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Introduction

Introduction of Quincunx Filter Banks

@ Two-dimensional two-channel nonseparable filter banks

z[n] Yo[n] x[n]

@ Quincunx lattice

ny
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Introduction

Motivation

@ Desirable properties for image coding
» Perfect reconstruction (PR)

Linear phase

» High coding gain

» Vanishing moments

» Good frequency selectivity

v

o Existing design methods
» Transformation of variables
» Direct optimization
» Two-step lifting structure
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Lifting Realization - Structure

@ Analysis Side
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Quincunx Filter Banks

Lifting Realization - Transfer Functions

@ Analysis filter transfer functions Ho(z) and Hi(z)

Hk(Z) = Hk,O (ZM) + Z()Hk,l (ZM) s

o o T ) [y 3)

@ Synthesis filter transfer functions Gy(z) and G1(2)

Gi(2) = (-1)" "zt Hh(~2)
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Lifting Realization - Advantages

@ PR is satisfied automatically.

© Linear phase property can be imposed structurally.

Theorem

If each lifting filter Ay is symmetric with its group delay
C satisfying

e = (=[5 5]".

then the analysis filters Hy and Hy are symmetric with
group delays [0 0]7 and [-1 0]7, respectively.

N|—=
N|—=

© Reversible integer-to-integer transforms
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Quincunx Filter Banks

Octave-Band Filter Banks

@ N-level octave-band filter bank: analysis side

Hy(z) || M} - yoln]
H,(2) y1[n]

z[n|

Ho(2) |1 M

yn-1[n]

> ynn]

@ Equivalent one-level analysis filters {H’}
Hivgol Ho (ZMk> I =
Hi(z) =  Hy (zMN_') [1h=g " Ho (sz) 1<i<N-1
H, (z) i=N.
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Quincunx Filter Banks

Coding Gain

@ Measure of the energy compaction ability of a filter bank
@ Coding gain Gsgc for an N-level octave-band filter bank

N
Gsgc = H(AkBk/ak)_ak’
k=0
Ac=3" 3 Hmlblnlr[m — n). B = ou 3 gln].
mcZ2 ncZ2 neZz?

ao=2"N ap =2 NH1=K) for k=12 ... N,
@ Autocorrelation r

plmol+Iml for separable model
r[no, ] = N . ,
pV M for isotropic model,

where p is the correlation coefficient (typically, 0.90 < p < 0.95).
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Quincunx Filter Banks

Vanishing Moments

o N dual vanishing moments = Nth order zero at [0 0] of hy(w)
@ N primal vanishing moments = Nth order zero at [r 7]7 of ho(w)
@ Linear phase filter H with group delay ¢ € Z?

" hln} (n — €)™ cos (wT (n— c)) for |m| even

am0+m1i7 neZz?
dwgPow™ | — Z hn] (n — ¢)™ sin (wT (n— c)) otherwise,
neZ?

where m = [mg my;]T and m = mg + my.
o Nth order zero at w = [0 0]

> hin](n—¢c)™ =0 for all even |m| such that [m| < V.
neZ?

Design of Optimal Quincunx Filter Banks for Image Coding University of Victoria



Outline Introduction Quincunx Filter Banks Optimal Des

Frequency Selectivity

@ Error function of a linear phase filter H

N o 2
ey = / W(w) |ha(w) - th(w)‘ dw
[77‘3 7r)2
o Ideal frequency responses and weighting function
< " stopband
T T T passband

7 P! o
/” transition band
I
Wpt+-22
Wo Wo wo
-7 0 ™ -7 0 ™ -7 0 wyaﬁ 7r

—T —T —T

Lowpass Highpass Weighting function

@ Frequency response constraint: e, < Jp,

University of Victoria
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Optimal Design Algorithm

Design problems

(]

Lifting parameterization of linear-phase filter banks

@ Maximize coding gain subject to vanishing moments and frequency
response constraints

@ lterative second-order cone programming

minimize b x

subject to: AT x +ci|| <b/x+d; fori=1,...,q.

(]

Linear/quadratic approximations
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Optimal Design Algorithm

Two Lifting Steps - Problem Formulation (1)

@ Lifting filter coefficients x
@ Vanishing moments
» Constraint: an underdetermined linear system Ax = b
» Solutions: x = x; + V,¢
o Coding gain
> Define G = —10log;, Gssc
» For a given ¢, seek a small perturbation d4 such that G(¢ + dy) is
reduced relative to G(¢)
> [|84] is small = G(¢ +84) ~ G(¢) +& 04
> lteratively minimize g 784, update ¢ until |G(¢ +84) — G(p)| < €
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Optimal Design Algorithm

Two Lifting Steps - Problem Formulation (2)

@ Frequency selectivity
> Analysis highpass filter frequency response

~

hi(w) = &1(MTw) 4 *°

where 3;(M"w) is linear in ¢
» Error function
en = ¢TH¢¢ + ¢TS¢ + C¢

» Frequency response constraint is a second-order cone

HFlk&,, +§kH <4
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Two Lifting Steps - Design Algorithm

Algorithm 1
© Select an initial point ¢g
@ For the kth iteration, solve
minimize gT5¢
subject to: HI:Ik6¢ —|—§kH < O,
164]| < 8,

update @ by ¢xi1 = @i + 04
© When |G(¢pr+1) — G(P«k)| < &, output and stop
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Optimal Design Algorithm

Two Lifting Steps - Comments

@ (3: upper bound of H5¢H

» Too large: gT6¢ cannot correctly reflect the actual reduction in G

» Too small: the solution to the SOCP subproblem is restricted to an
unnecessarily small region around ¢

» Should be chosen such that

g7~ G(p+8)—G(p) for |8l =0

® Op,: upper bound of the error function ep,

» Too small: feasible region may be empty
» Chosen to be a scaled version of ey, evaluated at ¢

Op =d ((kaHd,qSk + ¢>Z-s¢ +¢cp) forsome 0<d<1

> Error ep, is reduced after each iteration.
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Optimal Design Algorithm

More Than Two Lifting Steps - Problem Formulation

@ Lifting filter coefficients x
@ Coding gain: linear approximation

G(x +0x) = G(x) +gdx

@ Vanishing moments
» Polynomial equations in x
» Approximated by
Aybx = by
» Moments are nearly vanishing
@ Frequency selectivity
» Frequency response: polynomial in x
» Error function ey,: approximated by 8] Hdx + 6] s, + Ci
» Constraint: approximated by the second-order cone

HI:/k5x +§kH < 0,
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More Than Two Lifting Steps - Design Algorithm

Algorithm 2
© Select an initial point xg
@ For the kth iteration, solve
minimize g 8x
subject to: A0y = by
HF/chx +§kH <4,
[0xl < B,

update x by xx11 = xx + Ox
© When |G(xk+1) — G(xk)| < &, output and stop
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Design Examples

Design Examples

@ Isotropic image model with p = 0.95 for six levels of decomposition
o CAL1: two 6 x 6 lifting filters
o CAL2: three 4 x 4 lifting filters

Comparison with existing filter banks

Filter Support of Coding | Vanishing moments
banks analysis filters gain(dB) | N N Max. order
CAL1 13x13,7x7 12.06 2 2 0
CAL2 9x9 13x13 1223 |2 2 10712
KS 13x13,7x7 11.95 6 6 0

9/7 9x9,7x9,9x7,7x7| 12.09 4 4 0

University of Victoria
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Design Examples

Frequency Responses of CAL1
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Design Examples

Frequency Responses of CAL2
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Design Examples

Scaling and Wavelet Functions for CAL1
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Design Examples

Image Coding Results

@ Image coder: separable/nonseparable based on the lifting scheme
@ Reversible integer-to-integer mappings
@ Test images: grayscale images in the JPEG-2000 test set
@ Coding
» Lossy coding at various bit rates
» Six/three levels of decomposition for quincunx/separable transforms
» Difference measured in terms of PSNR
@ Coding results: CAL1 and CAL2 outperform KS in 80% cases
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Design Examples

Experimental Results for finger

Test image: finger
CRT PSNR (dB)
CALL | CAL2 | KS| 9/7
128 | 19.88 | 19.95 | 19.67 | 19.98
64 21.70 | 21.75 | 21.53 | 21.72
32 24.52 | 24.39 | 24.36 | 24.20
16 27.75 | 27.83 | 27.65 | 27.61

fcompression ratio

@ CAL1 and CAL2 outperform the KS filter bank.

@ CAL1 and CAL2 outperform the 9/7 filter bank except at the lowest
bit rate.
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Conclusion

Conclusion

@ New optimization-based design method is proposed.

@ This method vyields linear-phase PR quincunx filter
banks with high coding gain, good analysis/synthesis
filter frequency responses, and prescribed vanishing
moments properties.

@ Effectiveness is demonstrated by the experimental
results.
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Optimal Design for a Particular Image

@ Optimize with the autocorrelation function of the finger image
@ CALLf: same filter support as CAL1
@ CAL2f: same filter support as CAL2
@ Coding gains for the finger image

CAL1f | CAL2f | CAL1 | CAL2 KS 9/7
12.76 | 12.35 | 12.17 | 12.04 | 12.27 | 12.05

Coding results

CRT PSNR (dB)

CAL1f | CAL2f | CAL1 | CAL2 KS 9/7
128 | 19.92 | 19.35 | 19.88 | 19.95 | 19.67 | 19.98
64 21.82 | 21.37 | 21.70 | 21.75 | 21.53 | 21.72
32 24.53 | 2421 | 2452 | 2439 | 24.36 | 24.20
16 27.84 | 27.63 | 27.75 | 27.83 | 27.65 | 27.61

fcompression ratio

(]
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