is given in parentheses.
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Table 4: Comparison of the mesh quality obtained with each of the two choicts fcaMethod parameter
Samp.
Density|| PSNR (dB)
Image, (%) || LOP|LLOP
bull 0.5 | 35.52 36.20
1.0 |[29.99 42.78
2.0 |42.72/ 4351
3.0 |43.97| 44.58
4.0 |44.72 45.33
cr 0.5 ||35.11] 36.04
1.0 || 37.31] 37.82
2.0 |39.10 39.43
3.0 |39.87|40.19
4.0 |40.42 40.72
lena 0.5 | 21.96| 22.53
1.0 |26.13 26.63
2.0 | 30.14| 30.68
3.0 ||31.72 32.26
4.0 |32.88 33.42
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Table 5: Comparison of the mesh quality obtained with the various methods

Samp.

Density, PSNR (dB)
Image (%) |MED1|MED2| ED |CCCG
bull 0.5 || 35.52| 36.20|27.06 31.37

1.0 || 39.99| 40.78|34.46| 38.78
2.0 | 42.72| 43.51|38.59 42.36
3.0 || 43.97| 44.58|40.47| 43.66
4.0 | 44.72| 45.33|41.60 44.53
cr 0.5 || 35.11| 36.04|31.96| 34.84
1.0 || 37.31| 37.82|33.84| 37.16
2.0 | 39.10| 39.43|35.72] 39.01
3.0 | 39.87| 40.19|37.63 39.82
4.0 | 40.42| 40.72|38.48 40.36
lena 0.5 | 21.96| 22.53|17.76| 21.82
1.0 | 26.13| 26.63|21.50 25.92
2.0 || 30.14| 30.68|26.38 29.99
3.0 | 31.72| 32.26|28.50 31.62
4.0 | 32.88| 33.42|29.83 32.84
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