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Introduction of Quincunx Filter Banks

Two-dimensional two-channel nonseparable filter banks
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Motivation

Desirable properties for image coding
◮ Perfect reconstruction (PR)
◮ Linear phase
◮ High coding gain
◮ Vanishing moments
◮ Good frequency selectivity

Existing design methods
◮ Transformation of variables
◮ Direct optimization
◮ Two-step lifting structure
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Lifting Realization - Structure

Analysis Side
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Lifting Realization - Transfer Functions

Analysis filter transfer functions H0(zzz) and H1(zzz)

Hk(zzz) = Hk,0

(

zzzMMM
)

+ z0Hk,1

(

zzzMMM
)

,

[

H0,0(zzz) H0,1(zzz)
H1,0(zzz) H1,1(zzz)

]

=
λ
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k=1

([

1 A2k(zzz)
0 1

] [

1 0
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Synthesis filter transfer functions G0(zzz) and G1(zzz)

Gk(zzz) = (−1)1−kz−1
0 H1−k(−zzz)
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Lifting Realization - Advantages

1 PR is satisfied automatically.

2 Linear phase property can be imposed structurally.

Theorem

If each lifting filter Ak is symmetric with its group delay

ccck satisfying

ccck = (−1)k
[

1
2

1
2

]T
,

then the analysis filters H0 and H1 are symmetric with

group delays [0 0]T and [−1 0]T , respectively.

3 Reversible integer-to-integer transforms
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Octave-Band Filter Banks

N-level octave-band filter bank: analysis side
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Coding Gain

Measure of the energy compaction ability of a filter bank

Coding gain GSBC for an N-level octave-band filter bank

GSBC =

N
∏

k=0

(AkBk/αk)−αk ,

Ak =
∑

mmm∈Z2

∑

nnn∈Z2

h′k [mmm]h′k [nnn]r [mmm − nnn],Bk = αk

∑

nnn∈Z2

g
′2
k [nnn],

α0 = 2−N , αk = 2−(N+1−k) for k = 1, 2, . . . ,N,

Autocorrelation r

r [n0, n1] =

{

ρ|n0|+|n1| for separable model

ρ
√

n2
0+n2

1 for isotropic model,

where ρ is the correlation coefficient (typically, 0.90 ≤ ρ ≤ 0.95).
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Vanishing Moments

Ñ dual vanishing moments ⇒ Ñth order zero at [0 0]T of ĥ1(ωωω)

N primal vanishing moments ⇒ Nth order zero at [π π]T of ĥ0(ωωω)

Linear phase filter H with group delay ccc ∈ Z
2

∂m0+m1 ĥ

∂ωm0
0 ∂ωm1

1

=
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











∑
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h[nnn] (nnn − ccc)mmm cos
(

ωωωT (nnn − ccc)
)

for |mmm| even

−
∑

nnn∈Z2

h[nnn] (nnn − ccc)mmm sin
(

ωωωT (nnn − ccc)
)

otherwise,

where mmm = [m0 m1]
T and mmm = m0 + m1.

Ñth order zero at ωωω = [0 0]T

∑

nnn∈Z2

h[nnn] (nnn − ccc)mmm = 0 for all even |mmm| such that |mmm| < Ñ .

Design of Optimal Quincunx Filter Banks for Image Coding University of Victoria



Outline Introduction Quincunx Filter Banks Optimal Design Algorithm Design Examples Conclusion

Frequency Selectivity

Error function of a linear phase filter H
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∫
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Frequency response constraint: eh ≤ δh
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Design problems

Lifting parameterization of linear-phase filter banks

Maximize coding gain subject to vanishing moments and frequency
response constraints

Iterative second-order cone programming

minimize bbbTxxx

subject to: ‖AAAT
i xxx + ccc i‖ ≤ bbbT

i xxx + di for i = 1, . . . , q.

Linear/quadratic approximations
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Two Lifting Steps - Problem Formulation (1)

Lifting filter coefficients xxx

Vanishing moments
◮ Constraint: an underdetermined linear system AAAxxx = bbb
◮ Solutions: xxx = xxxs + VVV rφφφ

Coding gain
◮ Define G = −10 log10 GSBC

◮ For a given φφφ, seek a small perturbation δδδφφφ such that G(φφφ + δδδφφφ) is
reduced relative to G(φφφ)

◮ ‖δδδφφφ‖ is small ⇒ G(φφφ + δδδφφφ) ≈ G(φφφ) + gggTδδδφφφ

◮ Iteratively minimize gggTδδδφφφ, update φφφ until |G(φφφ + δδδφφφ) − G(φφφ)| < ε
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Two Lifting Steps - Problem Formulation (2)

Frequency selectivity
◮ Analysis highpass filter frequency response

ĥ1(ωωω) = â1(MMM
Tωωω) + e jω0

where â1(MMM
Tωωω) is linear in φφφ

◮ Error function
eh1 = φφφTHHHφφφφφφ + φφφTsssφφφ + Cφφφ

◮ Frequency response constraint is a second-order cone

∥

∥

∥
H̃HHkδδδφφφ + s̃ssk

∥

∥

∥
≤ δ′h1

Design of Optimal Quincunx Filter Banks for Image Coding University of Victoria



Outline Introduction Quincunx Filter Banks Optimal Design Algorithm Design Examples Conclusion

Two Lifting Steps - Design Algorithm

Algorithm 1

1 Select an initial point φφφ0

2 For the kth iteration, solve

minimize gggTδδδφφφ

subject to:
∥

∥

∥
H̃HHkδδδφφφ + s̃ssk

∥

∥

∥
≤ δ′h1

∥

∥δδδφφφ

∥

∥ ≤ β,

update φφφ by φφφk+1 = φφφk + δδδφφφ

3 When |G (φφφk+1) − G (φφφk)| < ε, output and stop
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Two Lifting Steps - Comments

β: upper bound of
∥

∥δδδφφφ

∥

∥

◮ Too large: gggTδδδφφφ cannot correctly reflect the actual reduction in G
◮ Too small: the solution to the SOCP subproblem is restricted to an

unnecessarily small region around φφφk

◮ Should be chosen such that

gggTδδδ ≈ G(φφφ + δδδ) − G(φφφ) for ‖δδδ‖ = β

δh1
: upper bound of the error function eh1

◮ Too small: feasible region may be empty
◮ Chosen to be a scaled version of eh1 evaluated at φφφk

δh1 = d
(

φφφT
k HHHφφφφφφk + φφφT

k sssφφφ + cφφφ

)

for some 0 < d ≤ 1

◮ Error eh1 is reduced after each iteration.
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More Than Two Lifting Steps - Problem Formulation

Lifting filter coefficients xxx

Coding gain: linear approximation

G (xxx + δδδxxx) = G (xxx) + gggTδδδxxx

Vanishing moments
◮ Polynomial equations in xxx
◮ Approximated by

AAAkδδδxxx = bbbk

◮ Moments are nearly vanishing

Frequency selectivity
◮ Frequency response: polynomial in xxx
◮ Error function eh1 : approximated by δδδT

xxx HHHkδδδxxx + δδδT
xxx sssk + Ck

◮ Constraint: approximated by the second-order cone
∥

∥

∥
H̃HHkδδδxxx + s̃ssk

∥

∥

∥
≤ δ′h1
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More Than Two Lifting Steps - Design Algorithm

Algorithm 2

1 Select an initial point xxx0

2 For the kth iteration, solve

minimize gggTδδδxxx

subject to: AAAkδδδxxx = bbbk
∥

∥

∥
H̃HHkδδδxxx + s̃ssk

∥

∥

∥
≤ δ′h1

‖δδδxxx‖ ≤ β,

update xxx by xxxk+1 = xxxk + δδδxxx

3 When |G (xxxk+1) − G (xxxk)| < ε, output and stop
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Design Examples

Isotropic image model with ρ = 0.95 for six levels of decomposition

CAL1: two 6 × 6 lifting filters

CAL2: three 4 × 4 lifting filters

Comparison with existing filter banks

Filter Support of Coding Vanishing moments

banks analysis filters gain(dB) Ñ N Max. order

CAL1 13 × 13, 7 × 7 12.06 2 2 0

CAL2 9 × 9, 13 × 13 12.23 2 2 10−12

KS 13 × 13, 7 × 7 11.95 6 6 0

9/7 9 × 9, 7 × 9, 9 × 7, 7 × 7 12.09 4 4 0
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Frequency Responses of CAL1
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Frequency Responses of CAL2
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Scaling and Wavelet Functions for CAL1

Primal scaling Primal wavelet
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Scaling and Wavelet Functions for CAL2

Primal scaling Primal wavelet
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Image Coding Results

Image coder: separable/nonseparable based on the lifting scheme

Reversible integer-to-integer mappings

Test images: grayscale images in the JPEG-2000 test set

Coding
◮ Lossy coding at various bit rates
◮ Six/three levels of decomposition for quincunx/separable transforms
◮ Difference measured in terms of PSNR

Coding results: CAL1 and CAL2 outperform KS in 80% cases
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Experimental Results for finger

Test image: finger

CR† PSNR (dB)
CAL1 CAL2 KS 9/7

128 19.88 19.95 19.67 19.98

64 21.70 21.75 21.53 21.72
32 24.52 24.39 24.36 24.20
16 27.75 27.83 27.65 27.61

†compression ratio

CAL1 and CAL2 outperform the KS filter bank.

CAL1 and CAL2 outperform the 9/7 filter bank except at the lowest
bit rate.
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Conclusion

New optimization-based design method is proposed.

This method yields linear-phase PR quincunx filter
banks with high coding gain, good analysis/synthesis
filter frequency responses, and prescribed vanishing
moments properties.

Effectiveness is demonstrated by the experimental
results.

Design of Optimal Quincunx Filter Banks for Image Coding University of Victoria



Optimal Design for a Particular Image

Optimize with the autocorrelation function of the finger image

CAL1f: same filter support as CAL1

CAL2f: same filter support as CAL2

Coding gains for the finger image

CAL1f CAL2f CAL1 CAL2 KS 9/7

12.76 12.35 12.17 12.04 12.27 12.05

Coding results

CR† PSNR (dB)
CAL1f CAL2f CAL1 CAL2 KS 9/7

128 19.92 19.35 19.88 19.95 19.67 19.98

64 21.82 21.37 21.70 21.75 21.53 21.72
32 24.53 24.21 24.52 24.39 24.36 24.20
16 27.84 27.63 27.75 27.83 27.65 27.61

†compression ratio

Design of Optimal Quincunx Filter Banks for Image Coding University of Victoria

finger
finger

	Outline
	Introduction
	Quincunx Filter Banks
	Optimal Design Algorithm
	Design Examples
	Conclusion

