
SYMMETRIC EXTENSION FOR TWO-CHANNEL QUINCUNX FILTER BANKS

Yi Chen, Michael D. Adams, and Wu-Sheng Lu
Dept. of Elec. and Comp. Eng., University of Victoria, Victoria, BC, CANADA

ABSTRACT

In the case of one-dimensional filter banks, symmetric extension is
a commonly used technique for constructing nonexpansive trans-
forms of finite-length sequences. In this paper, we show how sym-
metric extension can be extended to the case of two-dimensional
filter banks based on quincunx sampling. In particular, we show
how, for filter banks of this type, one can construct nonexpansive
transforms for input sequences defined on arbitrary rectangular re-
gions.

1. INTRODUCTION

The two-dimensional (2-D) two-channel filter bank shown in Fig. 1
can be used to compute a class of transforms that has proven ex-
tremely useful in many image processing applications. Often, such
a filter bank is defined so as to operate on sequences of infinite
extent. In practice, however, we almost invariably deal with se-
quences of finite extent. Therefore, we usually require some means
for adapting filter banks to such sequences. This leads to the well
known boundary filtering problem that can arise any time a finite-
extent sequence is filtered. Furthermore, in many applications, it is
desirable to employ a transform that is nonexpansive (i.e., maps a
sequence of N samples to a new sequence of no more than N sam-
ples). Consequently, we seek a solution to the boundary problem
that yields nonexpansive transforms.

In the case of 1-D filter banks, symmetric extension [1, 2] is
a commonly used technique for constructing nonexpansive trans-
forms of finite-extent sequences. In this paper, we explain how
symmetric extension can be extended to the case of 2-D filter banks
based on quincunx sampling. In particular, we show how, for filter
banks of this type, one can construct nonexpansive transforms for
input sequences defined on arbitrary rectangular regions.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly comments on some of the notational conventions
used herein. Then, Section 3 discusses symmetry in the 2-D case,
and derives a number of results related to filter banks and symme-
try. These results are then used in Section 4 in order to produce
our new symmetric extension algorithm. Finally, Section 5 sum-
marizes our work and makes some closing remarks.
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Fig. 1. 2-D two-channel filter bank.
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2. NOTATION AND TERMINOLOGY

Before proceeding further, a few comments are in order concern-
ing the notation used herein. In this paper, matrices and vectors
are denoted by upper and lower case boldface letters, respectively.
The set of integers is denoted as Z (and the set of ordered pairs of
integers as Z2). The symbol 111 is used to denote a vector/matrix of
all ones, the dimensions of which should be clear from the context.
The difference of two sets A and B is denoted A \B. The convo-
lution of two sequences x and y is denoted as x ∗ y. For the most
part, the multidimensional multirate systems notation employed in
this paper follows that used in [3]. An element of the sequence x
defined on Z2 is denoted either as x[nnn] or x[n0,n1] (whichever is
more convenient), where nnn = [n0 n1]

T and n0,n1 ∈ Z. The Schur
product (i.e., element-wise product) of two vectors/matrices uuu and
vvv is denoted uuu ◦ vvv. For two vectors, uuu and vvv, we write uuu ≥ vvv if
every element in uuu is greater than or equal to its corresponding el-
ement in vvv. The lattice generated by sampling matrix MMM is denoted
LAT(MMM) (i.e., LAT(MMM) = {MMMnnn}nnn∈Z2 ). The quincunx lattice can be
associated with the generating matrix MMM =

[1 1
1 −1

]

and the two rep-
resentative coset vectors kkk0 = [0 0]T and kkk1 = [1 0]T . Throughout
this work, the quantity MMM should be understood to be this particular
generating matrix of the quincunx lattice (unless explicitly noted
otherwise).

3. SYMMETRIC EXTENSION PRELIMINARIES

With our proposed symmetric extension scheme, we use a struc-
ture for the forward transform like that shown in Fig. 2. We convert
the input sequence x̃ to the filter bank into an infinite-extent peri-
odic symmetric sequence x. This eliminates the boundary filtering
problem (as x is an infinite-extent sequence). Then, by carefully
constraining the choice of filters (H0 and H1), we can force the
subband sequences y0 and y1 to always be both symmetric and pe-
riodic. Lastly, we use these symmetry and periodicity properties
in order to extract only those samples from the subband sequences
that are independent. With some care, it is possible for the result-
ing transform to be nonexpansive.

H0(z)

H1(z)

↓ M

↓ M

Extract
Independent
Samples

Extract
Independent
Samples

Periodic
Symmetric
Extension

x[n] u0[n]

u1[n]

y0[n]

y1[n]
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Fig. 2. Analysis side of the filter bank with symmetric extension.

The notion of symmetry (of a sequence) is of fundamental im-
portance herein. In the 1-D case, only a very limited number of
symmetry types is possible, but in the 2-D case, considerably more
possibilities exist. We begin by introducing several types of sym-
metries relevant to this work, the first of which is given by the
definition below.



Definition 1 (Centrosymmetry). A sequence x defined on Z2 is
said to be centrosymmetric about ccc (i.e., has linear phase with
group delay ccc) if, for some ccc ∈ 1

2 Z2 and S ∈ {−1,1},

x[nnn] = Sx[2ccc−nnn] for all nnn ∈ Z2
. (1)

From the preceding definition, it follows that only (approx-
imately) half of the samples of a centrosymmetric sequence are
independent. The next symmetry type of interest is given by the
definition below.

Definition 2 (Quadrantal centrosymmetry). A sequence x defined
on Z2 is said to be quadrantally centrosymmetric about ccc if, for
some ccc ∈ 1

2 Z2 and A = 1,2,3,

x[nnn] = s[A]x[ccc◦ (111−vvv[A])+nnn◦vvv[A]] for all nnn ∈ Z2
, (2)

where s[A] ∈ {−1,1}, vvv[A] = [ (−1)a0 (−1)a1 ]T , a0,a1 ∈ {0,1}, and
A = a0 +2a1. In terms of s[·] in (2), only four types of quadrantal
centrosymmetry are possible [4]:

Type s[1] s[2] s[3]
even-even 1 1 1
odd-odd −1 −1 1
even-odd 1 −1 −1
odd-even −1 1 −1

An example of an even-even quadrantally centrosymmetric se-
quence with its symmetry center on the integer lattice is shown in
Fig. 3(a). Clearly, quadrantal centrosymmetry is a type of four-
fold symmetry, where only (approximately) 1

4 of the samples are
independent (e.g., those with indices nnn ≥ ccc). In the context of this
paper, the even-even type of symmetry is of most interest. Now,
we define one further type of symmetry which we will need herein.

Definition 3 (Rotated quadrantal centrosymmetry). A sequence x
defined on Z2 is said to be rotated quadrantally centrosymmet-
ric about ccc if, for some S,T ∈ {−1,1} and ccc =

[

c0 c1
]T

∈ 1
2 Z2

satisfying c0 + c1 ∈ Z,

x[n0,n1] = Sx[2c0 −n0,2c1 −n1]

= T x[c0 − c1 +n1,c1 − c0 +n0]

= ST x[c0 + c1 −n1,c0 + c1 −n0]

(3)

for all n0,n1 ∈ Z.

Rotated quadrantal centrosymmetry is a type of four-fold sym-
metry, where only approximately 1

4 of the samples are independent
(e.g., those with indices nnn satisfying MMMnnn ≥ MMMccc). An example of a
rotated quadrantally centrosymmetric sequence with its symmetry
center on the integer lattice is shown in Fig. 3(b).
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Fig. 3. Types of 4-fold symmetry. (a) Quadrantal centrosymmetry
and (b) rotated quadrantal centrosymmetry.

We now introduce a scheme for mapping a finite-extent (2-
D) sequence defined on a rectangular region to an infinite-extent
sequence that is both quadrantally centrosymmetric and periodic.
This process called symmetric extension is defined as given below.

Definition 4 (Symmetric extension of sequence). Let x̃ be a (2-
D) sequence defined on the rectangular region {0,1, . . . ,L0 −1}×
{0,1, . . . ,L1 −1}. Then, the symmetric extension x of x̃ is defined
as

x[n0,n1] = x̃[ f0[n0], f1[n1]], (4)
where f0[n0] and f1[n1] are given by

f0[n0]=min{mod(n0,2L0 −2),2L0 −2−mod(n0,2L0 −2)},

f1[n1]=min{mod(n1,2L1 −2),2L1 −2−mod(n1,2L1 −2)}.

The symmetric extension of a 2-D sequence (as defined above)
can be viewed as 1-D extension operation applied along each of
the dimensions of the sequence separately. For this reason, the
rows (i.e., 1-D horizontal slices of the 2-D sequence) are symmet-
ric about the vertical axis and (2L0 − 2)-periodic in the horizon-
tal direction, and the columns (i.e., 1-D vertical slices of the 2-D
sequence) are symmetric about the horizontal axis and (2L1 −2)-
periodic in the vertical direction. This leads to the 2-D symmet-
rically extended sequence also having symmetry and periodicity
properties as elucidated by the below lemma.

Lemma 1 (Properties of symmetrically extended sequences). Let
x̃ be a sequence defined on the rectangular region {0,1, . . . ,L0 −
1}×{0,1, . . . ,L1−1}. Let x denote the symmetric extension of x̃ as
defined by (4). Then, x is PPP-periodic with MMM−1PPP being an integer
matrix, and is even-even quadrantally centrosymmetric about 000.
(Recall that MMM is as defined in Section 2.)

Proof. First, we show that x is PPP-periodic with PPP =

MMM
[

L0−1 L1−1
L0−1 −L1+1

]

. Since mod(u + kv,v) = mod(u,v) for k ∈ Z, we

have f0[n0 + (2L0 − 2)k0] = f0[n0] and f1[n1 + (2L1 − 2)k1] =
f1[n1], for k0, k1 ∈ Z. This implies that x[nnn +PPPkkk] = x[nnn] for kkk =
[

k0 k1
]T with PPP =

[

2L0−2 0
0 2L1−2

]

. Therefore, x is PPP-periodic,

and MMM−1PPP =
[

L0−1 L1−1
L0−1 −L1+1

]

is an integer matrix.
Now, we show that x is quadrantally centrosymmetric about 000.

For u, v ∈ Z and v - u, mod(−u,v) = v−mod(u,v). It follows that
f0[−n0] = f0[n0] and f1[−n1] = f1[n1]. Therefore,

x[nnn◦vvv[A]] = x[(−1)a0 n0,(−1)a1 n1]

= x̃[ f0[(−1)a0 n0], f1[(−1)a1 n1]]

= x̃[ f0[n0], f1[n1]]

= x[nnn]

for A = 1,2,3. Thus, from Definition 2, x is quadrantally cen-
trosymmetric about 000. Since s[A] in (2) is 1 for A = 1,2,3, x has
the even-even symmetry. (Due to PPP-periodicity, x is also quadran-
tally centrosymmetric about PPPkkk for kkk ∈ 1

2 Z2.)

As shown in Fig. 2, the original input sequence x̃ is symmetri-
cally extended and then fed into the analysis side of the filter bank,
which consists of filters followed by downsamplers. The ability
to construct a nonexpansive transform then depends on the preser-
vation of the four-fold symmetry and periodicity in the subband
sequences y0 and y1. In what follows, we will examine how the
operations of convolution and downsampling affect these proper-
ties. First, we consider the effects of convolution on symmetry as
given by the below lemma.

Lemma 2 (Preservation of symmetry under convolution). Let x
and h be sequences defined on Z2, and define y = x ∗ h. If x and
h are centrosymmetric about cccx and ccch, respectively, then y is cen-
trosymmetric about cccy = cccx +ccch. If x and h are quadrantally cen-
trosymmetric about cccx and ccch, respectively, then y is quadrantally
centrosymmetric about cccy = cccx +ccch.



Proof. The proof for the centrosymmetric case is essentially the
same as in the 1-D case, so we omit it here in the interest of saving
space. Now, we consider the quadrantally centrosymmetric case.
We have

y[nnn] = ∑
k∈Z2

x[kkk]h[nnn−kkk]. (5)

Since x and h are quadrantally centrosymmetric about cccx and ccch,
respectively, we have

x[nnn] = sx[A]x[cccx ◦ (1−vvv[A])+nnn◦vvv[A]] and (6)
h[nnn] = sh[A]h[ccch ◦ (1−vvv[A])+nnn◦vvv[A]], (7)

for all nnn ∈ Z2. Substituting (6) and (7) into (5), we obtain

y[nnn] = ∑
k∈Z2

sx[A]x[cccx ◦ (1−vvv[A])+kkk ◦vvv[A]]

sh[A]h[ccch ◦ (1−vvv[A])+(nnn−kkk)◦vvv[A]].
(8)

Let kkk′ = cccx ◦(1−vvv[A])+kkk◦vvv[A]. Solving for kkk in terms of kkk′ yields
kkk = cccx ◦ (1 − vvv[A]) + kkk′ ◦ vvv[A]. Applying the change of variable
to (8), we obtain (for A = 1,2,3)

y[nnn] = ∑
kkk′∈Z2

sx[A]x[kkk′]sh[A]h[ccch ◦ (1−vvv[A])

+(nnn−{cccx ◦ (1−vvv[A])+kkk′ ◦vvv[A]})◦vvv[A]]

= ∑
kkk′∈Z2

sx[A]x[kkk′]sh[A]h[ccch ◦ (1−vvv[A])+nnn◦vvv[A]

−kkk′−cccx ◦ (1−vvv[A])◦vvv[A]]

= sx[A]sh[A] ∑
kkk∈Z2

x[kkk]h[(ccch +cccx)◦ (1−vvv[A])

+nnn◦vvv[A]−kkk]

= sy[A] ∑
kkk∈Z2

x[kkk]h[(cccx +ccch)◦ (1−vvv[A])+nnn◦vvv[A]−kkk]

= sy[A]y[(cccx +ccch)◦ (1−vvv[A])+nnn◦vvv[A]],

where sy[A] = sx[A]sh[A]. As sx[·] and sh[·] each corresponds to
one row of the table in Definition 2, sy[·] is also in that table. Thus,
y is quadrantally centrosymmetric about cccy = cccx +ccch.

Now, we consider the effect of convolution on periodicity in
the lemma below.

Lemma 3 (Preservation of periodicity under convolution). Let x
and h be sequences defined on Z2, with x being PPP-periodic. Then,
y = x∗h is PPP-periodic [5].

Next, we examine the effects of downsampling on periodicity
and symmetry. First, we consider the case of periodicity in the
lemma below.

Lemma 4 (Downsampling of periodic sequence). Let MMM be an
arbitrary sampling matrix. Let x be a PPP-periodic sequence such
that MMM−1PPP is an integer matrix. Then, (↓MMM)x is (MMM−1PPP)-periodic.

Proof. Since x is PPP-periodic, x[nnn] = x[nnn + PPPkkk] for kkk ∈ Z2. The
downsampled sequence y is given by

y[nnn] = (↓MMM)x[nnn]

= x[MMMnnn]

= x[MMMnnn+PPPkkk]

= x[MMM(nnn+(MMM−1PPP)kkk)]. (9)

Since MMM−1PPP is an integer matrix, we have

x[MMM(nnn+(MMM−1PPP)kkk)] = y[nnn+(MMM−1PPP)kkk]. (10)

Substituting (10) into (9), we have that y[nnn] = y[nnn+(MMM−1PPP)kkk] for
kkk ∈ Z2. Therefore, y is MMM−1PPP-periodic.

Thus, from above, if a PPP-periodic sequence has both of its pe-
riodicity vectors (i.e., columns of PPP) on LAT(MMM), the sequence
downsampled by MMM is periodic with the number of samples in one
period being reduced by a factor of |detMMM| relative to the origi-
nal sequence. Next, we consider the effects of downsampling on
symmetry, as elucidated by the lemma below.

Lemma 5 (Downsampling of quadrantally centrosymmetric se-
quence). Let x be a quadrantally centrosymmetric sequence with
symmetry center cccx ∈ Z2. Define y = (↓ MMM)x. Then, y is rotated
quadrantally centrosymmetric about MMM−1cccx. (Recall that MMM is as
defined in Section 2.)

Proof. The downsampled sequence y is given by

y[n0,n1] = (↓MMM)x[nnn] = x[n0 +n1,n0 −n1]. (11)

As x is quadrantally centrosymmetric about cccx =
[

c0 c1
]T , we

have
x[n0 +n1,n0 −n1]

= Sx[2c0 −n0 −n1,2c1 −n0 +n1]

= T x[2c0 −n0 −n1,n0 −n1]

= ST x[n0 +n1,2c1 −n0 +n1]

(12)

for S,T ∈ {−1,1}. Since c0,c1 ∈ Z, we have

x[2c0 −n0 −n1,2c1 −n0 +n1]=y[c0 + c1 −n0,c0 − c1 −n1]

x[2c0 −n0 −n1,n0 −n1] = y[c0 −n1,c0 −n0]

x[n0 +n1,2c1 −n0 +n1] = y[n1 + c1,n0 − c1].

Substituting (11) and the above three equations into (12), we ob-
tain

y[n0,n1] = Sy[c0 + c1 −n0,c0 − c1 −n1]

= Ty[c0 −n1,c0 −n0]

= STy[n1 + c1,n0 − c1].

Therefore, the downsampled sequence y has rotated quadrantal
centrosymmetry about MMM−1cccx =

[ c0+c1
2

c0−c1
2

]T .

The preceding lemma shows that if the symmetry center cccx of
a quadrantally centrosymmetric sequence x is on the integer lattice,
then the downsampled sequence y also has four-fold symmetry, as
each set of dependent coefficients in x is contained in the same
coset of the quincunx lattice. Thus, the number of independent
samples in y is about half of that of x.

4. SYMMETRIC EXTENSION ALGORITHM

Using our previous results, we will now derive a scheme based on
symmetric extension that allows for the construction of nonexpan-
sive transforms based on a two-channel quincunx filter bank. To
begin, we recall the perfect reconstruction (PR) condition for such
a filter bank is given by

H0(zzz)G0(zzz)+H1(zzz)G1(zzz) = 2zzz−lll and
H0(−zzz)G0(zzz)+H1(−zzz)G1(zzz) = 0,

where H0(zzz) and H1(zzz) are the analysis filter transfer functions,
G0(zzz) and G1(zzz) are the synthesis filter transfer functions, lll =

[l0 l1]T ∈Z2, and zzz−lll = z−l0
0 z−l1

1 . Letting G0(zzz) = H1(−zzz), G1(zzz) =
−H0(−zzz), and defining P(zzz) = H0(zzz)G0(zzz) =

H0(zzz)H1(−zzz), the PR condition becomes P(zzz)− P(−zzz) = 2zzz−lll .
If H0 and H1 have quadrantal centrosymmetry with group delays
ddd0 and ddd1 respectively, then P(zzz) and P(−zzz) are also quadrantally
centrosymmetric with group delay ddd p = ddd0 +ddd1.



In this paper, we consider the case where both analysis filters
have group delays on the integer lattice. We can see that ddd0 and ddd1
must be in different cosets of the quincunx lattice, otherwise ddd p ∈
LAT(MMM), P(zzz)−P(−zzz) cannot be a monomial. Furthermore, we
can also conclude that for this case only filters with even-even type
of symmetry satisfy the PR condition. These observations suggest
that such a perfect reconstruction filter bank having analysis filters
with group delays in Z2 is compatible with symmetric extension.
This leads to the main result of our paper which is as follows:

Theorem 1 (Symmetric extension algorithm). Consider the filter
bank shown in Fig. 2, where x̃ is defined on the rectangular re-
gion {0,1, . . . ,L0 − 1}×{0,1, . . . ,L1 − 1} and x is the symmetric
extension of x̃ as given by (4). If H0 and H1 are quadrantally
centrosymmetric with group delays ddd0 =

[

d0,0 d0,1
]T

∈ Z2 and

ddd1 =
[

d1,0 d1,1
]T

∈ Z2, respectively, then the subband output
y0 can be completely characterized by N0 samples with indices
nnn =

[

n0 n1
]T given by

⌈

d0,0 +d0,1

2

⌉

≤ n0 ≤

⌊

d0,0 +d0,1 +L0 +L1

2

⌋

−1,

and max{d0,0 −n0,n0 −d0,1 −L1 +1} ≤ n1
≤ min{d0,0 +L0 −1−n0,n0 −d0,1};

(13)

y1 can be completely characterized by N1 samples with indices
nnn =

[

n0 n1
]T given by

⌈

d1,0 +d1,1

2

⌉

≤ n0 ≤

⌊

d1,0 +d1,1 +L0 +L1

2

⌋

−1,

and max{d1,0 −n0,n0 −d1,1 −L1 +1} ≤ n1
≤ min{d1,0 +L0 −1−n0,n0 −d1,1};

(14)

and N0 +N1 = L0L1 (i.e., the transform is nonexpansive).

Proof. In what follows, we refer to signals in Fig. 2. From Lemma 1,
we know that x is PPP-periodic with PPP =

[

2L0−2 0
0 2L1−2

]

, and is quad-
rantally centrosymmetric about 000. Consider the first channel, where
H0 is quadrantally centrosymmetric with group delay ddd0 ∈ Z2.
Then, the analysis filter output u0 is PPP-periodic from Lemma 3, and
quadrantally centrosymmetric about 000 +ddd0 = ddd0 from Lemma 2.
Since MMM−1PPP =

[

L0−1 L1−1
L0−1 −L1+1

]

is an integer matrix and ddd0 ∈ Z2, y0

is MMM−1PPP-periodic from Lemma 4, and rotated quadrantally cen-
trosymmetric about MMM−1ddd0 from Lemma 5.

Therefore, y0 can be completely characterized by samples with
indices nnn =

[

n0 n1
]T given by

MMMnnn ∈{d0,0,d0,0 +1, . . . ,d0,0 +L0 −1}×
{d0,1,d0,1 +1, . . . ,d0,1 +L1 −1}.

(15)

Solving (15), we obtain the conditions for n0 and n1 as shown
in (13). The number N0 of characteristic samples of y0 is given by

N0 =











1
2 L0L1 for L0L1 even
1
2 (L0L1 +1) for L0L1 odd, ddd0 ∈ LAT(MMM)
1
2 (L0L1 −1) for L0L1 odd, ddd0 6∈ LAT(MMM)

(16)

which can be equivalently written as

N0 =
⌊ 1

2 (L0L1 +d0,0 +d0,1 +1)
⌋

−
⌈ 1

2 (d0,0 +d0,1)
⌉

.

Similarly, y1 is characterized by samples with indices nnn =
[

n0 n1
]T given by (14). The number N1 of characteristic sam-

ples of y1 is given by

N1 =











1
2 L0L1 for L0L1 even
1
2 (L0L1 +1) for L0L1 odd, ddd1 ∈ LAT(MMM)
1
2 (L0L1 −1) for L0L1 odd, ddd1 6∈ LAT(MMM).

(17)

Since only one of ddd0 and ddd1 is on the quincunx lattice, from (16)
and (17), we have N0 +N1 = L0L1.

The significance of the above theorem is that it shows how
one can construct a nonexpansive transform from a two-channel
quincunx filter bank. There are also other types of PR filter banks
that lead to nonexpansive transforms with slight variations on the
above algorithm. In what follows, we briefly comment on two such
variations. For additional details, the reader is referred to [6].

Let H0 and H1 be quadrantally centrosymmetric analysis fil-
ters with group delays ddd0 = [d0,0 d0,1]

T and ddd1 = [d1,0 d1,1]
T ,

respectively. If H0 has even-even symmetry, d0,0 ∈ 1
2 Z \Z and

d0,1 ∈ Z, H1 has odd-even symmetry, d1,0 ∈ 1
2 Z\Z and d1,1 ∈ Z,

then this filter bank is compatible with symmetric extension, ex-
cept that in (4), f0 is instead given by

f0[n0] = min{mod(n0,2L0),2L0 −1−mod(n0,2L0)}.

With this symmetric extension, x is quadrantally centrosymmetric
about [− 1

2 0 ]T , and is PPP-periodic with PPP =
[

2L0 0
0 2L1−2

]

.
Another example is H0 has even-even symmetry, d0,0 ∈ Z and

d0,1 ∈ 1
2 Z\Z; H1 has even-odd symmetry, d1,0 ∈ Z and d1,1 ∈

1
2 Z\Z. This type of filter bank is compatible with symmetric ex-
tension with f1 in (4) given by

f1[n1] = min{mod(n1,2L1),2L1 −1−mod(n1,2L1)}.

With this symmetric extension, x is quadrantally centrosymmetric
about

[

0 − 1
2

]T , and is PPP-periodic with PPP =
[

2L0−2 0
0 2L1

]

.

5. CONCLUSIONS

In this paper, we have investigated how to preserve symmetry and
periodicity under the convolution and downsampling operations
of a quincunx filter bank. This led us to propose a new symmet-
ric extension algorithm (and some minor variations thereof) which
can be used to construct nonexpansive transforms associated with
quincunx filter banks. This scheme is potentially useful in any
application that processes finite-extent sequences using such filter
banks.
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