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License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-

ND 3.0) License. A copy of this license is provided below. For a simple explanation of the rights granted by this

license, see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Li-

cense

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and
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arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:
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a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
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use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted
under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as
stated above.
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8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.
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Preface

This book provides provides a detailed introduction to multiresolution signal and geometry processing, and is primar-

ily intended to be used as a text for graduate/undergraduate students in engineering (and other related) disciplines. The

book evolved from a detailed set of lecture notes that the author prepared in order to teach graduate and undergraduate

courses related to multiresolution signal and geometry processing at the University of Victoria. The initial work on

these lecture notes commenced in the Fall 2003 term, and the first draft was completed during the Summer 2004 term

for the teaching of ELEC 639. Over time, the lecture notes underwent many changes, eventually evolving into the

book that you are now reading.
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Chapter 1

Introduction

1.1 Signal Representations

In many applications, we must deal with functions and/or sequences (i.e., signals). For this reason, it is often necessary

to find useful representations for the signals of interest. For example, we often seek to express a signal x as a weighted

sum of some set of functions {ϕn} of the form

x = ∑
n

αnϕn

where the {αn} are constants and the elements of {ϕn} are called basis functions.

In practice, we always employ signal expansions that possess some structure. For example, an expansion might

be chosen such that the basis functions are related to each other by elementary operations such as time-shifting,

time-scaling, or modulation (i.e., frequency shifting). The use of structured expansions is motivated by practical con-

siderations. If no structure were imposed, the resulting representations would be extremely cumbersome to employ,

and lead to computationally inefficient (or intractable) algorithms.

Perhaps, one of the best known signal representations is the Fourier series for periodic signals. The Fourier series

uses harmonically-related complex sinusoids as its basis functions. While this choice of basis functions does have

many advantages, it does have a potential weakness. Although this representation provides an exact measure of the

frequency content of a signal, it provides no time resolution. In other words, the representation does not capture at

what points in time particular frequencies are present in a signal. For this reason, the Fourier series fails to provide

any insight into how the behavior of a signal changes over time. Often, such insight can be highly beneficial or even

essential, particularly in applications where we are interested in changes in signal behavior with time. For example,

if we are required to locate transient events (such as signal singularities) in the time domain, the Fourier series is not

particularly helpful.

To further illustrate the above point, consider a T -periodic function that has an impulse at the origin and is zero

elsewhere on the interval [0,T ). If we represent this function with a Fourier series, all of the coefficients are equal in

value, indicating that the function contains information at all frequencies. Unfortunately, the Fourier series coefficients

do nothing to tell us of where the impulse is located in the time domain. If we have an application where we are trying

to locate transient events in a signal (such as detecting singularities), the Fourier series is not helpful.

Ideally, we would like to use series expansions that simultaneously provide both perfect time and frequency

resolution. Sadly, this is not possible as a consequence of the Heisenberg uncertainty principle. That is, we cannot

simultaneously measure both the time and frequency content of a signal with arbitrary accuracy. Or viewed from

different perspective, a function cannot have finite support in both the time and frequency domains. Therefore, we

cannot find basis functions with this property, and we cannot find expansions that achieve arbitrarily high resolution

in both time and frequency. Consequently, we can only trade time resolution for frequency resolution or vice versa.

In most practical applications, we choose a signal representation such that each of the underlying basis functions has

most of its energy concentrated in a finite interval in both the time and frequency domains.
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Each of the basis functions associated with a signal representation has a particular distribution in time and fre-

quency. In this way, we can think of the basis functions as defining a tiling of a time-frequency plane. That is, each

basis function can be associated with a tile that covers the part of the plane where most of the basis function’s energy

is concentrated. For example, Figure 1.1 shows the tiling of the time-frequency plane used by several different signal

representations.

In the case of a wavelet expansion, we choose the basis functions with a time-frequency tiling like that shown in

Figure 1.1(d). The basis functions associated primarily with lower frequencies have relatively little spread in frequency

and more spread in time, while the basis functions associated mainly with higher frequencies have relatively little

spread in time but more spread in frequency. This leads to improved time resolution for high frequency information

and lower time resolution for lower frequency information. In many applications, this tradeoff between time and

frequency resolution is both natural and practically useful.

Wavelet series also have computational advantages over some of the competing signal representation methods.

The calculation of wavelet series is computationally efficient. For a signal of length n, the wavelet transform is O(n),
whereas the discrete-time Fourier transform is O(n logn) computation.

Wavelet systems have proven to be useful in a great many applications including: the coding/compression of

signals such as image, video, and audio data; singularity detection; and signal enhancement and denoising.

1.2 Historical Perspective

The first wavelet system was constructed by Haar [9] in 1910. The Haar wavelet system, as it is now known, uses

piecewise constant functions to form an orthonormal basis for L2(R). Although wavelet theory has a relatively long

history, it was not until the 1980s that the term “wavelet” came into use. Consequently, much of the early work on

wavelets was done under the guise of other names such as Littlewood-Paley theory or Calderon-Zygmund operator

theory. Although wavelet theory has intimate ties with concepts from many diverse branches of mathematics and

engineering, many of these linkages were not discovered until the 1980s. Until that time, wavelet theory was really a

disjoint set of ideas from many areas that lacked a clear unifying framework. In some sense, wavelet theory was only

in its infancy until these linkages were first established.

In the mid-to-late 1980s, a revolution in wavelet theory occurred as a result of several important discoveries. This

revolution served to draw together concepts from many different areas of mathematics and engineering resulting in a

unified theory for the study of wavelet systems. In 1984, the term “wavelet” was introduced by Grossman and Mor-

let [8]. In 1988, a tremendous breakthrough in wavelet analysis was brought about by Daubechies. In her now classic

paper [6], Daubechies introduced a family of compactly supported orthogonal wavelet systems with arbitrarily high,

but fixed, regularity. The construction methods she employed were also closely related to filter banks. Daubechies’

work stimulated a rapid development in wavelet theory. In 1989, Mallat [11] presented the theory of multiresolution

analysis and also what later became known as the Mallat algorithm. This work provided a unifying framework for the

study of wavelet systems tying together many previously disjoint ideas. In 1992, Cohen, Daubechies, and Feauveau [3]

established the theory of biorthogonal wavelet systems. In the case of 2-band wavelet systems, biorthogonality has

the advantage that it allows for symmetric finitely-supported basis functions. This property is not possible to have

with orthogonal systems except in the trivial case of the Haar and other Haar-like transforms. The symmetry property

can offer significant benefits in many applications, image compression being one example.

In 1995, Sweldens [16] proposed lifting, a technique for the design and implementation of wavelet systems. Sub-

sequently, he has authored/coauthored many papers on the subject (e.g., [7], [17], [18]). Later, in 1996, Calderbank,

Daubechies, Sweldens and Yeo [2] proposed a systematic lifting-based technique for constructing reversible versions

of any 2-band wavelet transform. This method is of great significance in the context of lossless signal compression.

There are many important linkages between wavelet and filter bank theory. Digital filter bank methods have a

somewhat shorter history than wavelet theory. Until the linkage between filter bank theory and wavelet theory was

established, filter bank theory evolved independently from wavelet theory. Early contributions to (digital) filter bank

theory and subband coding were made by Crochiere, Webber, and Flanagan [4], and Croisier, Esteban, and Galand [5],

and others. Later, perfect reconstruction filter banks were studied in depth by many, with major contributions by

Mintzer [12], Smith and Barnwell [15], Vetterli [20], and Vaidyanathan [19].

Wavelet transforms have proven to be extremely useful for image coding as many have shown (e.g., [1, 10]).
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Figure 1.1: Time-frequency tilings for different signal representations. Tilings for the (a) identity basis, (b) Fourier

series, (c) windowed Fourier series, and (d) wavelet series.
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Consequently, many image compression schemes have adopted the use of such transforms. In 1993, Shapiro [14]

introduced the notion of embedded coding with wavelets. His coding scheme, called embedded zerotree wavelet

(EZW) coding, was based on a wavelet decomposition. Due to the obvious advantages of the embedding property in

many applications, embedded coding quickly grew in popularity—especially as a means to build unified lossy/lossless

compression systems. In 1995, Zandi et al. [21] proposed compression with reversible embedded wavelets (CREW),

a reversible embedded image compression system based on some of the ideas of Shapiro. Not long after, in 1996, Said

and Pearlman [13] introduced a new coding scheme known as set partitioning in hierarchical trees (SPIHT) which is

similar in spirit to EZW.

1.3 Pedagogical Approach

The subject of wavelets is a difficult one to teach well, as it is inherently multidisciplinary, requiring an understanding

of advanced concepts from diverse areas of mathematics (e.g., linear algebra and functional analysis) and signal

processing (e.g., multirate systems). The key developments in the field have originated from a diverse group of

individuals, including mathematicians, physicists, and engineers. Since an understanding of concepts from many

diverse areas is required, learning about wavelets is often a challenging task. Students with a mathematics background

typically lack the necessary signal processing fundamentals, while students from an engineering background usually

lack the necessary mathematical foundations.

This book attempts to provide both the mathematics and signal processing background necessary to understand

wavelet systems. The bias is towards engineering students, however. For this reason, more emphasis is placed on

topics with which engineering students are typically less familiar, while other topics are not treated in as much detail.

1.4 Overview of the Book

This book is organized into several parts. In what follows, we describe each of these parts in order.

Part I, which is comprised of Chapters 1 and 2, provides some introductory material. In particular, Chapter 2

introduces some mathematical preliminaries that are needed in subsequent chapters. This material relates to topics

such as Hilbert spaces, functional analysis, and Fourier analysis.

Part II, which is comprised of Chapters 3 and 4, primarily focuses on the study filter banks and wavelets in the one-

dimensional context. In particular, Chapter 3 considers one-dimensional multirate systems and filter banks. Multirate

filter banks are the computational structures used to realize wavelet transforms. Chapter 4 studies univariate wavelet

systems. It presents wavelets from a mathematical perspective. Then, a link is established between wavelets and

multirate filter banks.

Part III, which is comprised of Chapters 5, 6, and 7, examines filter banks and wavelets in the multidimensional

setting. Chapter 5 provides some mathematical background related to multidimensional signal processing. Chapter 6

then considers filter banks in the multidimensional context. Chapter 7 examines the wavelets associated with such

filter banks.

Part IV, which is comprised of Chapters 8 and 9 considers subdivision surfaces and subdivision wavelets. Chap-

ter 8 provides some fundamentals related to geometry processing. Chapter 9 presents subdivision surfaces and subdi-

vision wavelets.

Part V, which is comprised of Chapters 10 and 11, examines numerous applications of multiresolution signal and

geometry processing. Chapter 10 considers the application of filter banks and wavelets to signal processing. This

includes topics such as image compression and signal denoising. Chapter 11 covers the application of subdivision

surfaces and wavelets to geometry processing.

Part VI corresponds to appendix material. This material includes some useful formulas, theorems, and ta-

bles. Some information on the Open Graphics Library (OpenGL) and Computational Geometry Algorithms Library

(CGAL) is provided in addition to various source code listings.
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Chapter 2

Mathematical Preliminaries

2.1 Overview

In order to study wavelet systems, we first need to establish some mathematical preliminaries. This chapter provides

these mathematical foundations. We begin by introducing sets, and then progressively add more structure to sets

in order to obtain metric spaces, vector spaces, normed spaces, inner product spaces, and Hilbert spaces. Some

useful function and sequence spaces are also examined. As we shall see, function and sequence spaces are of critical

importance in the study of wavelet systems. Later in the chapter, we turn our attention to Fourier analysis. The Fourier

transform is introduced in the context of various function spaces.

2.2 Sets

One mathematical object of fundamental importance is the set. Using sets, we can construct other more sophisticated

and practically useful mathematical objects. Now, we proceed to define the notion of a set.

Definition 2.1 (Set, empty set). A set is a collection of objects called elements. The empty set, denoted /0, is the set

containing no elements.

To denote that an object x is an element of the set A, we write x ∈ A. Two sets are equal if they contain exactly the

same elements.

Definition 2.2 (Subset, proper and improper subsets). A set B is said to be a subset of a set A, denoted B⊂ A, if every

element of B is an element of A. If B⊂ A and B 6= A, then B is said to be a proper subset of A. (A subset that is not

proper is called improper.)

Example 2.1. Let A = {1,2,3,4} and B = {2,4}. Then, B⊂ A. In particular, B is a proper subset of A.

At this point, we introduce some commonly used sets. The sets of natural numbers, integers, and rational numbers

are denoted as N, Z, and Q, respectively, and are defined as

N = {1,2,3, . . .}, Z = {. . . ,−2,−1,0,1,2, . . .}, and

Q = {x : x = p/q where p,q ∈ Z, q 6= 0}.

We denote the sets of real numbers and complex numbers as R and C, respectively, where

C = {z : z = x+ jy for x,y ∈ R and j2 =−1}.

For convenience, we denote the nonnegative, positive, and negative integers as Z∗, Z+, and Z−, respectively. Or more

formally, we can write

Z∗ = {x : x ∈ Z,x≥ 0}, Z+ = N = {x : x ∈ Z,x > 0}, and Z− = {x : x ∈ Z,x < 0}.
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A∪B

A B

Figure 2.1: Union of sets.

B

A∩B

A

Figure 2.2: Intersection of sets.

X

Ac A

Figure 2.3: Complement of set.

A∩B B−AA−B

BA

Figure 2.4: Difference of sets.

It is important to note that the sets N, Z, Q, R, and C, do not include infinity. The omission of infinity from these

sets is necessary in order to allow for a consistent system with respect to all of the usual arithmetic operations (i.e.,

addition, subtraction, multiplication, and division).

For convenience, we define the following notation for subsets of the real line R:

[a,b] = {x ∈ R : a≤ x≤ b},
(a,b) = {x ∈ R : a < x < b},

[a,b) = {x ∈ R : a≤ x < b}, and

(a,b] = {x ∈ R : a < x≤ b}.

Several basic operations on sets are given by the definitions below.

Definition 2.3 (Union, intersection, complement, and difference of sets). The union of two sets A and B, denoted

A∪B, is the set obtained by combining the elements of A and B. The intersection of two sets A and B, denoted A∩B,
is the set of elements common to both A and B. The complement of A in B, denoted Ac, is the set {x : x ∈ B,x 6∈ A}.
The difference of the sets A and B, denoted A−B or A\B, is the set consisting of all elements in A that are not in B

(i.e., A−B = A\B = {x : x ∈ A,x 6∈ B}). (The set difference A\B is also referred to as the relative complement of B

in A.)

The union, intersection, complement, and difference operations are illustrated in Figures 2.1, 2.2, 2.3, and 2.4,

respectively. Two sets A and B are said to be disjoint if A and B have no common elements (i.e., A∩B = /0).

Example 2.2. Let A = {1,2,3}, B = {3,4,5}, and C = {1,2,3,4,5,6}. Then, we have A∩ B = {3}, A∪ B =
{1,2,3,4,5}, A−B = {1,2} and B−A = {4,5}. The complement of A in C is {4,5,6}. The complement of B

in C is {1,2,6}.
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One can show that

A∪A = A, A∩A = A, A∪B = B∪A, A∩B = B∩A,

A∪ (B∪C) = (A∪B)∪C
A∩ (B∩C) = (A∩B)∩C

A∪ (B∩C) = (A∪B)∩ (A∪C)

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∩B⊂ A, A∪B⊃ A,

(Ac)c = A, Xc = /0, /0c = X ,

(A∪B)c = Ac∩Bc, and

(A∩B)c = Ac∪Bc.

Definition 2.4 (Ordered n-tuple). An ordered n-tuple (x1,x2, . . . ,xn) is a set of n objects, where one is designated as
the first, one as the second, and so on, until the nth object is reached. When n = 2, we have what is called an ordered

pair. When n = 3, we have what is called an ordered triplet.

Definition 2.5 (Cartesian product). Let X1,X2, . . . ,Xn be sets. Then, we define the Cartesian product X1×X2×·· ·×
Xn as the set of all ordered n-tuples (x1,x2, . . . ,xn) where x1 ∈ X1,x2 ∈ X2, . . . ,xn ∈ Xn.

As a matter of notation, the n-fold Cartesian product of a set S is denoted as Sn. For example, we can abbreviate

Z×Z and R×R×R as Z2 and R3, respectively.

Example 2.3. Let X1 = {1,2} and X2 = {3,4}. Then, X1×X2 is the set containing the elements:

(1,3),(1,4),(2,3),(2,4).

Moreover, X2
1 is the set containing the elements:

(1,1),(1,2),(2,1),(2,2).

Now, we introduce a few definitions that relate to the number of elements in a set.

Definition 2.6 (Cardinality). The number of elements in a set X is said to be the cardinality of the set, and is denoted

cardX .

Example 2.4. We have that card{1,3,5}= 3 and cardZ is not finite.

Definition 2.7 (Finite, countable, and uncountable sets). If a set S has a one-to-one correspondence with {1,2, . . . ,n}
where n is finite, then S is said to be finite. If a set S has a one-to-one correspondence with the natural numbers (or

equivalently, the integers), S is said to be countably infinite. A set that is either finite or countably infinite is said to

be countable. A set that is not countable is referred to as uncountable.

Example 2.5. The set {1, 1
2
, 1
4
} is finite. The set of even integers is countable (or, more specifically, countably

infinite). The set of real numbers R is uncountable.

Lemma 2.1. The set Q (of rational numbers) is countable.

Proof. Every nonzero rational number n has a (unique) representation of the form n = p/q, where q > 0 and p and q

are coprime. In the case of the rational number zero, we simply choose the representation n= 0
1
. We define the height

h of the rational number p/q (expressed in the form above) as h(p,q) = |p|+ q. The rational numbers can then be

partitioned into classes by height. Now, we observe that each of these classes contains only finitely many elements.

For example, only one rational number has height one (i.e., 0
1
); only two rational numbers have height two (i.e., −1

1
,

1
1
); and only four rational numbers have height three (i.e., −2

1
, −1

2
, 1
2
, 2
1
). Thus, we can order the classes by height,

and the elements within each class by increasing numerator. This process establishes an ordering on the set of rational

numbers (i.e., 0
1
, −1

1
, 1
1
, −2

1
, −1

2
, 1
2
, 2
1
, −3

1
, and so on). Consequently, a one-to-one correspondence exists between the

rational and natural numbers. Therefore, the set Q (of rational numbers) is countable.
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2.2.1 Maximum, Minimum, Supremum, and Infimum

A set X ⊂ R is said to be bounded from above if there exists u ∈ R such that x ≤ u for all x ∈ X . The quantity u

is said to be an upper bound of X . Similarly, X is bounded from below if there exists l ∈ R such that x ≥ l for all

x ∈ X . The quantity l is said to be a lower bound of X . If a set is bounded from above and below, the set is said to be

bounded.

A real number m is said to be the maximum of a set X ⊂ R if m ∈ X and m is an upper bound for X . Similarly,

a real number n is said to be the minimum of a set X ⊂ R if n ∈ X and n is a lower bound for X . We denote the

maximum and minimum of the set X as maxX and minX , respectively. It is important to note that a bounded set need

not have a maximum or minimum.

Example 2.6. Identify the minimum and maximum of each of the following sets:

(a) A = {x ∈ R : 0≤ x≤ 1},
(b) B = {x ∈ R : 0 < x < 1}, and
(c) C = {x ∈ R : 1≤ x}.

Solution. (a) For the set A, we have minA = 0 and maxA = 1. (b) The set B has neither a minimum nor a maximum.

(c) For the set C, we have minC = 1 and maxC does not exist.

Let X be a nonempty set that is bounded from above, and letU denote the set of all upper bounds of X . The setU

must always have a minimum, which is clearly the least upper bound of X . The least upper bound of a set X is referred

to as the supremum of X , denoted supX . If X is not bounded from above, we define supX = ∞. If X is empty, we

define supX =−∞.

Similarly, the greatest lower bound of the set X is called the infimum of X , denoted infX . If X is not bounded

from below, we define infX =−∞. If X is empty, we define infX = ∞.

Example 2.7. Identify the maximum, minimum, supremum, and infimum of each of the following sets:

(a) A1 = {x ∈ R : 1≤ x≤ 2},
(b) A2 = {x ∈ R : 1 < x < 2}, and
(c) A3 = {x ∈ R : x <

√
2}.

Solution. (a) For the set A1, we have minA1 = infA1 = 1 and maxA1 = supA1 = 2. (b) For the set A2, we have

infA2 = 1 and supA2 = 2, and neither maxA2 nor minA2 exist. (c) For the set A3, we have infA3 =−∞, supA3 =
√
2,

and minA3 and maxA3 do not exist.

2.2.2 Characteristic Function

Definition 2.8 (Characteristic function). Let A be a subset of a set X . Then, the characteristic function of A, denoted

χA, is defined as

χA(t) =

{
1 if t ∈ A

0 if t ∈ X \A.

The characteristic function is also commonly referred to as the indicator function.

Example 2.8. Consider the unit-step function u(t), where

u(t) =

{
1 if t ≥ 0

0 otherwise.

We have that u(t) = χ[0,∞)(t).
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2.2.3 Some Measure Theory Concepts

Below, we introduce a few definitions related to measure theory. We will need these definitions in later discussions.

Definition 2.9 (Measure zero). A subset S of R is said to have measure zero if, for every ε > 0, there is a sequence

{In}n∈N of open intervals, say with In = (an,bn) and an < bn, such that

S⊂
⋃

n∈N

In and ∑
n∈N

(bn−an) < ε.

(The first condition ensures that the intervals {In} cover all of S and the second condition ensures that the interval

widths bn−an have an arbitrarily small sum.)

Any countable subset of R has measure zero. For example, the sets N, Z, and Q each have measure zero. A

countable union of sets of measure zero is a set of measure zero. An uncountable set may, in some cases, have

measure zero (e.g., the Cantor set).

A property of a set X is said to hold almost everywhere if the set of elements in X for which the property fails to

hold has measure zero. The term “almost everywhere” is often abbreviated as “a.e.”.

Example 2.9. Consider χZ(t) where t ∈ R. Since χZ(t) is zero except for t ∈ Z, and Z is a set of measure zero, we

can say that χZ(t) = 0 almost everywhere.

Definition 2.10 (Essential infimum and supremum). The essential infimum of a function x defined on the set I is

given by

ess inft∈I x(t) = sup{A : x(t)≥ A a.e.}.

In other words, the essential infimum is the greatest lower bound that holds almost everywhere. The essential supre-

mum of a function x defined on the set I is given by

esssupt∈I x(t) = inf{A : x(t)≤ A a.e.}.

In other words, the essential supremum is the least upper bound that holds almost everywhere.

Example 2.10. Consider the functions f ,g defined on R as given by

f (t) =

{
2 if t ∈ Z

1 otherwise
and g(t) =

{
2 if t ∈ R\Z

1 otherwise.

For these functions, we have

inf
t∈R

f (t) = 1, ess inft∈R f (t) = 1, sup
t∈R

f (t) = 2, esssupt∈R f (t) = 1,

inf
t∈R

g(t) = 1, ess inft∈R g(t) = 2, sup
t∈R

g(t) = 2, and esssupt∈R g(t) = 2.

2.3 Integration

One fundamentally important concept in mathematics is that of the integral. Certainly, we are all well acquainted with

the Riemann integral, as introduced in any basic calculus course. Unfortunately, this definition of integration has some

shortcomings. For example, the space of Riemann integrable functions is not complete, when considered as a metric

space. This lack of completeness is quite problematic when we need to work with function spaces. Such shortcomings

motivate the introduction of the Lebesgue integral. The Lebesgue integral can be thought of as a generalization of the

Riemann integral. The Lebesgue integral overcomes many of the problems associated with the Riemann integral.
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2.3.1 Riemann Integral

From our early days studying calculus, we are all familiar with the Riemann integral. (Riemann is pronounced ree-

mahn.)

In what follows, we will formally define the Riemann integral. Consider a bounded function f defined on a finite

closed interval a≤ t ≤ b. Since f is bounded, we have m≤ f (t)≤M for all t ∈ [a,b] where

M = sup{ f (t) : a≤ t ≤ b} and

m = inf{ f (t) : a≤ t ≤ b}.

Now, we define the partition P of the interval [a,b] as the finite collection of points {t0, t1, . . . , tn} such that a = t0 <
t1 < · · ·< tn = b. Since f is bounded on [a,b], it is also bounded on the ith subinterval [ti−1, ti]. We define

Mi = sup{ f (t) : ti−1 ≤ t ≤ ti},
mi = inf{ f (t) : ti−1 ≤ t ≤ ti}, and

∆ti = ti− ti−1.

The graphical interpretation of the various quantities is shown in Figure 2.5. For each partition P, we can form the

upper and lower sums

U(P, f ) =
n

∑
i=1

Mi∆ti, and

L(P, f ) =
n

∑
i=1

mi∆ti.

It is not difficult to convince oneself thatU and L satisfy the inequality

m(b−a)≤ L(P, f )≤U(P, f )≤M(b−a).

We now define the upper and lower integrals as

∫ b

a
f dt = infU(P, f ) and

∫ b

a

f dt = supL(P, f ),

where the infimum and supremum are taken over all possible partitions P of the interval [a,b]. One can show that the

upper and lower integrals satisfy the inequality

∫ b

a

f dt ≤
∫ b

a
f dt.

If the upper and lower integrals are equal, the Riemann integral of f exists and is defined as

∫ b

a
f dt =

∫ b

a

f dt =
∫ b

a
f dt.

It is important to note that not all bounded functions are Riemann integrable. For example, consider the function

f (t) =

{
1 if t ∈Q

0 otherwise.

(This function is known as the Dirichlet function and is the indicator function of the rational numbers, namely χQ.)

Clearly, f is bounded. Interestingly enough, however, the Riemann integral of this function does not exist. For any
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Figure 2.5: Riemann integration.

partition P of the interval [a,b], we will have that each subinterval contains both rational and irrational numbers. So,

we haveMi = 1 and mi = 0 for all i. Consequently,U(P, f ) = 1(b−a) = b−a and L(P, f ) = 0(b−a) = 0. This yields
∫ b
a f dt = b−a and

∫ b
a
f dt = 0. Thus, f is not Riemann integrable.

The Riemann integral has a number of important properties as stated in the theorem below. The proof of these

properties can be found in many textbooks on calculus.

Theorem 2.1 (Properties of the Riemann integral). Let R[a,b] denote the set of Riemann integrable functions on the

interval [a,b]. The Riemann integral has the following properties:

1. If f ∈ R[a,b] and a≤ c≤ b, then f ∈ R[a,c], f ∈ R[c,b], and
∫ b
a f dt =

∫ c
a f dt+

∫ b
c f dt.

2. If f1, f2 ∈ R and α1,α2 ∈ R, then f = α1 f1 +α2 f2 ∈ R and
∫ b
a f dt = α1

∫ b
a f1dt+α2

∫ b
a f2dt.

3. If f ∈ R and f (t) > 0 on [a,b], then
∫ b
a f dt ≥ 0.

4. If f ∈ R and m≤ f (t)≤M on [a,b], then m(b−a)≤ ∫ ba f dt ≤M(b−a).

5. If f is continuous on [a,b], then there is a λ ∈ [a,b] such that
∫ b
a f dt = f (λ )[b−a].

6. If f ,g ∈ R and f (t)≤ g(t), then
∫ b
a f dt ≤ ∫ ba gdt.

2.3.2 Problem with the Riemann Integral

The Riemann integral has one particularly serious shortcoming. Let R[a,b] denote the set of Riemann integrable

functions on the interval [a,b]. It is possible for a sequence { fn} of functions in R[a,b] to converge to a function f ,

which may even be bounded, where f 6∈ R[a,b]. For example, consider the sequence of functions

fn(t) = lim
m→∞

[cos(n!πt)]2m =

{
1 if t = k

n!
for integer k

0 otherwise.
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That is, we have

f0(t) = f1(t) =

{
1 if t ∈ Z

0 otherwise,

f2(t) =

{
1 if 2t ∈ Z

0 otherwise,

and generally

fn(t) =

{
1 if n!t ∈ Z

0 otherwise.

One can show that as n→ ∞, fn(t) approaches f (t), where

f (t) =

{
1 if t ∈Q

0 otherwise.
(2.1)

The function f , however, is not Riemann integrable (as we saw earlier).

If a function has a sufficiently large number of discontinuities (as in the above example), its Riemann integral may

fail to exist. If the number of discontinuities is sufficiently small, however, we are guaranteed that Riemann integral

exists, as elucidated by the theorem below.

Theorem 2.2. Let f be a bounded function defined on [a,b]. Then, f is Riemann integrable on [a,b] if and only if the
set of points at which f is discontinuous is a set of measure zero.

2.3.3 Lebesgue Integral

Let C0 denote the set of all continuous real-valued functions defined on R with compact support. Given a sequence

{φn} inC0 such that ∑n

∫ |φn|dt < ∞, one can show that ∑n φn converges almost everywhere and ∑n

∫
φndt converges.

If a function f can be expressed as f = ∑n φn almost everywhere, it is reasonable to define the integral of f as∫
f dt = ∑n

∫
φndt. This idea leads to the definition of the Lebesgue integral which we formalize below.

Definition 2.11 (Lebesgue integral). Let f : R→R be a function that satisfies f = ∑n φn almost everywhere for some

sequence {φn} inC0 with ∑n

∫ |φn|dt < ∞. Then f is said to be Lebesgue integrable and the Lebesgue integral of f

is given by

∫
f dt = ∑

n

∫
φndt.

The Lebesgue integral has a number of important properties, some of which are given by the theorem below.

Theorem 2.3 (Properties of the Lebesgue integral). Let L denote the set of Lebesgue integrable functions (on some

interval). Let f ,g ∈ L and let α,β ∈ R. Further, let
∫
R denote the Riemann integral. Then, we have

1. if
∫
R f dt exists, then

∫
f dt exists and

∫
R f dt =

∫
f dt;

2. α f ∈ L and
∫

α f dt = α
∫
f dt;

3. f +g ∈ L and
∫
( f +g)dt =

∫
f dt+

∫
gdt;

4. | f | ∈ L and |∫ f dt| ≤ ∫ | f |dt;

5. if f = 0 almost everywhere, then
∫
f dt = 0;

6. if f > 0 then
∫
f dt ≥ 0.
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Let us now revisit the function f given by (2.1). Although the Riemann integral of f does not exist, the Lebesgue

integral of f is, in fact, well defined. Since the measure of the set of rational numbers is zero, the function f is zero

almost everywhere. Therefore, from the properties of the Lebesgue integral, we have
∫
f dt = 0.

Unless otherwise noted, all subsequent integrals appearing in this book should be assumed taken in the Lebesgue

sense.

2.4 Spaces

By imposing additional structure on sets, we can obtain other useful mathematical objects called spaces. By adding

different types of structure to a set, we can obtain different types of spaces. In the sections that follow, we introduce

several important types of spaces, namely metric spaces, vector spaces, normed spaces, inner product spaces, and

Hilbert spaces. Of particular interest are spaces with underlying sets having either functions or sequences as elements.

Such spaces are called function and sequence spaces, respectively.

2.5 Metric Spaces

Now, we introduce metric spaces. Metric spaces are one of the simplest types of spaces, as they have very little

structure. Before we can define a metric space, however, we must first define the notion of a metric.

Definition 2.12 (Metric). Ametric d on a set X is a real-valued function defined on X×X that satisfies the following

axioms:

1. d(x,y)≥ 0 for all x,y ∈ X (nonnegativity);

2. d(x,y) = 0 if and only if x = y (strict positivity);

3. d(x,y) = d(y,x) for all x,y ∈ X (symmetry); and

4. d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X (triangle inequality).

Example 2.11. Let X be the set of all real-valued continuous functions defined on the interval [a,b] (i.e., X =C[a,b]).
Define the function

d(x,y) =
∫ b

a
|x(t)− y(t)|dt.

Determine whether d is a metric on X .

Solution. We can easily confirm that d satisfies the nonnegativity, strict positivity, and symmetry properties. That is,

we have that

∫ b

a
|x(t)− y(t)|dt ≥ 0,

∫ b

a
|x(t)− y(t)|dt = 0⇔ x(t) = y(t), and

∫ b

a
|x(t)− y(t)|dt =

∫ b

a
|y(t)− x(t)|dt.

It now remains to be determined whether d satisfies the triangle inequality. From the definition of d, we have

d(x,y) =
∫ b

a
|x(t)− y(t)|dt

=
∫ b

a
|x(t)− z(t)+ z(t)− y(t)|dt.
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By the Minkowski inequality for integrals (E.3), we can write

d(x,y)≤
∫ b

a
|x(t)− z(t)|dt+

∫ b

a
|z(t)− y(t)|dt = d(x,z)+d(z,y).

Thus, the triangle inequality holds. Therefore, d is a metric on X .

Example 2.12. Let X be the set of real numbers, and define the function

d(x,y) = (x− y)2.

Determine whether d is a metric on X .

Solution. Since the square of a real number is always nonnegative, d(x,y) ≥ 0. Hence, the nonnegativity property

holds. Clearly, we also have that d(x,y) = (x− y)2 = 0 if and only if x = y. Thus, the strict positivity property holds.

Since d(x,y) = (x−y)2 = (y−x)2 = d(y,x), the symmetry property also holds. Now, it only remains to be determined

whether the triangle inequality is satisfied. We have

d(x,y) = (x− y)2 = x2−2xy+ y2

and

d(x,z)+d(z,y) = (x− z)2 +(z− y)2

= x2−2xz+ z2 + z2−2yz+ y2

= x2 + y2 +2z2−2xz−2yz.

Suppose now that x > 0, y < 0, and z = 0. Then, we have

d(x,z)+d(z,y) = x2 + y2

and d(x,y) = x2−2xy+ y2 where −2xy > 0. Consequently (since −2xy > 0),

d(x,y) > d(x,z)+d(z,y).

Thus, the triangle inequality does not hold in general. Therefore, d is not a metric on X .

Given the definition of a metric from above, we can now define a metric space.

Definition 2.13 (Metric space). A metric space is a set X with a metric d, and is denoted (X ,d) or simply X when

the metric is understood from the context.

A metric space is a set with additional structure defined by means of a metric. This additional structure is called

topological structure.

A metric can be thought of as a measure of distance between two members of a set. For example, consider the set

X of points in the Euclidean plane (i.e., X = R2). Let x,y ∈ X where x = (x1,x2) and y = (y1,y2). One can show that

d2(x,y) =
[
(x1− y1)

2 +(x2− y2)
2
]1/2

constitutes a metric for the set X . Thus, (X ,d2) is a metric space. In fact, d2 is the familiar measure of distance in

the Euclidean plane. In this context, the triangle inequality has the interpretation shown in Figure 2.6. In essence,

the triangle inequality states that the shortest path between two points (with respect to the metric) is along the line

segment joining them.

Different metrics can be defined over the same set. For example, let us again consider the set X = R2. One can

show that all of the following functions are metrics on X :

d1(x,y) = |x1− y1|+ |x2− y2| ,

d2(x,y) =
[
(x1− y1)

2 +(x2− y2)
2
]1/2

, and

d∞(x,y) = max{|x1− y1| , |x2− y2|}.
Each of these metrics defines a distinct metric space. That is, (X ,d1), (X ,d2), and (X ,d∞) are different metric spaces,

although the underlying set is the same in each case.
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Figure 2.6: Triangle inequality for metric in the Euclidean plane.

2.5.1 Examples of Metric Spaces

Below, we give some examples of metric spaces.

Example 2.13 (Real and complex numbers R and C). Let the set X be either the real numbers R or complex numbers

C. The function

d(x,y) = |x− y|
defines a metric on X . This metric is referred to as the usual metric for the real/complex numbers.

Example 2.14 (Euclidean space Rn). Let X be the set of all ordered n-tuples of real numbers (i.e., X = Rn). Then,

functions (with p ∈ R∪{∞})

dp(x,y) =

{
(|x1− y1|p + . . .+ |xn− yn|p)1/p for 1≤ p < ∞

max{|x1− y1| , . . . , |xn− yn|} for p = ∞

define metrics on X , where x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn).

Example 2.15 (Function space C[a,b]). Let X be the set of all real-valued functions that are defined and continuous

on the closed interval [a,b]. Define the function

d(x,y) = max
t∈[a,b]

|x(t)− y(t)| .

Then, (X ,d) is a metric space.

Example 2.16 (Lebesgue space Lp(R)). Let X be the set of complex-valued functions defined on R such that∫ ∞
−∞ |x(t)|

p
dt < ∞, where p ∈ R and 1≤ p < ∞. Define the function

dp(x,y) =

(∫ ∞

−∞
|x(t)− y(t)|p dt

)1/p

.

Then, (X ,dp) is a metric space.

Example 2.17 (Sequence space lp(N)). Let X be the set of infinite sequences of complex numbers x = (x1,x2, . . .)

such that (∑n∈N |xn|p)1/p < ∞, where p ∈ R and 1≤ p < ∞. Let y = (y1,y2, . . .). Then,

dp(x,y) =

(
∑
n∈N

|xn− yn|p
)1/p

defines a metric on X . When p = 2, we obtain the l2(N) space with metric

d2(x,y) =

(
∑
n∈N

|xn− yn|2
)1/2

.
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Figure 2.7: Open ball.

2.5.2 Some Topological Concepts

Since a metric space has topological structure, we can define a number of useful concepts related to this structure. We

introduce several of these concepts below.

Definition 2.14 (Continuous mapping). Let (X ,d) and (Y, d̃) be metric spaces. A mapping T : X → Y is said to be

continuous at a point x0 ∈ X if for every real number ε > 0 there exists a real number δ > 0 such that

d̃(Tx,Tx0) < ε for all x satisfying d(x,x0) < δ .

The mapping T is said to be continuous if it is continuous at every point in X .

Definition 2.15 (Open ball). Let (X ,d) be a metric space and let x0 be an arbitrary point in (X ,d). The set

B(x0,r) = {x ∈ X : d(x,x0) < r}

where 0 < r < ∞ is referred to as the open ball with center x0 and radius r.

Note that an open ball must have a strictly positive radius. An open ball is illustrated in Figure 2.7.

Definition 2.16 (Neighbourhood). An open ball with center x0 (i.e., B(x0,δ )) is said to be a neighbourhood of x0.

Definition 2.17 (Boundary point and boundary). Let (X ,d) be a metric space and let S be a subset of X . A point x∈ X
is said to be a boundary point of S if every neighbourhood of x contains both elements in S and elements not in S.

The boundary of a set S, denoted bdyS, is the set of all boundary points of S.

Example 2.18. Let S = {x = (x1,x2) ∈ R2 : x21 + x22 < 1}. Determine bdyS.

Solution. We begin by observing that the set S consists of all points inside a circle of radius 1 centered at the origin,

as shown in Figure 2.8(a). In other words, the set is an open ball with radius 1 centered at the origin. Therefore,

bdyS = {x = (x1,x2) ∈ R2 : x21 + x22 = 1}, as shown in Figure 2.8(b).

Definition 2.18 (Point of adherence). Let S be a subset of a metric space (X ,d). A point x in (X ,d) is said to be a

point of adherence of S if each neighbourhood N of x contains a point in S.

It is important to emphasize that a point of adherence of S does not necessarily need to be in S. It also follows

from the above definition that every point in S is a point of adherence of S.

Example 2.19. Let S= {x= (x1,x2)∈R2 : x21+x22 < 1}. Then, the set of all points of adherence of S is {x= (x1,x2)∈
R2 : x21 + x22 ≤ 1}.

Definition 2.19 (Open set). A set S in a metric space (X ,d) is said to be open if S contains a neighbourhood of each

one of its points (i.e., for each x ∈ S, there is a neighbourhood N with N ⊂ S).
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Figure 2.8: Boundary example. (a) The set S and (b) its boundary.

Informally, a subset S of a metric space (X ,d) is open if S does not contain any of its boundary points (i.e.,

S∩bdyS = /0). It follows from the above definition that the empty set /0 and X itself are always open.

Example 2.20. Determine whether the subset S = (0,1) of R is open.

Solution. The set S contains a neighbourhood of each of its points. Therefore, S is open.

Example 2.21. Determine whether the subset S = [2,3) of R is open.

Solution. The set S does not contain a neighbourhood of the point 2 ∈ S. Therefore, S is not open.

Definition 2.20 (Closed set). Let (X ,d) be a metric space. A subset S ⊂ X is said to be closed if the complement of

S (in X) is open.

Informally, a subset S of a metric space (X ,d) is closed if S contains all of its boundary points (i.e., bdyS⊂ S).

Example 2.22. Determine whether the subset S = [0,1] of R is closed.

Solution. The complement Sc of S in R is (−∞,0)∪ (1,∞). Clearly, Sc contains a neighbourhood of each of its points.
Therefore, Sc is open, implying that S is closed.

Example 2.23. Determine whether the subset S = [0,1) of R is closed.

Solution. The complement Sc of S in R is (−∞,0)∪ [1,∞). Now, we observe that Sc does not contain a neighbourhood
about its point 1. Therefore, Sc is not open, implying that S is not closed.

Definition 2.21 (Closure). Let S be a set in a metric space (X ,d). The set of all points of adherence of S is said to be

the closure of S (in X) and is denoted closS.

Informally, the closure of S is the union of S with its boundary points (i.e., closS = S∪bdyS). The closure of a set
is always closed. The closure of a closed set is itself.

Example 2.24. The closure of (0,1) in R is [0,1].

Example 2.25. Let S = [0,1)⊂ R. Determine whether S is open and/or closed. Find the closure of S (in R).

Solution. There is no neighbourhood of the point 0 ∈ S that is contained in S. Therefore, S is not open. The comple-

ment Sc of S in R is (−∞,0)∪ [1,∞). There is no neighbourhood of the point 1 ∈ Sc that is contained in Sc. Therefore,
Sc is not open, implying that S is not closed. The set of all points of adherence of S is given by [0,1)∪{0,1}= [0,1].
Therefore, closS = [0,1].

Example 2.26. Let S = {z ∈ C : |z| ≤ 1}. Determine whether S is open and/or closed. Find the closure of S.
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Solution. First, we consider whether S is open. Since any point in {z∈C : |z|= 1}⊂ S does not have a neighbourhood

contained in S, S is not open. Now, we consider whether S is closed. We have Sc = {z ∈ C : |z|> 1}. Since all points
in Sc have a neighbourhood contained in Sc, Sc is open. Therefore, S is closed. The set of all points of adherence of S

is {z ∈ C : |z| ≤ 1}. Thus, closS = S.

Definition 2.22 (Dense set). A subset S of a metric space (X ,d) is said to be dense in X if closS = X .

From the above definition, it follows that the set X is always dense in (X ,d). Intuitively speaking, if a subset S

of (X ,d) is dense in X , then for each point x ∈ X , there are points in S arbitrarily close to x. In other words, we can

approximate points in X with arbitrary accuracy using points in S.

Example 2.27. The set of rational numbers Q is dense in R.

Example 2.28. The set of infinitely differentiable real-valued functions defined on I ⊂ R is dense in L2(I).

Example 2.29. The set of bounded functions defined on I ⊂ R is dense in Lp(I) for 1≤ p < ∞.

Consider the subset S of the metric space (X ,d). Density depends not only on the subset S but also on the

“universal” set X being considered. That is, a set S may be dense in one set but not in another, as illustrated by the

example below.

Example 2.30. The set of integers Z is dense in Z but not dense in R.

2.5.3 Convergent Sequences

A metric space adds topological structure to a set by way of a metric. A metric is beneficial as it provides a measure

of distance between elements in a set. Once we have a well defined measure of distance, we can begin to define other

useful concepts that utilize this measure. One such notion is that of convergence as we introduce below.

Definition 2.23 (Convergent sequence, limit). A sequence {xn} in a metric space (X ,d) is said to be convergent if

there is a point x in (X ,d) with the property that for each number ε > 0 there is an integer N such that d(xn,x) < ε
whenever n≥ N. The point x is called the limit of the sequence {xn}, which we denote as

lim
n→∞

xn = x.

A sequence that is not convergent is said to be divergent.

It is important to emphasize that, in the above definition, the limit x must be in X . We illustrate this point with the

following example.

Example 2.31. Let X be the open interval (0,1) on R with the usual (absolute value) metric. The sequence { 1
n
} =

{1, 1
2
, 1
3
, . . .} is not convergent since the value that the sequence is trying to approach, namely 0, is not in X .

A sequence that is convergent in one space may not be convergent in another. That is, convergence is not a property

of a sequence itself. Convergence also depends on the space in which a sequence lies. For example, the sequence

{3,3.1,3.14,3.141,3.1415, . . .}, which corresponds to increasingly better approximations of π , is convergent in R but

not in Q (with the usual metrics), since π ∈ R but π 6∈Q.

Another concept related to the notion of convergence is that of a Cauchy sequence as defined below.

Definition 2.24 (Cauchy sequence). A sequence {xn} in a metric space (X ,d) is said to be Cauchy if for each ε > 0

there exists an N such that d(xm,xn) < ε for any choice of m,n > N. (Note that N depends on ε .)

In less formal terms, a Cauchy sequence can be thought of as a sequence that is trying to converge. The elements

in such a sequence become closer and closer in value as the sequence index increases. In this sense, the sequence is

trying to approach some limit.

Example 2.32. Show that the sequence {xn}= { 1
n
}= {1, 1

2
, 1
3
, . . .} (in R with the usual metric) is Cauchy.
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Solution. Let ε > 0. Let N = 2/ε . If n,m > N, then

xn = 1/n < 1/N = ε/2 and

xm = 1/m < 1/N = ε/2.

So, for all n,m > N, we have

d(xm,xn)≤ d(xm,0)+d(0,xn)

= |1/m|+ |1/n|
= 1/n+1/m

= xn + xm

< ε/2+ ε/2

= ε.

Thus, we have that d(xm,xn) < ε for all m,n > N, implying that the sequence is Cauchy.

Example 2.33. Define the sequence (xn)n∈N such that xn is the first (n+ 1) digits in the decimal expansion of
√
2.

That is, we have

x1 = 1.4, x2 = 1.41, x3 = 1.414, x4 = 1.4142, . . . .

Show that (xn)n∈N (in R with the usual metric) is a Cauchy sequence.

Solution. Consider the quantity d(xm,xn) = |xm− xn|. If m and n are greater than N, then xm and xn have at least the

first (N+1) digits in common. Consequently, we have

d(xm,xn) < 10−N for all m,n > N.

Thus, for every ε > 0, we have

d(xm,xn) < ε = 10−N for all m,n > N,

where N =− logε . Therefore, the sequence (xn)n∈N is Cauchy.

Example 2.34. Define the sequence

{xn}= round(na)/n

where a is a real constant and round(x) denotes the nearest integer to x. Show that the sequence {xn} is Cauchy.

Solution. Consider d(xn,a). We can write

d(xn,a) =

∣∣∣∣
round(na)

n
−a

∣∣∣∣

=

∣∣∣∣
round(na)−na

n

∣∣∣∣

=
|round(na)−na|

n
.

Now we observe that |round(na)−na| ≤ 1
2
. So, we have

d(xn,a)≤ 1
2n

.
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Using the triangle inequality, we can write

d(xm,xn)≤ d(xm,a)+d(a,xn)

= 1
2m

+ 1
2n

.

Consider the preceding inequality for m,n > N where N = 1/ε (and ε > 0). Observing that

1
2m

< 1
2N

= ε/2 and 1
2n

< 1
2N

= ε/2,

we can conclude

d(xm,xn) < ε/2+ ε/2 = ε.

Thus, the sequence is Cauchy.

As one might suspect, there is an important relationship between the convergent and Cauchy properties of se-

quences, as stated by the theorem below.

Theorem 2.4 (Convergent sequence). Every convergent sequence in a metric space is a Cauchy sequence.

Proof. If limn→∞ xn = x, then for each ε > 0 there exists an N such that

d(xn,x) < ε/2 for all n > N.

So, by the triangle inequality we have (for m,n > N)

d(xm,xn)≤ d(xm,x)+d(x,xn) <
ε

2
+

ε

2
= ε.

Thus, we have that d(xm,xn) < ε for all m,n > N. Therefore, the sequence {xn} is Cauchy.

The converse of the above theorem is not necessarily true. That is, not every Cauchy sequence is a convergent

sequence. Essentially, a Cauchy sequence can fail to converge due to a “hole” in the metric space in which the

sequence lies. Some metric spaces are such that they do not have this problem. We give such spaces a special name

as defined below.

Definition 2.25 (Completeness). A metric space (X ,d) is said to be complete if each Cauchy sequence in (X ,d) is a
convergent sequence in (X ,d) (i.e., has a limit which is an element of X). A metric space that is not complete is said

to be incomplete.

To use the analogy from above, a complete metric space has no holes. For this reason, a Cauchy sequence cannot

fail to converge in such a space.

By virtue of the above definition, in a complete metric space, the Cauchy and convergent properties are equivalent.

This equivalence has many important implications. For example, when working with complete metric spaces, we can

show that a sequence is convergent simply by showing that it is Cauchy. In practice, this is usually much easier to do

than proving convergence directly. To show that a sequence is Cauchy, we need only consider the sequence and the

relevant metric. We need not worry about the limit of the sequence, if it even exists in the first place. In this way, we

can show that a sequence in a complete metric space is convergent without ever having to find its limit (which may be

difficult to do).

Example 2.35 (Real numbers R). The real line R with the usual (absolute value) metric is a complete metric space.

Any closed interval [a,b] on R with the usual metric is a complete metric space. Any open interval (a,b) on R with

the usual metric is an incomplete metric space.

Example 2.36 (Complex numbers C). The complex plane C with the usual (magnitude) metric is a complete metric

space.
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Example 2.37 (Rational numbers Q). The metric space X consisting of the set of rational numbers (i.e., X = Q)

with the usual absolute value metric (i.e., d(x,y) = |x− y|) is not complete. Consider, for example, the sequence

{3,3.1,3.14,3.141,3.1415, . . .}. This sequence is a Cauchy sequence, but it is not convergent since π is not a rational

number.

Example 2.38 (Integers Z). Show that the set X of all integers (i.e., X = Z) with the metric d defined by d(x,y) =
|x− y| is a complete metric space.

Solution. Consider an arbitrary Cauchy sequence {xn} in X . For each ε > 0, there exists N such that

d(xm,xn) < ε for all m,n > N.

Consider the choice of ε = 1. There must exist N such that

d(xm,xn) = |xm− xn|< 1 for all m,n > N.

This implies, however, that xm = xn for all m,n > N. Thus, {xn} is of the form

(x1,x2, . . . ,xN ,xN+1,xN+1,xN+1, . . .).

Clearly, such a sequence converges to a limit in X since xN+1 ∈ X . Since {xn} was chosen as an arbitrary Cauchy

sequence, this shows that every Cauchy sequence is convergent. Hence, the metric space (X ,d) is complete.

Example 2.39 (Continuous functions). Let X be the set of all continuous real-valued functions on A = [−1,1] and
define the metric on X as

d(x,y) =

∫ 1

−1
[x(t)− y(t)]2dt.

Show that the metric space (X ,d) is not complete.

Solution. Consider the sequence { fn} given by

fn(t) =





0 for t <− 1
n

1
2
nt+ 1

2
for − 1

n
≤ t ≤ 1

n

1 for t > 1
n
.

A plot of the corresponding function is shown in Figure 2.9. We have

d( fm, fn) =

{∫ −1/m
−1/n ( 1

2
nt+ 1

2
)2dt+

∫ 1/m
−1/m[( 1

2
mt+ 1

2
)− ( 1

2
nt+ 1

2
)]2dt+

∫ 1/n
1/m[1− ( 1

2
nt+ 1

2
)]2dt for m > n

∫ −1/n
−1/m( 1

2
mt+ 1

2
)2dt+

∫ 1/n
−1/n[(

1
2
mt+ 1

2
)− ( 1

2
nt+ 1

2
)]2dt+

∫ 1/m
1/n [( 1

2
mt+ 1

2
)− (1)]2dt for m < n

=

{
(n−m)2

6m2n
for m > n

(m−n)2
6n2m

for m < n.

Thus, as m,n→ ∞, we have d( fm, fn) goes to zero. Therefore, the sequence is Cauchy. The limit function f (t) is

given by

f (t) =





0 for t < 0
1
2

for t = 0

1 for t > 0.

Since f (t) is not continuous, it is not in X . So, we have found a Cauchy sequence in X that does not have a limit in X .

Therefore, the metric space X is not complete.

We can characterize closed sets using the notion of a limit as specified by the theorem below.
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− 1
n

fn(t)

t
1
n

1
2

1

Figure 2.9: Function.

Theorem 2.5. Let S be a nonempty subset of a metric space (X ,d). Then, x ∈ closS if and only if there is a sequence

(xn) in S such that limn→∞ xn = x.

The above theorem is helpful as it provides some insight into what elements are added to a set by the closure

operation. The above theorem can also be used to show the result below.

Theorem 2.6 (Closed set theorem). A set S in a metric space (X ,d) is a closed set if and only if every convergent

sequence {xn} with {xn} ⊂ S has its limit in S.

Theorem 2.7 (Continuity and convergence). Let X and Y be metric spaces. The mapping T : X → Y is continuous if

and only if

T
(
lim
n→∞

xn

)
= lim

n→∞
T (xn)

for every convergent sequence (xn)n∈N in X. That is, a mapping T is continuous if and only if it preserves convergent

sequences.

The above theorem essentially says that a continuous mapping preserves limits. So, the order of a limit and

continuous mapping can be interchanged.

2.6 Vector Spaces

In the case of metric spaces, we impose topological structure on a set. By imposing a different kind of structure on a

set, we can obtain an object known as a vector space. We formally define this object below.

Definition 2.26 (Vector space). A vector space (or linear space) over a scalar field F (such as R or C) is a nonempty

set V , together with two algebraic operations,

1. a mapping (x,y) 7→ x+ y from V ×V into V called vector addition and

2. a mapping (a,x) 7→ ax from F×V into V called scalar multiplication,

for which the following conditions hold:

1. for all x,y ∈V , x+ y ∈V (closure under vector addition);

2. for all x ∈V and all a ∈ F , ax ∈V (closure under scalar multiplication);

3. for all x,y ∈V , x+ y = y+ x (commutativity of vector addition);

4. for all x,y,z ∈V , (x+ y)+ z = x+(y+ z) (associativity of vector addition);

5. for all x ∈V and all a,b ∈ F , (ab)x = a(bx) (associativity of scalar multiplication);

6. for all x ∈V and all a,b ∈ F , (a+b)x = ax+bx (distributivity of scalar sums);
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7. for all x,y ∈V and all a ∈ F , a(x+ y) = ax+ay (distributivity of vector sums);

8. there exists 0 ∈V such that x+0 = x for all x ∈V (additive identity);

9. for all x ∈V , there exists a (−x) ∈V such that x+(−x) = 0 (additive inverse); and

10. for all x ∈V , 1x = x, where 1 denotes the multiplicative identity of the field F (scalar multiplication identity).

We denote the above vector space (V,F,+, ·) or simply V when the other parameters are clear from the context.

We use the symbol 0 to denote the zero scalar as well as the zero vector. This should not normally be a cause of

confusion, however, as the intended meaning should be clear from the context.

A vector space over the field of real numbers is called a real vector space. A vector space over the field of

complex numbers is called a complex vector space.

A vector space is a set with additional structure defined by means of vector addition and scalar multiplication

operations. This additional structure is called algebraic structure. Note that a vector space lacks any topological

structure (such as that imposed by a metric).

2.6.1 Examples of Vector Spaces

Below, we give some examples of vector spaces.

Example 2.40 (Euclidean space Rn). The real Euclidean vector space Rn is the set V of all ordered n-tuples of

real numbers together with the scalar field F = R for which vector addition and scalar multiplication are defined,

respectively, as

x+ y = (x1 + y1,x2 + y2, · · · ,xn + yn) and

ax = (ax1,ax2, · · · ,axn),

where x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) are in V and a ∈ F .

Example 2.41 (Space Cn). In an analogous way to the previous example, we can also define the space Cn. This space

is the set V of all ordered n-tuples of complex numbers and the scalar field F = C with vector addition and scalar

multiplication defined as in the previous example.

Example 2.42 (Function space C[a,b]). Let V be the set of all continuous real-valued functions defined on [a,b].
Then, the vector space C[a,b] is the set V and scalar field R with vector addition and scalar multiplication defined,

respectively, as

(x+ y)(t) = x(t)+ y(t) and

(ax)(t) = ax(t),

where x,y ∈V and a ∈ R. Since the scalar field is R, this is an example of a real vector space.

Example 2.43 (Lebesgue space L2(R)). Let V be the set of all measurable complex-valued functions x(t) defined on

R such that
∫ ∞
−∞ |x(t)|

2
dt < ∞. Then, the complex vector space L2(R) is the set V and scalar field F = C with vector

addition and scalar multiplication defined, respectively, as

(x+ y)(t) = x(t)+ y(t) and

(ax)(t) = ax(t),

where x,y ∈V and a ∈ F . In a similar fashion, we can also define a real vector space L2(R). In this case, the elements

of V are real-valued functions (instead of complex-valued functions) and the field F is R (instead of C).
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Example 2.44 (Sequence space l2(Z)). LetV be the set of all complex sequences x= (. . . ,x−2,x−1,x0,x1,x2, . . .) such
that ∑n∈Z |xn|2 < ∞. Then, the complex vector space l2(Z) is the setV and scalar field F = C with vector addition and

scalar multiplication defined, respectively, as

x+ y = (. . . ,x−2 + y−2,x−1 + y−1,x0 + y0,x1 + y1,x2 + y2, . . .) and

ax = (. . . ,ax−2,ax−1,ax0,ax1,ax2, . . .),

where x= (. . . ,x−2,x−1,x0,x1,x2, . . .) and y= (. . . ,y−2,y−1,y0,y1,y2, . . .) are inV and a∈ F . In a similar way, we can

also define a real vector space l2(Z). In this case, the elements ofV are real sequences (instead of complex sequences)

and the field F is R (instead of C).

2.6.2 Subspaces

A nonempty subset S of a vector space V over F is said to be a vector subspace of V if the following conditions hold:

1. x+ y ∈ S for all x,y ∈ S (closure under vector addition); and

2. ax ∈ S for all x ∈ S and all a ∈ F (closure under scalar multiplication).

One can readily confirm that a subspace of a vector space is itself a vector space. A subspace S of the vector space V

is said to be proper if S 6=V and improper if S =V .

Example 2.45. Let V be the vector space of all polynomials over R with the usual vector addition and scalar multi-

plication operations. The set S of constant functions is a subset of V . One can easily confirm that S is closed under

vector addition and scalar multiplication. Therefore, S is a subspace of V .

2.6.3 Linear Transformations

Definition 2.27 (Linear transformation). A transformation T of a vector space V into a vector spaceW , where V and

W have the same scalar field F , is said to be a linear transformation if

1. for all x ∈V and all a ∈ F , T (ax) = aT (x) (homogeneity); and

2. for all x,y ∈V , T (x+ y) = T (x)+T (y) (additivity).

Definition 2.28 (Null space and range space). The null space of a linear transformation T : V →W , denoted N(T ),
is the subset of V given by

N(T ) = {x ∈V : Tx = 0}

(i.e., the set of all vectors mapped to the zero vector under the transformation T ). The range space of a linear

transformation T :V →W , denoted R(T ), is defined as

R(T ) = {y = Tx : x ∈V}

(i.e., the set of vectors produced by applying T to each of the elements of V ).

Theorem 2.8. A transformation T of V into W, where V and W are vector spaces over the same scalar field F, is

linear if and only if

T (a1x1 +a2x2 + . . .+anxn) = a1T (x1)+a2T (x2)+ . . .+anT (xn)

for all x1,x2, . . . ,xn ∈V, all a1,a2, . . . ,an ∈ F, and all finite n.

The condition in the above theorem is referred to as the principle of superposition.

Definition 2.29 (Projection). A linear transformation P of a vector space V into itself is said to be a projection if

P2 = P (i.e., P is idempotent).
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2.6.4 Linear Independence

Definition 2.30 (Collinear vectors). If x and y are nonzero vectors and x = ay for some scalar a, then x and y are said

to be collinear.

Example 2.46. Consider the vectors x= (1,4,−3) and y= (−2,−8,6) inR3. Determine whether x and y are collinear.

Solution. By inspection, we have y =−2x. Therefore, x and y are collinear.

Definition 2.31 (Linear combination). Let {x1,x2, . . . ,xn} be a finite set of elements in a vector space V . A vector

x ∈V is said to be a linear combination of vectors x1,x2, . . . ,xn if there exist scalars a1,a2, . . . ,an such that

x = a1x1 +a2x2 + . . .+anxn.

With regards to the above definition, it is important to emphasize that a linear combination has only a finite number

of terms. This is true regardless of whether the vector space in question is finite- or infinite-dimensional. Furthermore,

it is not simply by coincidence that we define a linear combination in this way. The fundamental issue here is that, in

the context of a vector space, an infinite series is not a meaningful construct. Any time that we deal with an infinite

series, we must address the issue of convergence. Since a vector space does not have any topological structure (like

that imposed by a metric), we cannot measure closeness of vectors, and consequently, we have no way to define

convergence for an infinite series.

Example 2.47. Any element of R3 is a linear combination of the vectors (1,0,0), (0,1,0), and (0,0,1).

Example 2.48. Let V be the space of all polynomials of degree n. Then, any vector x ∈V is a linear combination of

the monomials 1, t, t2, . . . , tn.

Example 2.49. LetV be the vector space R4. Determine whether the vector x ∈V is a linear combination of elements

in the set S⊂V , where x = (2,−5,−2,9) and S = {(−1,2,1,1),(3,−1,−2,4),(−5,−1,3,2)}.

Solution. We must determine if there exist scalars a1,a2,a3 such that

a1(−1,2,1,1)+a2(3,−1,−2,4)+a3(−5,−1,3,2) = (2,−5,−2,9).

Thus, we must solve the overdetermined system of equations



−1 3 −5
2 −1 −1
1 −2 3

1 4 2






a1
a2
a3


=




2

−5
−2
9


 .

This system of equations has the solution a1 = −1, a2 = 2, and a3 = 1. Therefore, x is a linear combination of

elements of S. In particular, we have

x =−(−1,2,1,1)+2(3,−1,−2,4)+(−5,−1,3,2).

Example 2.50. Let V be the vector space l2(N). Define x ∈V and S ⊂V as x = {1/n2} and S = {ϕ1,ϕ2, . . .}, where
ϕn = (δ [n−1],δ [n−2], . . .). Determine whether x is a linear combination of elements in S.

Solution. Obviously, we can express x as

x =
∞

∑
n=1

1
n2

ϕn

= ϕ1 + 1
4
ϕ2 + 1

9
ϕ3 + . . .

= (1,0,0, . . .)+ 1
4
(0,1,0,0, . . .)+ 1

9
(0,0,1,0, . . .)+ . . . .

This representation of x, however, does not correspond to a linear combination, as a linear combination must be

comprised of a finite number of terms. Therefore, x is not a linear combination of elements in S.
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Definition 2.32 (Span). Let A be a set in a vector space. For any nonempty subset A of a vector space V , the set of all

(finite) linear combinations of vectors in A is called the span of A, denoted spanA.

One can show that spanA is a subspace of V . We refer to this subspace as the space spanned by A.

Example 2.51. Let A be the subset of R3 given by A = {(1,0,0),(0,1,0)}. The span of A is the xy-plane.

Definition 2.33 (Linear independence). A (nonempty) finite set of elements {x1,x2, . . . ,xn} in a vector spaceV is said

to be linearly independent if the only set of scalars {a1,a2, . . . ,an} satisfying the equation

a1x1 +a2x2 + . . .+anxn = 0

is the trivial solution with a1 = a2 = . . . = an = 0. An infinite set A of vectors in V is said to be linearly independent

if every (nonempty) finite subset of A is linearly independent. A set that is not linearly independent is called linearly

dependent.

It follows from the definition of linear independence that any set containing the zero vector is linearly dependent.

Example 2.52. LetV be the vector spaceC[0,1] (as defined in Example 2.42), and let A be the infinite set {1, t, t2, . . .}.
Determine whether A is linearly independent.

Solution. We must determine whether every finite subset of A is linearly independent. Let S be an arbitrary finite

subset of A given by S = {tk0 , tk1 , . . . , tkn} where k0 < k1 < .. . < kn. Now, we need to consider the solution of the

equation

a0t
k0 +a1t

k1 + . . .+ant
kn ≡ 0 for all t ∈ [0,1],

where a0,a1, . . . ,an are scalars. Since the left-hand side of the above equation is an knth order polynomial, it can

be zero for at most kn distinct values of t. Thus, the only way this polynomial can be zero for all t ∈ [0,1] is if

a0 = a1 = . . . = an = 0. Therefore, S is linearly independent. Since S was chosen as an arbitrary finite subset of A,

this shows that A is also linearly independent.

2.6.5 Bases and Dimensionality

Definition 2.34 (Hamel basis). A set A in a vector spaceV is said to be aHamel basis ofV if A is linearly independent

and spanA =V .

The Hamel basis is a generalization of the familiar concept of a coordinate system. One can show that all Hamel

bases of a vector space have the same cardinal number.

Example 2.53. The set {(1,0,0),(0,1,0),(0,0,1)} is a Hamel basis for R3.

Example 2.54. Let V be the vector space of polynomials of degree less than or equal to two including the zero

polynomial. The set {1, t, t2} is a Hamel basis of V . Another Hamel basis of V is the set {2, t− t2, t}.

Definition 2.35 (Dimension). The cardinal number of any Hamel basis of a vector spaceV is said to be the dimension

of V , denoted dimV .

The dimension of V is simply the number of linearly independent vectors required to span V . If the dimension of

V is finite, we say that V is finite dimensional. Otherwise, we say that V is infinite dimensional. Of most interest to

us are infinite-dimensional spaces (e.g., function and sequence spaces).

Example 2.55. The vector space {0} has dimension zero.

Example 2.56. The vector space Rn has dimension n.

The dimension of a vector space depends on its field of scalars as illustrated by the following example.
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Example 2.57. Over the field of complex numbers, the vector space of complex numbers has dimension 1. (A basis

is {1}.) Over the field of real numbers, the vector space of complex numbers has dimension 2. (A basis is {1, i}.)

Example 2.58. LetV be the set of all polynomials of order less than or equal to n. Each element ofV can be expressed

as a linear combination of elements from the set A = {1, t, t2, . . . , tn}. It can be shown that A is linearly independent.

Thus, dimV = cardA = n+1.

Example 2.59. Let V be the real vector space comprised of sequences of real numbers x = (x1,x2, . . .) such that

∑n∈N |xn|2 < ∞. Let A = {e1,e2, . . .}, where en is the sequence en = (δ [n−1],δ [n−2], . . .). That is,

e1 = (1,0,0, . . .), e2 = (0,1,0,0, . . .), e3 = (0,0,1,0,0, . . .), . . . .

It is easy to convince oneself that A is linearly independent. So one might be tempted to conclude that A is a Hamel

basis forV . This, however, is not the case. Consider a sequence y ∈V with an infinite number of nonzero entries. One

such sequence is y = (e−n). This sequence has an expansion of the form y = ∑n∈N anen. This sum does not constitute

a linear combination, since a linear combination must (by definition) have a finite number of terms. Thus, we have

that y ∈ V , but y 6∈ spanA. So, spanA 6= V and, consequently, A is not a Hamel basis for V . (Aside: One can show,

however, that spanA is the vector subspace of V comprised of all sequences that are nonzero on only a finite number

of entries.)

2.6.6 Inner Sum and Direct Sum

Definition 2.36 (Disjoint subspaces). Two vector subspaces V and W of the same dimensionality are said to be

disjoint if V ∩W = {0} (i.e., the only common vector between V andW is the zero vector).

Note that the disjoint qualifier applied to a vector space has a different meaning than in the context of sets (i.e.,

unlike disjoint sets, disjoint spaces have a common element, namely the zero vector).

Example 2.60. Consider the vector space V = R3. Let A = span{(1,0,0)} and B = span{(0,1,0)}. Then, A and B

are mutually disjoint subspaces of V .

Definition 2.37 (Inner sum). IfV andW are subspaces of the vector spaceU , then the inner sum ofV andW , denoted

V +W , is the space consisting of all points x = v+w where v ∈V and w ∈W .

Note that the inner sum of two subspaces is not generally the same as their union (i.e., V +W 6= V ∪W ). For

example, consider the subspaces V andW of R3 given by V = span{(1,0,0)} andW = span{(0,1,0)}. We have that

the vector (1,1,0) is in V +W but not V ∪W .

LetV andW be subspaces of the vector spaceU . IfU =V +W andV andW are disjoint,W is called the algebraic

complement of V inU . (Similarly, V is the algebraic complement ofW inU .)

Theorem 2.9 (Existence of algebraic complement). Let V be a vector subspace of a vector space U. Then, there

exists another subspace W such that V and W are disjoint, and U =V +W (i.e., W is the algebraic complement of V

in U).

Proof. See [10, p. 199, Theorem 4.10.3].

Lemma 2.2 (Uniqueness of decomposition using algebraic complements). Let V and W be subspaces of a vector

space U. Then for each x ∈ V +W, there is a unique v ∈ V and a unique w ∈W such that x = v+w if and only if V

and W are disjoint.

Example 2.61. Let V be the vector space of all real-valued functions defined on R. Let W1 be the subspace of

V consisting of all even functions. Let W2 be the subspace of V consisting of all odd functions. Then, we have

V =W1 +W2. Furthermore,W1 andW2 are disjoint. So,W2 is the algebraic complement ofW1 in V .

Definition 2.38 (Direct sum). The direct sum of the vector spacesV andW , denotedV ⊕W , is a vector spaceU with

the underlying set V ×W . Thus, a point in V ⊕W is an ordered pair (v,w) with v ∈V and w ∈W . Vector addition is

defined componentwise (v1,w1)+(v2,w2) = (v1+v2,w1+w2). Scalar multiplication is defined as a(v,w) = (av,aw).
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Example 2.62. Consider the vector space U = (GF(2))3 whose underlying set is comprised of all ordered triplets

of elements from GF(2). (The field GF(2) consists of two elements 0 and 1. Addition is defined as the boolean-

exclusive-or operation, while multiplication is defined as the boolean-and operation.) One can show that

V = {(0,0,0),(1,0,0)} and W = {(0,0,0),(0,1,0)}

are subspaces ofU . Find V +W and V ⊕W .

Solution. The elements of V +W are formed by adding each element in V with each element inW . So, we have

(0,0,0)+(0,0,0) = (0,0,0),

(0,0,0)+(0,1,0) = (0,1,0),

(1,0,0)+(0,0,0) = (1,0,0), and

(1,0,0)+(0,1,0) = (1,1,0).

Thus, we have

V +W = {(0,0,0),(0,1,0),(1,0,0),(1,1,0)}.

From the definition of V ⊕W , we can write

V ⊕W = {(0,0,0,0,0,0),(0,0,0,0,1,0),(1,0,0,0,0,0),(1,0,0,0,1,0)}.

Clearly, V +W and V ⊕W are different spaces. If V andW are disjoint, however, one can show that V +W and

V ⊕W have the same mathematical structure. That is, they are different representations of the same thing. This type

of equivalence is known as an isomorphism. For this reason, the direct sum is often used in its isomorphic form to

mean V ⊕W =V +W where V andW are disjoint. In the remainder of this book, we will only be concerned with the

isomorphic form of the direct sum. In passing, we note that some authors denote the inner sum of orthogonal (and

disjoint) subspaces V andW as V ⊕W .

Example 2.63. Let V be the vector space consisting of all real-valued sequences defined on Z with the usual vector

addition and scalar multiplication operations. Let W1 denote the subspace of V formed by taking all of the even

sequences in V . Let W2 denote the subspace of V formed by taking all of the odd sequences in V . We have that

V =W1 +W2. SinceW1 andW2 are disjoint, we also have V =W1⊕W2. (In this case, we are using the isomorphic

form of the direct sum.) We also have thatW2 is the algebraic complement ofW1 in V .

Example 2.64. LetV be the vector space of all polynomials defined on R of degree less than or equal to two (including

the zero polynomial) with the usual vector addition and scalar multiplication operations. LetW0 be the subspace of V

consisting of all constant functions. LetW1 be the subspace of V consisting of all polynomials of the form f (t) = at,

where a ∈ R. LetW2 be the subspace of V consisting of all polynomials of the form f (t) = at2, where a ∈ R. One

can easily see that V = W0 +W1 +W2. Moreover, since W0, W1, and W2 are mutually disjoint, we also can write

V =W0⊕W1⊕W2. (Here, we are using the isomorphic form of the direct sum.)

2.7 Normed Spaces

Metric spaces have topological structure but not algebraic structure, while vector spaces have algebraic structure but

not topological structure. We can, however, define a new type of space called a normed space that has both of these

types of structure. Before we can define a normed space, we must first introduce the notion of a norm.

Definition 2.39 (Norm). A function x 7→ ‖x‖ from a vector space V into R is called a norm on V if the following

conditions are satisfied:

1. for all x ∈V , ‖x‖ ≥ 0 (nonnegativity);
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‖x+ y‖x+ y

y
x ‖x‖

‖y‖

Figure 2.10: Triangle inequality for norm in the Euclidean plane.

2. ‖x‖= 0 if and only if x = 0 (strict positivity);

3. for all x ∈V and all a ∈ F , ‖ax‖= |a|‖x‖ (homogeneity); and

4. for all x,y ∈V , ‖x+ y‖ ≤ ‖x‖+‖y‖ (triangle inequality).

A norm can be thought of as a measure of the length of a vector. The triangle inequality property is illustrated for

the case of the Euclidean plane in Figure 2.10.

In passing, we note that the triangle inequality in the above definition (i.e., Definition 2.39) implies that

for all x,y ∈V , |‖y‖−‖x‖| ≤ ‖y− x‖ . (2.2)

This relationship can be used to prove an important property of the norm, which is given by the theorem below.

Theorem 2.10 (Continuity of the norm). The norm ‖·‖, which is a mapping from the vector space V into R, is

continuous.

Proof. To prove that ‖·‖ is continuous, we must show that, for every real number ε > 0, there exists a real number

δ > 0 such that if ‖x− x0‖< δ then |‖x‖−‖x0‖|< ε . Let ε > 0 and choose δ = ε . Thus, we have

‖x− x0‖< ε

and we can also write from (2.2) that

|‖x‖−‖x0‖| ≤ ‖x− x0‖ .

Combining the preceding two inequalities, we obtain

|‖x‖−‖x0‖| ≤ ‖x− x0‖< ε

which implies

|‖x‖−‖x0‖|< ε.

Therefore, the norm is continuous.

The above theorem is extremely useful. Since a norm is a continuous mapping, the order of limits and norms can

be interchanged.

Example 2.65. Consider the vector space V = R2. Define

‖x‖=
[
x21 + x22

]1/2
,

where x = (x1,x2). Show that ‖·‖ is a norm on V .
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Solution. Since the square of a real number is always nonnegative, and the square root of the sum of nonnegative

numbers is nonnegative, we have ‖x‖ ≥ 0 for all x ∈ V . Furthermore, ‖x‖ = 0 if and only if x = 0. Thus, the

nonnegativity and strict positivity conditions are satisfied. Consider the homogeneity property. We can write

‖ax‖= ‖a(x1,x2)‖
= ‖(ax1,ax2)‖

=
[
(ax1)

2 +(ax2)
2
]1/2

=
[
a2(x21 + x22)

]1/2

= |a|
[
x21 + x22

]1/2

= |a|‖x‖ .

So, the homogeneity condition is satisfied. Using the Minkowski inequality for sums (E.2), we can write

‖x+ y‖= ‖(x1 + y1,x2 + y2)‖

=
[
(x1 + y1)

2 +(x2 + y2)
2
]1/2

≤
[
x21 + x22

]1/2
+
[
y21 + y22

]1/2

= ‖x‖+‖y‖ .

Thus, the triangle inequality holds. Hence, ‖·‖ is a norm on V .

Example 2.66. Consider the vector space V = R2. Define

‖x‖= |x1|2 + |x2|2 ,

where x = (x1,x2). Show that ‖·‖ is not a norm on V .

Solution. First, we have that

|x1|2 + |x2|2 ≥ 0 and

|x1|2 + |x2|2 = 0⇔ x1 = x2 = 0.

Thus, ‖·‖ satisfies the nonnegativity and strict positivity conditions. Consider the homogeneity condition. We can

write

‖ax‖= |ax1|2 + |ax2|2

= |a|2 |x1|2 + |a|2 |x2|2

= |a|2 (|x1|2 + |x2|2)
= |a|2 ‖x‖ .

Therefore, ‖·‖ does not satisfy the homogeneity condition. Consider the triangle inequality. Suppose that x = (1,0)
and y = (1,0). We have

‖x‖= |1|2 + |0|2 = 1,

‖y‖= |1|2 + |0|2 = 1, and

‖x+ y‖= |2|2 + |0|2 = 22 = 4.

So, we have ‖x+ y‖ > ‖x‖+ ‖y‖. Hence, the triangle inequality does not generally hold. Since ‖·‖ satisfies neither
the homogeneity nor triangle inequality condition, ‖·‖ is not a norm on V .
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Keeping the definition of a norm (from above) in mind, we are now in a position to define a normed space.

Definition 2.40 (Normed space). A vector space V with a norm ‖·‖ defined on V is called a normed space, and is

denoted (V,‖·‖) or simply V when the norm is implied from the context.

The norm on V defines a metric d on V which is given by

d(x,y) = ‖x− y‖

and is called the induced metric (i.e., the metric induced by the norm). Thus, a normed space is also a metric space

with the above induced metric. Thus, a normed space has both topological and algebraic structure.

Theorem 2.11 (Induced metric). If ‖·‖ defines a norm on the normed space V , then a metric d on V is given by

d(x,y) = ‖x− y‖ .

Proof. The nonnegativity property of d can be deduced from the nonnegativity property of ‖·‖. That is, we have

d(x,y) = ‖x− y‖ ≥ 0.

The strict positivity property of d can be deduced from the strict positivity property of ‖·‖. That is, we have

d(x,y) = ‖x− y‖= 0⇔ x− y = 0⇔ x = y.

The symmetry property of d can be deduced using the homogeneity property of ‖·‖. In particular, we have

d(x,y) = ‖x− y‖= ‖−(x− y)‖= ‖y− x‖= d(y,x).

Lastly, the triangle inequality property of d can be deduced using the triangle inequality property of ‖·‖ as follows:

d(x,y) = ‖x− y‖
= ‖(x− z)− (y− z)‖
≤ ‖x− z‖+‖−(y− z)‖
= ‖x− z‖+‖z− y‖
= d(x,z)+d(z,y).

Thus, d satisfies the triangle inequality.

Many norms can be defined on a given vector spaceV . Different norms on the same vector spaceV yield different

normed spaces. Each norm defines a new normed space and different metric on V .

Some vector spaces are traditionally equipped with standard norms. If no norm is explicitly specified, it is under-

stood that the standard norm is to be employed.

Definition 2.41 (Banach space). A Banach space is a complete normed space (complete in the metric induced by the

norm).

2.7.1 Infinite Series

As discussed previously, in a purely vector space context, an infinite series is not a meaningful construct—the difficulty

being that vector spaces lack the topological structure necessary to define the convergence of such a series. The

situation is different, however, in the case of normed spaces. Such spaces have a well defined notion of convergence

which they inherit from their underlying metric space.

Consider an infinite series of the form

∑
k∈N

xk. (2.3)
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If (xk)k∈N is a sequence in a normed space V , we can associate (xk)k∈N with a sequence (sn)n∈N of partial sums given

by

sn =
n

∑
k=1

xk.

If the sequence (sn)n∈N is convergent with limit S, then the infinite series in (2.3) is said to converge to S. In other

words, we say that the sum of the above infinite series is S if ‖sn−S‖ → 0 as n→ ∞. Thus, an infinite series (in a

normed space) can be defined in a meaningful way.

2.7.2 Examples of Normed Spaces

Below, we give some examples of normed spaces.

Example 2.67 (Euclidean space Rn). We define

‖x‖p =





(
n

∑
k=1

|xk|p
)1/p

for 1≤ p < ∞

max{|x1| , . . . , |xn|} for p = ∞.

(2.4)

One can easily show that, for 1 ≤ p ≤ ∞, ‖x‖p is a norm on Rn. (The triangle inequality for ‖x‖p follows directly

from the Minkowski inequality for sums (E.2).) The metric induced by the norm is given by

dp(x,y) = ‖x− y‖p =





(
n

∑
k=1

|xk− yk|p
)1/p

for 1≤ p < ∞

max{|x1− y1| , . . . , |xn− yn|} for p = ∞.

Furthermore, one can show that (Rn,‖·‖p) is a Banach space for 1≤ p≤ ∞.

Example 2.68 (Space Cn). One can show that ‖x‖p from Example 2.67 also defines a norm on the space Cn. Further-

more, one can show that (Cn,‖·‖p) is a Banach space for 1≤ p≤ ∞.

Example 2.69 (Lebesgue space Lp(R)). Consider, for p ∈ [1,∞), the Lebesgue space Lp(R) consisting of all scalar-

valued measurable functions x(t) defined on R such that (
∫ ∞
−∞ |x(t)|

p
dt)1/p < ∞. One can show that

‖x‖p =

(∫ ∞

−∞
|x(t)|p dt

)1/p

is a norm on Lp(R). This norm induces the metric

dp(x,y) = ‖x− y‖p =

(∫ ∞

−∞
|x(t)− y(t)|p dt

)1/p

.

It is easily verified that ‖x‖p is a norm. The triangle inequality for ‖x‖p follows directly from theMinkowski inequality

for integrals (E.3). Thus, (Lp,‖·‖p) is a normed space. Moreover, one can further show that this is a Banach space.

Example 2.70 (Space lp(Z)). Consider, for p∈ [1,∞), the vector space lp(Z) of all sequences x=(. . . ,x−2,x−1,x0,x1,x2, . . .)
of scalars such that ∑n∈Z |xn|p < ∞. One can show that

‖x‖p =

(
∑
n∈Z

|xn|p
)1/p
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is a norm on lp(Z). This norm induces the metric

dp(x,y) = ‖x− y‖p =

(
∑
n∈Z

|xn− yn|p
)1/p

.

We can easily show that ‖x‖p is a norm on lp. The triangle inequality for ‖x‖p follows from the Minkowski inequality

for infinite sums (E.2). The space lp with the above induced metric is complete. Therefore, the space (lp,‖·‖p) is a
Banach space.

2.7.3 Schauder Bases

In the case of infinite-dimensional Banach spaces, different concepts of independence exist. We are already familiar

with the notion of linear independence. Another type of independence is often useful as given by the definition below.

Definition 2.42 (ω-independence). Let { fk}k∈I be a sequence in the normed space V . We say that { fk}k∈I is ω-

independent if whenever the series ∑k∈I ak fk is convergent and equal to zero for some scalar coefficients {ak}k∈I ,
then necessarily ak = 0 for all k ∈ I.

The definition of ω-independence above sounds somewhat similar to that of linear independence. So, one might

wonder if any relationship exists between these two types of independence. In fact, such a relationship does exist as

given by the lemma below.

Lemma 2.3. Let { fk}k∈I be a sequence in the normed space V . If { fk}k∈I is ω-independent, then { fk}k∈I is linearly
independent.

It is worth noting that the converse of the above result is not true. That is, linear independence does not imply

ω-independence. In this sense, ω-independence is a stronger form of independence than linear independence.

Usually, when dealing with infinite-dimensional spaces, we are most interested in ω-independence. For this rea-

son, some authors use the term “independence” or “linear independence” to mean “ω-independence” in this context.

Unfortunately, this can sometimes lead to confusion (especially for students).

Another concept related to independence is that of a minimal set as defined below.

Definition 2.43 (Minimal set). A sequence {en}n∈I in a normed space is said to be minimal if, for each k ∈ I,

ek 6∈ closspan{en}n∈I\{k} (i.e., no vector is in the closed linear span of the others).

One can show that a minimal set is ω-independent (and therefore also linearly independent).

Using the concept of an infinite series, we can introduce another type of basis as defined below.

Definition 2.44 (Schauder basis). Let E = {en}n∈I be a subset of a normed space V . If, for each x ∈ V , there is a

unique set of scalars {an}n∈I such that

x = ∑
n∈I

anen (2.5)

where the series converges in norm to x, then E is said to be a Schauder basis of V .

One can show that a Schauder basis is ω-independent. If every permutation of a Schauder basis {en} is also a

basis, then the basis is said to be unconditional. In other words, if the basis is unconditional, the convergence of

the series in (2.5) does not depend on the order in which terms are summed. Note that the unconditional property

is not obtained trivially. That is, many bases do not have this property. In fact, some spaces do not even possess an

unconditional basis (e.g., L1). For obvious practical reasons, however, we are usually only interested in unconditional

bases in engineering.

Example 2.71. The space lp(N) has a Schauder basis (en), where en = (δn,k). That is, e1 = (1,0,0, . . .), e2 =
(0,1,0,0, . . .), e3 = (0,0,1,0,0, . . .), and so on.
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2.8 Inner Product Spaces

In vector spaces, we can add vectors and multiply vectors by scalars, and in normed spaces we can also measure the

length of vectors. Even in a normed space, however, we lack the notion of the angle between vectors and perpendicu-

larity (i.e., orthogonality). This leads to the definition of inner product spaces. Such spaces have a well defined notion

of the angle between vectors.

Before we can define an inner product space, we must first introduce the concept of an inner product.

Definition 2.45 (Inner product). An inner product on a vector spaceV over a field F is a mapping 〈·, ·〉 ofV ×V into

F with the following properties:

1. 〈x,x〉 ≥ 0 for all x ∈V (nonnegativity);

2. for all x ∈V , 〈x,x〉= 0 if and only if x = 0 (strict positivity);

3. 〈x,y〉∗ = 〈y,x〉 for all x,y ∈V (conjugate symmetry);

4. 〈ax,y〉= a〈x,y〉 for all x,y ∈V and all a ∈ F (homogeneity); and

5. 〈x+ y,z〉= 〈x,z〉+ 〈y,z〉 for all x,y,z ∈V (additivity).

From the above definition, it follows that an inner product on a real vector space is a real-valued function, and an

inner product on a complex vector space is a complex-valued function. In the case that V is a real vector space, the

conjugate symmetry condition simply becomes

〈x,y〉= 〈y,x〉 .

In the mathematics literature, the homogeneity condition for the inner product is most commonly defined as above.

In other words, the inner product is defined to be linear in the first operand, and is therefore conjugate linear in the

second operand (i.e., 〈x,ay〉 = a∗ 〈x,y〉). Examples of works using this convention include [1, 4, 6, 8, 9]. Some

authors, however, define the homogeneity condition as

〈x,ay〉= a〈x,y〉 .

Examples of work that use this convention include [2, 11, 12]. In this case, the inner product is defined to be linear

in the second operand and is therefore conjugate linear in the first operand (i.e., 〈ax,y〉 = a∗ 〈x,y〉). In other words,

what some authors call 〈x,y〉, other authors call 〈y,x〉. Of course, this distinction is unimportant in the case of inner

products on real vector spaces. When complex vector spaces are involved, however, one must be careful to distinguish

between these two different conventions.

Example 2.72. Consider the vector space V = C2 (i.e., the space associated with ordered pairs of complex numbers).

Define

〈x,y〉= x1y
∗
1 + x2y

∗
2

where x = (x1,x2) and y = (y1,y2). Show that 〈·, ·〉 is an inner product on V .

Solution. We can write

〈x,x〉= x1x
∗
1 + x2x

∗
2

= |x1|2 + |x2|2

≥ 0.

Thus, we can see that the nonnegativity and strict positivity properties hold. Next, we can write

〈x,y〉= x1y
∗
1 + x2y

∗
2

= (y1x
∗
1 + y2x

∗
2)
∗

= 〈y,x〉∗ .
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Therefore, the conjugate symmetry property holds. We have

〈ax,y〉= (ax1)y
∗
1 +(ax2)y

∗
2

= a(x1y
∗
1 + x2y

∗
2)

= a〈x,y〉 .

Thus, the homogeneity property holds. Let z = (z1,z2). We can write

〈x+ y,z〉= (x1 + y1)z
∗
1 +(x2 + y2)z

∗
2

= x1z
∗
1 + y1z

∗
1 + x2z

∗
2 + y2z

∗
2

= x1z
∗
1 + x2z

∗
2 + y1z

∗
1 + y2z

∗
2

= 〈x,z〉+ 〈y,z〉 .

So, the additivity property holds. Therefore, 〈·, ·〉 is an inner product on V .

Example 2.73. Consider the vector space V = R2 (i.e., the space associated with ordered pairs of real numbers).

Define

〈x,y〉= x21y
2
1 + x22y

2
2.

where x = (x1,x2) and y = (y1,y2). Determine whether 〈·, ·〉 is an inner product on V .

Solution. We have

〈x,x〉= x21x
2
1 + x22x

2
2

= x41 + x42.

From this, we can see that the nonnegativity and strict positivity properties hold. We can write

〈x,y〉= x21y
2
1 + x22y

2
2

= y21x
2
1 + y22x

2
2

= 〈y,x〉 .

Thus, the conjugate symmetry property holds. We have

〈ax,y〉= (ax1)
2y21 +(ax2)

2y22

= a2x21y
2
1 +a2x22y

2
2

= a2(x21y
2
1 + x22y

2
2)

= a2 〈x,y〉 .

Thus, the homogeneity property does not hold. We have

〈x+ y,z〉= (x1 + y1)
2z21 +(x2 + y2)

2z22

= (x21 +2x1y1 + y21)z
2
1 +(x22 +2x2y2 + y22)z

2
2

= x21z
2
1 + y21z

2
1 + x22z

2
2 + y22z

2
2 +2x1y1z

2
1 +2x2y2z

2
2

= 〈x,z〉+ 〈y,z〉+2x1y1z
2
1 +2x2y2z

2
2.

Thus, the additivity property does not hold. Since neither the homogeneity nor additivity property holds, 〈·, ·〉 is not
an inner product on V .

With the earlier definition of an inner product in mind, we are now in a position to define an inner product space.
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Definition 2.46 (Inner product space). A vector spaceV with an inner product defined onV is called an inner product

space, and is denoted (V,〈·, ·〉) or simply V when the inner product is implied from the context.

A finite-dimensional real inner product space is referred to as a Euclidean space.

As it turns out, an inner product can always be used to generate a norm as elucidated by the theorem below.

Theorem 2.12 (Induced norm). If 〈·, ·〉 defines an inner product on the inner product space V , then a norm ‖·‖ on V
is given by

‖x‖= 〈x,x〉1/2 .

This norm is called the induced norm (i.e., the norm induced by the inner product).

Proof. From the nonnegativity of the inner product, we have ‖x‖ = 〈x,x〉1/2 ≥ 0. From the strict positivity property

of the inner product, we have ‖x‖= 〈x,x〉1/2 = 0 if and only if x = 0. From the homogeneity and conjugate symmetry

properties of the inner product, we can write

‖ax‖= 〈ax,ax〉1/2

= [|a|2 〈x,x〉]1/2

= |a| 〈x,x〉1/2

= |a|‖x‖ .

Now, we determine whether the triangle inequality is satisfied. We can write

‖x+ y‖2 = 〈x+ y,x+ y〉
= ‖x‖2 +2Re〈x,y〉+‖y‖2 .

Using the Schwarz inequality (yet to be introduced), we can write

2Re〈x,y〉 ≤ 2 |〈x,y〉|

≤ 2
(
‖x‖2 ‖y‖2

)1/2

= 2‖x‖‖y‖ .

Combining the above results, we have

‖x+ y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2

which implies that ‖x+ y‖ ≤ ‖x‖+‖y‖. Therefore, ‖·‖ satisfies all of the properties of a norm.

Since an inner product on V induces a norm on V , an inner product space is also a normed space. Furthermore,

since a norm onV induces a metric onV , an inner product space is also a metric space. (Recall that a norm ‖·‖ induces
the metric d given by d(x,y) = ‖x− y‖ = 〈x− y,x− y〉1/2.) Thus, inner product spaces are both normed spaces and

metric spaces.

An inner product space is a metric space, a normed space, and a vector space. As such it has both topological

and algebraic structure. Furthermore, an inner product space has additional structure defined by means of its inner

product. This structure is called geometric structure.

Often, we are interested in complete metric spaces. Inner product spaces that are associated with complete metric

spaces are given a special name as identified below.

Definition 2.47 (Hilbert space). A Hilbert space is a complete inner product space (complete in the metric induced

by the inner product).
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2.8.1 Examples of Inner Product Spaces

Below, we give some examples of inner product spaces.

Example 2.74 (Euclidean space Rn). The Euclidean space Rn is a Hilbert space with the inner product defined as

〈x,y〉= x1y1 + x2y2 + . . .+ xnyn

where x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn). This inner product induces the norm

‖x‖= 〈x,x〉1/2 =
(
x21 + x22 + . . .+ x2n

)1/2

and metric

d(x,y) = ‖x− y‖= 〈x− y,x− y〉1/2 =
[
(x1− y1)

2 +(x2− y2)
2 + . . .+(xn− yn)

2
]1/2

.

Note that the above inner product is nothing more than the familiar dot product from Euclidean geometry (i.e., 〈x,y〉=
x · y).

Example 2.75 (Space Cn). The space Cn is a Hilbert space with the inner product given by

〈x,y〉= x1y
∗
1 + x2y

∗
2 + . . .+ xny

∗
n

where x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn). This inner product induces the norm

‖x‖= 〈x,x〉1/2 = (x1x
∗
1 + x2x

∗
2 + . . .+ xnx

∗
n)

1/2 = (|x1|2 + |x2|2 + . . .+ |xn|2)1/2

and metric

d(x,y) = 〈x− y,x− y〉1/2 =
(
|x1− y1|2 + |x2− y2|2 + . . .+ |xn− yn|2

)1/2
.

Example 2.76 (Lebesgue space L2[a,b]). The complex Lebesgue space L2[a,b] is a Hilbert space with the inner

product

〈x,y〉=
∫ b

a
x(t)y∗(t)dt

and (induced) norm

‖x‖= 〈x,x〉1/2 =

(∫ b

a
|x(t)|2 dt

)1/2

.

Note that the above integrals must be taken in the Lebesgue sense.

Example 2.77 (Lebesgue space L2(R)). The complex Lebesgue space L2(R) is a Hilbert space with the inner product

〈x,y〉=
∫ ∞

−∞
x(t)y∗(t)dt

and (induced) norm

‖x‖= 〈x,x〉1/2 =

(∫ ∞

−∞
|x(t)|2 dt

)1/2

.

Again, the above integrals must be taken in the Lebesgue sense.
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Example 2.78 (Sequence space l2(Z)). The space l2(Z) is a Hilbert space with the inner product defined as

〈x,y〉= ∑
k∈Z

xky
∗
k

where x = (. . . ,x−2,x−1,x0,x1,x2, . . .) and y = (. . . ,y−2,y−1,y0,y1,y2, . . .). The norm induced by this inner product is

given by

‖x‖= 〈x,x〉1/2 =

(
∑
k∈Z

|xk|2
)1/2

.

In passing, we note that the Lebesgue spaces Lp and lp with p 6= 2 are not inner product spaces. To prove this,

one can show that the norm on each of these spaces does not satisfy the parallelogram law. This implies that the norm

cannot be induced from an inner product. (A complete proof for the lp case can be found in [7, p. 133].)

As we will see later, the Hilbert spaces L2(R) and l2(Z) play a crucial role in the study of wavelet systems.

2.8.2 Properties of Inner Product Spaces

Often wemust deal with subspaces of Hilbert spaces. For this reason, we would like to know under what circumstances

a subspace of a Hilbert space is itself a Hilbert space. The answer to this question is, in part, given by the theorem

below.

Theorem 2.13. A closed subspace of a Hilbert space is itself a Hilbert space.

Proof. This follows from the fact that a closed vector subspace of a Banach space is itself a Banach space. See [5, p.

20, Theorem 1.5.3] for a proof.

2.8.3 Relationships Involving Norms and Inner Products

In this section, we consider some important relationships involving norms and inner products in inner product spaces.

Since an inner product on an inner product space V induces a norm on V , one might wonder if inner product can

be determined (unambiguously) from the induced norm. This is, in fact, the case. For an inner product space, we can

determine the inner product from the induced norm through the use of the theorem below.

Theorem 2.14 (Polarization identity). If V is a complex inner product space, then

〈x,y〉= 1
4

3

∑
n=0

jn ‖x+ jny‖2 = 1
4

(
‖x+ y‖2−‖x− y‖2 + j‖x+ jy‖2− j‖x− jy‖2

)

for all x,y ∈V. If V is a real inner product space, then

〈x,y〉= 1
4

(
‖x+ y‖2−‖x− y‖2

)

for all x,y ∈V. The above relationship is referred to as the polarization identity.

Proof. We have

‖x± y‖2 = 〈x± y,x± y〉
= 〈x,x〉+ 〈x,±y〉+ 〈±y,x〉+ 〈±y,±y〉
= ‖x‖2±〈x,y〉±〈y,x〉+‖y‖2

= ‖x‖2±2Re〈x,y〉+‖y‖2 .
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Similarly, we have

‖x± jy‖2 = 〈x± jy,x± jy〉
= 〈x,x〉+ 〈x,± jy〉+ 〈± jy,x〉+ 〈± jy,± jy〉
= ‖x‖2∓ j 〈x,y〉± j 〈y,x〉+‖y‖2

= ‖x‖2∓ j 〈x,y〉± j 〈x,y〉∗+‖y‖2

= ‖x‖2∓ j(〈x,y〉−〈x,y〉∗)+‖y‖2

= ‖x‖2∓ j[2 j Im〈x,y〉]+‖y‖2

= ‖x‖2±2Im〈x,y〉+‖y‖2 .

Using the above two identities, we can write

1
4

3

∑
n=0

jn ‖x+ jny‖2 = 1
4

(
‖x+ y‖2 + j‖x+ jy‖2−‖x− y‖2− j‖x− jy‖2

)

= 1
4

(
‖x‖2 +2Re〈x,y〉+‖y‖2− (‖x‖2−2Re〈x,y〉+‖y‖2)

+ j(‖x‖2 +2Im〈x,y〉+‖y‖2)− j(‖x‖2−2Im〈x,y〉+‖y‖2)
)

= 1
4
(4Re〈x,y〉+4 j Im〈x,y〉)

= Re〈x,y〉+ j Im〈x,y〉
= 〈x,y〉 .

A norm induced from an inner product will always possess certain properties. One such property is given by the

theorem below.

Theorem 2.15 (Parallelogram law). If V is an inner product space (complex or real), then

‖x+ y‖2 +‖x− y‖2 = 2
(
‖x‖2 +‖y‖2

)
(2.6)

for all x,y ∈V. This relationship is known as the parallelogram law.

Proof. We begin by observing that

‖x± y‖2 = ‖x‖2±2Re〈x,y〉+‖y‖2 .

Using this identity, we can write

‖x+ y‖2 +‖x− y‖2 = ‖x‖2 +2Re〈x,y〉+‖y‖2 +‖x‖2−2Re〈x,y〉+‖y‖2

= 2‖x‖2 +2‖y‖2

= 2
(
‖x‖2 +‖y‖2

)
.

The parallelogram law simply states that the sum of the squares of the lengths of the four sides of a parallelogram

equals the sum of the squares of the lengths of the two diagonals. In the case that the parallelogram is a rectangle, the

parallelogram law reduces to the Pythagorean theorem (which is introduced later in Theorem 2.18). The converse of

the above theorem (i.e., Theorem 2.15) is also true. That is, if V is a normed space and its norm satisfies (2.6), then

there is a unique inner product defined on V that generates the norm.

Another important relationship between the inner product and induced norm is given by the theorem below.
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Theorem 2.16 (Schwarz inequality). If V is an inner product space (complex or real), then

|〈x,y〉| ≤ ‖x‖‖y‖

for all x,y ∈ V, with equality holding if and only if x and y are linearly dependent. Moreover, 〈x,y〉 = ‖x‖‖y‖ if and
only if x is a nonnegative multiple of y.

Proof. The identity is easily confirmed when x or y is zero. In what follows, suppose that y 6= 0. We have

0≤ ‖x−ay‖2 = 〈x−ay,x−ay〉
= 〈x,x〉+ 〈x,−ay〉+ 〈−ay,x〉+ 〈−ay,−ay〉
= 〈x,x〉−a∗ 〈x,y〉−a〈y,x〉+ |a|2 〈y,y〉
= ‖x‖2−a∗ 〈x,y〉−a〈y,x〉+ |a|2 ‖y‖2 .

Since this relationship must hold for any a, choose a = 〈x,y〉/‖y‖2 so that a∗ = 〈y,x〉/‖y‖2. Making this substitution

for a, we obtain

0≤ ‖x‖2− 〈y,x〉‖y‖2 〈x,y〉−
〈x,y〉
‖y‖2 〈y,x〉+

∣∣∣ 〈x,y〉‖y‖2
∣∣∣
2

‖y‖2

which we can rewrite as

0≤ ‖x‖2− |〈x,y〉|
2

‖y‖2
− |〈x,y〉|

2

‖y‖2
+
|〈x,y〉|2

‖y‖4
‖y‖2 .

Observing that the last two terms on the right-hand side of the inequality cancel, we have

0≤ ‖x‖2− |〈x,y〉|
2

‖y‖2
.

Multiplying both sides by ‖y‖2 and rearranging, we obtain

|〈x,y〉|2 ≤ ‖x‖2 ‖y‖2 .

Taking the square root of both sides yields

|〈x,y〉| ≤ ‖x‖‖y‖ .

For equality to hold, x− ay must have norm of zero. This is equivalent to x− ay = 0 or x = ay which shows linear

dependence.

From the Schwarz inequality, it follows that, for any two vectors x and y in an inner product space,

−1≤ 〈x,y〉
‖x‖‖y‖ ≤ 1.

This leads us to define the angle θx,y between two vectors x and y as

cosθx,y =
〈x,y〉
‖x‖‖y‖ .

This definition agrees with the usual notion of the angle between two vectors in Euclidean spaces such as R2 or R3.

Furthermore, this definition is more generally applicable to any inner product space.

Lastly, from our earlier study of normed spaces, we know that the (induced) norm must also satisfy the triangle

inequality. That is, we have that ‖x+ y‖ ≤ ‖x‖+‖y‖ with equality holding if and only if x is a nonnegative multiple

of y.

The Schwarz inequality can be used to prove the important property of the inner product stated in the theorem

below.
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Theorem 2.17 (Continuity of the inner product). The inner product on a vector space V over a field F, which is a

mapping from V ×V into F, is continuous.

Proof. See [7, p. 138, Lemma 3.2-2].

The preceding theorem is quite important as it implies that the order of limits and inner products can be inter-

changed.

2.8.4 Orthogonality

Since, for an inner product space, we can define angles between vectors, we can also define a corresponding notion of

orthogonality as given below.

Definition 2.48 (Orthogonal vectors). Two vectors x and y in an inner product space V are said to be orthogonal,

denoted x⊥ y, if

〈x,y〉= 0.

By virtue of the above definition, the zero vector is orthogonal to every other vector. For a subset A of an inner

product space V and a vector x ∈ V , if x ⊥ y for all y ∈ A, we say that x is orthogonal to A, denoted x ⊥ A. For two

subsets A and B of V , if x ⊥ y for all x ∈ A and all y ∈ B, we say that A is orthogonal to B, denoted A ⊥ B. Two

subspacesU andW are said to be orthogonal ifU ⊥W .

Example 2.79. In the inner product space V = R2, the vectors x = (1,2) and y = (−6,3) are orthogonal. To verify

this, we compute

〈x,y〉= (1)(−6)+(2)(3) = 0.

Example 2.80. Consider the inner product space V = L2[0,1]. Define

x(t) = cos2πt and y(t) = cos4πt.

Show that x⊥ y.

Solution. We compute the inner product of x and y as

〈x,y〉=
∫ 1

0
(cos2πt)(cos4πt)dt

=
∫ 1

0
( 1
2
cos6πt+ 1

2
cos2πt)dt

=
[

1
12π sin6πt+ 1

4π sin2πt
]∣∣1

0

= (0+0)− (0+0)

= 0.

Thus, we have that x⊥ y.

Example 2.81. Let A and B denote subsets of R3, where A = {(1,0,−1),(2,1,1)} and B = {(1,−3,1),(2,−6,2)}.
Show that A⊥ B.

Solution. We have

〈(1,0,−1),(1,−3,1)〉= 0,

〈(1,0,−1),(2,−6,2)〉= 0,

〈(2,1,1),(1,−3,1)〉= 0, and

〈(2,1,1),(2,−6,2)〉= 0.

Thus, x⊥ y for all x ∈ A and all y ∈ B. Therefore, A⊥ B.
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‖x‖

y

x

x+ y

‖x+ y‖
‖y‖

Figure 2.11: Pythagorean relation in Euclidean plane.

Orthogonal vectors satisfy a number of useful identities, one of which is the following:

Theorem 2.18 (Pythagorean theorem). If two vectors x and y in an inner product space are orthogonal, then

‖x+ y‖2 = ‖x‖2 +‖y‖2 .

Proof. Since x⊥ y, we have that 〈x,y〉= 〈y,x〉= 0. So, we can write

‖x+ y‖2 = 〈x+ y,x+ y〉
= 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
= ‖x‖2 +‖y‖2 .

The geometric interpretation of the Pythagorean theorem in the case of the Euclidean plane is shown in Figure 2.11.

2.8.5 Orthogonal Projection

Often we would like to approximate a vector in some inner product space V with a vector in a subspace of V . Usually

we wish to do this in such a way as to minimize the error with respect to the norm. This leads to the notion of an

orthogonal projection.

Before we can define the orthogonal projection, we first must introduce the concept of an orthogonal complement.

Definition 2.49 (Orthogonal complement). LetW be a nonempty subset of an inner product space V . The set of all

elements of V orthogonal toW , denotedW⊥, is called the orthogonal complement ofW (in V ). That is, we define

W⊥ = {v ∈V : v⊥W}.

Example 2.82. Suppose S is the subset of the inner product space R3 given by S = {(0,0,1)}. Then, S⊥ is the

xy-plane.

Example 2.83. Consider the inner product space V = l2(N). Let S = {e1,e2,e3} ⊂V , where

e1 = (1,0,0, . . .), e2 = (0,1,0,0, . . .), and e3 = (0,0,1,0,0, . . .).

The orthogonal complement S⊥ of S in V is the set of all sequences in l2(N) of the form (0,0,0,a4,a5,a6, . . .).

Definition 2.50 (Orthogonal projection operator). A projection P on an inner product space is said to be orthogonal

if its range and null spaces are orthogonal (i.e., R(P)⊥ N(P)).

Suppose that we have a subspaceW of an inner product space V and an arbitrary vector x ∈V . One might wonder

whether a unique closest point to x in W exists. To help us to answer this question, we first introduce the theorem

below.
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x z = x− y

y

W

Figure 2.12: Orthogonal projection.

Theorem 2.19 (Projection theorem). If W is a closed subspace of a Hilbert space V , then every element x ∈V has a

unique decomposition of the form x = y+ z where y ∈W and z ∈W⊥.

As a matter of terminology, we refer to the vector y in the preceding theorem as the orthogonal projection of

x onto W . For the case of the inner product space R3, the orthogonal projection has the geometric interpretation

illustrated in Figure 2.12. The projection theorem is fundamentally important as it guarantees the existence of an

orthogonal projection in any Hilbert space. It is important to note that the above theorem does not hold for inner

product spaces in general. Completeness is required. Following from the result of Theorem 2.19, we have the

important result stated below.

Corollary 2.1. Let W be a closed subspace of a Hilbert space V , and let x0 ∈ V. Further, let P be the orthogonal

projection of V onto W. There exists a unique vector y0 ∈W that is closest to x0 as given by y0 = Px0. That is,

‖x0−Px0‖= inf{‖x0− y‖ : y ∈W}.

Proof. We begin by observing that

x0−Px0 ∈W⊥ and Px0− y ∈W.

So, we have

x0−Px0 ⊥ Px0− y for all y ∈W .

Consequently, using the Pythagorean theorem, we can write

‖(x0−Px0)+(Px0− y)‖2 = ‖x0−Px0‖2 +‖Px0− y‖2

or equivalently

‖x0− y‖2 = ‖x0−Px0‖2 +‖Px0− y‖2 .

From this last equation, we can see that

‖x0− y‖2 ≥ ‖x0−Px0‖2

with equality holding only if y = Px0. Thus, the vector y ∈W which minimizes ‖x0− y‖ is y = y0 = Px0.

From the above result, we see that given a subspace W of an inner product space V , the unique closest vector

to any vector x0 ∈ V is the orthogonal projection of x0 onto W (assuming that such a projection exists). Thus, the

orthogonal projection is quite useful when we must approximate vectors in one space by vectors in a corresponding

subspace.
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2.8.6 Orthonormal Bases

The most elementary type of basis is the Hamel basis, as introduced earlier in the context of vector spaces. Recall

that a Hamel basis is a purely algebraic concept. In the case of finite-dimensional spaces, Hamel bases are all we

need to consider (as other types of bases are simply special cases of Hamel bases). In the case of infinite-dimensional

spaces, however, the situation is quite different. Every Hamel basis of an infinite-dimensional space is uncountable.

Moreover, we can only prove that such a basis exists without being able to describe its elements. This is obviously

quite problematic, since most practical applications require the use of highly structured and easy to describe bases.

The above shortcoming motivates the use of another type of basis, called an orthonormal basis.

To begin, we introduce the notion of orthogonal and orthonormal sets.

Definition 2.51 (Orthogonal and orthonormal sets). A set of points {xn}n∈I in an inner product space V is said to be

orthogonal if xn ⊥ xm for m,n ∈ I, m 6= n. A set of points {xn} in an inner product space V is said to be orthonormal

if

〈xn,xm〉= δn,m

for all m,n ∈ I. In other words, an orthonormal set is an orthogonal set whose elements have a norm of one.

An orthogonal set of points may contain the zero vector, since the zero vector is orthogonal to every vector.

Example 2.84. Consider the inner product space L2[−π,π]. Let S = { fn}n∈N, where

fn(t) = 1√
π
cosnt.

Show that S is an orthonormal set.

Solution. First, let us consider 〈 fm, fn〉 for m 6= n. Using the identity cosAcosB = 1
2
[cos(A+B)+ cos(A−B)], we

can write

〈 fm, fn〉=
∫ π

−π
( 1√

π
cosmt)( 1√

π
cosnt)dt

= 1
π

∫ π

−π
(cosmt)(cosnt)dt

= 1
2π

∫ π

−π
[cos([m+n]t)+ cos([m−n]t)]dt

= 1
2π

[
1

m+n
sin([m+n]t)+ 1

m−n sin([m−n]t)
]∣∣π
−π

= 1
2π [(0+0)− (0+0)]

= 0.

Second, let us consider 〈 fm, fn〉 for m = n. Using the identity cos2A = 1
2
+ 1

2
cos2A, we can write

〈 fn, fn〉=
∫ π

−π

(
1√
π
cosnt

)2
dt

= 1
2π

∫ π

−π
(1+ cos2nt)dt

=
[
t+ 1

2n
sin2nt

]∣∣π
−π

= 1
2π [π− (−π)]

= 1.

Thus, we have that 〈 fn, fm〉= δn,m, implying that S is orthonormal.

An important relationship exists between the orthonormality and ω-independence properties as given by the the-

orem below.
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Theorem 2.20 (ω-independence of an orthonormal set). Let {xn} be an orthonormal set in an inner product space.

Then, {xn} is ω-independent (and is therefore also linearly independent).

Proof. This theorem is left for the reader to prove as an exercise problem.

There exist orthonormal sets in inner product spaces with sufficiently many elements that every element in the

space can be represented by (possibly) infinite linear combinations of elements in the orthonormal set. We refer to

such a set as an orthonormal basis. In the case of orthonormal bases, infinite sums (i.e., infinite linear combinations)

are permitted. In this context, an infinite sum is defined in the same manner as in the case of normed spaces (i.e.,

in terms of limits of sequences of partial sums). The advantage of orthonormal bases is that, even in the infinite-

dimensional case, the bases can be highly structured and easy to describe. More formally, we define an orthonormal

basis as specified below.

Definition 2.52 (Orthonormal basis). An orthonormal set E in an inner product space V is said to be an orthonormal

basis if spanE is dense in V (i.e., V = closspanE).

It follows form the above definition that an orthonormal set E is an orthonormal basis if and only if closspanE =V .

Unless the space in question is finite-dimensional, an orthonormal basis is not a basis in the algebraic sense. That

is, an orthonormal basis is a Hamel basis only in the case of finite-dimensional spaces.

Example 2.85. The inner product space Rn has many orthonormal bases including the canonical one {ϕ1,ϕ2, . . . ,ϕn},
where

ϕ1 = (1,0, . . . ,0), ϕ2 = (0,1,0, . . . ,0), . . . , ϕn = (0, . . . ,0,1).

Example 2.86. The inner product space l2(N) has the orthonormal basis {ϕn}n∈N where ϕn is a sequence with the

nth element equal to one and all other elements equal to zero. That is, we have

ϕ1 = (1,0,0, . . .), ϕ2 = (0,1,0,0, . . .), ϕ3 = (0,0,1,0,0, . . .), . . . .

Example 2.87. The inner product space L2[−π,π] has the orthonormal basis {ϕn}n∈Z, where

ϕn(t) = 1√
2π
e jnt , n = 0,±1,±2, . . . .

We can easily confirm that {ϕn}n∈Z constitutes an orthonormal set. For m 6= n, we have

〈ϕm,ϕn〉=
∫ π

−π
ϕm(t)ϕ∗n (t)dt

= 1
2π

∫ π

−π
e j(m−n)tdt

= 1
2π

[
1

j(m−n)e
j(m−n)t

]∣∣∣
π

−π

=
e jπ(m−n)− e− jπ(m−n)

j2π(m−n)

=
(−1)m−n− (−1)m−n

j2π(m−n)

= 0.
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For m = n, we have

〈ϕn,ϕn〉=
∫ π

−π
ϕn(t)ϕ

∗
n (t)dt

=

∫ π

−π
|ϕn(t)|2 dt

=
∫ π

−π

∣∣∣ 1√
2π
e jnt
∣∣∣
2

dt

=
∫ π

−π

1
2π dt

= 1.

Thus, {ϕn}n∈Z is clearly an orthonormal set. The proof that this set generates the entire space (i.e., is an orthonormal

basis) is not easy, and is omitted here.

A Hamel basis is a purely algebraic concept. Orthonormal bases are more useful than Hamel bases when deal-

ing with infinite-dimensional spaces. As illustrated by the previous example, the space L2[−π,π] has a countable

orthonormal basis consisting of simple functions (i.e., harmonically related complex sinusoids). One can show, how-

ever, that every Hamel basis of L2[−π,π] is uncountable.
Since orthonormal bases are often quite useful, one might wonder under what conditions such a basis exists. One

useful result in this regard is given by the theorem below.

Theorem 2.21 (Existence of orthonormal basis). Every Hilbert space has an orthonormal basis.

The above result is yet another reason why we like to work with Hilbert spaces. Hilbert spaces always have an

orthonormal basis. It is worth noting that the same statement cannot be made about inner product spaces in general.

Completeness is essential in order to guarantee the existence of an orthonormal basis.

A Hilbert space is said to be separable if it has a countable orthonormal basis. In the remainder of this book, we

will only concern ourselves with separable Hilbert spaces.

Theorem 2.22. Let E = {ϕn}n∈I be an orthonormal basis of an inner product space V . Then, each x∈V has a unique

representation of the form

x = ∑
n∈I

anϕn

where

an = 〈x,ϕn〉 .

(Note: The index set I may be infinite. That is, the above sum may be an infinite linear combination.)

The above theorem is particularly useful as it provides a means for computing the coefficients of an orthonormal

expansion.

The theorem below provides necessary and sufficient conditions for an orthonormal set to constitute an orthonor-

mal basis.

Theorem 2.23. An orthonormal set E = {ϕn} in a Hilbert space V is an orthonormal basis of V if and only if the

only vector x ∈V that is orthogonal to every element of E is the zero vector.

Some other useful results related to orthonormal sets and bases are given below.

Theorem 2.24 (Bessel inequality). Let S = {xn}n∈I be an orthonormal set (where the index set I may be infinite) in

an inner product space V . Then, for all x ∈V,

∑
n

|〈x,xn〉|2 ≤ ‖x‖2

with equality holding if and only if x ∈ closspanS. This relationship is known as the Bessel inequality.
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Proof. We can write

∥∥∥∥∥x−∑
k

〈x,xk〉xk

∥∥∥∥∥

2

=

〈
x−∑

k

〈x,xk〉xk,x−∑
l

〈x,xl〉xl

〉

= 〈x,x〉−∑
k

〈x,xk〉〈xk,x〉−∑
l

〈x,xl〉∗ 〈x,xl〉+∑
k

∑
l

〈x,xk〉〈x,xl〉∗ 〈xk,xl〉

= ‖x‖2−∑
k

〈x,xk〉〈x,xk〉∗−∑
l

〈x,xl〉∗ 〈x,xl〉+∑
k

〈x,xk〉〈x,xk〉∗

= ‖x‖2−∑
k

|〈x,xk〉|2−∑
l

|〈x,xl〉|2 +∑
k

|〈x,xk〉|2

= ‖x‖2−∑
k

|〈x,xk〉|2 .

(We used the fact that 〈xk,xl〉= δk,l in the simplification above.) Since the left-hand side of the above equation must

be nonnegative, we have

0≤ ‖x‖2−∑
k

|〈x,xk〉|2 ⇒ ‖x‖2 ≥∑
k

|〈x,xk〉|2 .

If x∈ closspanS, then x−∑k 〈x,xk〉xk = 0, and it follows from above that the equality part of the inequality holds.

Theorem 2.25 (Parseval identity and Plancherel formula). Let {xn} be an orthonormal basis of a Hilbert space V .

Then, for all x,y ∈V,

〈x,y〉= ∑
n

〈x,xn〉〈y,xn〉∗

and

‖x‖2 = ∑
n

|〈x,xn〉|2 .

These two relationships are known as the Parseval identity and Plancherel formula, respectively.

Proof. Let x = ∑k 〈x,xk〉xk and y = ∑l 〈y,xl〉xl . Using the fact that 〈xk,xl〉= δk,l , we can write

〈x,y〉=
〈

∑
k

〈x,xk〉xk,∑
l

〈y,xl〉xl

〉

= ∑
k

∑
l

〈x,xk〉〈y,xl〉∗ 〈xk,xl〉

= ∑
k

〈x,xk〉〈y,xk〉∗ .

If we let x = y, we obtain

〈x,x〉= ‖x‖2 = ∑
k

〈x,xk〉〈x,xk〉∗ = ∑
k

|〈x,xk〉|2 .

Previously, we introduced the orthogonal projection. We did not explain at that point how one can compute an

orthogonal projection. Now, we are in a position to address this matter. An orthogonal projection can be computed by

using an orthonormal basis as specified by the theorem below.
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Theorem 2.26. Let W be a closed subspace of a Hilbert space V , and let E = {φn}n∈I be an orthonormal basis for

W. Further, let P denote the orthogonal projection of V onto W. Then, P is given by

Px = ∑
n∈I
〈x,φn〉φn,

where x ∈V.

Example 2.88. Consider the Hilbert space V = R3. Let W denote the subspace of V with the orthonormal basis

E = {( 1√
2
,0, 1√

2
),(− 1√

2
,0, 1√

2
)}. Find the closest point inW to the point (1,2,1) ∈V .

Solution. The closest point inW to a point x ∈V is given by the orthogonal projection of x ontoW . Let y denote this

closest point. We have

y =
2

∑
n=1

〈x,ϕn〉ϕn

=
〈
(1,2,1),( 1√

2
,0, 1√

2
)
〉

( 1√
2
,0, 1√

2
)+
〈
(1,2,1),(− 1√

2
,0, 1√

2
)
〉

(− 1√
2
,0, 1√

2
)

=
√
2( 1√

2
,0, 1√

2
)+0

= (1,0,1).

2.8.7 Gram-Schmidt Orthogonalization

For a finite-dimensional inner product space, given a set of linearly independent vectors, we can find an orthonormal

basis with the same span. To do this, we use the algorithm described below.

Theorem 2.27 (Gram-Schmidt orthogonalization). Let V be an inner product space and S = {x1,x2, . . . ,xn} be a

linearly independent subset of V . Let E = {e1,e2, . . . ,en} be another set of vectors generated by the following iterative
process:

ek =
1

‖vk‖
vk

where

vk =

{
xk−∑k−1

l=1 〈xk,el〉el for k = 2,3, . . . ,n

x1 for k = 1.

Then E is an orthonormal set of vectors such that span(E) = span(S). (The kth step in the orthonormalization process
is illustrated graphically in Figure 2.13.)

From the above theorem, we can see that any finite-dimensional Hilbert space must have an orthonormal basis.

The theorem provides a constructive algorithm for obtaining such a basis.

Example 2.89. Consider the inner product space V = R4. Let S be the linearly independent subset of V given by

S = {(1,0,1,0),(1,1,1,1),(0,1,2,−1)}. Use the Gram-Schmidt process to find an orthonormal basis for spanS.

Solution. FIRST ITERATION. We have

v1 = x1 = (1,0,1,0),

‖v1‖=
√
12 +12 =

√
2, and

e1 =
v1

‖v1‖
= 1√

2
(1,0,1,0) = ( 1√

2
,0, 1√

2
,0).
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k−1
∑
l=1

〈xk,el〉el

xk
vk

Figure 2.13: Gram-Schmidt orthogonalization process (kth step).

SECOND ITERATION. We have

v2 = x2−〈x2,e1〉e1
= (1,1,1,1)−

〈
(1,1,1,1),( 1√

2
,0, 1√

2
,0)
〉

( 1√
2
,0, 1√

2
,0)

= (1,1,1,1)−
√
2( 1√

2
,0, 1√

2
,0)

= (1,1,1,1)− (1,0,1,0)

= (0,1,0,1),

‖v2‖=
√
12 +12 =

√
2, and

e2 =
v2

‖v2‖
= 1√

2
(0,1,0,1)

= (0, 1√
2
,0, 1√

2
).

THIRD ITERATION. We have

v3 = x3−〈x3,e1〉e1−〈x3,e2〉e2
= (0,1,2,−1)−

〈
(0,1,2,−1),( 1√

2
,0, 1√

2
,0)
〉

( 1√
2
,0, 1√

2
,0)−

〈
(0,1,2,−1),(0, 1√

2
,0, 1√

2
)
〉

(0, 1√
2
,0, 1√

2
)

= (0,1,2,−1)−
√
2( 1√

2
,0, 1√

2
,0)−0

= (0,1,2,−1)− (1,0,1,0)

= (−1,1,1,−1),

‖v3‖=
√

(−1)2 +12 +12 +(−1)2 =
√
4 = 2, and

e3 =
v3

‖v3‖
= 1

2
(−1,1,1,−1)

= (− 1
2
, 1
2
, 1
2
,− 1

2
).

Thus, we have that {e1,e2,e3} are an orthonormal basis, where

e1 = ( 1√
2
,0, 1√

2
,0), e2 = (0, 1√

2
,0, 1√

2
), and e3 = (− 1

2
, 1
2
, 1
2
,− 1

2
).
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Example 2.90. Consider the inner product space V = L2[−1,1]. Let S be the linearly independent subset of V given

by S = {1, t, t2}. Let W = spanS. That is, W is the subspace of V consisting of polynomials of degree less than or

equal to two (including the zero polynomial). Use the Gram-Schmidt process to find an orthonormal basis forW .

Solution. We use the Gram-Schmidt process. FIRST ITERATION. We have

v1 = 1,

‖v1‖2 = 〈v1,v1〉=
∫ 1

−1
dt = 2, and

e1 = 1√
2
.

SECOND ITERATION. We have

v2 = x2−〈x2,e1〉e1
= t−

〈
t, 1√

2

〉
1√
2

= t− 1√
2

∫ 1

−1
t( 1√

2
)dt

= t− 1
2

[
1
2
t2
]∣∣1
−1

= t− 1
2
[ 1
2
− 1

2
]

= t,

‖v2‖2 = 〈v2,v2〉

=
∫ 1

−1
t2dt

=
[
1
3
t3
]∣∣1
−1

= 1
3
− (− 1

3
)

= 2
3
, and

e2 =
v2

‖v2‖
=

t√
2
3

=
√

3
2
t.

THIRD ITERATION. We have

v3 = x3−〈x3,e1〉e1−〈x3,e2〉e2

= t2−
〈
t2, 1√

2

〉
1√
2
−
〈
t2,
√

3
2
t

〉√
3
2
t

= t2− 1√
2

∫ 1

−1
1√
2
t2dt−

√
3
2
t

∫ 1

−1

√
3
2
t3dt

= t2− 1√
2

[
1√
2

t3

3

]∣∣∣
1

−1
−
√

3
2
t

[√
3
2
t4

4

]∣∣∣∣
1

−1

= t2− 1
2

[
1
3
t3
]∣∣1
−1−

3
2
t
[
1
4
t4
]∣∣1
−1

= t2− 1
2
( 1
3
− (− 1

3
)− 3

2
t( 1

4
− 1

4
))

= t2− 1
3
,
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‖v3‖2 = 〈v3,v3〉

=
∫ 1

−1
(t2− 1

3
)2dt

=
∫ 1

−1
(t4− 2

3
t2 + 1

9
)dt

=
[
1
5
t5− 2

9
t3 + 1

9
t
]∣∣∣

1

−1
= ( 1

5
− 2

9
+ 1

9
)− (− 1

5
+ 2

9
− 1

9
)

= 8
45

, and

e3 =
v3

‖v3‖

=
t2− 1

3√
8
45

=
√

45
8
t2−

√
45
8

( 1
3
)

=
√

45
8
t2−

√
5
8
.

Thus, an orthonormal basis forW is given by

y1(t) = 1√
2
, y2(t) =

√
3
2
t, and y3(t) =

√
45
8
t2−

√
5
8
.

(As an aside, we note that the functions y1,y2,y3 are, in fact, the first three Legendre polynomials.)

2.8.8 Riesz Bases

Although an orthonormal basis is often convenient to employ, we can instead choose to use a basis that is not orthonor-

mal (or even orthogonal). Sometimes orthonormality places too many constraints on the choice of basis vectors. By

dropping the orthonormality constraint, we gain additional freedom in the choice of basis vectors. This leads us to

another type of basis known as a Riesz basis.

We begin by introducing the notion of biorthogonality.

Definition 2.53 (Biorthogonal and biorthonormal sets). Two sets {xn}n∈I and {yn}n∈I are said to be biorthogonal

if xm ⊥ yn for m,n ∈ I and m 6= n. If, in addition, we have 〈xn,yn〉 = 1 for all n ∈ I, then the sets are said to be

biorthonormal.

It follows from the above definition that an orthogonal set is biorthogonal with itself, and similarly, an orthonormal

set is biorthonormal with itself.

Example 2.91. For the space V = R3, consider the sets X = {x1,x2} ⊂V and Y = {y1,y2} ⊂V where

x1 = (1,0,−1), x2 = (2,2,2),

y1 = (0,1,−1), and y2 = (1,−1,1).
Determine whether the sets X and Y are biorthogonal or biorthonormal.

Solution. Computing the various inner products, we obtain

〈x1,y2〉= 〈(1,0,−1),(1,−1,1)〉= 0

〈x2,y1〉= 〈(2,2,2),(0,1,−1)〉= 0

〈x1,y1〉= 〈(1,0,−1),(0,1,−1)〉= 1 and

〈x2,y2〉= 〈(2,2,2),(1,−1,1)〉= 2.

Since 〈xm,yn〉= 0 for m 6= n, X and Y are biorthogonal. As 〈x2,y2〉 6= 1, X and Y are not biorthonormal.
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Example 2.92. For the space V = R3, consider the sets X = {x1,x2,x3} ⊂V and Y = {y1,y2,y3} ⊂V where

x1 = (1,0,−1), x2 = (1,1,1), x3 = (0,1,1),

y1 = (0,1,−1), y2 = (1,−1,1), and y3 = (−1,2,−1).

Determine whether the sets X and Y are biorthogonal and/or biorthonormal.

Solution. Computing the various inner products, we have

〈x1,y2〉= 〈(1,0,−1),(1,−1,1)〉= 0

〈x1,y3〉= 〈(1,0,−1),(−1,2,−1)〉= 0

〈x2,y1〉= 〈(1,1,1),(0,1,−1)〉= 0

〈x2,y3〉= 〈(1,1,1),(−1,2,−1)〉= 0

〈x3,y1〉= 〈(0,1,1),(0,1,−1)〉= 0

〈x3,y2〉= 〈(0,1,1),(1,−1,1)〉= 0

〈x1,y1〉= 〈(1,0,−1),(0,1,−1)〉= 1,

〈x2,y2〉= 〈(1,1,1),(1,−1,1)〉= 1, and

〈x3,y3〉= 〈(0,1,1),(−1,2,−1)〉= 1.

Since 〈xm,yn〉= 0 for m 6= n, X and Y are biorthogonal. As 〈xm,yn〉= δm,n, X and Y are also biorthonormal.

For a finite-dimensional inner product spaceV of dimension n, any linearly independent set E of n vectors satisfies

spanE =V . In the case of an infinite-dimensional space, however, the situation is different. For an infinite-dimensional

space V , an infinite set E of linearly independent vectors need not satisfy closspanE = V . Of course, one issue here

is that a proper subspace of an infinite-dimensional space can itself be infinite dimensional.

Other subtleties can also arise in the case of infinite-dimensional spaces. For example, in the case of finite-

dimensional spaces, the only constraint that we need to place on basis vectors is that they be linearly independent.

In the case of infinite-dimensional spaces, however, the situation is somewhat more complicated. In the infinite-

dimensional case, linear independence (or even ω-independence or minimality) alone is not enough to ensure a well

behaved basis. This point is illustrated by the examples below.

Example 2.93. Let {en}n∈N be an orthonormal basis of a Hilbert space, and define the sequence {vn}n∈N as

vn = 1
n
en.

One can show that {vn}n∈N is still a Schauder basis and is therefore ω-independent. (The ω-independence of {vn}n∈N

is considered further in Problem 2.69.) Suppose now that we choose

x = αek

for some k ∈ N and α ∈ R. This implies that

x = αek = αkvk.

Consider the representation of x in terms of the basis {vn}n∈N. We trivially have

x = ∑
n∈N

anvn

where

an =

{
αk for n = k

0 otherwise.
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(In other words, only one of the {an} is nonzero, namely ak.) Taking the norms of the vector x and coefficient sequence

{an}n∈N, we obtain

‖x‖= ‖αek‖= |α|‖ek‖= |α| and

‖a‖2l2 = ∑
n∈N

|an|2 = α2k2 ⇒ ‖a‖l2 = |α|k.

From the preceding equations, we can see that, as k→∞, the norm of the coefficient sequence {an}n∈N grows without

bound, while the norm of the vector x remains fixed at |α|. Thus, the basis {vn}n∈N is very poorly behaved in the

sense that a vector of reasonable size (as measured by the norm) cannot necessarily be represented by a coefficient

sequence of reasonable size (as measured by the l2 norm). Furthermore, as k→ ∞, the magnitude of the expansion

coefficient ak = αk grows without bound, in spite of the fact that the vector x has a bounded norm.

Example 2.94. Let E = {e0,e1,e2, . . .} be an orthonormal set in a Hilbert space V . From E, we construct the linearly

independent set X = {xn} as

xn =

(
cos

1

n

)
e0 +

(
sin

1

n

)
en, n ∈ N.

(The set X can also be shown to be ω-independent. See Problem 2.71.) Since e0 = limn→∞ xn, it follows that e0 ∈
closspanX . Now, suppose that e0 can be expressed in the form

e0 = ∑
n∈N

anxn. (2.7)

From the definition of xn, we can rewrite this as

e0 = ∑
n∈N

an

((
cos

1

n

)
e0 +

(
sin

1

n

)
en

)
.

Manipulating this further, we obtain

e0 =

(
∑
n∈N

an

(
cos

1

n

))
e0 + ∑

n∈N

an

(
sin

1

n

)
en.

Since en ⊥ e0 for n ∈ N, we can see that

∑
n∈N

an

(
cos

1

n

)
= 1 and (2.8a)

∑
n∈N

an

(
sin

1

n

)
en = 0. (2.8b)

Since {en}n∈N is orthonormal, we can deduce by taking the norm of both sides of (2.8b) that

∑
n∈N

|an|2 sin2
1

n
= 0

which implies

an = 0 for n ∈ N.

In turn, this implies from (2.7) that e0 = 0. Thus, we have a contradiction, as we know that e0 6= 0. Therefore, our

supposition that e0 can be represented in the form of (2.7) was incorrect.
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The significance of the above example is that it shows that one must be careful in the selection of basis vectors for

an infinite-dimensional space. We can encounter problems if the only constraint placed on the basis vectors is that they

be linearly independent. In the above example, we have a vector in the closed linear span of a linearly independent

set that cannot be represented in terms of an infinite linear combination of elements from the set. The problem in the

above example is that ‖xn− e0‖ → 0 as n→ ∞. So, although X is linearly independent, we have that, for large n, all

of the xn cluster around e0. In order to address problems like that above, we place additional constraints on the basis

vectors. This leads to the notion of a Riesz basis as defined below.

Definition 2.54 (Riesz basis). A sequence {en}n∈I is said to be a Riesz basis of a Hilbert space V if, for every x ∈V ,
there exists a unique scalar sequence a = {an}n∈I in l2(I) such that

x = ∑
n∈I

anen, (2.9)

and there exist two strictly positive real constants A and B (which are independent of x) such that

A∑
n∈I
|an|2 ≤ ‖x‖2 ≤ B∑

n∈I
|an|2 (2.10)

(i.e., A‖a‖2l2 ≤ ‖x‖
2 ≤ B‖a‖2l2). Equivalently, we can rewrite (2.10) as 1

B
‖x‖2 ≤ ‖a‖2l2 ≤ 1

A
‖x‖2. We sometimes

refer to (2.10) as the Riesz condition. The constants A and B are referred to as the lower and upper Riesz bounds,

respectively.

One can show that a Riesz basis is unconditional.

LINEAR INDEPENDENCE. By considering the case of x = 0 in (2.9), it trivially follows from (2.10) that {en}n∈I
is ω-independent and, therefore (by Lemma 2.3), linearly independent as well. In particular, suppose that {en} is not
ω-independent. Then, we have that 0= ∑n∈I anen for some {an} having at least one nonzero element. From the Riesz

condition, we have that A∑n∈I |an|2 ≤ 0. The left-hand side of this inequality, however, must be strictly positive, since

at least one of the {an} is nonzero. Thus, we have a contradiction. Therefore, our initial supposition must have been

incorrect, and we conclude that {en} must be ω-independent.

MINIMALITY. A Riesz basis {en}n∈I is minimal. Suppose that {en}n∈I is not minimal. Then, one of the

basis vectors, say eM , lies in the closed linear span of {en}n∈I\{M}. That is, for every ε > 0, there must exist N and

{cn}n∈{1,2,...,N}\{M} satisfying
∥∥∥∥∥eM− ∑

n∈{1,2,...,N}\{M}
cnen

∥∥∥∥∥< ε.

Rearranging the left-hand side, we can write

∥∥∥∥∥ ∑
n∈{1,2,...,N}∪{M}

c′nen

∥∥∥∥∥< ε, where c′n =

{
−cn for n 6= M

1 for n = M.

From the Riesz condition (2.10), the left-hand side of the preceding inequality is bounded from below. In particular,

we have

(
A ∑
n∈{1,2,...,N}∪{M}

∣∣c′n
∣∣2
)1/2

< ε ⇒

√
A

(
1+ ∑

n∈{1,2,...,N}\{M}

∣∣c′n
∣∣2
)1/2

< ε ⇒
√
A < ε.

Since A > 0, this inequality cannot hold for every ε < 0. Therefore, we have a contradiction, and {en}n∈I must be

minimal.
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DISTANCE BETWEEN VECTORS. The distance between any two basis vectors in {en} is bounded. To show this,

let

an =





1 for n = k

−1 for n = m

0 otherwise.

From the Riesz condition, we have

A‖a‖2l2 ≤ ‖ek− em‖2 ≤ B‖a‖2l2
⇔ 2A≤ ‖ek− em‖2 ≤ 2B

⇔
√
2A≤ ‖ek− em‖ ≤

√
2B.

Therefore, the distance between basis vectors is at least
√
2A and at most

√
2B.

NORM OF VECTORS. The norm of each of the basis vectors in {en} is bounded. To show this, let

an =

{
1 for n = m

0 otherwise.

From the Riesz condition, we then have

A‖a‖2l2 ≤ ‖em‖
2 ≤ B‖a‖2l2

⇔ A≤ ‖em‖2 ≤ B

⇔
√
A≤ ‖em‖ ≤

√
B.

Therefore, the norm of a basis vector is at least
√
A and at most

√
B.

STABILITY OF BASIS. One consequence of the Riesz condition is that a small difference in norm of vectors implies

a small difference in the norm of expansion coefficient sequence. A small perturbation in a vector (as measured by the

norm) will always result in a small perturbation in its corresponding expansion coefficient sequence (as measured by

the l2 norm) and vice versa. In other words, the transformation from the vector x to the sequence {an} is bounded so

that a small change in x cannot result in an unbounded change in {an}. (This follows from A‖a‖2l2 ≤ ‖x‖
2⇔‖a‖2l2 ≤

A−1 ‖x‖2.) Similarly, the inverse transformation from the sequence {an} to the vector x is bounded so that a small

change in {an} cannot result in an unbounded change in x. (This follows from ‖x‖2 ≤ B‖a‖2l2 .)
One can view the Riesz condition as a form of partial energy equivalence. Although the l2 norm of the coefficient

sequence is not necessarily equal to the norm of the vector x being represented (as in the case of an orthonormal basis),

it is bounded by the norm of x. Furthermore, one can see that an orthonormal basis is a special case of a Riesz basis.

In the case of an orthonormal basis, we have (by the Plancherel formula) that

‖x‖2 = ∑
n∈I
|〈x,en〉|2 .

This, however, is equivalent to the Riesz condition with A = B = 1. In passing, we note that an orthonormal basis can

be generated from a Riesz basis by applying the Gram-Schmidt orthonormalization procedure.

Given a particular Riesz basis of an inner product space, there is another related Riesz basis that is frequently of

interest. This second basis is known as the dual basis and is formally defined below.

Theorem 2.28 (Existence of dual Riesz basis). Let {en}n∈I be a Riesz basis of a Hilbert space V with lower and

upper Riesz bounds A and B, respectively. Then, there exists another Riesz basis {ẽn}n∈I of V with lower and upper

Riesz bounds 1
B
and 1

A
, respectively, such that for all x ∈V,

x = ∑
n∈I
〈x, ẽn〉en = ∑

n∈I
〈x,en〉 ẽn.

We call {ẽn}n∈I the dual Riesz basis of {en}n∈I .
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It follows from the definition of dual bases that a Riesz basis and its dual are biorthonormal. In practical terms, a

dual basis is important because it provides a means for calculating expansion coefficients.

For more information on Riesz bases beyond what is presented herein, the reader is referred to [3].

Example 2.95 (Riesz bases for the Euclidean plane). Consider the Hilbert space V = R2 (i.e., the Euclidean plane).

We have the basis E = {e1,e2} of V , and we would like to represent the vector x ∈V in terms of an expansion of the

form

x = a1e1 +a2e2

where a1,a2 ∈ R. That is, we have the scenario depicted in Figure 2.14(a). Since {e1,e2} is not orthonormal, we

cannot simply compute the expansion coefficients a1,a2 through the orthogonal projection of x onto each vector of

the basis {e1,e2}. Instead, we must compute the oblique projections as shown in Figure 2.14(a). That is, we need to

compute the lengths {c1,c2}. Then, we have

ak =
ck

‖ek‖
.

The necessary oblique projections, however, can be calculated through the orthogonal projection of x onto the vectors

of the dual basis {ẽ1, ẽ2}. Since {e1,e2} and {ẽ1, ẽ2} are biorthonormal, we have that

e1 ⊥ ẽ2, e2 ⊥ ẽ1, and ‖ẽk‖=
1

‖ek‖cosθk
,

where θk denotes the angle between the vectors ek and ẽk. (Recall that the angle θ between two vectors u and v is

given by cosθ = 〈u,v〉
‖u‖‖v‖ .) This leads to the geometry shown in Figure 2.14(b).

Consider the computation of {ck}. From simple geometry, we have

ak =
ck

‖ek‖
, bk =

〈x, ẽk〉
‖ẽk‖

, and cosθk =
bk

ck
.

Combining these equations, we obtain

ak =
ck

‖ek‖

=
bk

‖ek‖cosθk

=
〈x, ẽk〉

‖ek‖‖ẽk‖cosθk

= 〈x, ẽk〉 .

Thus, the expansion coefficients a1,a2 are calculated in terms of inner products with the dual basis vectors ẽ1, ẽ2.

In the case of finite-dimensional vector spaces, we can determine the dual of a Riesz basis in a straightforward

manner. This is illustrated by the example below.

Example 2.96. Let E = {e1,e2} and Ẽ = {ẽ1, ẽ2} denote dual Riesz bases of the Hilbert space V = R2. If

e1 = (1,1) and e2 = (1,2),

find Ẽ.

Proof. Since E is a Riesz basis, we know that each x = (x1,x2) ∈V has a representation of the form

x =
2

∑
n=1

anen,
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c2

e1

e2

x

c1

(a)

c2

e1

e2

ẽ2

ẽ1

x

c1

b2

b1

θ2

θ1

(b)

Figure 2.14: Dual bases in the Euclidean plane.

where an = 〈x, ẽn〉. Substituting the given values for e1 and e2, we have

(x1,x2) = a1(1,1)+a2(1,2) = (a1 +a2,a1 +2a2).

Rewriting this equation in matrix form, we obtain

[
x1
x2

]
=

[
1 1

1 2

][
a1
a2

]
.

Solving for a1 and a2 in terms of x1 and x2, we obtain

[
a1
a2

]
=

[
1 1

1 2

]−1 [
x1
x2

]

=

[
2 −1
−1 1

][
x1
x2

]
.

The preceding matrix equation, however, is equivalent to

a1 = 〈x,(2,−1)〉
a2 = 〈x,(−1,1)〉 .

From these equations, we can trivially deduce that

ẽ1 = (2,−1) and ẽ2 = (−1,1).

Example 2.97. Let E = {e1,e2,e3} and Ẽ = {ẽ1, ẽ2, ẽ3} be dual Riesz bases of the Hilbert space V = R3, where

e1 = (6,3,2), e2 = (−3,−1,−1), e3 = (2,2,1), ẽ1 = (1,1,−4), ẽ2 = (1,2,−6), and ẽ3 = (−1,0,3).

Find the expansion of the vector x = (1,3,−2) in terms of elements of E.
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Solution. We seek to find an expansion of the form

x =
3

∑
n=1

anen (2.11)

where an = 〈x, ẽn〉. Computing the expansion coefficients, we obtain

a1 = 〈x, ẽ1〉
= 〈(1,3,−2),(1,1,−4)〉
= 1+3+8

= 12

a2 = 〈x, ẽ2〉
= 〈(1,3,−2),(1,2,−6)〉
= 1+6+12

= 19

a3 = 〈x, ẽ3〉
= 〈(1,3,−2),(−1,0,3)〉
=−1−6

=−7

Finally, substituting the above values for a1,a2,a3 into (2.11), we obtain

x = 12e1 +19e2−7e3.

One can readily confirm that the right-hand side of the preceding equation, in fact, sums to x = (1,3,−2).

2.9 lp Spaces

One very useful class of normed spaces is the lp spaces. These spaces contain sequences in their underlying sets. Let

p ∈ [1,∞)∪{∞}. The underlying set is comprised of all sequences (xn)n∈I such that
{

∑n∈I |xn|p < ∞ p ∈ [1,∞)

supn∈I |xn|< ∞ p = ∞.

(Note that the cases of p = 1, p = 2, and p = ∞ correspond to the spaces of absolutely-summable, square-summable,

and bounded sequences, respectively.) Vector addition and scalar multiplication are defined in the straightforward

way. The norm employed is given by

‖x‖p =

{
[∑n∈I |xn|p]1/p p ∈ [1,∞)

supn∈I |xn| p = ∞.

One can show that the lp spaces are Banach spaces.

In the case that p = 2, we obtain an inner product space l2, where the inner product is given by

〈x,y〉= ∑
n∈I

xny
∗
n.

Moreover, since the lp spaces are complete, l2 is also a Hilbert space.

One might wonder if any relationship exists between the different members of the lp class of spaces. To gain

some insight in this regard, we consider the relationships between absolute summability, square summability, and

boundedness of sequences.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



2.9. LP SPACES 63

Proposition 2.1. If a sequence {ak}k∈I is absolutely summable, then it is also square summable.

Proof. Suppose that {ak}k∈I is absolutely summable. Then, we have

∑
k∈I
|ak|< ∞

which implies (by squaring both sides)

(
∑
k∈I
|ak|
)2

< ∞. (2.12)

Let us further consider the quantity (∑k∈I |ak|)2. We can write

(
∑
k∈I
|ak|
)2

=

(
∑
k∈I
|ak|
)(

∑
l∈I
|al |
)

= ∑
k∈I

∑
l∈I
|ak| |al |

= ∑
k∈I

∑
l∈I
l 6=k

|ak| |al |+ ∑
k∈I
|ak|2

≥∑
k∈I
|ak|2 .

Combining this inequality with (2.12), we have

∑
k∈I
|ak|2 ≤

(
∑
k∈I
|ak|
)2

< ∞.

which implies

∑
k∈I
|ak|2 < ∞.

Thus, {ak}k∈I is square summable.

Proposition 2.2. If a sequence {ak}k∈I is either absolutely summable or square summable, then it is bounded.

Proof. Suppose that {ak} is not bounded. Then, there exists some n ∈ I for which an is infinite. This being the

case, both of the sums ∑k∈I |ak| and ∑k∈I |ak|2 are infinite. Hence, {ak} is neither absolutely nor square summable.

Consequently, {ak} can only be absolutely or square summable if it is bounded.

Thus, from above, we have that 1) absolute summability implies square summability (i.e., l1(I) ⊂ l2(I)), and
2) absolute or square summability implies boundedness (i.e., l1(I) ⊂ l∞(I) and l2(I) ⊂ l∞(I)). In other words, we

have the following interesting relationship:

l1(I)⊂ l2(I)⊂ l∞(I).

In other words, the spaces are nested.
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2.10 Lp Spaces

Another very useful class of normed spaces is the Lebesgue spaces Lp(I). These spaces contain functions as elements

of their underlying sets. Let p∈ [1,∞)∪{∞}. The underlying set is comprised of all measurable functions x(t) defined
on I such that

{∫
I |x(t)|

p
dt < ∞ p ∈ [1,∞)

esssupt∈I |x(t)|< ∞ p = ∞.

(Note that the cases of p = 1, p = 2, and p = ∞ correspond to the spaces of absolutely-integrable, square-integrable,

and essentially-bounded functions.) Vector addition and scalar multiplication are defined in the straightforward way.

The norm employed is given by

‖x‖p =

{
[
∫
I |x(t)|

p
dt]

1/p
p ∈ [1,∞)

esssupt∈I |x(t)| p = ∞.

One can show that the Lp spaces are Banach spaces.

In the case that p = 2, we obtain an inner product space L2, where the inner product is given by

〈x,y〉=
∫

I
x(t)y∗(t)dt.

Moreover, since the Lp spaces are complete, L2 is also a Hilbert space.

In the case of the Lp spaces, we need to consider a subtlety in the definition of the equality of functions. Recall

that a norm must be such that ‖x‖= 0 if and only if x = 0. Now, consider the functions x1,x2 ∈ Lp(R), given by

x1(t)≡ 0 and x2(t) =

{
1 for t = 0

0 otherwise.

Clearly, in a pointwise sense, x1 and x2 are not equal. Now consider ‖x1− x2‖Lp . Since x1 and x2 differ only on a set

of measure zero, x1− x2 is zero almost everywhere. From the properties of Lebesgue integral, we know that

‖x1− x2‖Lp =

[∫ ∞

−∞
|x1− x2|p dt

]1/p
= 0.

Thus, we have

‖x1− x2‖Lp = 0.

From the strict positivity property of a norm, however, this implies that x1 = x2. So, we can see that equality of

functions in Lp spaces cannot be defined as pointwise equality. In fact, we have that two functions are considered

equal if they differ only on set of measure zero. Thus, Lp spaces should be viewed as being comprised of equivalence

classes of functions, where each equivalence class consists of a set of functions that only differ on a set of measure

zero.

As a consequence of the above definition of equality, we can see that functions in Lp spaces are not well defined

at any given specific point. When we speak of a function having a particular value at a certain point, we are actually

referring to the properties of a single representative function from an equivalence class. For example, when we say

that an element of an Lp space is continuous, what we actually mean, in more precise terms, is that a member of its

equivalence class is continuous.

Now, we consider the relationship between the various Lp spaces. In the case of lp spaces, we observed a nesting

relationship between spaces. In the case of the Lp spaces, the situation is quite different. For example, for a function

f , we can show that f ∈ L1(R) does not necessarily imply f ∈ L2(R) and vice versa. That is, absolute integrability

does not imply square integrability, nor does square integrability imply absolute integrability. There exist functions

that are absolutely integrable but not square integrable and vice versa. This point is illustrated by the examples below.
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Example 2.98. Let f (t) = (1+ |t|)−3/4. Show that f ∈ L2(R) but f 6∈ L1(R).

Solution. First, we consider whether f ∈ L1(R). We have

∫ ∞

−∞
| f (t)|dt =

∫ ∞

−∞
f (t)dt

= 2

∫ ∞

0
f (t)dt

= 2

∫ ∞

0
(1+ t)−3/4dt

= 2
[
4(1+ t)1/4

]∣∣∣
∞

0

= ∞.

Since the above integral does not exist, f 6∈ L1(R). Now, we consider whether f ∈ L2(R). We have

∫ ∞

−∞
| f (t)|2 dt =

∫ ∞

−∞
f 2(t)dt

= 2

∫ ∞

0
f 2(t)dt

= 2

∫ ∞

0
(1+ t)−3/2dt

= 2

[
− 2√

1+ t

]∣∣∣∣
∞

0

= 2 [0− (−2)]
= 4.

Therefore, f ∈ L2(R). Thus, we have shown that f 6∈ L1(R) and f ∈ L2(R).

Example 2.99. Let f (t) = χ[−1,1](t)/
√
|t|. Show that f ∈ L1(R) but f 6∈ L2(R).

Solution. First, we consider whether f ∈ L1(R). We have

∫ ∞

−∞
| f (t)|dt =

∫ ∞

−∞
f (t)dt

= 2

∫ ∞

0
f (t)dt

= 2

∫ 1

0
t−1/2dt

= 2
[
2t1/2

]∣∣∣
1

0

= 2(2−0)

= 4.
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Therefore, f ∈ L1(R). Now, we consider whether f ∈ L2(R). We have

∫ ∞

−∞
| f (t)|2 dt =

∫ ∞

−∞
f 2(t)dt

= 2

∫ ∞

0
f 2(t)dt

= 2

∫ 1

0
f 2(t)dt

= 2

∫ 1

0
t−1dt

= 2 [ln t]|10
= 2(0− (−∞))

= ∞.

Since the preceding integral does not converge, f 6∈ L2(R). Thus, f ∈ L1(R) and f 6∈ L2(R).

From the above examples, we can see that f ∈ L1(R) does not imply f ∈ L2(R). Nor does f ∈ L2(R) imply

f ∈ L1(R). That is, L1(R) and L2(R) are not nested spaces.

Lastly, we observe a few other useful properties of the Lp spaces. Let C∞
0 (R) denote the set of all infinitely

differentiable real-valued functions with compact support. One can show thatC∞
0 (R) is dense in L2(R). Also, one can

show that L1(R)∩L2(R) is dense in L2(R). Lastly, if f ∈ L2(R) and f is compactly supported, then f ∈ L1(R).

2.11 Miscellany

An expression of the form ∑n1
n=n0

anz
−n (where n0 and n1 are finite) is called a Laurent polynomial. That is, a Laurent

polynomial is a polynomial in both z and z−1.
For two integers a and b, we say that a divides b, abbreviated a | b, if there exists another integer k such that b= ka

(i.e., b is an integer multiple of a). For example, we have that 2 | 4 and 3 | 27 while 7 ∤ 13.
A function f : R→ C is said to be infinitely differentiable if its derivatives of all orders exist and are continu-

ous. A function f : R→ C is said to be n-times continuously differentiable if its first n derivatives exist and are

continuous.

Definition 2.55 (Support). The support of a function f , denoted supp f , is the closure of the set

{t : f (t) 6= 0}.

In other words, the support of a function is the smallest closed set that contains all of the points where the function is

nonzero.

Example 2.100. Let x(t) = χ[0,1)(t) and y(t) = χ[0,1)(t)+ χ[2,3)(t). Then, suppx = [0,1] and suppy = [0,1]∪ [2,3].

A function f defined on R is said to have compact support if supp f ⊂ [a,b] for a,b ∈ R. That is, f has compact

support if it is only nonzero on some finite interval.

Example 2.101. Let x1(t) = χ[0,1)(t) and x2(t) = sin t. Then, x1 has compact support (with suppx1 ⊂ [0,1]), and x2
does not have compact support.

Definition 2.56 (Moment). The kth moment of a sequence x defined on Z is given by

mk = ∑
n∈Z

nkx[n].

The kth moment of a function x defined on R is given by

mk =
∫ ∞

−∞
tkx(t)dt.
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A function or sequence f is said to have p vanishing moments if the first p moments of the function vanish (i.e.,

are zero).

The transpose, conjugate transpose, and transposed inverse of a matrix AAA are denoted, respectively, as AAAT , AAA†, and

AAA−T . The symbols IIIn and JJJn denote the n× n identity and anti-identity matrices, respectively, where the subscript

n may be omitted when clear from the context. The (k, l)th minor of the n× n matrix AAA is the determinant of the

(n−1)× (n−1) matrix formed by removing the kth row and lth column from AAA.

Definition 2.57 (Schur product). The Schur product of two m×n matrices AAA = (ak,l) and BBB = (bk,l), denoted AAA◦BBB,
is defined as the m× n matrix AAA ◦BBB = (ck,l), where ck,l = ak,lbk,l . (That is, the Schur product is a matrix containing

the scalar products between corresponding elements in two matrices.)

A square matrix AAA is said to be unitary if AAA−1 =AAA†.

For a polynomial matrix AAA(z), the notation AAA∗(z) denotes the matrix obtained by conjugating the polynomial

coefficients without conjugating z.

The paraconjugate of a matrix AAA(z) is AAAT
∗ (z
−1).

If a square matrix AAA(z) is such that

AAA(z)AAAT
∗ (z
−1) = III

then AAA is said to be paraunitary (i.e., the matrix times its paraconjugate is the identity matrix). A paraunitary matrix

is unitary on the unit circle (i.e., for |z|= 1).

The adjugate of the n× n matrix AAA, denoted AdjAAA, is the n× n matrix whose (k, l)th entry is given by (−1)k+l

Ml,k where Ml,k is the (l,k)th minor of AAA.

The inverse of a square matrix AAA is given by

AAA−1 =
1

detAAA
AdjAAA.

Now, we define a few special types of matrices that are often quite useful.

Definition 2.58 (Circulant matrix). An N×N matrix of the form




a1 a2 a3 · · · aN
aN a1 a2 · · · aN−1
aN−1 aN a1 · · · aN−2

...
...

...
. . .

...
a2 a3 a4 · · · a1




is said to be circulant (or right circulant). An N×N matrix of the form




a1 a2 a3 · · · aN
a2 a3 a4 · · · a1
a3 a4 a5 · · · a2
...

...
...

. . .
...

aN a1 a2 · · · aN−1




is said to be left circulant.

Definition 2.59 (Toeplitz matrix). An n× n matrix with each diagonal having entries of equal value is said to be

Toeplitz. In other words, such a matrix has the form




a0 a1 a2 · · · aN−1
a−1 a0 a1 · · · aN−2
a−2 a−1 a0 · · · aN−3
...

...
...

. . .
...

a−(N−1) a−(N−2) a−(N−3) · · · a0




.
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Definition 2.60 (Vandermonde matrix). An n×n matrix in which the kth column vector is of the form [a0k a1k ··· a
n−1
k ]T

for k = 0,1, . . . ,n−1 is said to be a Vandermonde matrix. In other words, such a matrix has the form




1 1 1 · · · 1

a0 a1 a2 · · · an−1
a20 a21 a22 · · · a2n−1
...

...
...

. . .
...

an−10 an−11 an−12 · · · an−1n−1




.

The determinant of a Vandermonde matrix AAA is given by

detAAA = ∏
0≤k<l≤n−1

(al−ak).

If the columns of the matrix are distinct, the matrix is nonsingular. The DFT matrix is an example of a Vandermonde

matrix.

We denote the Mth root of unity asWM = e− j2π/M . We denote the M×M DFT matrix asWWWM . That is,

WWWM =




1 1 · · · 1

1 W · · · WM−1

...
...

. . .
...

1 WM−1 · · · W (M−1)2


 . (2.13)

2.12 Fourier Analysis

In what follows, we introduce convolution and the Fourier transform.

2.12.1 Convolution

One operation of great importance is the convolution as defined below.

Definition 2.61 (Convolution). Let f ,g ∈ L1(R). The convolution of f and g, denoted f ∗g, is defined as

f ∗g(t) =
∫ ∞

−∞
f (τ)g(t− τ)dτ

and f ∗g ∈ L1(R).

The convolution operation has a number of important properties. Some of these properties are given below.

Theorem 2.29 (Properties of convolution). If f ,g,h ∈ L1(R), then

f ∗g = g∗ f ,
( f ∗g)∗h = f ∗ (g∗h), and

f ∗ (g+h) = f ∗g+ f ∗h

(i.e., convolution is commutative, associative, and distributive).

Theorem 2.30 (Convolution). If f ,g ∈ L1(R), then f ∗g ∈ L1(R) and

∫ ∞

−∞
| f ∗g(t)|dt ≤

(∫ ∞

−∞
| f (t)|dt

)(∫ ∞

−∞
|g(t)|dt

)
.

If f ,g ∈ L2(R), then f ∗g ∈C0 and

sup
t∈R
| f ∗g(t)| ≤ ‖ f‖2 ‖g‖2 .
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Proof.

∫ ∞

−∞
| f ∗g(t)|dt =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
f (τ)g(t− τ)dτ

∣∣∣∣dt

≤
∫ ∞

−∞

∫ ∞

−∞
| f (τ)| |g(t− τ)|dτdt

=
∫ ∞

−∞

∫ ∞

−∞
| f (τ)| |g(t− τ)|dtdτ by Fubini’s theorem

=
∫ ∞

−∞
| f (τ)|dτ

∫ ∞

−∞
|g(t− τ)|dt

=
∫ ∞

−∞
| f (τ)|dτ

∫ ∞

−∞
|g(t)|dt.

2.12.2 Fourier Transform in L1(R)

Often we are interested in studying the frequency-domain properties of functions. In this regard, the Fourier transform

is a useful tool. The Fourier transform is defined as follows.

Definition 2.62 (Fourier transform). For a function f ∈ L1(R), the Fourier transform of f , denoted f̂ or F{ f}, is
the complex-valued function defined on R given by

(F f )(ω) = f̂ (ω) =
∫ ∞

−∞
f (t)e− jωtdt. (2.14)

The inverse of the Fourier transform is computed as given by the theorem below.

Theorem 2.31 (Inverse Fourier transform). Suppose that a function f and its Fourier transform f̂ are both in L1(R).
Then, the inverse Fourier transform of f̂ is given by

(F−1 f̂ )(t) = f (t) =
1

2π

∫ ∞

−∞
f̂ (ω)e jωtdω.

Note that, in the above theorem, it is necessary that both f and f̂ be in L1(R). That is, it is not sufficient simply

for f to be in L1(R). This is due to the fact that there exist functions in L1(R) having Fourier transforms that are not

in L1(R). For example, χ[−1/2,1/2](·) is in L1(R), but its Fourier transform sinc( 1
2
·) is not in L1(R).

The Fourier transform has a number of important properties. Some of these properties are given in the theorems

below.

Theorem 2.32 (Linearity of Fourier transform). If f ,g ∈ L1(R) and c ∈ C, then

[ f +g]̂ = f̂ + ĝ and [c f ]̂ = c f̂ .

Theorem 2.33 (Fourier transform properties). If f ∈ L1(R), then

1. [ f (·− t0)]̂ (ω) = e− jωt0 f̂ (ω) (translation);

2. [e jω0· f (·)]̂ (ω) = f̂ (ω−ω0) (modulation);

3. [ f (a·)]̂ (ω) = 1
|a| f̂ (ω/a) (scaling); and

4. [ f ∗(·)]̂ (ω) = f̂ ∗(−ω) (conjugation).

Theorem 2.34 (Riemann-Lebesgue lemma). If f ∈ L1(R), then f̂ is continuous on R and

lim
|ω|→∞

f̂ (ω) = 0.

(This is known as the Riemann-Lebesgue lemma.)
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Theorem 2.35 (Convolution theorem). If f ,g ∈ L1(R), then

[ f ∗g]̂ (ω) = f̂ (ω)ĝ(ω).

Theorem 2.36 (Parseval relation). If f ,g ∈ L1(R)∩L2(R), then

∫ ∞

−∞
f (t)g∗(t)dt = 1

2π

∫ ∞

−∞
f̂ (ω)ĝ∗(ω)dω.

Theorem 2.37 (Differentiation). Let f be a continuous n-times piecewise differentiable function such that f , f (1), . . . , f (n) ∈
L1(R), and

lim
|t|→∞

f (n)(t) = 0 for n = 0,1, . . . ,n−1.

Then,

f̂ (n) = ( jω)n f̂ .

Theorem 2.38 (Moments). The kth moment µk of a function x is given by

µk = jkx̂(k)(0),

where x̂(k) denotes the kth order derivative of x̂.

Proof. From the definition of the Fourier transform, we have

x̂(ω) =
∫

R
x(t)e− jωtdt

Differentiating both sides of this equation k times with respect to ω , we obtain

x̂(k)(ω) =
(

d
dω

)k ∫

R
x(t)e− jωtdt

=
∫

R
x(t)( d

dω )k[e− jωt ]dt

=
∫

R
x(t)(− jt)ke− jωtdt

= (− j)k
∫

R
tkx(t)e− jωtdt.

Substituting ω = 0 into the preceding equation, we have

x̂(k)(0) = (− j)k
∫

R
tkx(t)dt

= (− j)kµk.

Rearranging, we obtain

µk = jkx̂(k)(0).
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2.12.3 Fourier Transform in L2(R)

Often we need to work with the Hilbert space L2(R). Therefore, we might wish to employ the Fourier transform in this

context. Unfortunately, since L2(R) is not completely contained in L1(R), some functions in L2(R) are not absolutely
integrable. As a consequence, the definition of the Fourier transform for L1(R) functions, as given by (2.14), cannot

be used directly in the context of L2(R). For any function f ∈ L2(R)\L1(R), the integral in (2.14) is not well defined.
So, we must develop an alternative definition of the Fourier transform that can be used in the case of L2(R).

Recall from earlier that L1(R)∩L2(R) is dense in L2(R). This implies that any function in L2(R) can be repre-

sented with arbitrary accuracy using functions from L1(R)∩L2(R). Suppose that we have a function f ∈ L2(R). Such
a function can always be expressed as the limit of a sequence { fn}n∈N of functions in L1(R)∩L2(R). That is, we can
express f as

f = lim
n→∞

fn.

Clearly, each fn is absolutely integrable since fn ∈ L1(R)∩ L2(R) ⊂ L1(R). Since fn is absolutely integrable, the

Fourier transform f̂n of fn exists. So, it would seem natural to define the Fourier transform of the L2(R) function f

as the limit of the sequence { f̂n}n∈N of Fourier transforms. In fact, this is precisely what we do. The above line of

reasoning leads us to the definition of the Fourier transform in L2(R) as given below.

Definition 2.63 (Fourier transform in L2(R)). Let f ∈ L2(R) and let { fn}n∈N be a sequence of functions in L1(R)∩
L2(R) such that limn→∞ fn = f where the convergence is with respect to the L2 norm. Then, we define the Fourier

transform f̂ of f as

f̂ = lim
n→∞

f̂n,

where the convergence is with respect to the norm in L2(R).

We can calculate the Fourier transform of a L2(R) function as given by the theorem below.

Theorem 2.39 (Fourier transform in L2(R)). Let f ∈ L2(R). Then

f̂ (ω) = lim
n→∞

∫ n

−n
f (t)e− jωtdt

where the convergence is with respect to the norm in L2(R). (Essentially, we have that f̂ (ω)= limn→∞
∫ ∞
−∞ fn(t)e

− jωtdt,

where fn(t) = f (t) rect( t
2n

), n ∈ N, and fn ∈ L1(R).)

One can show that the inverse Fourier transform can be calculated as given by the theorem below.

Theorem 2.40 (Inverse Fourier transform in L2(R)). Let f ∈ L2(R). Then,

f (t) = lim
n→∞

1

2π

∫ n

−n
f̂ (ω)e jωtdω,

where the convergence is with respect to the norm in L2(R).

Now, we consider a few important properties of the Fourier transform in the context of L2(R). The first of these is
given by the theorem below.

Theorem 2.41 (Parseval relation). If f ,g ∈ L2(R), then

∫ ∞

−∞
f (t)g∗(t)dt =

1

2π

∫ ∞

−∞
f̂ (ω)ĝ∗(ω)dω

or equivalently

〈 f ,g〉= 1
2π

〈
f̂ , ĝ
〉
.
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The above theorem is quite significant. It shows that the Fourier transform preserves inner products (up to a scale

factor). In other words, the angles between vectors are preserved by the Fourier transform.

Now we consider another fundamentally important result concerning the Fourier transform as given below.

Theorem 2.42 (Plancherel). For each f ∈ L2(R), f̂ ∈ L2(R) and

‖ f‖22 = 1
2π

∥∥ f̂
∥∥2
2
.

It follows from the above theorem that f̂ ∈ L2(R) if and only if f ∈ L2(R). The significance of the above theorem
is twofold. First, it shows that the Fourier transform preserves the norm of functions (up to a scale factor). Secondly,

it shows that the Fourier transform is a mapping of L2(R) onto itself.

Lastly, we note that the convolution, linearity, translation, modulation, scaling, conjugation, and differentiation

properties also hold for the L2(R) definition of the Fourier transform.

2.12.4 Time and Frequency Resolution

As it turns out, there is a fundamental limit as to how much a function can be simultaneously concentrated in both

time and frequency. More formally, this result can be stated in terms of the theorem below.

Theorem 2.43 (Heisenberg uncertainty). The temporal variance σt and the frequency variance σω of f ∈ L2(R)
satisfy

σ2
t σ2

ω ≥ 1
4

and equality holds if and only if f is of the form

f (t) = ae jλ t−b(t−u)
2

where u,λ ∈ R, a,b ∈ C, and

u = 1

‖ f‖2

∫ ∞

−∞
t | f (t)|2 dt

λ = 1

2π‖ f‖2

∫ ∞

−∞
ω
∣∣ f̂ (ω)

∣∣2 dω,

σ2
t = 1

‖ f‖2

∫ ∞

−∞
(t−u)2 | f (t)|2 dt, and

σ2
ω = 1

2π‖ f‖2

∫ ∞

−∞
(ω−λ )2

∣∣ f̂ (ω)
∣∣2 dω.

2.12.5 Continuous-Time Fourier Series

Theorem 2.44 (Continuous-time Fourier series). A T-periodic function f defined on R can be represented in the form

f (t) = ∑
k∈Z

ake
jkω0t ,

where ω0 = 2π
T
,

ak = 1
T

∫

T
f (t)e− jkω0tdt,

and
∫
T denotes integration over an interval of length T . Such a representation is known as a Fourier series.
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2.12.6 Discrete-Time Fourier Series

Theorem 2.45 (Discrete-time Fourier series). An N-periodic sequence f defined on Z can be represented in the form

f [n] =
N−1
∑
k=0

ake
jkω0n

where ω0 = 2π
N

and

ak = 1
N

N−1
∑
n=0

f [n]e− jkω0n.

Such a representation is known as a Fourier series.

2.12.7 Discrete-Time Fourier Transform

Definition 2.64 (Discrete-time Fourier transform). The (discrete-time) Fourier transform f̂ of a sequence f is defined

as

f̂ (ω) = ∑
n∈Z

f [n]e− jωn.

Theorem 2.46 (Inverse discrete-time Fourier transform). The inverse (discrete-time) Fourier transform f of f̂ is given

by

f [n] = 1
2π

∫

2π
f̂ (ω)e jωndω.

Theorem 2.47 (Properties of discrete-time Fourier transform). The discrete-time Fourier transform has the following

properties:

1. ( f [·−n0])̂ (ω) = e− jωn0 f̂ (ω) (translation);

2. (e jω0· f [·])̂ (ω) = f̂ (ω−ω0) (modulation); and

3. ( f ∗[·])̂ (ω) = f̂ ∗(−ω) (conjugation).

Theorem 2.48 (Moments). The kth moment mk of a sequence x is given by

mk = jkx̂(k)(0),

where x̂(k) denotes the kth order derivative of x̂.

Proof. From the definition of the (discrete-time) Fourier transform, we have

x̂(ω) = ∑
n∈Z

c[n]e− jnω .

Differentiating both sides of the equation k times, we obtain

x̂(k)(ω) = ∑
n∈Z

(− jn)kc[n]e− jnω

= (− j)k ∑
n∈Z

nkc[n]e− jnω .

Evaluating the above equation at ω = 0 and using the definition of the kth moment of c, we can write

x̂(k)(0) = (− j)k ∑
n∈Z

nkc[n]

= (− j)kmk.

Rearranging the preceding equation, we have

mk = ( 1
− j

)kx̂(k)(0) = jkx̂(k)(0).
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2.12.8 Z Transform

Definition 2.65 (Z transform). The Z transform of a sequence x defined on Z is denoted as Zx or X(z) and given by

X(z) = ∑
n∈Z

x[n]z−n.

Theorem 2.49 (Inverse Z transform). The inverse Z transform is given by

x[n] =
1

2π j

∮
X(z)zn−1dz,

where
∮
denotes an integration in a counterclockwise direction around a closed path in the complex plane.

2.12.9 Miscellany

Theorem 2.50 (Poisson summation formula). If f ∈ L2(R) and f is once differentiable, then

∑
n∈Z

f (t+n) = ∑
n∈Z

f̂ (2πn)e j2πnt .

This relationship is known as the Poisson summation formula. In the special case that t = 0, we have

∑
n∈Z

f (n) = ∑
n∈Z

f̂ (2πn).

Proof. Let g(t) = ∑n∈Z f (t + n). We observe that g is periodic with period one. So, we can express g in terms of a

Fourier series

g(t) = ∑
n∈Z

f̂ (2πn)e j2πnt .

Combining this expression for g with the one above shows the desired result.

Theorem 2.51 (Shannon sampling theorem). Let f ∈ L2(R). If supp f̂ ⊂ [−π/T,π/T ], then

f (t) = ∑
n∈Z

f (nT )hT (t−nT )

where

hT (t) = sinc(πt/T ).

Proof. See [8, p. 44, Theorem 3.1].

2.13 Problems

2.1 Determine the infimum, supremum, minimum, and maximum of the following subsets of R:

(a) A = [−1,0];
(b) A = (0,∞);
(c) A = (−∞,4];
(d) A = (0,3); and
(e) A = (−2,5]∪ [7,8].
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2.2 Let S denote a subset of R. In each of the cases below, determine whether S is open and/or closed, and if S is

not closed find the closure of S in R.

(a) S = [−1,1];
(b) S = (0,2];
(c) S = (3,4);
(d) S = /0;

(e) S = (−∞,2)∪ (3,∞); and
(f) S = [3,4)∪ (4,5).

2.3 Show that if {xn} is a sequence such that d(xn+1,xn) <Crn for C,r ∈ R and 0 ≤ r < 1, then {xn} is a Cauchy
sequence.

2.4 Consider the set X of continuous real-valued functions on [0,1] with metric

d(x,y) =
∫ 1

0
|x(t)− y(t)|dt.

Let the sequence {xn}n∈N be defined by

xn(t) =

{
n if 0≤ t ≤ n−2

t−1/2 if n−2 ≤ t ≤ 1.

(a) Show that {xn} is Cauchy.
(b) Show that {xn} is not convergent.

2.5 Let X = R2 and let

d(x,y) =
[
|x1− y1|1/2 + |x2− y2|1/2

]2
.

Determine whether (X ,d) is a metric space.

2.6 Let (X ,d) be a metric space. Using the triangle inequality, show that:

(a) for all x,y,z ∈ X , |d(x,z)−d(y,z)| ≤ d(x,y); and
(b) for all w,x,y,z ∈ X , |d(x,y)−d(z,w)| ≤ d(x,z)+d(y,w).

2.7 Let X be any nonempty set. Define

d(x,y) =

{
0 if x = y

1 otherwise.

(a) Show that d is a metric on X .

(b) Show that (X ,d) is a complete metric space.

2.8 Let X be the set of all ordered n-tuples x = (x1,x2, . . . ,xn) of real numbers and d(x,y) = maxi |xi− yi| where
y = (y1,y2, . . . ,yn). Show that (X ,d) is complete.

2.9 Define the metric dp(x,y) on R2 by

dp(x,y) =

{
(|x1− y1|p + |x2− y2|p)1/p for 1≤ p < ∞

max{|x1− y1| , |x2− y2|} for p = ∞.

Show that, for all x,y ∈ R2,

d∞(x,y)≤ dp(x,y)≤ d1(x,y),

dp(x,y)≤ 2d∞(x,y), and

d1(x,y)≤ 2dp(x,y).

[Hint: Let λ ∈ [0,1] and define f (p) = λ p +(1−λ )p. Show that f (p)≤ 1 for 1≤ p < ∞ by computing
d f
dp
.]
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2.10 Show that the strict positivity, symmetry, and triangle inequality properties of a metric imply the nonnegativity

property.

2.11 Let d be a metric on X . Determine for which values of the constant k each of the following functions is a metric

on X :

(a) kd;

(b) d+ k.

2.12 Identify the closure of

(a) the integers on R;

(b) the rational numbers on R;

(c) the complex numbers with rational real and imaginary parts in C.

2.13 Show that if d(x,y) is a metric on X , then each of the following is also a metric on X :

(a) d′(x,y) = d(x,y)
1+d(x,y) ;

(b) d′(x,y) = min(1,d(x,y)).

2.14 Let X = (0,1)⊂ R with the usual metric d (i.e., d(x,y) = |x− y|). Show that (X ,d) is not complete.

2.15 Let V be the set of all infinite sequences of real numbers x = (x1,x2, . . .). Show that (V,R,+, ·) satisfies the

axioms of a vector space (where vector addition and scalar multiplication are defined in the usual way for

sequences).

2.16 Show that the functions fn(t) = ent for n = 0,1,2, . . . form a linearly independent set. [Hint: Consider a1e
m1t +

· · ·+ane
mnt ≡ 0 and differentiate (n−1) times.]

2.17 Show that the set of all m×n matrices can be viewed as a vector space.

2.18 Show that the set of all even functions defined on the real line can be viewed as a vector space.

2.19 Let V and W be disjoint subspaces of the vector space U . Show that for all x ∈ V \ {0} and all y ∈W \ {0},
{x,y} is linearly independent.

2.20 If V andW are subspaces of a vector spaceU , show that V ∩W is a subspace ofU , but V ∪W need not be one.

2.21 IfW is any nonempty subset of a vector space V , show that spanW is a subspace of V .

2.22 For each of the cases given below, determine whether S⊂ R3 constitutes a subspace of R3:

(a) S = {x = (x1,x2,x3) : x1 = x3,x2 = 0};
(b) S = {x = (x1,x2,x3) : x1,x2,x3 ≥ 0}; and
(c) S = {x = (x1,x2,x3) : 2x1 + x2−5x3 = 1}.

2.23 If V andW are vector spaces, show that V ⊕W is a vector space.

2.24 Show that if V andW are subspaces of a vector space, then V +W is a subspace.

2.25 Let V be an n-dimensional vector space with the basis E = {e1,e2, . . . ,en}. Show that the representation of any

x ∈V as a linear combination of vectors in E is unique.

2.26 Let V be the vector space R4. Let S be the subset of V given by

S = {x = (x1,x2,x3,x4) ∈ R4 : x1 + x2 + x3 + x4 = c}.

Determine for what values of c (if any) the subset S is a vector subspace of V .
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2.27 Let V be the vector space comprised of all real-valued sequences. (a) Show that the subset S1 of V comprised

of all sequences with a finite number of nonzero entries is a vector subspace of V . (b) Show that the subset S2
of V comprised of all sequences with an infinite number of nonzero entries is not a vector subspace of V .

2.28 Let V be the vector space L2[0,2π] and let A be the set of all functions xn(t) = e jnt , n = 0,1,2, . . .. Show that A

is linearly independent. [Hint: Consider a1e
jn1t + · · ·+ame

jnmt ≡ 0 and differentiate (m−1) times.]

2.29 Let V be an N-dimensional vector space. Show that every set of N+1 vectors is linearly dependent.

2.30 Let V be the real vector space comprised of all functions of the form x(t) = α cos(2t + θ) where α,θ ∈ R.

Show that E = {cos2t,sin2t} is a basis of V .

2.31 Let X be the normed space of the real numbers with the usual norm (i.e., ‖x‖= |x|). Show that if {xn} and {yn}
are Cauchy sequences in X , then {vn}= {xn + yn} is a Cauchy sequence.

2.32 Show that the sum of two Cauchy sequences (in a normed space) is a Cauchy sequence.

2.33 Let V be the vector space of all ordered pairs x = (x1,x2) of real numbers. Show that norms on V are defined

by each of the following:

(a) ‖x‖1 = |x1|+ |x2|;
(b) ‖x‖2 = (x21 + x22)

1/2; and

(c) ‖x‖∞ = max{|x1| , |x2|}.

2.34 Show that, if (V,‖·‖) is a normed vector space, then

|‖x‖−‖y‖| ≤ ‖x− y‖

for all x,y ∈V .

2.35 Consider the vector space V = Lp[0,1] of all functions with

‖x‖p =
∫ 1

0
|x(t)|p dt < ∞

where 0 < p < 1. (a) Show that ‖x‖p is not a norm on V . (b) Show that dp(x,y) = ‖x− y‖p is a metric on V .

[Hint: If 0≤ a≤ 1, then a≤ ap ≤ 1.]

2.36 Show that in a normed space V the following inequality holds for all x,y ∈V :

2‖x‖2−4‖x‖‖y‖+2‖y‖2 ≤ ‖x+ y‖2 +‖x− y‖2 ≤ 2‖x‖2 +4‖x‖‖y‖+2‖y‖2 .

2.37 Show that for any inner product space V

‖z− x‖2 +‖z− y‖2 = 1
2
‖x− y‖2 +2

∥∥z− 1
2
(x+ y)

∥∥2

for all x,y,z ∈V . This relationship is known as Apollonius’ identity.

2.38 Show that for any inner product space V

2(〈x,y〉+ 〈y,x〉) = ‖x+ y‖2−‖x− y‖2

for all x,y ∈V .

2.39 If 〈·, ·〉1 and 〈·, ·〉2 are two inner products on a vector space V , show that 〈·, ·〉 = 〈·, ·〉1 + 〈·, ·〉2 is also an inner

product on V .
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2.40 Show that, in an inner product space V , if x 6= y and ‖x‖ = ‖y‖ = 1, then ‖x+ y‖ ≤ 2, where x,y ∈ V (i.e., the

norm in an inner product space is strictly convex).

2.41 Let V be an inner product space. Show that, for any x,y ∈V ,

‖x± y‖2 = ‖x‖2±2Re〈x,y〉+‖y‖2 and

‖x± jy‖2 = ‖x‖2±2Im〈x,y〉+‖y‖2 .

2.42 Show that, for any inner product spaceV , if ∑n∈N xn = x (where x ∈V ), then ∑n∈N 〈xn,y〉= 〈x,y〉 for any y ∈V .

2.43 For any real inner product space V , show that

‖x− y‖+‖y− z‖= ‖x− z‖ , x,y,z ∈V,

if and only if y = ax+(1−a)z for some a ∈ [0,1]. [Hint: Use the Schwarz inequality.]

2.44 Let {ek}k∈N be an orthonormal basis of an inner product spaceV . Consider the expansion of any arbitrary x∈V
given by

x = ∑
k∈N

akek

where ak = 〈x,ek〉. Show that the number n of ak such that |ak|> 1/m must satisfy n < m2 ‖x‖2.

2.45 For the given subset S of the inner product space V in each of the cases below, use the Gram-Schmidt process

to find an orthonormal basis for spanS:

(a) V = R4, S = {(1,−1,−1,1),(1,−2,1,2),(1,1,−3,1); and
(b) V = L2[0,1], S = {1, t, t2}.

2.46 Consider the inner product space V =C[−1,1] with inner product 〈x,y〉= ∫ 1
−1 x(t)y(t)dt. LetWe andWo denote

the subspaces of V consisting of the even and odd functions, respectively. Show thatW⊥e =Wo. (Note: Here,

the notation C[−1,1] denotes the space of continuous real-valued functions on [−1,1]. The inner product is

given by 〈x,y〉= ∫ 1
−1 x(t)y(t)dt.)

2.47 Show that, in any inner product space V ,

〈x,ay+bz〉= a∗ 〈x,y〉+b∗ 〈x,z〉

for all x,y,z ∈V and all a,b ∈ C.

2.48 Let {en}n∈Z be an orthonormal set in a Hilbert space. Show that the vectors

x = ∑
n∈Z

anen and y = ∑
n∈Z

(−1)na∗p−nen

are orthogonal if p is odd.

2.49 Find the orthogonal projection of the vector x in the Hilbert space V onto the subspace with orthonormal basis

E, for each of the following:

(a) V = R4, E =
{(

1√
6
,− 1√

6
,0, 2√

6

)
,
(

2√
21

, 4√
21

,0, 1√
21

)
,
(
− 3√

18
, 1√

18
,− 2√

18
, 2√

18

)}
, x = (1,0,−1,1);

(b) V = L2[0,1], E = {
√
2cos2πt,

√
2sin2πt}, x(t) = t+1;

(c) V = R4, E =
{(

1
2
, 1
2
, 1
2
, 1
2

)
,
(
− 1

2
,− 1

2
, 1
2
, 1
2

)}
, x = (−2,4,6,0);

(d) V = R4, E =
{(

1
2
, 1
2
, 1
2
, 1
2

)(
− 1

2
,− 1

2
, 1
2
, 1
2

)(
1
2
,− 1

2
, 1
2
,− 1

2

)}
, x = (0,1,0,1); and

(e) V is the space of real-valued polynomial functions defined on [−1,1], E = { 1√
2
,
√

3
2
t}, x = t2 +1.
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2.50 If x and y are vectors in the inner product space V , compute the inner product 〈x,y〉 and indicate if x ⊥ y, for

each of the following:

(a) V = L2[0,1], x(t) = t2−1, y(t) = t+1;

(b) V = L2(R), x(t) = e−|t|, y(t) = e−2|t|;
(c) V = R3, x = (1,3,1), y = (2,−3,7);
(d) V = L2[−1,1], x(t) = t, y(t) = t2−2;

(e) V = l2(Z), {xn}= 3−nu[n], {yn}= 2−nu[n], where u[n] denotes the unit-step sequence; and
(f) V = L2[−1,1], x(t) = t2−1, y(t) = t+1.

2.51 Show that a countable orthonormal set E = {en}n∈I in an inner product space is linearly independent.

2.52 Show that (a) if V and W are orthogonal subspaces, then V and W are disjoint; and (b) the converse is not

necessarily true.

2.53 Implement the Gram-Schmidt algorithm in a programming language of your choice. Then, use your program

to find an orthonormal basis for the space spanned by each of the following linearly independent sets:

(a) A = {(1,0,1,−2),(0,0,−1,1),(1,0,2,−1)}; and
(b) A = {(−2,−1,0,1,2),(2,−2,−1,0,1),(1,2,−2,−1,0),(0,1,2,−2,−1)}.

2.54 Consider the space of functions defined on [0,∞) with the inner product

〈x,y〉=
∫

R
f (t)g∗(t)e−t

2

dt.

Apply the Gram-Schmidt process to the sequence { fn}n∈Z∗ of functions, where

fn(t) = tn.

The resulting polynomials are known as the Laguerre polynomials.

2.55 Let X = {xn} denote a subset of the inner product space V . For each of the following, determine whether the

set X is orthogonal/orthonormal:

(a) V = R3, X = {(3,−1,−2),(2,0,3),(−3,−13,2)};
(b) V = L2[0,1], X = {1, t, t2};
(c) V = L2[−1,1], X = {1, t, 3

2
t2− 1

2
}.

2.56 Let V denote an inner product space. Let E = {en}n∈I and Ẽ = {ẽn}n∈I be countable subsets of V . If E and Ẽ

are biorthogonal, show that E is linearly independent and Ẽ is also linearly independent.

2.57 Let E and Ẽ denote biorthogonal bases of an inner product space V . In each of the following cases, compute

the expansion of the vector x in terms of the elements of E.

(a) V = R2, E = {(1,1),(1,2)}, and Ẽ = {(2,−1),(−1,1)}, and x = (1,−2).
(b) V = R4, E = {( 1

2
,−1, 1

2
,− 1

2
),(0, 1

2
, 1
2
,− 1

2
),(− 1

2
,0,− 1

2
,1),( 1

2
,0,− 1

2
, 1
2
)},

Ẽ = {( 1
2
,1,0, 3

2
),(− 1

2
,1,0, 1

2
),( 3

2
,3,2, 1

2
),(1,2,2,1)}, and x = (−8,2,4,0).

2.58 If {en} is an orthonormal sequence in a Hilbert space V and {an} is a sequence in l2, show that there exists

x ∈V such that

〈x,en〉= an and ‖{an}‖l2 = ‖x‖ .

2.59 Determine all possible values of a ∈ R for which the function f (t) = ta belongs to:

(a) L2[0,1];
(b) L2[1,∞);
(c) L2[0,∞)
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2.60 Let A and B denote subsets of an inner product space V . For each of the cases given below, determine whether

A and B are biorthonormal and/or biorthogonal.

(a) V = R4, A = {(1,0,−1,2),(0,1,2,−2),(4,−4,−7,10)}, B = {(−3,0,4,4),(0,−1,2,1),(5,2,−7,−6)};
(b) V = R2, A = {(3,4),(4,3)}, B = {(−3,4),(4,−3)};
(c) V = L2[−π,π], A = {sin t,cos t}, B = {t, t2}.
[Note: In part (c), a table of integrals can be used to evaluate integrals like

∫ π
−π t

2 sin tdt. Integration by parts is

not required.]

2.61 Let W denote a subspace of the inner product space V , where W has the orthonormal basis E. In each of the

cases below, find the expansion of x ∈W in terms of the elements of E.

(a) V = R3, E = {( 1√
2
,0, 1√

2
),(− 1√

3
,− 1√

3
, 1√

3
),( 1√

6
,− 2√

6
,− 1√

6
)}, x = (

√
6,−
√
6,0).

(b) V = L2[−1,1], E = {en}n∈Z∗ , x(t) = |t|, and

en(t) =

{
1/
√
2 n = 0

cosπnt otherwise.

[Note: In part (b), a table of integrals can be used to avoid integration by parts.]

2.62 LetW be a subspace of the inner product space V . Let E and Ẽ be dual Riesz bases ofW . For each of the cases

below, express x ∈W in terms of the elements of E and in terms of the elements of Ẽ.

(a) V = R2, E = {e1 = ( 3
4
, 5
4
),e2 = ( 5

4
, 3
4
)}, Ẽ = {ẽ1 = (− 3

4
, 5
4
), ẽ2 = ( 5

4
,− 3

4
)}, x = (1,−2).

(b) V = L2(R), E = {en(t) = 1
2

χ[n,n+1)}n∈Z, Ẽ = {ẽn(t) = 2χ[n,n+1)}n∈Z, x = χ[1,3).

(c)V is the space of polynomial functions defined on [−1,1], E = {t2− t, t}, Ẽ = { 5
2
t2, 5

2
t2+ 3

2
t}, x(t) = t2−4t.

(d) V is the space of polynomial functions defined on [−1,1], E = { 45
8
t2− 15

8
, 3
2
t,− 15

8
t2 + 9

8
}, Ẽ = {t2, t,1},

x(t) = 3t+3.

2.63 Prove that in any Hilbert space V , for x,y ∈V , ‖x‖= sup‖y‖=1 |〈x,y〉|.

2.64 Prove that any finite-dimensional inner product space is a Hilbert space.

2.65 Let f ,g ∈ L1(R)∩L2(R).
(a) Show that

〈 f ,g〉= 1
2π

〈
f̂ , ĝ
〉
.

(b) Show that ‖ f‖2 = 1
2π

∥∥ f̂
∥∥2.

2.66 Show that a countable orthogonal set E = {en}n∈I is linearly independent if and only if the set does not contain
the zero vector.

2.67 Let E = {en}n∈I and Ẽ = {ẽn}n∈I each be a basis of the N-dimensional (where N is finite) Hilbert space V such

that every vector x ∈V can be expressed as

x = ∑
n∈I
〈x, ẽn〉en.

Show that E and Ẽ are biorthonormal.

2.68 For each of the cases below, show that the sequence {xn} is Cauchy.
(a) {xn}n∈N where xn = 1/2n;

2.69 Let {en}n∈N be an orthonormal basis of a Hilbert space, and define the sequence { fn}n∈N as fn = 1
n
en. Show

that { fn}n∈N is (a) ω-independent and (b) minimal.
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2.70 Let {en}n∈N be an orthonormal basis of a Hilbert space, and define the sequence { fn}n∈N as fn = 1
n
en + e1.

Show that { fn}n∈N is (a) ω-independent and (b) not minimal.

2.71 Let {en}n∈{0,1,2,...} be an orthonormal basis of a Hilbert space, and define the sequence { fn}n∈N as

fn =
(
cos 1

n

)
e0 +

(
sin 1

n

)
en.

Show that { fn}n∈N is ω-independent

2.72 Show that a countable orthonormal set E = {en}n∈I in an inner product space is ω-independent.

2.73 Let h be a symmetric/antisymmetric sequence defined on Z. Such a sequence is of the form h[n] = sh[2c−n],
where c ∈ 1

2
Z is the center of symmetry and s ∈ {−1,1}. Show that ĥ can be expressed as

ĥ(ω) =





e− jcω ∑
n∈Z

h[n]cos([n− c]ω) s = 1

− je− jcω ∑
n∈Z

h[n]sin([n− c]ω) s =−1.

2.74 Let h be a symmetric/antisymmetric sequence defined on Z. Such a sequence is of the form h[n] = sh[2c−n],
where c ∈ 1

2
Z is the center of symmetry and s ∈ {−1,1}. Let mk denote the kth moment of h.

(a) Suppose that s = 1. Show that, if mk = 0 for k ∈ {0,1, . . . ,2N}, then m2N+1 = 0.

(b) Suppose that s =−1. Show that, if mk = 0 for k ∈ {1,2, . . . ,2N+1}, then m2N+2 = 0.

2.75 Evaluate each of the following expressions:

(a) {0, 1
3
, 1
2
,1,
√
2,π,42}\Q;

(b) [({0,1,2}∪{3,4})∩{1,3}]\{1};
(c) [0,1)∪{1}∪ (1,2].

2.76 In each of the cases below, for the set X , indicate whether X is finite, countably infinite, or uncountable.

(a) X = {0,2,4,6,8, . . .}∩{0,1,2,3};
(b) X = [0,1];
(c) X = R\Q;

(d) X = {∞}.

2.77 Explain the difference between a set and sequence. Give an example of a situation where a set might be more

appropriate to use than a sequence and vice versa.

2.78 Write an expression for each of the following:

(a) the function f translated by 5 and then dilated by 3 (where the dilation of a function g by a is defined as

g(a·);
(b) the sum of the function f translated by 2 and the function g;

(c) the product of the functions f and g;

(d) the value at t of the function f translated by b convolved with g;

(e) the sequence consisting of all integer translations of the function f .

2.79 In each of the cases below, for the subset S of the metric space X , find the boundary of S (in X).

(a) X = C and S = {z ∈ C : Re2 z+ Im2 z < 4}.

2.80 In each of the cases below, for the subset S of the metric space X , determine if S is open and/or closed, and if S

is not closed, find closS. Also, determine if S is dense in X .

(a) X = C and S = {z ∈ C : Re2 z+ Im2 z < 4}∪{2};
(b) X = R and S = {0,1}.

2.81 Consider the transformation T : R2 → R2 defined by T (x1,x2) = (x1,0). Show that T is both (a) linear and

(b) idempotent (i.e., T 2 = T ), and therefore T is a projection operator.
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2.82 Consider the projection operator T : R2→R2 defined by T (x1,x2) = (x1,0) (i.e., a projection from R2 onto the

x axis). Find (a) N(T ) (i.e., the null space of T ) and (b) R(T ) (i.e., the range space of T ). (c) Determine whether

T is an orthogonal projection.

2.83 Let (xn)n∈N denote a sequence of vectors in a vector space. Explain why, in a purely vector space context, an

expression of the form ∑n∈N xn is meaningless.

2.84 Determine for what values of α the sequence (x1,x2,x3) of vectors in R3 is linearly independent, where x1 =
(1,0,1), x2 = (0,2,1), and x3 = (α,1,1).

2.85 In each of the cases below, for the vector x in the normed space V , find ‖x‖.
(a) V = l2(Z) and x = (2−n/2χZ∗ [n])n∈Z (where Z∗ denotes the set of nonnegative integers);
(b) V = L2(R) and x(t) = e−tχ[0,∞)(t).

2.86 In each of the cases below, for the vectors x,y in the inner product space V , find the angle θ between x and y.

(a) V = L2(R), x = χ[0,1], y = χ[−1/2,1/2];

(b) V = l2(Z), x =
(
3
5
δ [n]+ 4

5
δ [n−1]

)
n∈Z, y =

(
1√
2
δ [n]− 3√

2
δ [n−1]

)
n∈Z

.
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Chapter 3

One-Dimensional Multirate Filter Banks

3.1 Introduction

Multirate filter banks play an important role in the study of wavelet systems. In particular, the class of systems known

as uniformly maximally-decimated (UMD) filter banks is especially significant in this regard. Wavelet transforms can

be constructed through the design of UMD filter banks and implemented very efficiently in terms of these structures.

In order to study UMD filter banks, we must first understand the fundamentals of multirate systems. In what

follows, we begin by introducing some basic multirate system concepts, and then use these concepts to establish a

general framework for the study of UMD filter banks. The link between UMD filter banks and wavelet systems will

be established later in Chapter 4.

3.2 Multirate Systems

Depending on the number of different sampling rates that it employs, a discrete-time system can be classified as being

either unirate or multirate. A system that processes signals at a single sampling rate is said to be unirate. Most of us

are all too familiar with unirate systems as they are traditionally studied in any introductory digital signal processing

course. In contrast, a system that processes signals at more than one sampling rate is said to bemultirate.

Multirate systems are extremely useful for many signal processing applications. Often, a multirate system can

be used to perform a task more easily or efficiently than is possible with a unirate system. Other times, a signal

processing task inherently requires the use of multiple sampling rates. In such cases, a multirate system must be used.

Since multirate systems employ more than one sampling rate, such systems need a means for changing, or con-

verting between, rates. This is accomplished through processes known as upsampling and downsampling, which we

introduce next.

3.2.1 Downsampling

One of the basic operations in multirate systems is that of decreasing the sampling rate. This operation is known as

downsampling and is performed by a processing element known as a downsampler1 (or compressor).

Definition 3.1 (Downsampling). The M-fold downsampler, shown in Figure 3.1, takes an input sequence x[n] and
produces the output sequence

y[n] = (↓M)x[n] = x[Mn] (3.1)

where M is an integer. The constant M is referred to as the downsampling factor.

1The term “decimator” is also sometimes employed as a synonym for “downsampler”. Unfortunately, “decimator” can also be used to mean “a

downsampler in cascade with an anti-aliasing filter”, as in the case of sampling rate conversion applications. Thus, in order to avoid confusion, the

author prefers to use the terms “downsampler” and “compressor” instead of “decimator”.
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↓M
x[n] y[n]

Figure 3.1: M-fold downsampler.

In simple terms, the downsampling operation keeps every Mth sample and discards the others. From (3.1), it

follows that downsampling is a linear time-varying operation.

Example 3.1. Suppose that we have the sequence x = (xn)n∈Z. That is,

x = (. . . ,x−6,x−5,x−4,x−3,x−2,x−1, x0 ,x1,x2,x3,x4,x5,x6, . . .).

Then, we have

(↓ 2)x = (. . . ,x−6,x−4,x−2, x0 ,x2,x4,x6, . . .) and (↓ 3)x = (. . . ,x−6,x−3, x0 ,x3,x6, . . .).

(The boxed elements above correspond to the elements with index 0.)

Often, we like to work with the Z-domain representation of sequences. The relationship between the input and

output of the downsampler in the Z domain is given by the following theorem.

Theorem 3.1 (Downsampling inZ domain). Suppose that y[n] = (↓M)x[n]. Let X(z) andY (z) denote theZ transforms

of x[n] and y[n], respectively. Then, Y (z), which we abbreviate as (↓M)X(z), is given by

Y (z) = (↓M)X(z) =
1

M

M−1
∑
k=0

X(z1/Me− j2πk/M). (3.2)

Proof. The Z transform of y[n] can be written as

Y (z) = ∑
n∈Z

y[n]z−n

= ∑
n∈Z

x[Mn]z−n.

Now, we define the sequence

v[n] =

{
x[n] ifM | n
0 otherwise.

Using this definition (which implies that v[Mn] = x[Mn] for n ∈ Z), we have

Y (z) = ∑
n∈Z

v[Mn]z−n.

Now, we employ a change of variable. Let n′ = Mn so that n = n′/M. Applying the change of variable and dropping

the primes, we obtain

Y (z) = ∑
n∈Z
M|n

v[n]z−n/M.

Since v[n] is zero when M ∤ n, the constraint on the summation index that M | n can be removed to yield

Y (z) = ∑
n∈Z

v[n]z−n/M

=V (z1/M). (3.3)
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To complete the proof, we express V (z) in terms of X(z). We observe that v[n] can be expressed as

v[n] = c[n]x[n]

where

c[n] =

{
1 ifM | n
0 otherwise.

The M-periodic sequence c[n] has the Fourier series representation

c[n] = 1
M

M−1
∑
k=0

e j2πkn/M.

Thus, we can compute the Z transform of v[n] as follows:

V (z) = Z{c[n]x[n]}

= ∑
n∈Z

(
1
M

M−1
∑
k=0

e j2πkn/Mx[n]

)
z−n

= 1
M ∑

n∈Z

M−1
∑
k=0

e j2πkn/Mx[n]z−n

= 1
M

M−1
∑
k=0

∑
n∈Z

x[n]
(
ze− j2πk/M

)−n

= 1
M

M−1
∑
k=0

X(ze− j2πk/M). (3.4)

Combining (3.3) and (3.4), we have

Y (z) =V (z1/M)

= 1
M

M−1
∑
k=0

X(z1/Me− j2πk/M).

Assuming that the sampling period before and after downsampling is normalized to one, this leads directly to the

frequency-domain relation

Y (e jω) =
1

M

M−1
∑
k=0

X
(
e j(ω−2πk)/M

)
. (3.5)

From (3.5), we can see that downsampling has a very simple interpretation in the frequency domain. The spec-

trum of the downsampled signal is merely the average of M shifted versions of the original input spectrum. Due to

our convention of normalizing the sampling period after downsampling to one, the spectrum is also stretched. It is

important to understand, however, that this spectrum stretching effect is only a consequence of the sampling period

renormalization and is not caused by downsampling itself. This matter is further elucidated by the example below.

Example 3.2. Consider an M-fold downsampler with input x and output y. By convention, the sampling rate asso-

ciated with the input x is assumed to be T = 1. Thus, the spectrum of x is given by X(e jωT ) = X(e jω). We have

that y[n] = (↓ M)x[n]. So, the sampling period associated with the output y is T ′ = MT = M (assuming that we do

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



88 CHAPTER 3. ONE-DIMENSIONAL MULTIRATE FILTER BANKS

not artificially renormalize the sampling period to one after downsampling). Thus, the spectrum of y is given by

Y (e jωT ′) = Y (e jωM), where

Y (e jωM) =

[
1
M

M−1
∑
k=0

X(z1/Me− j2πk/M)

]∣∣∣∣∣
z=e jωM

= 1
M

M−1
∑
k=0

X(e j(ωM−2πk)/M)

= 1
M

M−1
∑
k=0

X(e j(ω−2πk/M)).

Clearly, in the above expression, we can see that the spectrum of y does not contain dilated versions of the spectrum of

x. The stretching phenomenon is only a result of the renormalization (to one) of the sampling rate after downsampling.

As is evident from equation (3.5), downsampling can result in multiple baseband frequencies in the input signal

being mapped to a single frequency in the output signal. This phenomenon is known as aliasing. If aliasing occurs,

it is not possible to recover the original signal from its downsampled version. Aliasing can be avoided if x[n] is a
lowpass signal bandlimited to |ω|< π/M. This is equivalent to saying that the Nyquist criterion must not be violated

if aliasing is to be avoided.

To illustrate the frequency-domain effects of downsampling, let us consider two examples. In the first example,

the input signal is chosen to be sufficiently bandlimited that aliasing will not occur. In the second example, the input

signal is selected to result in aliasing.

Example 3.3. In the first case, suppose we take a signal with the spectrum shown in Figure 3.2(a) and apply it to the

input of a two-fold downsampler. The spectrum of the downsampled signal is formed by the scaled sum of the two

shifted versions of the original spectrum shown in Figure 3.2(b). Due to the renormalization of the sampling period,

these spectra also appear stretched. The resulting spectrum is shown in Figure 3.2(c). Because the two spectra in

Figure 3.2(b) do not overlap, there is no aliasing. The shape of the original spectrum is clearly discernible in the final

output spectrum.

Example 3.4. In the second case, suppose we take a signal with the spectrum shown in Figure 3.3(a) and apply it to

the input of a two-fold downsampler. The spectrum of the downsampled signal is formed by the scaled sum of the

two shifted versions of the original spectrum shown in Figure 3.3(b). Again, these spectra appear stretched due to the

renormalization of the sampling period. The resulting spectrum is shown in Figure 3.3(c). Because in Figure 3.3(b)

the two spectra overlap, aliasing occurs. Consequently, it is not possible to recover the original signal from its down-

sampled version. This is also evident from the spectrum of the downsampled signal shown in Figure 3.3(c). Due to

aliasing, the spectrum has been distorted and no longer resembles that of the original input.

3.2.2 Upsampling

Another basic operation in multirate systems is that of increasing the sampling rate. This operation is called upsam-

pling and is performed by a processing element known as an upsampler2 (or expander).

Definition 3.2 (Upsampling). The M-fold upsampler, depicted in Figure 3.4, takes an input sequence x[n] and pro-

duces the output sequence

y[n] = (↑M)x[n] =

{
x[n/M] ifM | n
0 otherwise,

(3.6)

where M is an integer. The constant M is referred to as the upsampling factor.

In simple terms, upsampling results in the insertion of M− 1 zeros between the samples of the original signal.

From equation (3.6), it follows that upsampling is a linear time-varying operation.

2 The term “interpolator” is also sometimes employed as a synonym for “upsampler”. Unfortunately, “interpolator” has many other different

and conflicting meanings. For this reason, the author favors the use of the terms “upsampler” and “expander” instead of “interpolator”.
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Figure 3.2: Effects of two-fold downsampling in the frequency domain (no aliasing case). (a) Spectrum of the input

signal. (b) The two stretched and shifted versions of the original input spectrum used to form the spectrum of the

downsampled signal. (c) Spectrum of the downsampled signal.
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Figure 3.3: Effects of two-fold downsampling in the frequency domain (aliasing case). (a) Spectrum of the input

signal. (b) The two stretched and shifted versions of the original input spectrum used to form the spectrum of the

downsampled signal. (c) Spectrum of the downsampled signal.

↑M
x[n] y[n]

Figure 3.4: M-fold upsampler.
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Example 3.5. Suppose that we have the sequence x = (xn)n∈Z. That is,

x = (. . . ,x−3,x−2,x−1, x0 ,x1,x2,x3, . . .).

Then, we have

(↑ 2)x = (. . . ,0,x−3,0,x−2,0,x−1,0, x0 ,0,x1,0,x2,0,x3,0, . . .) and

(↑ 3)x = (. . . ,0,0,x−3,0,0,x−2,0,0,x−1,0,0, x0 ,0,0,x1,0,0,x2,0,0, . . .).

(The boxed elements above correspond to the elements with index 0.)

Often, we like to work with the Z-domain representation of sequences. The relationship between the input and

output of the upsampler in the Z domain is given by the theorem below.

Theorem 3.2 (Upsampling relation in the Z domain). Suppose that we have two sequences x[n] and y[n] such that

y[n] = (↑ M)x[n]. Let X(z) and Y (z) denote the Z transforms of x[n] and y[n], respectively. Then, Y (z), which we

abbreviate as (↑M)X(z), is given by

Y (z) = (↑M)X(z) = X(zM). (3.7)

Proof. The Z transform of y[n] can be written as

Y (z) = ∑
n∈Z

y[n]z−n.

Since y[n] is zero forM ∤ n, we can discard all of the terms where M ∤ n to obtain

Y (z) = ∑
n∈Z
M|n

y[n]z−n.

Now, we employ a change of variable. Let n′ = n/M so that n = Mn′. Applying the change of variable and dropping

the primes, we have

Y (z) = ∑
n∈Z

y[Mn]z−Mn.

Simplifying further, we obtain

Y (z) = ∑
n∈Z

x[n]z−Mn

= ∑
n∈Z

x[n](zM)−n

= X(zM).

Assuming that the sampling period before and after upsampling is normalized to one, this directly yields the

frequency-domain relation

Y (e jω) = X(e jωM). (3.8)

From (3.8), we can see that upsampling has a very simple interpretation in the frequency domain. The upsampling

process simply serves to move the location of the sampling frequency on the frequency axis. Due to our convention

of normalizing the sampling period after upsampling to one, the spectrum is also compressed. It is important to

understand, however, that this compression effect is only a consequence of the sampling period renormalization and

is not caused by upsampling itself. This matter is further elucidated by the example below.
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Figure 3.5: Effects of two-fold upsampling in the frequency domain. (a) Spectrum of the input signal. (b) Spectrum

of the upsampled signal.

Example 3.6. Consider an M-fold upsampler with input x and output y. By convention, the sampling rate associated

with the input x is assumed to be T = 1. Thus, the spectrum of x is given by X(e jωT ) = X(e jω). We have that

y[n] = (↑ M)x[n]. So, the sampling period associated with the output y is T ′ = T/M = 1/M (assuming that we

do not artificially renormalize the sampling period to one after upsampling). Thus, the spectrum of y is given by

Y (e jωT ′) = Y (e jω/M), where

Y (e jω/M) =
[
X(zM)

]∣∣
z=e jω/M

= X(e jωM/M)

= X(e jω).

Clearly, in the above expression, we can see that the spectrum of y does not contain dilated versions of the spectrum

of x. The dilation phenomenon is only a result of the renormalization (to one) of the sampling rate after upsampling.

Since the shape of the spectrum is not altered by upsampling, there is no information loss and the original signal

can always be recovered from its upsampled version. Upsampling, however, does result in the creation of multiple

copies of the original baseband spectrum. This phenomenon is called imaging. These copies of the baseband spectrum

are referred to as images.

Example 3.7. To illustrate the frequency-domain effects of upsampling, let us consider an example. Suppose we take

a signal with the spectrum shown in Figure 3.5(a) and apply it to the input of a two-fold upsampler. The spectrum of

the upsampled signal is simply that shown in Figure 3.5(b). Due to the sampling period renormalization, the spectrum

appears compressed. Although multiple copies of the original baseband spectrum appear, each copy has the same

shape as the original input spectrum. As a result, the original signal can always be recovered from the upsampled

signal with the appropriate use of filtering.

3.2.3 More Comments on Downsampling/Upsampling

Sometimes when manipulatingZ-transform expressions involving upsampling and downsampling, we need to exercise

special care. One such situation is illustrated by way of the example below.
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Example 3.8. Consider the function

Y (z) =
M−1
∑
k=0

X(z1/MW k
M),

whereWM = e− j2π/M and M ∈ N. Often, we encounter expressions of the form of Y (z) when analyzing systems con-

taining downsamplers. Suppose now that we want to evaluate the expressionY (zM). Clearly, we have (by substitution)
that

Y (zM) =
M−1
∑
k=0

X([zM]1/MW k
M). (3.9)

At this point, we need to be careful how we choose to simplify the right-hand side of the preceding equation. Our

initial instinct may be to assert that (zM)1/M = z, but this is not necessarily so. In particular, for any z ∈ C and any

M ∈ N, while it is true that

(z1/M)M = z,

it is not necessarily true that

(zM)1/M = z.

The latter identity is only true if z is the principalMth root of zM . For example, let z=−1 andM = 2. In this case, we

have (zM)1/M = [(−1)2]1/2 = 11/2 = 1 6= z. For this reason, we need to consider another means for simplifying (3.9).

To begin, we observe that every complex number v has M distinct Mth roots, namely

r,rWM,rW 2
M, . . . ,rWM−1

M ,

where r is the principal Mth root of v. Therefore, in general, we have that (zM)1/M must be of the form zW l
M where

l ∈ Z. With this in mind, we can rewrite (3.9) (by substituting zW l
M for (zM)1/M) as

Y (zM) =
M−1
∑
k=0

X(zW l
MW

k
M)

=
M−1
∑
k=0

X(zW l+k
M ).

Now, we employ a change of variable. Let k′ = l+ k so that k = k′− l. Applying the change of variable and dropping

the primes, we obtain

Y (zM) =
l+M−1
∑
k=l

X(zW k
M).

SinceW
p
M =W

p+M
M for all p ∈ Z (i.e., successive integer powers ofWM form an M-periodic sequence) and the sum-

mation index k takes on M consecutive integer values (i.e., we are summing over one period of this M-periodic

sequence), we can subtract l from the lower and upper summation limits without changing the resulting sum. (The

terms are simply permuted but their sum remains the same.) So, finally, we can conclude that

Y (zM) =
M−1
∑
k=0

X(zW k
M). (3.10)

Perhaps, it is worth noting that, had we incorrectly substituted (zM)1/M = z directly in (3.9), we would have obtained

the same final expression for Y (zM). This, however, would have only been due to luck, and not due to our solution

having been properly justified.
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H(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
Antialiasing Filter

Figure 3.6: An M-fold decimator.

↑M H(z)
x[n] y[n]

︸ ︷︷ ︸
Antiimaging Filter

Figure 3.7: AnM-fold interpolator.

In passing, we note that the following generalization of the above result also holds:

if Y (z) =
M−1
∑
k=0

X(z1/MW k
M), then Y (zL) =

M−1
∑
k=0

X(zL/MW k
M), (3.11)

where L,M ∈ N. (The preceding result can be shown to hold in a similar fashion as (3.10) by observing that (zL)1/M

is of the form (z1/M)LW ℓ
M = zL/MW ℓ

M for some ℓ ∈ Z.) The relationships (3.10) and (3.11) are sometimes used later in

order to simplify certain expressions.

3.2.4 Decimation and Interpolation

As we have seen above, we can change the sampling rate by an integer factor M by using only a downsampler or

upsampler as appropriate. In practice, however, we typically employ more than just a downsampler or upsampler in

order to perform such a rate change.

First, let us consider decreasing the sampling rate by an integer factor M. Although we could do this using only

an M-fold downsampler, there is a potential problem with such an approach, namely that downsampling can result in

aliasing. Since aliasing is often undesirable, we would like to ensure that it does not occur. To accomplish this, we

simply perform a lowpass filtering operation prior to downsampling. In this way, we can ensure that the signal to be

downsampled is sufficiently bandlimited to avoid aliasing. As a matter of terminology, the lowpass filter employed

in this context is called an antialiasing filter. The above approach leads to what is known as an M-fold decimator

(i.e., an antialiasing filter followed by an M-fold downsampler), as shown in Figure 3.6. The passband gain of the

antialiasing filter is one. (It is left as an exercise for the reader to show that this is the correct value to use for the

passband gain. See Problem 3.44.)

Now, let us consider increasing the sampling rate by an integer factor M. Although this could be done using

only an M-fold upsampler, there is a potential problem with such an approach, namely that upsampling results in

imaging. In many situations, however, imaging is undesirable. Consequently, we usually perform a lowpass filtering

operation after upsampling to eliminate images of the original baseband spectrum. The lowpass filter used in this

context is called an antiimaging filter. The above approach leads to what is known as an M-fold interpolator (i.e.,

an upsampler followed by an antiimaging filter), as shown in Figure 3.7. The passband gain of the antiimaging filter

is M. (It is left an exercise for the reader to show that this the correct value to use for the passband gain. See

Problem 3.44.)

In passing, we note that, although decimators and interpolators are often very useful, in practice, they would

not be implemented directly using the computational structures shown in Figures 3.6 and 3.7. This is because these

structures are very computationally inefficient. In particular, in these structures, filtering is performed on the side of

the downsampler/upsampler with the higher sampling rate, leading to very poor computational efficiency. We will

later consider more computationally efficient ways of implementing decimators and interpolators.

3.2.5 Rational Sampling Rate Changes

Although we have seen how to change the sampling rate by an integer factor, in some situations, we may need to

change the sampling rate by a noninteger factor. Suppose, for example, that we want to change sampling rate by a

rational factor L/M. We can accomplish this by using an L-fold interpolator in cascade with an M-fold decimator, as

shown Figure 3.8(a). This system can be simplified by combining the antiimaging and antialiasing filters into a single

filter (i.e., H(z) = H0(z)H1(z)), as shown in Figure 3.8(b).
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↑ L H0(z) H1(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
L-fold Interpolator

︸ ︷︷ ︸
M-fold Decimator

(a)

↑ L H(z) ↓M
y[n]

︸ ︷︷ ︸

Filter
Antialiasing/Antiimaging

Combined

x[n]

(b)

Figure 3.8: Rational sampling rate converter. (a) Before and (b) after combining antiimaging and antialiasing filters.

Although the system shown in Figure 3.8(b) is conceptually simple, it is very computationally inefficient. In

particular, the system does not exploit the fact that: 1) most of the terms in the convolutional sum are zero (due to

the insertion of zeros by the upsampler); and 2) most of the convolution result is discarded (due to the downsampler).

We will later examine ways in which to perform this sampling rate conversion in a more computationally efficient

manner.

3.2.6 Cascaded Upsampling and Downsampling Identities

In multirate systems, we often encounter cascaded downsampling operations or cascaded upsampling operations.

Thus, we would like to consider the effect of cascading such operations. In this regard, one can easily show that the

below theorem holds.

Theorem 3.3 (Cascaded downsampling/upsampling). The downsampling and upsampling operators have the follow-

ing properties:

(↓M)(↓ L) =↓ LM =↓ML and

(↑M)(↑ L) =↑ LM =↑ML.

In other words, we have the identities shown in Figures 3.9(a) and (b).

Proof. First, we show that (↓M)(↓ L) = (↓ML). Consider y = (↓M)(↓ L)x. Let v = (↓ L)x so that y = (↓M)v. We

have

v[n] = x[Ln] and y[n] = v[Mn].

Combining the preceding two equations, we obtain

y[n] = x[LMn],

which is equivalent to y = (↓ LM)x.
Now, we show that (↑M)(↑ L) = (↑ML). Consider y = (↑M)(↑ L)x. Let v = (↑ L)x so that y = (↑M)v. We have

v[n] =

{
x[n/L] if L|n
0 otherwise

and y[n] =

{
v[n/M] ifM|n
0 otherwise.

Combining the preceding two equations, we obtain

y[n] =

{
x[ n

ML
] if LM|n

0 otherwise,

which is equivalent to y = (↑ LM)x.
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x[n] y[n]
≡

x[n]
↓ LM↓M ↓ L

y[n]

(a)

x[n] y[n]
≡

x[n]
↑ LM↑M ↑ L

y[n]

(b)

Figure 3.9: Identities for (a) cascaded downsampling and (b) cascaded upsampling operations.

↓M ↑ L
x[n] y0[n]

(a)

↓M↑ L
x[n] y1[n]

(b)

Figure 3.10: Cascade interconnection of upsamplers and downsamplers.

3.2.7 Commutativity of Upsampling and Downsampling

In multirate systems, we often encounter upsamplers and downsamplers connected in series with one another. That

is, we frequently see structures like those shown in Figures 3.10(a) and (b). Consequently, one might wonder if there

is any relationship between the input-output behavior of these two systems. For example, one might wonder if these

systems are equivalent (i.e., if upsampling and downsampling commute). The answer to this question is given by the

theorem below.

Theorem 3.4 (Commutativity of upsampling and downsampling). The L-fold upsampling and M-fold downsampling

operators commute if and only if L and M are coprime. That is,

(↑ L)(↓M) = (↓M)(↑ L)

if and only if L and M are coprime. In other words, we have the identity shown in Figure 3.11.

Proof. Consider the system shown in Figure 3.10(a). We have

Y0(z) = (↑ L) [(↓M)X(z)]

= (↑ L) 1
M

M−1
∑
k=0

X(z1/MW k
M)

=

[
1
M

M−1
∑
k=0

X(λ 1/MW k
M)

]∣∣∣∣∣
λ=zL

= 1
M

M−1
∑
k=0

X(zL/MW k
M). (3.12)

(In the preceding simplification, we used relationship (3.11).) Consider the system shown in Figure 3.10(b). We have

Y1(z) = (↓M) [(↑ L)X(z)]

= (↓M)
[
X(zL)

]

= 1
M

M−1
∑
k=0

X([z1/MW k
M]L)

= 1
M

M−1
∑
k=0

X(zL/MW kL
M ). (3.13)
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↓M ↑ L ↓M↑ L
x[n] y[n]

≡
x[n] y[n]

L,M coprime

Figure 3.11: Commutativity of upsampling and downsampling.

Comparing (3.12) and (3.13), we can see that Y0(z) = Y1(z) if and only if the sets {W k
M}M−1k=0 and {W kL

M }M−1k=0 are

equivalent. These sets are equivalent if and only if L and M are coprime.

The above relationship involving upsampling and downsampling has both theoretical and practical utility. It can

sometimes be used to simplify expressions involving upsampling and downsampling operations, and also may be used

to obtain more desirable implementations of multirate systems in some situations.

3.2.8 Noble Identities

Often a downsampler or upsampler appears in cascade with a filter. Although it is not always possible to interchange

the order of upsampling/downsampling and filtering without changing system behavior, it is sometimes possible to find

an equivalent system with the order of these operations reversed, through the use of two very important relationships

called the noble identities.

Theorem 3.5 (Noble identities). For any two sequences with Z transforms X(z) and F(z), the following identities

hold:

F(z) [(↓M)X(z)] = (↓M)
[
F(zM)X(z)

]
and

(↑M) [F(z)X(z)] = F(zM) [(↑M)X(z)] .

These relationships are known as the first and second noble identities, respectively. These identities are illustrated in

Figure 3.12.

Proof. To begin, we prove the first noble identity. Consider the system shown in Figure 3.13(a). We have

Y0(z) = F(z) [(↓M)X(z)]

= F(z)

[
1
M

M−1
∑
k=0

X(z1/MW k)

]

= 1
M
F(z)

M−1
∑
k=0

X(z1/MW k).

Consider the system shown in Figure 3.13(b). We have

Y1(z) = (↓M)
[
F(zM)X(z)

]

= 1
M

M−1
∑
k=0

[
X(λ )F(λM)

]∣∣
λ=z1/MW k

= 1
M

M−1
∑
k=0

X(z1/MW k)F(zW kM)

= 1
M
F(z)

M−1
∑
k=0

X(z1/MW k).

(Note thatW kM = (e− j2πk/M)M = 1.) So, Y0(z) = Y1(z). Thus, the first noble identity holds.
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F(z) F(zM) ↓M
y[n]x[n]

≡↓M
x[n] y[n]

(a)

F(z) ↑M F(zM)↑M≡
x[n] y[n] y[n]x[n]

(b)

Figure 3.12: The noble identities. The (a) first and (b) second noble identities.

F(z)
y0[n]x[n]

↓M

(a)

F(zM) ↓M
x[n] y1[n]

(b)

Figure 3.13: Systems for first noble identity.

F(z) ↑M
x[n] y0[n]

(a)

F(zM)↑M
y1[n]x[n]

(b)

Figure 3.14: Systems for second noble identity.

Now, we prove the second noble identity. Consider the system shown in Figure 3.14(a). We have

Y0(z) = (↑M) [F(z)X(z)]

= F(λ )X(λ )|λ=zM

= F(zM)X(zM).

Consider the system shown in Figure 3.14(b). We have

Y1(z) = F(zM) [(↑M)X(z)]

= F(zM) [X(λ )]|λ=zM

= F(zM)X(zM).

So, Y0(z) = Y1(z). Thus, the second noble identity holds.

The first noble identity allows us to replace a filtering operation on one side of a downsampler with an equivalent

filtering operation on the other side of the downsampler. This identity is illustrated in Figure 3.12(a), where the

transfer function F(z) is a rational polynomial expression. The second noble identity allows us to replace a filtering

operation on one side of an upsampler with an equivalent filtering operation on the other side of the upsampler. This

identity is shown in Figure 3.12(b). It is important to emphasize that, in order for these identities to hold, F(z) must

be a rational polynomial expression.

In addition to their theoretical utility, the noble identities are of great practical significance. For performance

reasons, it is usually desirable to perform filtering operations on the side of an upsampler or downsampler with the

lower sampling rate. Using the noble identities, we can move filtering operations across upsamplers and downsamplers

in order to achieve improved computational efficiency.

3.2.9 Polyphase Representation of Signals and Filters

One concept of fundamental importance in the study of multirate systems is that of a polyphase representation of a

signal.
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Definition 3.3 (Polyphase representation). The polyphase representation of the signal x[n], with respect to an integer
M and a set of integers {mk}M−1k=0 , is defined as

x[n] =
M−1
∑
k=0

((↑M)xk)[n+mk], (3.14)

where

xk[n] = (↓M)(x[n−mk]) = x[Mn−mk]

and the set {mk}M−1k=0 is chosen such that

mod(mk,M) 6= mod(ml ,M) whenever k 6= l. (3.15)

As a matter of terminology, we refer toM as a sampling factor, the elements of the set {mk}M−1k=0 as coset offsets, and

x0[n],x1[n], . . . ,xM−1[n] as polyphase components.

Example 3.9. Consider the sequence x = (an)n∈Z. That is, we have

x = (. . . ,a−4,a−3,a−2,a−1, a0 ,a1,a2,a3,a4, . . .)

where the boxed element is the one with index zero. Let us consider a polyphase representation of x of the form

x =
M−1
∑
k=0

((↑M)xk)[n+mk], (3.16)

whereM = 2, m0 = 0, and m1 = 1. The polyphase components x0,x1 are computed by shifting and downsampling (in

that order) yielding

x0 = (↓ 2)x[n]
= (↓ 2)(. . . ,a−4,a−3,a−2,a−1, a0 ,a1,a2,a3,a4, . . .)

= (. . . ,a−4,a−2, a0 ,a2,a4, . . .), and

x1 = (↓ 2)(x[n−1])

= (↓ 2)(. . . ,a−4,a−3,a−2, a−1 ,a0,a1,a2,a3,a4, . . .)

= (. . . ,a−3, a−1 ,a1,a3, . . .).

One can confirm that (3.16) holds. Let S denote a shift operator (e.g., Sx[n] = x[n−1]). We have

x = ((↑ 2)x0)[n+0]+ ((↑ 2)x1)[n+1]

= (. . . ,0,a−4,0,a−2,0, a0 ,0,a2,0,a4,0, . . .)+S−1(. . . ,0,a−3,0, a−1 ,0,a1,0,a3,0, . . .)

= (. . . ,0,a−4,0,a−2,0, a0 ,0,a2,0,a4,0, . . .)+(. . . ,0,a−3,0,a−1, 0 ,a1,0,a3,0, . . .)

= (. . . ,a−4,a−3,a−2,a−1, a0 ,a1,a2,a3,a4, . . .).

The above polyphase representation can also be expressed in the Z domain. Let X(z) = Z{x[n]} and Xk(z) =
Z{xk[n]} for k = 0,1, . . . ,M−1. Then, by taking the Z transform of (3.14), we obtain

X(z) =
M−1
∑
k=0

zmkXk(z
M) (3.17a)
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where

Xk(z) = (↓M)z−mkX(z). (3.17b)

Examining (3.15), we see that many choices are possible for the sampling factor M and set of coset offsets

{mk}M−1k=0 . Even for a fixed choice of M, the choice of {mk}M−1k=0 is not unique. Therefore, many variations on the

polyphase representation exist.

Although, for a given sampling factorM, many different choices are possible for the set of coset offsets {mk}M−1k=0 ,

four specific choices are most frequently used in practice. Two of these choices are commonly designated as type-1

and type-2 (e.g., as in [31], [29]). The other two choices do not have standard names associated with them, and for

convenience will be referred to as type-3 and type-4. In the case of these four commonly used types of polyphase

representations, the {mk}M−1k=0 in equation (3.14) or (3.17) are chosen as

mk =





−k type 1

k− (M−1) type 2

k type 3

(M−1)− k type 4

for k = 0,1, . . . ,M−1.

One can show that different choices of {mk}M−1k=0 serve only to time shift and permute the polyphase components.

For example, for a fixed choice of M, the type-2 polyphase components of a signal are simply a permutation of

its type-1 polyphase components. More specifically, the orders of the components are reversed with respect to one

another. The particular type of polyphase decomposition to be used is often dictated by practical considerations or

notational convenience.

In passing, we note that if X(z) is rational (but not a Laurent polynomial), the polyphase components of an M-

phase polyphase representation need not be rational [12, p. 95]. This fact leads to some potential practical problems

when dealing with polyphase decompositions of rational functions.

Example 3.10. Suppose that we have a signal with Z transform

X(z) = 1+2z−1 +3z−2 +4z−3 +5z−4 +6z−5 +7z−6.

Find the type-1 three-phase polyphase representation of X(z).

Solution. A type-1 three-phase polyphase representation of X(z) is of the form

X(z) =
M−1
∑
k=0

zmkXk(z
M)

= X0(z
3)+ z−1X1(z

3)+ z−2X2(z
3).

By straightforward manipulation, we can express X(z) as

X(z) =
(
1+4z−3 +7z−6

)
+
(
2z−1 +5z−4

)
+
(
3z−2 +6z−5

)

=
(
1+4z−3 +7z−6

)
+ z−1

(
2+5z−3

)
+ z−2

(
3+6z−3

)
.

Comparing this equation to the form of the desired polyphase representation, we conclude

X0(z) = 1+4z−1 +7z−2,

X1(z) = 2+5z−1, and

X2(z) = 3+6z−1.
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zm0

zm1 F1(z
M)

F0(z
M) +

+

zmM−1 FM−1(zM)

y[n]x[n]

...
...

...
...

(a)

+

+

F0(z
M) zm0

zm1F1(z
M)

zmM−1FM−1(zM)

y[n]x[n]

...
...

...
...

(b)

Figure 3.15: Polyphase representation of a filter.

Polyphase representations can also be applied in the context of filters. In particular, we can find a polyphase

representation of the impulse response of a filter. This leads naturally to the polyphase representation of filters.

Suppose that we have a filter with transfer function F(z). We can express F(z) in terms of the polyphase representation

F(z) =
M−1
∑
k=0

zmkFk(z
M).

This representation suggests an implementation strategy for a filter known as the polyphase realization.

The polyphase realization of a filter is shown in Figure 3.15. Two slight variations are shown but they are clearly

mathematically equivalent. When realized in itsM-phase polyphase form, a filter is implemented using delay/advance

units, adders, and M filters each having a transfer function that is a rational polynomial expression in zM .

For type 1, 2, 3, and 4 polyphase representations, the coset offsets {mk}M−1k=0 are chosen to be consecutive integers

with either the largest or smallest value being zero. This allows all of the delays/advances in these polyphase realiza-

tions to be implemented with a chain of M unit-delays/unit-advances. For example, in the case of a type-1 polyphase

representation, we have the equivalences shown in Figures 3.16 and 3.17.

Example 3.11. Suppose that we have a filter with transfer function

F(z) =− 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2.

Find each of the following two-phase polyphase representations of F(z): (a) type-1 and (b) type-3.

Solution. (a) Consider the type-1 two-phase polyphase representation. We need to express F(z) in the form

F(z) =
1

∑
k=0

z−kFk(z
2) = F0(z

2)+ z−1F1(z
2).

By using straightforward manipulation, we can express F(z) as

F(z) =
(
− 1

8
z2 + 3

4
− 1

8
z−2
)
+ z−1

(
1
4
z2 + 1

4

)
.

Comparing this to the desired form, we conclude

F0(z) =− 1
8
z+ 3

4
− 1

8
z−1 and

F1(z) = 1
4
z+ 1

4
.

The corresponding filter implementation is depicted in Figure 3.18(a).
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x[n]

...

xM−1[n]

...

x1[n]

z0

z−1

z−(M−1)

...

x0[n]

(a)

z−1

z−1

z−1

...

x[n] x0[n]

x1[n]

xM−1[n]

(b)

Figure 3.16: Implementation of type-1 polyphase decomposition. (a) Conceptual and (b) practical computational

structures.

+

+

x[n]

...

x1[n]

x0[n]

...

z0

z−1

z−(M−1)

...

xM−1[n]

(a)

+

z−1

+

z−1

x0[n] x[n]

xM−1[n]

x1[n]

...

(b)

Figure 3.17: Implementation of type-1 polyphase recomposition. (a) Conceptual and (b) practical computational

structures.
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z−1 F1(z
2)

F0(z
2) +

y[n]x[n]

(a)

z F1(z
2)

F0(z
2) +

y[n]x[n]

(b)

Figure 3.18: Polyphase realizations of the filter in Example 3.11. (a) Type-1 and (b) type-3 polyphase realizations.

(b) Consider the type-3 two-phase polyphase representation. We need to express F(z) in the form

F(z) =
1

∑
k=0

zkFk(z
2) = F0(z

2)+ zF1(z
2).

From the given expression for F(z), we can write

F(z) =
(
− 1

8
z2 + 3

4
− 1

8
z−2
)
+ z
(
1
4
+ 1

4
z−2
)
.

Thus, we conclude

F0(z) =− 1
8
z+ 3

4
− 1

8
z−1 and

F1(z) = 1
4
+ 1

4
z−1.

The corresponding filter realization is illustrated in Figure 3.18(b).

Example 3.12. Suppose that we have a filter with transfer function

F(z) = 21
128

z6 + 65
128

z5 + 57
128

z4− 3
128

z3− 17
128

z2 + 3
128

z1 + 3
128

z0− 1
128

z−1.

Find each of the following three-phase polyphase representations of F(z): (a) type-1 and (b) type-2.

Solution. (a) Consider the type-1 three-phase polyphase representation. We need to express F(z) in the form

F(z) =
M−1
∑
k=0

zmkX(zM)

where M = 3 and mk =−k. That is, we seek a representation of the form

F(z) =
2

∑
k=0

z−kFk(z
3) = F0(z

3)+ z−1F1(z
3)+ z−2F2(z

3).

From the given expression for F(z), we can write

F(z) =
(

21
128

z6− 3
128

z3 + 3
128

)
+ z−1

(
65
128

z6− 17
128

z3− 1
128

)
+ z−2

(
57
128

z6 + 3
128

z3
)

.

Thus, we conclude

F0(z) = 21
128

z2− 3
128

z+ 3
128

,

F1(z) = 65
128

z2− 17
128

z− 1
128

, and

F2(z) = 57
128

z2 + 3
128

z.

The corresponding filter realization is shown in Figure 3.19(a).
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z−1 F1(z
3)

F0(z
3) +

+

z−2 F2(z
3)

y[n]x[n]

(a)

z−2

z−1 F1(z
3)

F0(z
3) +

+

F2(z
3)

y[n]x[n]

(b)

Figure 3.19: Polyphase realizations of the filter in Example 3.12. (a) Type-1 and (b) type-2 polyphase realizations.

(b) Consider the type-2 three-phase polyphase representation. We must express F(z) in the form

F(z) =
2

∑
k=0

zk−M+1Fk(z
3) = z−2F0(z

3)+ z−1F1(z
3)+F2(z

3).

We observe that this is the same sum as in part (a), except that the polyphase components have simply been permuted.

Thus, the type-2 polyphase representation is obtained by simply permuting the polyphase components from part (a).

More specifically, we have

F0(z) = 57
128

z2 + 3
128

z,

F1(z) = 65
128

z2− 17
128

z− 1
128

, and

F2(z) = 21
128

z2− 3
128

z+ 3
128

.

The corresponding filter realization is shown in Figure 3.19(b).

Example 3.13. Suppose that we have two filters, one with transfer function F(z) and one with transfer function

G(z) = z−1F(z). Let {Fk(z)}M−1k=0 and {Gk(z)}M−1k=0 denote the type-1 M-phase polyphase components of F(z) and

G(z), respectively. Determine the relationship between {Gk(z)}M−1k=0 and {Fk(z)}M−1k=0 .

Solution. From the definition of a type-1 polyphase decomposition, we have

F(z) =
M−1
∑
k=0

z−kFk(z
M), and

G(z) =
M−1
∑
k=0

z−kGk(z
M). (3.18)

Using the fact that G(z) = z−1F(z), we can write

G(z) = z−1F(z)

= z−1
M−1
∑
k=0

z−kFk(z
M)

=
M−1
∑
k=0

z−(k+1)Fk(z
M)

=
M

∑
k=1

z−kFk−1(z
M)

= [z−MFM−1(z
M)]+

M−1
∑
k=1

z−kFk−1(z
M).
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This equation, however, is simply a type-1 polyphase decomposition of G(z). Therefore, by comparison to (3.18), we

can conclude

Gk(z) =

{
z−1FM−1(z) for k = 0

Fk−1(z) for k = 1,2, . . . ,M−1.

So far, we have only considered finding polyphase representations of FIR filters. Finding polyphase representa-

tions of IIR filters is more difficult. This is demonstrated by the following example.

Example 3.14 (Polyphase representation of IIR filter). Find the type-1 two-phase polyphase representation of the

filter with transfer function

F(z) =
1

1−az−1
.

Solution. We can rewrite F(z) as

F(z) =

(
1

1−az−1

)(
1+az−1

1+az−1

)

=
1+az−1

1−a2z−2

=
1

1−a2z−2
+

az−1

1−a2z−2

=
1

1−a2z−2
+ z−1

a

1−a2z−2
.

Thus, we can express F(z) as F(z) = F0(z
2)+ z−1F1(z2), where

F0(z) =
1

1−a2z−1
and F1(z) =

a

1−a2z−1
.

As we shall see, the polyphase representation is often a mathematically convenient form in which to express

filtering operations in multirate systems, facilitating easier analysis of such systems and greatly simplifying many

theoretical results. Also, this representation leads to an efficient means for implementing filtering operations in a

multirate framework, as elaborated upon in the next section.

3.2.10 Efficient Decimation and Interpolation

The polyphase representation is particularly important in the context of filtering operations in multirate systems. In

multirate systems, filters are often connected in cascade with upsamplers/downsamplers. For reasons of computa-

tional efficiency, it is usually preferable to perform any filtering on the side of the upsampler/downsampler with the

lower sampling rate. We have seen how the noble identities can be used to move a filtering operation across M-fold

upsamplers/downsamplers, but in order to move filtering to the side with the lower sampling rate, the transfer function

of the filter must be an expression in zM which is not generally the case. The polyphase representation, however,

provides us with a means to express any filter as a set of filters with transfer functions in zM so that filtering can be

moved to the more desirable side of an upsampler/downsampler.

One commonly occurring structure in multirate systems is the M-fold decimator which consists of an anti-

aliasing filter followed by an M-fold downsampler as shown in Figure 3.20(a). Here, we have a filter with transfer

function F(z) followed by an M-fold downsampler. Obviously, this structure is computationally inefficient as the

filtering is performed on the side of the downsampler with the higher sampling rate. Suppose now that we realize

the filter in its M-phase polyphase form. This leads to the new system shown in Figure 3.20(b). We can equivalently
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F(z) ↓M
x[n] y[n]

(a)

zm0

zm1 F1(z
M)

F0(z
M) +

+

↓M

zmM−1 FM−1(zM)

x[n] y[n]

...
...

...
...

(b)

zm0

zm1 F1(z
M)

F0(z
M) ↓M

↓M

+

+

zmM−1 FM−1(zM) ↓M

x[n] y[n]

...
...

...
...

...

(c)

zm0

zm1

↓M

↓M F1(z)

F0(z) +

+

zmM−1 ↓M FM−1(z)

x[n] y[n]

...
...

...
...

...

(d)

Figure 3.20: Efficient implementation of a decimator using the noble identities. (a) M-fold decimator. Transformed

system obtained after (b) implementing filtering in polyphase form, (c) interchanging downsamplers and adders, and

(d) interchanging downsamplers and filters.

move the downsampling operation before the adders to obtain the result shown in Figure 3.20(c). Now, the first noble

identity can be used to move the downsampling operations before the polyphase filtering operations as illustrated by

Figure 3.20(d). In this way, we achieve a more efficient structure for decimation. The filtering is now being performed

at the lower sampling rate.

Another frequently encountered structure in multirate systems is theM-fold interpolator which consists of anM-

fold upsampler followed by an anti-imaging filter as shown in Figure 3.21(a). Here, we have an M-fold upsampler

followed by a filter with transfer function F(z). Again, this structure is computationally inefficient as the filtering

is performed on the side of the upsampler with the higher sampling rate. Using a strategy similar to the case of the

decimator above, we can obtain the equivalent system shown in Figure 3.21(d). In such a case, the second noble

identity can be used to move the upsampling operation after the polyphase filtering operations. This results in a new

system in which filtering is performed on the side of the upsampler with the lower sampling rate.

Multirate systems often contain interpolators and decimators as building blocks. By using the approach above, we

can use polyphase methods to obtain efficient decimators and interpolators.

3.2.11 Efficient Rational Sampling Rate Changes

Earlier, we considered how to change the sampling rate by a rational factor L/M. This led to the system shown

in Figure 3.22. For the reasons discussed earlier, the system as shown is very computationally inefficient. In what

follows, we will consider how polyphase techniques can be employed in order to improve efficiency.

To improve computational efficiency, we can implement the filter H in polyphase form and then use the noble

identities to move the filtering operation across the upsampler or downsampler. If L
M

< 1, it would make the most

sense to move the filtering operation across the downsampler, since the sampling rate is lowest at the downsampler

output. If L
M

> 1, it would make the most sense to move the filtering operation across the upsampler, since the sampling

rate is lowest at the upsampler input. In the first case, we can represent the filtering operation H inM-phase polyphase

form and then move the filtering operation to the side of downsampler with the lower sampling rate using the noble

identities. This process is illustrated in Figure 3.23. In the second case, we can represent the filtering operation H in
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↑M F(z)
x[n] y[n]

(a)

+

+

F0(z
M) zm0

zm1F1(z
M)

↑M

zmM−1FM−1(zM)

y[n]x[n]

...
...

...
...

(b)

+

+

F0(z
M) zm0

zm1F1(z
M)

↑M

↑M

zmM−1FM−1(zM)↑M

y[n]x[n]

...
...

...
...

...

(c)

F0(z)

F1(z)

↑M

↑M

+

+

zm0

zm1

FM−1(z) ↑M zmM−1

y[n]x[n]

...
...

...
...

...

(d)

Figure 3.21: Efficient implementation of an interpolator using the noble identities. (a) M-fold interpolator. Trans-

formed system obtained after (b) implementing filter in polyphase form, (c) moving upsamplers, and (d) interchanging

upsamplers and filters.

↑ L H(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
Filter

Antialiasing/Antiimaging

Figure 3.22: Rational sampling rate conversion system.

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



108 CHAPTER 3. ONE-DIMENSIONAL MULTIRATE FILTER BANKS

zm0

zm1 H1(z
M)

H0(z
M) +

+

zmM−1 HM−1(zM)

↑ L ↓M
y[n]

...
...

...
...

x[n]

(a)

zm0

zm1

↓M

↓M H1(z)

H0(z) +

+

zmM−1 ↓M HM−1(z)

↑ L
y[n]

...
...

...
...

...

x[n]

(b)

Figure 3.23: Rational sampling rate conversion system (a) before and (b) after moving the filtering operations across

the downsamplers.

L-phase polyphase form and then move the filtering operation to the side of the upsampler with the lower sampling

rate using the noble identities. This process is shown in Figure 3.24.

Fortunately, we can achieve even better computational efficiency by using polyphase techniques to further ma-

nipulate the systems from Figures 3.23(b) and 3.24(b). How might we improve upon this situation? In both of the

preceding systems, the filtering is performed either on the side of the downsampler with the higher rate or the side

of the upsampler with the higher rate. The computational efficiency could be improved if we could have the filtering

performed on the side of the downsampler and the side of the upsampler with the lower sampling rate. At first glance,

this may seem impossible, since downsampling follows upsampling. Appearances can be deceiving, however. Let us

consider this problem more carefully (i.e., as in [16]).

Without loss of generality in what follows, we assume that L andM are coprime. (If L andM are not coprime, we

can simply cancel any common factors in order to obtain new values that are coprime.) Since L and M are coprime,

every integer can be expressed as an integer linear combination of L andM. This follows from Bezout’s identity (i.e.,

Theorem E.1). In particular, for each lk ∈ Z, there exist l′k,m
′
k ∈ Z such that lk = Ll′k +Mm′k. We start with the system

obtained by moving the filtering operation across upsampling, shown in Figure 3.24(b). We then transform the system

as shown in Figure 3.25. Finally, we obtain the system shown in Figure 3.26. Observe that in this system, all filtering

is performed at the lowest possible sampling rate (i.e., after downsampling and before upsampling).

3.2.12 Polyphase Identity

In multirate systems, we sometimes encounter an upsampling operation followed by a downsampling operation (using

the same sampling factor) with filtering in between. One useful identity in relation to such situations is given by the

theorem below.

Theorem 3.6 (Polyphase identity). Let F(z) and X(z) denote Z transforms. Then, we have

(↓M)(F(z) [(↑M)X(z)]) = F0(z)X(z),

where F0(z) = (↓M)F(z). This relationship is known as the polyphase identity, and has the interpretation shown in

Figure 3.27.
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+

+

H0(z
L) zl0

zl1H1(z
L)

↑ L

zlL−1HL−1(zL)

↓M
x[n]

...
...

...
...

y[n]

(a)

H0(z)

H1(z)

↑ L

↑ L

+

+

zl0

zl1

HL−1(z) ↑ L zlL−1

↓M
x[n]

...
...

...
...

...

y[n]

(b)

Figure 3.24: Rational sampling rate conversion system (a) before and (b) after moving filtering operations across the

upsamplers.

Proof. Since (↑M)X(z) = X(zM), we have

(↓M)(F(z)[(↑M)X(z)]) = (↓M)V (z),

where V (z) = F(z)X(zM). So, we have

(↓M)(F(z)[(↑M)X(z)]) = 1
M

M−1
∑
k=0

V (z1/MW k
M)

= 1
M

M−1
∑
k=0

F(z1/MW k
M)X([z1/MW k

M]M)

= 1
M

M−1
∑
k=0

F(z1/MW k
M)X(zWMk

M )

= 1
M

M−1
∑
k=0

F(z1/MW k
M)X(z)

=

[
1
M

M−1
∑
k=0

F(z1/MW k
M)

]
X(z)

= [(↓M)F(z)]X(z).

Thus, the polyphase identity holds.

3.2.13 Filter Banks

A collection of filters having either a common input or common output is called a filter bank. When the filters share a

common input, they form what is called an analysis bank. When they share a common output, they form a synthesis
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(a)

(b)

(c)

Figure 3.25: Transformation of rational sampling rate conversion system. System after (a) each delay has been split

into two, (b) the delays have been moved across the downsamplers/upsamplers, (c) the downsamplers/upsamplers

have been interchanged.
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Figure 3.26: Efficient rational sampling rate conversion system.

↑M ↓M (↓M)F(z)
x[n] y[n]

≡
x[n] y[n]

F(z)

Figure 3.27: Polyphase identity.
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H0(z)

H1(z)

HM−1(z)

x[n]

...

y0[n]

yM−1[n]

y1[n]

...
...

Figure 3.28: Analysis bank.

G1(z)

G0(z) +

+

GM−1(z)

...

y0[n] x[n]

y1[n]

yM−1[n]

...
...

Figure 3.29: Synthesis bank.

bank. These two types of filter banks are depicted in Figures 3.28 and 3.29. Each of the filter banks shown consists

of M filters. The filters {Hk}M−1k=0 belonging to the analysis bank are called analysis filters and the filters {Fk}M−1k=0

comprising the synthesis bank are referred to as synthesis filters. The signals {yk}M−1k=0 are called subband signals.

The frequency responses of the analysis/synthesis filters may be non-overlapping, marginally overlapping, or greatly

overlapping depending on the application.

3.3 Uniformly Maximally Decimated (UMD) Filter Banks

Although many filter bank configurations exist, an extremely useful one is the so called uniformly maximally dec-

imated (UMD) filter bank3. The general structure of an M-channel UMD filter bank is shown in Figure 3.30. The

analysis bank and downsamplers collectively form the analysis side of the UMD filter bank. Similarly, the upsamplers

and synthesis bank together constitute the synthesis side of the UMD filter bank.

The UMD filter bank (shown in Figure 3.30) operates in the following manner. On the analysis side, the input

signal x is processed by the analysis filters {Hk}M−1k=0 , and the resulting filter outputs are then downsampled by M,

yielding the subband signals {yk}M−1k=0 . On the synthesis side, the subband signals {yk}M−1k=0 are upsampled by M.

Then, the upsampler outputs are transformed by the synthesis filters {Gk}M−1k=0 , and the resulting filter outputs are

summed to produce the output signal x̂.

Each of theM subband signals {yk}M−1k=0 has 1
M
-th the sampling density of the original input signal x. Consequently,

the subband signals collectively possess the same number of samples as the original input signal. For this reason, the

filter bank is referred to as maximally decimated. Furthermore, since all of the subband signals have the same

sampling density, the filter bank is said to be uniformly decimated. Hence, a filter bank of the above form is referred

to as uniformly maximally decimated.

3.3.1 Alias-Free and Perfect Reconstruction (PR) UMD Filter Banks

Recall the general structure of an M-channel UMD filter bank as shown in Figure 3.30. Since downsampling takes

place on the analysis side of the filter bank, the potential exists for aliasing to occur. In principle, this problem could

be solved by using filters with ideal frequency responses (such as ideal lowpass, highpass, and bandpass filters). In

practice, however, we cannot realize such ideal filters and must find another way in which to address the aliasing prob-

lem. In the presence of aliasing, the overall system with input x[n] and output x̂[n] can be shown to be a periodically

time varying system with period M.

Fortunately, another solution to the aliasing problem exists, one that does not require the use of filters with ideal

frequency responses. More specifically, for a given set of analysis filters, it is often possible to choose the synthesis

filters in such a way that aliasing is completely cancelled. In other words, we can sometimes design a filter bank so

3Sometimes, the qualifier “quadrature mirror-image” (abbreviated QM) is used as a synonym for “uniformly maximally decimated”, but strictly

speaking this is an abuse of terminology.
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H0(z)

H1(z)

↓M

HM−1(z)

G0(z) +

+

GM−1(z)↓M ↑M

G1(z)↓M ↑M

↑M
x[n]

...
...

...

y0[n]

...
...

...

x̂[n]

y1[n]

yM−1[n]

︸ ︷︷ ︸
Analysis Bank

︸︷︷︸
Downsamplers

︸︷︷︸
Upsamplers

︸ ︷︷ ︸
Synthesis Bank

︸ ︷︷ ︸
Analysis Side

︸ ︷︷ ︸
Synthesis Side

Figure 3.30: Canonical form of anM-channel UMD filter bank.

that the aliasing components obtained at the outputs of the synthesis filters will always cancel each other (i.e., add to

zero). A filter bank in which the aliasing components cancel in this way is said to be alias free.

In the alias-free case, the overall system with input x[n] and output x̂[n] can be shown to be LTI with transfer

function (or distortion function) T (z), where T (z) depends on the analysis and synthesis filter transfer functions. If a

system is alias free and, in addition, has a transfer function T (z) of the form

T (z) = z−n0 where n0 ∈ Z,

the system is said to have the perfect reconstruction (PR) property. In other words, a PR system can reproduce

the input signal exactly, except for a possible shift. In the special case that n0 = 0, the system is said to possess the

shift-free PR property.

In light of the above discussion, we can see that there are three reasons that the reconstructed signal x̂[n] can differ
from x[n]: aliasing distortion, amplitude distortion, and phase distortion. The analysis and synthesis filters can be

designed in such a way so as to eliminate some or all of these distortions. In the case of an alias-free system, aliasing

distortion is eliminated. In the case of a PR system, aliasing distortion, amplitude distortion, and phase distortion are

all eliminated.

For obvious reasons, alias-free and PR systems are often of great practical interest. In particular, as we shall see

later, UMD filter banks with the shift-free PR property play an important role in the context of wavelet systems.

3.3.2 Time-Domain Input-Output Relationship for a UMD Filter Bank

Consider the UMD filter bank shown in Figure 3.31 with input x[n], subband signals {yk[n]}, and various interme-

diate signals {uk[n]}, {vk[n]}, and {wk[n]}. Let gk[n] and hk[n] denote the inverse Z transforms of Gk(z) and Hk(z),
respectively. The action of the filter bank has an interesting mathematical interpretation which we explore below.

First, consider the analysis side of the filter bank. The output of the kth analysis filter can be expressed as

uk[n] = x∗hk[n]
= ∑

l∈Z

x[l]hk[n− l].

Thus, the kth subband signal yk[n] is given by

yk[n] = uk[Mn]

= ∑
l∈Z

x[l]hk[Mn− l]. (3.19)
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+

+
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H1(z)

HM−1(z)

...

x̂[n]

...

y0[n]

...

y1[n]

yM−1[n]uM−1[n]

u1[n]

u0[n] v0[n]

v1[n]

vM−1[n]

...

x[n]

...
...

w0[n]

w1[n]

wM−1[n]

Figure 3.31: M-channel UMD filter bank.

Now, consider the synthesis side of the filter bank. The input of the kth synthesis filter can be expressed as

vk[n] =

{
yk[n/M] ifM | n
0 otherwise.

From this, we can deduce that the output of the kth synthesis filter is given by

wk[n] = vk ∗gk[n]
= ∑

l∈Z

vk[l]gk[n− l]

= ∑
l∈Z
M|l

yk[l/M]gk[n− l]

= ∑
l∈Z

yk[l]gk[n−Ml]. (3.20)

Thus, the system output x̂[n] can be expressed as

x̂[n] =
M−1
∑
k=0

wk[n]

=
M−1
∑
k=0

∑
l∈Z

yk[l]gk[n−Ml]. (3.21)

The input-output behavior of the system is completely characterized by (3.19) and (3.21) above. We can also

express these equations in matrix form. Let us define

xxx =
[
· · · x[−1] x[0] x[1] · · ·

]T
, x̂xx =

[
· · · x̂[−1] x̂[0] x̂[1] · · ·

]T
,

yyyk =
[
· · · yk[−1] yk[0] yk[1] · · ·

]T
, and wwwk =

[
· · · wk[−1] wk[0] wk[1] · · ·

]T
.

Then, we can write (3.19) in matrix form as

yyyk =HHHkxxx (3.22)

where (HHHk)p,q = hk[Mp−q]. For example, in the case that M = 2, the matrixHHHk is of the form

HHHk =




. . .
...

...
...

...
... . .

.

· · · hk[0] hk[−1] hk[−2] hk[−3] hk[−4] . . .
· · · hk[2] hk[1] hk[0] hk[−1] hk[−2] . . .
· · · hk[4] hk[3] hk[2] hk[1] hk[0] . . .

. .
. ...

...
...

...
...

. . .
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(i.e., the rows ofHHHk are two-shifts of the sequence hk[n]). We can write (3.20) in matrix form as

wwwk =GGGkyyyk (3.23)

where (GGGk)p,q = gk[p−Mq]. For example, in the case that M = 2, the matrixGGGk is of the form

GGGk =




. . .
...

...
... . .

.

. . . gk[0] gk[−2] gk[−4] . . .

. . . gk[1] gk[−1] gk[−3] . . .

. . . gk[2] gk[0] gk[−2] . . .

. . . gk[3] gk[1] gk[−1] . . .

. . . gk[4] gk[2] gk[0] . . .

. .
. ...

...
...

. . .




(i.e., the columns ofGGGk are the two-shifts of the sequence gk[n]). We can write (3.21) in matrix form as

x̂xx =
M−1
∑
k=0

wwwk.

Substituting (3.22) and (3.23) into the above equation, we obtain

x̂xx =
M−1
∑
k=0

GGGkyyyk

=
M−1
∑
k=0

GGGkHHHkxxx. (3.24)

Thus, we can characterize the input-output behavior of the system by the preceding matrix equation.

Again, we consider (3.19) and (3.21). We can also express these equations in terms of a series expansion involving

inner products. Let us define

ϕMl+k[n] = gk[n−Ml] and (3.25)

ϕ̃Ml+k[n] = h∗k [Ml−n] (3.26)

for k ∈ {0,1, . . . ,M−1} and l ∈ Z. (Note that (3.26) implies that hk[Mn− l] = ϕ̃∗Mn+k[l].) Using this new definition,

we can rewrite the expression for yk[n] in (3.19) as

yk[n] = ∑
l∈Z

x[l]ϕ̃∗Mn+k[l]

= 〈x, ϕ̃Mn+k〉 . (3.27)

From this equation, we can see that the analysis side of the UMD filter bank simply computes the inner product of the

input signal x[n] with each of the sequences {ϕ̃k}k∈Z. Furthermore, by examining (3.26), we see that these sequences

are simply theM-shifts of the conjugated time-reversed analysis filter impulse responses.

We can rewrite the expression for x̂[n] in (3.21) as

x̂[n] =
M−1
∑
k=0

∑
l∈Z

yk[l]ϕMl+k[n]

=
M−1
∑
k=0

∑
l∈Z

〈x, ϕ̃Ml+k〉ϕMl+k[n]

= ∑
k∈Z

〈x, ϕ̃k〉ϕk[n]. (3.28)
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From this equation, we can see that the synthesis side of the filter bank simply computes a weighted sum of the

sequences {ϕk}k∈Z. Furthermore, by examining (3.25), we can see that these sequences are simply theM-shifts of the

synthesis filter impulse responses.

We can also rewrite (3.28) in matrix form. Let us define

ϕ̃ϕϕk =
[
· · · ϕ̃k[−1] ϕ̃k[0] ϕ̃k[1] · · ·

]T
and ϕϕϕk =

[
· · · ϕk[−1] ϕk[0] ϕk[1] · · ·

]T
.

Then, we can write

x̂xx =
[
· · · ϕϕϕ−1 ϕϕϕ0 ϕϕϕ1 · · ·

]
︸ ︷︷ ︸

AAA




...

ϕ̃ϕϕ†
−1

ϕ̃ϕϕ†
0

ϕ̃ϕϕ†
1
...




︸ ︷︷ ︸
ÃAA

xxx.

For example, in the case that M = 2, the matrices ÃAA and AAA have the respective forms

AAA =




. . .
...

...
...

...
...

... . .
.

· · · g0[0] g1[0] g0[−2] g1[−2] g0[−4] g1[−4] · · ·
· · · g0[1] g1[1] g0[−1] g1[−1] g0[−3] g1[−3] · · ·
· · · g0[2] g1[2] g0[0] g1[0] g0[−2] g1[−2] · · ·
· · · g0[3] g1[3] g0[1] g1[1] g0[−1] g1[−1] · · ·
· · · g0[4] g1[4] g0[2] g1[2] g0[0] g1[0] · · ·
. .

. ...
...

...
...

...
...

. . .




and

ÃAA =




. . .
...

...
...

...
... . .

.

· · · h0[0] h0[−1] h0[−2] h0[−3] h0[−4] · · ·
· · · h1[0] h1[−1] h1[−2] h1[−3] h1[−4] · · ·
· · · h0[2] h0[1] h0[0] h0[−1] h0[−2] · · ·
· · · h1[2] h1[1] h1[0] h1[−1] h1[−2] · · ·
· · · h0[4] h0[3] h0[2] h0[1] h0[0] · · ·
· · · h1[4] h1[3] h1[2] h1[1] h1[0] · · ·
. .

. ...
...

...
...

...
. . .




.

So, we have

x̂xx =AAAÃAAxxx. (3.29)

We will use (3.24) and (3.29) in the next section to study the conditions for PR and alias cancellation.

3.3.3 Filter Banks and Series Expansions of Discrete-Time Signals

Let us reconsider (3.28). Suppose now that {ϕk} and {ϕ̃k} are biorthonormal. This implies

〈ϕ̃k,ϕl〉= δ [k− l].

From the definitions of ϕk and ϕ̃l in (3.25) and (3.26), we can rewrite this relationship as

〈
h∗k [Ml−·],gp[·−Mq]

〉
= δ [k− p]δ [l−q]
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or equivalently

〈
h∗k [Ml−·],gp[·]

〉
= δ [k− p]δ [l]. (3.30)

Now, consider the special case that ϕ̃k = ϕk for all k ∈ Z. That is, {ϕk} is orthonormal. From the definitions of ϕk

and ϕ̃k, we see that orthonormality implies

hk[n] = g∗k [−n].

Substituting this result into (3.30), we obtain

〈
gk[·−Ml],gp[·]

〉
= δ [k− p]δ [l]. (3.31)

As a matter of terminology, a UMD filter bank that computes a biorthonormal series expansion is called a

biorthonormal filter bank. Similarly, a UMD filter bank that computes an orthonormal series expansion is called

an orthonormal filter bank.

3.3.4 Time-Domain Conditions for Alias-Free and PR Systems

Often, we are interested in UMD filter banks with the alias-free or PR property. Therefore, one might wonder how

these properties manifest themselves in the time-domain representations of such filter banks developed earlier. First,

we will consider alias-free systems. The theorem below offers necessary and sufficient conditions for alias cancella-

tion, expressed in the time domain.

Theorem 3.7 (Necessary and sufficient conditions for alias cancellation). Suppose that we have a UMD filter bank

characterized by the matrices GGG0,GGG1, . . . ,GGGM−1 and HHH0,HHH1, . . . ,HHHM−1 as defined in (3.24) and the matrices AAA and

ÃAA as defined in (3.29). Then, the system is alias free if and only if any one of the following equivalent conditions is

satisfied:

M−1
∑
k=0

GGGkHHHk is a Toeplitz matrix;

AAAÃAA is a Toeplitz matrix.

Proof. A UMD filter bank with input xxx and output x̂xx is alias free if and only if it corresponds to a LTI system. In turn,

we have that a LTI system is one that can be characterized by a convolution operation. When sequences are expressed

in vector form, convolution is equivalent to multiplication by a Toeplitz matrix. Since x̂xx = (∑M−1
k=0 GGGkHHHk)xxx, we have

that the system is alias free if and only if ∑M−1
k=0 GGGkHHHk is a Toeplitz matrix. Similarly, since x̂xx =AAAÃAAxxx, we have that the

system is LTI if and only if AAAÃAA is a Toeplitz matrix.

Now, we consider UMD filter banks with the PR property. The theorem below gives necessary and sufficient

conditions for a PR system.

Theorem 3.8 (Necessary and sufficient conditions for PR). Suppose that we have a UMD filter bank characterized

by the matrices GGG0,GGG1, . . . ,GGGM−1 and HHH0,HHH1, . . . ,HHHM−1 as defined in (3.24) and the matrices AAA and ÃAA as defined

in (3.29). Let SSS be a matrix such that [SSS]p,q = δ [p−q+1] (i.e., SSS corresponds to a unit-advance operator). Then, the

system has the PR property if and only if any one of the following equivalent conditions is satisfied:

M−1
∑
k=0

GGGkHHHk = SSS−n0 ;

AAAÃAA = SSS−n0 ;

〈h∗k [Mm−·],gl [·]〉= δ [k− l+n0]δ [m];
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where n0 ∈ Z is the reconstruction delay of the system. Furthermore, the system has the shift-free PR property if and

only if any one of the following equivalent conditions is satisfied:

M−1
∑
k=0

GGGkHHHk = III; (3.32a)

AAAÃAA = III; (3.32b)

〈h∗k [Mm−·],gl [·]〉= δ [k− l]δ [m]. (3.32c)

Proof. Equations (3.32a) and (3.32b) follow directly from (3.24) and (3.29), respectively. Now, we need to show

that (3.32c) holds. We have

ÃAAAAA = III,

or equivalently




...

ϕ̃ϕϕ†
−1

ϕ̃ϕϕ†
0

ϕ̃ϕϕ†
1
...




[
· · · ϕϕϕ−1 ϕϕϕ0 ϕϕϕ1 · · ·

]
= III.

From this, we may deduce

ϕ̃ϕϕ†
l ϕϕϕk = δ [k− l].

This can be rewritten in terms of an inner product as

〈ϕk, ϕ̃l〉= δ [k− l].

Using the definition of ϕk and ϕ̃l , we have

〈gk[Mm−·],h∗l [·]〉= δ [k− l]δ [m].

3.3.5 Z-Domain Input-Output Relationship for a UMD Filter Bank

For obvious reasons, we are often interested in the relationship between the input and output of a UMD filter bank.

In this section, we will derive this relationship. Consider the M-channel UMD filter bank shown in Figure 3.32. The

system has analysis filters {Hk(z)}M−1k=0 , synthesis filters {Gk(z)}M−1k=0 , input x[n], output x̂[n], and various intermediate

signals {uk[n]}, {yk[n]}, {vk[n]}.
First, let us consider the analysis side of the filter bank. To begin, we observe that

Uk(z) = Hk(z)X(z).

Using the preceding relationship and the Z-domain downsampling formula, we have that

Yk(z) = 1
M

M−1
∑
l=0

Uk(z
1/MW l)

= 1
M

M−1
∑
l=0

Hk(z
1/MW l)X(z1/MW l).
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↓M

↑M

↓M ↑M

↑M

↓M

G0(z) +

+

GM−1(z)

G1(z)

H0(z)

H1(z)

HM−1(z)

...

y0[n]

...

y1[n]

yM−1[n]uM−1[n]

u1[n]

u0[n] v0[n]

v1[n]

vM−1[n]

...
...

x̂[n]x[n]

...
...

Figure 3.32: An M-channel UMD filter bank.

Thus, the analysis side of the filter bank is characterized by the equation

Yk(z) = 1
M

M−1
∑
l=0

Hk(z
1/MW l)X(z1/MW l). (3.33)

Next, let us consider the synthesis side of the filter bank. Using the Z-domain upsampling formula, we have that

X̂(z) =
M−1
∑
k=0

Gk(z)Vk(z)

=
M−1
∑
k=0

Gk(z)Yk(z
M).

Thus, the synthesis side of the filter bank is characterized by the equation

X̂(z) =
M−1
∑
k=0

Gk(z)Yk(z
M). (3.34)

Finally, we consider the combined behavior of the analysis and synthesis sides of the filter bank. Substituting (3.33)

into (3.34) and using relationship (3.11), we have

X̂(z) =
M−1
∑
k=0

Gk(z)

[
1
M

M−1
∑
l=0

Hk(λ
1/MW l)X(λ 1/MW l)

]∣∣∣∣∣
λ=zM

=
M−1
∑
k=0

Gk(z)

[
1
M

M−1
∑
l=0

Hk(zW
l)X(zW l)

]

=
M−1
∑
l=0

X(zW l) 1
M

M−1
∑
k=0

Hk(zW
l)Gk(z).

Rewriting the preceding equation in a slightly different form, we obtain

X̂(z) =
M−1
∑
l=0

Al(z)X(zW l) (3.35a)

where

Al(z) = 1
M

M−1
∑
k=0

Gk(z)Hk(zW
l). (3.35b)
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Thus, we see that the output of the system is formed by filtering the input and its (M− 1) aliased versions and then

summing the result. The terms in the summation for which l 6= 0 (i.e., the terms containing X(αz) where α 6= 1)

correspond to aliasing (as they involve aliased versions of the input).

From (3.35), we can deduce that a system is alias free if and only if

Al(z)≡ 0 for l = 1, . . . ,M−1. (3.36)

Furthermore, if the system is alias free, it has the transfer function A0(z). Thus, we can conclude that a system has the

PR property if and only if the system is alias free and A0(z) is of the form A0(z) = z−n0 where n0 ∈ Z.

Example 3.15 (Two-channel UMD filter bank). Consider the case of a two-channel UMD filter bank (i.e., M = 2).

From (3.35), the relationship between the input and output is given by

X̂(z) = A0(z)X(z)+A1(z)X(−z)
= 1

2
[H0(z)G0(z)+H1(z)G1(z)]X(z)+ 1

2
[H0(−z)G0(z)+H1(−z)G1(z)]X(−z).

Thus, the system is alias free if and only if

H0(−z)G0(z)+H1(−z)G1(z) = 0.

The system has the PR property if and only if the preceding condition is satisfied along with

H0(z)G0(z)+H1(z)G1(z) = 2z−n0 ,

where n0 ∈ Z is the reconstruction delay. If n0 = 0, the system has the shift-free PR property.

3.3.6 Modulation Representation of UMD Filter Banks

In the previous section, we found the Z-domain relationship between the input and output of a UMD filter bank to be

given by (3.35). This equation can be written in matrix form as

X̂(z) =
[
X(z) X(zW ) · · · X(zWM−1)

]
AAA(z) (3.37a)

whereW =WM = e− j2π/M and

AAA(z) =




A0(z)
A1(z)

...
AM−1(z)




︸ ︷︷ ︸
AAA(z)

=
1

M




H0(z) H1(z) · · · HM−1(z)
H0(zW ) H1(zW ) · · · HM−1(zW )

...
...

. . .
...

H0(zW
M−1) H1(zW

M−1) · · · HM−1(zWM−1)




︸ ︷︷ ︸
HHHa(z)




G0(z)
G1(z)

...
GM−1(z)




︸ ︷︷ ︸
ggg(z)

. (3.37b)

As a matter of terminology,HHHa(z) is called the analysis alias component (AC) matrix and its transpose

HHHm(z) =HHHT
a (z) =




H0(z) H0(zW ) · · · H0(zW
M−1)

H1(z) H1(zW ) · · · H1(zW
M−1)

...
...

. . .
...

HM−1(z) HM−1(zW ) · · · HM−1(zWM−1)




is referred to as the analysis modulation matrix. We can rewrite (3.37b) in terms ofHHHm(z) (rather thanHHHa(z)) as

AAA(z) = 1
M
HHHT

m(z)ggg(z). (3.38)

Using the modulation matrix, we can formulate a necessary and sufficient condition for a UMD filter bank to be

alias free. From our earlier results, we know that a system is alias-free if and only if Ak(z)≡ 0 for k = 1,2, . . . ,M−1.
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Furthermore, we know that the PR property is achieved if and only if the system is alias free and A0(z) is of the form
A(z) = z−n0 for some n0 ∈ Z. Thus, we have that a UMD filter bank is alias free if and only if

1
M
HHHT

m(z)ggg(z) = ttt(z)

where

ttt(z) =
[
T (z) 0 · · · 0

]T
.

Furthermore, we also have that the filter bank has the PR property if and only if the above condition is satisfied and

T (z) is of the form T (z) = z−n0 for some n0 ∈ Z.
Another matrix that is sometimes of interest is called the synthesis modulation matrix. The synthesis modulation

matrixGGGm(z) is defined as

GGGm(z) =




G0(z) G1(z) · · · GM−1(z)
G0(zW ) G1(zW ) · · · GM−1(zW )

...
...

. . .
...

G0(zW
M−1) G1(zW

M−1) · · · GM−1(zWM−1)


 .

The definition of GGGm(z) is analogous to that of HHHm(z) with one minor (but noteworthy) difference. In the case of

HHHm(z), Hk(z) and its aliased versions appear in the kth row of HHHm(z), whereas in the case of GGGm(z), Gk(z) and its

aliased versions appear in the kth column ofGGGm(z). Although the synthesis modulation matrix does not have a direct

interpretation in terms of (3.38), this matrix is often useful in characterizing filter bank behavior. The analysis and

synthesis modulation matrices, taken together, completely characterize the UMD filter bank. That is, if we know

these two matrices, we can determine the analysis and synthesis filters, and these filters completely characterize the

input-output behavior of the system.

Example 3.16. Suppose that we have a two-channel UMD filter bank with analysis filters {Hk(z)}1k=0 and synthesis

filters {Gk(z)}1k=0, where

H0(z) = 1
2
z+ 1

2
,

H1(z) = z−1,

G0(z) = 1+ z−1, and

G1(z) =− 1
2
+ 1

2
z−1.

Find the analysis and synthesis modulation matrices of this system.

Solution. From the definition of the analysis modulation matrix, we can write

HHHm(z) =

[
H0(z) H0(−z)
H1(z) H1(−z)

]
=

[
1
2
z+ 1

2
− 1

2
z+ 1

2

z−1 −z−1

]
.

From the definition of the synthesis modulation matrix, we can write

GGGm(z) =

[
G0(z) G1(z)
G0(−z) G1(−z)

]
=

[
1+ z−1 − 1

2
+ 1

2
z−1

1− z−1 − 1
2
− 1

2
z−1

]
.

Although the modulation matrices can often prove beneficial in the study of UMD filter banks, the use of such

matrices does have one potential drawback. In the case of M-channel systems where M > 2, even when the analysis

filters have transfer functions with real coefficients, the modulation matrices can have entries with complex coeffi-

cients. For this reason, the modulation representation can sometimes be cumbersome to use. This shortcoming is

illustrated by the example below.

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



122 CHAPTER 3. ONE-DIMENSIONAL MULTIRATE FILTER BANKS

Example 3.17. Suppose that we have a three-channel UMD filter bank with analysis filters {Hk(z)}2k=0, where

H0(z) = 1
3
z2 + 1

3
z+ 1

3
,

H1(z) = z−1,

H2(z) = z2− z.

Find the analysis modulation matrix of this system.

Solution. LetW =W3 = e− j2π/3. From the definition of the analysis modulation matrix, we can write

HHHm(z) =



H0(z) H0(zW ) H0(zW

2)
H1(z) H1(zW ) H1(zW

2)
H2(z) H2(zW ) H2(zW

2)




=




1
3
z2 + 1

3
z+ 1

3
1
3
z2W 2 + 1

3
zW + 1

3
1
3
z2W 4 + 1

3
zW 2 + 1

3

z−1 zW −1 zW 2−1

z2− z z2W 2− zW z2W 4− zW 2




=




1
3
z2 + 1

3
z+ 1

3
1
3
e− j4π/3z2 + 1

3
e− j2π/3z+ 1

3
1
3
e− j2π/3z2 + 1

3
e− j4π/3z+ 1

3

z−1 e− j2π/3z−1 e− j4π/3z−1

z2− z e− j4π/3z2− e− j2π/3z e− j2π/3z2− e− j4π/3z


 .

Observe that the coefficients of the entries in HHHm(z) are complex in spite of the fact that the Hk(z) all have real

coefficients.

Suppose now that we have a set of analysis filters {Hk(z)} and want to find a corresponding set of synthesis filters
{Gk(z)} to achieve an alias-free or PR system with a particular {Ak(z)}. To do this, we can solve for ggg(z) in terms of

HHHm(z) and AAA(z) in (3.38) to obtain

ggg(z) = MHHH−Tm (z)AAA(z).

This equation is valid, provided that detHHHm(z) 6≡ 0. There are, however, a few problems with the above design

approach. First, the synthesis filters could be IIR even if the analysis filters are FIR. Second, since the synthesis filters

can be IIR, they may be unstable. Third, the synthesis filters could be of considerably higher order than the analysis

filters.

3.3.7 Polyphase Representation of UMD Filter Banks

Although the structure for the UMD filter bank shown in Figure 3.30 may be intuitively appealing, it is often not the

most convenient structure with which to work. This leads us to the polyphase representation of a UMD filter bank.

The polyphase representation has many advantages, but most importantly it simplifies many theoretical results and

suggests an efficient means by which to implement filter banks. The polyphase representation of a UMD filter bank is

based on the polyphase representation of filters introduced earlier.

Suppose that we have an M-channel UMD filter bank with analysis filters {Hk} and synthesis filters {Gk}. First,
let us consider the analysis filters of the UMD filter bank. We can express the transfer functions of these filters in

polyphase form as

Hk(z) =
M−1
∑
p=0

zmpHk,p(z
M)

for k = 0,1, . . . ,M− 1. (Note that each filter in the analysis bank is represented with the same type of polyphase

representation; that is, {mk}M−1k=0 is fixed for all analysis filters.) The resulting set of equations can be rewritten in
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matrix form as 


H0(z)
H1(z)

...
HM−1(z)




︸ ︷︷ ︸
hhh(z)

=




H0,0(z
M) H0,1(z

M) · · · H0,M−1(zM)
H1,0(z

M) H1,1(z
M) · · · H1,M−1(zM)

...
...

. . .
...

HM−1,0(zM) HM−1,1(zM) · · · HM−1,M−1(zM)




︸ ︷︷ ︸
HHHp(z

M)




zm0

zm1

...
zmM−1




︸ ︷︷ ︸
vvv(z)

or more compactly as

hhh(z) =HHHp(z
M)vvv(z). (3.39)

Equation (3.39) completely characterizes the analysis bank and is called the polyphase representation of the analysis

bank. The quantityHHHp(z) is referred to as the analysis polyphase matrix.

Now, let us consider the synthesis filters of the UMD filter bank. We can express the transfer functions of these

filters in polyphase form as

Gk(z) =
M−1
∑
p=0

zlpGp,k(z
M)

for k = 0,1, . . . ,M−1. (Note that the same type of polyphase decomposition is used for each of the synthesis filters;

that is, {lk}M−1k=0 is the same for all of the synthesis filters. The type of decomposition used for the synthesis bank need

not be the same as the one used for the analysis bank, however.) In matrix form, the above equation becomes

[
G0(z) G1(z) · · · GM−1(z)

]
︸ ︷︷ ︸

gggT (z)

=
[
zl0 zl1 · · · zlM−1

]
︸ ︷︷ ︸

uuuT (z)




G0,0(z
M) G0,1(z

M) · · · G0,M−1(zM)
G1,0(z

M) G1,1(z
M) · · · G1,M−1(zM)

...
...

. . .
...

GM−1,0(zM) GM−1,1(zM) · · · GM−1,M−1(zM)




︸ ︷︷ ︸
GGGp(z

M)

which can be written more concisely as

gggT (z) = uuuT (z)GGGp(z
M) (3.40)

Equation (3.40) completely characterizes the synthesis bank and is called the polyphase representation of the synthesis

bank. The quantityGGGp(z) is referred to as the synthesis polyphase matrix.

Observe that (3.39) and (3.40) provide an alternative way in which to express the analysis and synthesis banks

of the UMD filter bank. Suppose now that we have a UMD filter bank where the analysis and synthesis banks have

been represented in this manner. In this case, these equations give us the transformed, but mathematically equivalent,

system shown in Figure 3.33. Using the noble identities, however, we can move the analysis polyphase filtering to

the right of the downsamplers and the synthesis polyphase filtering to the left of the upsamplers. This gives us the

polyphase form of the filter bank shown in Figure 3.34.

To show in more detail the transformation of a filter bank from its canonical to polyphase representation, we

consider the case of M = 2. In this case the analysis side of the filter bank is transformed as shown in Figure 3.35.

Similarly, the synthesis side of the filter bank is transformed as shown in Figure 3.36.

In effect, the polyphase representation reorganizes a filter bank so that it operates on the polyphase components

of the input signal. The analysis and synthesis polyphase filtering is performed by M-input M-output networks. On

the analysis side of the filter bank, the shift operators and downsamplers form what is referred to as the forward

polyphase transform (FPT). Similarly, the upsamplers and shift operators form what is called the inverse polyphase

transform (IPT).

It is important to note that with the polyphase form of a UMD filter bank, analysis filtering is performed after

downsampling, and synthesis filtering is performed before upsampling. In other words, all filtering is performed in

the downsampled domain (i.e., at the lower sampling rate). This leads to improved computational efficiency over a

UMD filter bank implemented in its canonical form. Consequently, most practical implementations of UMD filter

banks make use of the polyphase form.
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zm0

zm1

↓M

↓MzmM−1

+

+

zl0

zl1

↑M

↑M

zlM−1↑M

↓M
HHHp(z

M) GGGp(z
M)

x[n]

...
...

...

x̂[n]

...
...

...

y0[n]

y1[n]

yM−1[n]

Figure 3.33: Polyphase representation of an M-channel UMD filter bank before simplification with the noble identi-

ties.

zm0

zm1

↓M

↓M

zmM−1 ↓M

↑M

↑M

+

+

zl0

zl1

↑M zlM−1

HHHp(z) GGGp(z)

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−1[n]

...

Figure 3.34: Polyphase representation of an M-channel UMD filter bank.
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H0,1(z
2)

H0,0(z
2) + ↓ 2

zm1

H1,1(z
2)

H1,0(z
2) + ↓ 2

zm1

zm0

zm0
y0[n]

y1[n]

x[n]

(a)

+

+

H0,0(z
2)

H0,1(z
2)

H1,1(z
2)

H1,0(z
2) ↓ 2

↓ 2zm0

zm1

HHHp(z
2)

x[n]

y1[n]

y0[n]

(b)

zm0 ↓ 2

zm1 ↓ 2

+

+

H0,0(z)

H0,1(z)

H1,1(z)

H1,0(z)

x[n]

y1[n]

y0[n]

HHHp(z)

(c)

zm0 ↓ 2

zm1 ↓ 2

x[n] y0[n]

y1[n]

HHHp(z)

(d)

Figure 3.35: Constructing the polyphase representation of the analysis side of a two-channel UMD filter bank. The

system obtained after (a) implementing the analysis filters in polyphase form, (b) combining equivalent shifts, (c)

using the noble identities to move the downsamplers across the filters, (d) replacing the individual polyphase filters

by a network with transfer matrixHHHp(z).
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G0,0(z
2)

G1,0(z
2)

↑ 2 +

G0,1(z
2)

G1,1(z
2)

+

+

↑ 2

y0[n]
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G0,0(z
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G1,1(z
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↑ 2

↑ 2

+

+

+zl0

zl1

zl0

zl1

x̂[n]y0[n]

y1[n]

(b)

G0,0(z
2)

G1,0(z
2)

G0,1(z
2)

G1,1(z
2)

↑ 2

↑ 2

++

+ zl1

zl0
x̂[n]y0[n]

y1[n]

GGGp(z
2)

(c)

G0,0(z)

G1,0(z)

G0,1(z)

G1,1(z)

+

+

↑ 2

↑ 2 zl1

zl0 +

y1[n]

y0[n] x̂[n]

GGGp(z)

(d)

↑ 2 zl0 +

↑ 2 zl1

x̂[n]

GGGp(z)

y0[n]

y1[n]

(e)

Figure 3.36: Constructing the polyphase representation of the synthesis side of a two-channel UMD filter bank. The

system obtained after (a) implementing the synthesis filters in polyphase form, (b) changing the order of addition, (c)

combining common shifts, (d) using the noble identities to move the upsamplers across the filters, (e) replacing the

individual polyphase filters with a network with transfer matrixGGGp(z).
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z−1

↓M

↓M

z−(M−2) ↓M

↑M

↑M

+

+z−(M−2)

↑M z−1
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+

HHHp(z) GGGp(z)
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...

...

y0[n] x̂[n]
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...
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yM−2[n]

...
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Figure 3.37: The (1,2)-type polyphase representation of anM-channel UMD filter bank.

z

↓M

↓M

zM−2 ↓M

↑M

↑M

+

+z−1

↑M z−(M−2)

zM−1 ↓M ↑M z−(M−1)

+

HHHp(z) GGGp(z)

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−2[n]

...

yM−1[n]

Figure 3.38: The (3,1)-type polyphase representation of anM-channel UMD filter bank.

From our previous experience with polyphase representations of filters, we know that some freedom exists in

the choice of the parameters {mk} and {lk}. For this reason, many variations on the polyphase representation of

a UMD filter bank are possible. In practice, however, two particular variants are most commonly used. Since no

standard naming convention exists in the literature to distinguish between these variants, the author introduces his

own terminology in what follows. The first variant represents the filters of the analysis bank in their type-1 polyphase

form and the filters of the synthesis bank in their type-2 polyphase form. This variant will be referred to as a type-

(1,2) polyphase representation. The corresponding realization is shown in Figure 3.37. The second variant employs

type-3 and type-1 polyphase decompositions for the analysis and synthesis banks, respectively. This variant will be

referred to as a type-(3,1) polyphase representation. The corresponding realization is shown in Figure 3.38.

In the remainder of this book, we will focus primarily on the (3,1)-type polyphase representation. This particular
representation is often the most convenient to use in the context of wavelets. One must be careful when interpreting

results involving polyphase representation from different authors, since different polyphase representations might be

used. For example, [33] focuses primarily on the (3,1)-type representation, while [31] uses mostly the (1,2)-type
representation.

Example 3.18. Suppose that we have a two-channel UMD filter bank with analysis filter transfer functions {Hk(z)}
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and synthesis filter transfer functions {Gk(z)}, where

H0(z) = 1
2
z+ 1

2
,

H1(z) =− 1
8
z3− 1

8
z2 + z−1+ 1

8
z−1 + 1

8
z−2,

G0(z) =− 1
8
z2 + 1

8
z+1+ z−1 + 1

8
z−2− 1

8
z−3, and

G1(z) =− 1
2
+ 1

2
z−1.

Find the (3,1)-type polyphase representation of the filter bank.

Solution. First, we find the type-3 polyphase representation of each of the analysis filters. We can write

H0(z) =
(
1
2

)
+ z
(
1
2

)
and

H1(z) =
(
− 1

8
z2−1+ 1

8
z−2
)
+ z
(
− 1

8
z2 +1+ 1

8
z−2
)
.

Thus, the analysis polyphase matrixHHHp(z) is given by

HHHp(z) =

[
1
2

1
2

− 1
8
z−1+ 1

8
z−1 − 1

8
z+1+ 1

8
z−1

]
.

Now, we find the type-1 polyphase representation of each of the synthesis filters. We can write

G0(z) =
(
− 1

8
z2 +1+ 1

8
z−2
)
+ z−1

(
1
8
z2 +1− 1

8
z−2
)

and

G1(z) =
(
− 1

2

)
+ z−1

(
1
2

)
.

Thus, the synthesis polyphase matrixGGGp(z) is given by

GGGp(z) =

[
− 1

8
z+1+ 1

8
z−1 − 1

2
1
8
z+1− 1

8
z−1 1

2

]
.

Example 3.19. Suppose that we have a two-channel UMD filter bank with analysis filter transfer functions {Hk(z)}
and synthesis filter transfer functions {Gk(z)}, where

H0(z) =− 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2,

H1(z) =− 1
2
z2 + z− 1

2
,

G0(z) = 1
2
z+1+ 1

2
z−1, and

G1(z) =− 1
8
z− 1

4
+ 3

4
z−1− 1

4
z−2− 1

8
z−3.

Find the (3,1)-type polyphase representation of the filter bank.

Solution. First, we find the type-3 polyphase representation of each of the analysis filters. We can express H0(z) and
H1(z) as follows:

H0(z) = H0,0(z
2)+ zH0,1(z

2)

=
[
− 1

8
z2 + 3

4
− 1

8
z−2]+ z[ 1

4
+ 1

4
z−2
]
and

H1(z) = H1,0(z
2)+ zH1,1(z

2)

=
[
− 1

2
z2− 1

2

]
+ z [1] .
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Thus, the analysis polyphase matrixHHHp(z) is given by

HHHp(z) =

[
− 1

8
z+ 3

4
− 1

8
z−1 1

4
+ 1

4
z−1

− 1
2
z− 1

2
1

]
.

Now, we find the type-1 polyphase representation of each of the synthesis filters. We can express G0(z) and G1(z)
as follows:

G0(z) = G0,0(z
2)+ z−1G1,0(z

2)

= [1]+ z−1
[
1
2
z2 + 1

2

]
and

G1(z) = G0,1(z
2)+ z−1G1,1(z

2)

=
[
− 1

4
− 1

4
z−2
]
+ z−1

[
− 1

8
z2 + 3

4
− 1

8
z−2
]
.

Thus, the synthesis polyphase matrixGGGp(z) is given by

GGGp(z) =

[
1 − 1

4
− 1

4
z−1

1
2
z+ 1

2
− 1

8
z+ 3

4
− 1

8
z−1

]
.

3.3.8 Relationship Between Modulation and Polyphase Matrices

Earlier, we introduced the modulation and polyphase representations of UMD filter banks. In the modulation case,

the system is completely characterized by its analysis and synthesis modulation matrices. In the polyphase case, the

system is completely described by its analysis and synthesis polyphase matrices. Since both pairs of matrices contain

essentially the same information, one might wonder if some simple relationship exists between these matrices. This

is, in fact, the case, as demonstrated by the theorem below.

Theorem 3.9 (Relationship between modulation and polyphase matrices). Suppose that an M-channel UMD filter

bank has analysis modulation matrix HHHm(z), synthesis modulation matrix GGGm(z), analysis polyphase matrix HHHp(z),
and synthesis polyphase matrix GGGp(z). Then, these matrices are related as

HHHm(z) =





HHHp(z
M)DDD(z−1)WWW † for (1, ·) type

z−(M−1)HHHp(z
M)DDD(z)JJJWWW † for (2, ·) type

HHHp(z
M)DDD(z)WWW for (3, ·) type

zM−1HHHp(z
M)DDD(z−1)JJJWWW for (4, ·) type

(3.41)

GGGm(z) =





WWW †DDD(z−1)GGGp(z
M) for (·,1) type

z−(M−1)WWW †JJJDDD(z)GGGp(z
M) for (·,2) type

WWWDDD(z)GGGp(z
M) for (·,3) type

zM−1WWWJJJDDD(z−1)GGGp(z
M) for (·,4) type

(3.42)

where DDD(z) = diag
[
1 z · · · zM−1

]
andWWW =WWWM . (Note that JJJ denotes the anti-identity matrix andWWWM denotes

the M×M DFT matrix as defined by (2.13) on page 68.)

Proof. Denote the analysis filter transfer functions as Hk(z) and define

hhh(z) =
[
H0(z) H1(z) · · · HM−1(z)

]T
.

From the definition of the modulation matrix, we can write

HHHm(z) =
[
hhh(z) hhh(zW ) · · · hhh(zWM−1)

]
. (3.43)
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From the definition of the polyphase matrix, we have

hhh(z) =HHHp(z
M)vvv(z)

where vvv(z) is as defined earlier (i.e., vvv(z) = [ zm0 zm1 ··· zmM−1 ]T ). Substituting this expression for hhh(z) into (3.43), we

obtain

HHHm(z) =
[
HHHp(z

M)vvv(z) HHHp(z
M)vvv(zW ) · · · HHHp(z

M)vvv(zWM−1)
]

=HHHp(z
M)
[
vvv(z) vvv(zW ) · · · vvv(zWM−1)

]
. (3.44)

Now, we consider an expression of the form vvv(zW k), as such appears in the preceding equation.

Consider the case of a type (1, ·) polyphase representation. In this case, vvv(z) = [1 z−1 ··· z−(M−1) ]T . So, we have

vvv(zW k) =




1

(zW k)−1

...

(zW k)−(M−1)


=




1 0 · · · 0

0 z−1 · · · 0
...

...
. . .

...

0 0 · · · z−(M−1)




︸ ︷︷ ︸
DDD(z−1)




1

W−k

...

W−(M−1)k




︸ ︷︷ ︸
aaak

.

Thus, by substituting the above expression for vvv(zW k) into (3.44), we obtain

HHHm(z) =HHHp(z
M)
[
DDD(z−1)aaa0 DDD(z−1)aaa1 · · · DDD(z−1)aaaM−1

]

=HHHp(z
M)DDD(z−1)

[
aaa0 aaa1 · · · aaaM−1

]
.

Now, we observe that the rightmost matrix in the preceding equation can be expressed as

[
aaa0 aaa1 · · · aaaM−1

]
=




1 1 · · · 1

1 W−1 · · · W−(M−1)

...
...

. . .
...

1 W−(M−1) · · · W−(M−1)2


=WWW †.

Thus, we have

HHHm(z) =HHHp(z
M)DDD(z−1)WWW †.

This proves that (3.41) holds in the type (1, ·) case.
Now, consider the case of a (3, ·) type polyphase representation. In this case, vvv(z) = [1 z ··· zM−1 ]T . So, we have

vvv(zW k) =




1

zW k

· · ·
(zW k)M−1


=




1 0 · · · 0

0 z · · · 0
...

...
. . .

...
0 0 · · · zM−1




︸ ︷︷ ︸
DDD(z)




1

W k

...

W (M−1)k




︸ ︷︷ ︸
aaak

.

Proceeding in a similar fashion as above, we can write

HHHm(z) =HHHp(z
M)
[
DDD(z)aaa0 DDD(z)aaa1 · · · DDD(z)aaaM−1

]

=HHHp(z
M)DDD(z)

[
aaa0 aaa1 · · · aaaM−1

]
.
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Now, we observe

[
aaa0 aaa1 · · · aaaM−1

]
=




1 1 · · · 1

1 W · · · WM−1

...
...

. . .
...

1 WM−1 · · · W (M−1)2


=WWW .

So, we have

HHHm(z) =HHHp(z
M)DDD(z)WWW .

This proves that (3.41) holds in the type (3, ·) case.
The proof of (3.41) is similar for the remaining types of polyphase decompositions. The result (3.42) follows

trivially from (3.41) by observing that we are required to prove the same assertions as in (3.41) withHHHm(z) andHHHp(z)
replaced byGGGT

m(z) andGGGT
p (z), respectively.

3.3.9 Modulation-Domain Conditions for Alias-Free and PR Systems

Since a UMD filter bank is completely characterized by its modulation matrices, it must be possible to use these

matrices in order to determine whether the system has the alias-free or PR properties. Below, we provide necessary

and sufficient conditions for an alias-free system formulated in terms of the modulation matrices.

Theorem 3.10 (Necessary and sufficient conditions for alias cancellation). Suppose that an M-channel UMD filter

bank has the analysis and synthesis modulation matrices HHHm(z) and GGGm(z), respectively. Then, the system is alias

free if and only if the product GGGm(z)HHHm(z) is of the form

GGGm(z)HHHm(z) = MDDD(z)

where DDD(z) = diag
[
T (z) T (zW ) · · · T (zWM−1)

]
and W =WM . If the system is alias free, then it is LTI with the

transfer function T (z).

Proof. Taking the transpose of both sides of equation (3.38), we obtain

AAAT (z) = 1
M
gggT (z)HHHm(z).

Thus, we have

AAAT (zW k) = 1
M
gggT (zW k)HHHm(zW k). (3.45)

Now, let us further examine the factor HHHm(zW k) in the preceding equation. First, we consider HHHm(zW ). From the

definition of the modulation matrix, we can write

HHHm(zW ) =




H0(zW ) H0(zW
2) · · · H0(zW

M−1) H0(z)
H1(zW ) H1(zW

2) · · · H1(zW
M−1) H1(z)

...
...

. . .
...

...
HM−1(zW ) HM−1(zW 2) · · · HM−1(zWM−1) HM−1(z)


 .

Thus,HHHm(zW ) is formed by circularly shiftingHHHm(z) left by one column, which we can express as

HHHm(zW ) =HHHm(z)

[
000 1

IIIM−1 000

]

︸ ︷︷ ︸
CCC

.

By recursively applying this identity k times, we obtain

HHHm(zW k) =HHHm(z)CCCk.
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Substituting this expression forHHHm(zW k) into (3.45) yields

AAAT (zW k) = 1
M
gggT (zW k)HHHm(z)CCCk.

SinceCCC is obviously invertible, we can rewrite the above equation as

MAAAT (zW k)CCC−k = gggT (zW k)HHHm(z).

Now, the set of equations obtained with k = 0,1, . . . ,M−1 can be expressed in matrix form as




gggT (z)HHHm(z)
gggT (zW )HHHm(z)

...
gggT (zWM−1)HHHm(z)


=




gggT (z)
gggT (zW )

...
gggT (zWM−1)




︸ ︷︷ ︸
GGGm(z)

HHHm(z) = M




AAAT (z)
AAAT (zW )CCC−1

...

AAAT (zWM−1)CCC−(M−1)


 .

Observe that AAAT (zW k)CCC−k is simply AAAT (zW k) circularly shifted right by k columns. So, we have

GGGm(z)HHHm(z) = M




A0(z) A1(z) · · · AM−1(z)
AM−1(zW ) A0(zW ) · · · AM−2(zW )

...
...

. . .
...

A1(zW
M−1) A2(zW

M−1) · · · A0(zW
M−1)


 .

From (3.36), we know that the system is alias free if and only if Ak(z)≡ 0 for k = 1, . . . ,M−1. In this case, we have

GGGm(z)HHHm(z) = MDDD(z)

where DDD(z) = diag
[
A0(z) A0(zW ) · · · A0(zW

M−1)
]
. Thus, the product GGGm(z)HHHm(z) is of the form stated in the

theorem. Furthermore, the system must be LTI with the transfer function T (z) = A0(z).

Now, we consider the PR property. Below, we give necessary and sufficient conditions for the PR property

formulated in terms of the modulation matrices.

Theorem 3.11 (Necessary and sufficient conditions for PR). Suppose that an M-channel UMD filter bank has the

analysis and synthesis modulation matrices HHHm(z) and GGGm(z), respectively. Then, the system has the PR property if

and only if the product GGGm(z)HHHm(z) is of the form

GGGm(z)HHHm(z) = Mz−n0DDD(z)

where DDD(z) = diag
[
1 W−n0 W−2n0 · · · W−(M−1)n0

]
, n0 is the reconstruction shift, and W =WM . This implies

that a system has the shift-free PR property if and only if

GGGm(z)HHHm(z) = MIII.

Proof. The proof of this theorem is trivial and follows immediately from Theorem 3.10 for the alias-free case with

transfer function T (z) = z−n0 .

Corollary 3.1. Any M-channel PR UMD filter bank with analysis and synthesis modulation matrices, HHHm(z) and

GGGm(z), respectively, must be such that the product PPP(z) =GGGm(z)HHHm(z) has a determinant of the form

detPPP(z) = MMW−Mn0(M−1)/2z−Mn0 ,

where W =WM and n0 is the reconstruction shift of the filter bank. Moreover, if the analysis and synthesis filters are

of the FIR type, this condition implies that the modulation matrices must have determinants of the form

detHHHm(z) = a0z
−L0 and detGGGm(z) = a1z

−L1 ,

where L0,L1 ∈ Z and a0,a1 ∈ C\{0}. That is, the determinants of the modulation matrices must be monomials.
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Proof. We observe that the matrix PPP(z) must have the form specified in Theorem 3.11. Namely, PPP(z) is of the form

PPP(z) = Mz−n0DDD(z),

whereDDD(z) = diag
[
1 W−n0 W−2n0 · · · W−(M−1)n0

]
. We have

detPPP(z) = det(Mz−n0III)detDDD(z)

= MMW−Mn0(M−1)/2z−Mn0 .

If the analysis and synthesis filters are of the FIR type, then detHHHm(z) and detGGGm(z) must be Laurent polyno-

mials. The only way that the product detHHHm(z)detGGGm(z) can be a monomial is if detHHHm(z) and detGGGm(z) are each
monomials.

Example 3.20. Suppose that we have a two-channel UMD filter bank with analysis filters {Hk(z)}1k=0 and synthesis

filters {Gk(z)}1k=0, respectively, where

H0(z) = 1
2
z+ 1

2
,

H1(z) = z−1,

G0(z) = 1+ z−1, and

G1(z) =− 1
2
+ 1

2
z−1.

Use the modulation matrices to determine if the filter bank has the alias free and PR properties.

Solution. The analysis and synthesis modulations matrices are given by

HHHm(z) =

[
1
2
z+ 1

2
− 1

2
z+ 1

2

z−1 −z−1

]
and GGGm(z) =

[
1+ z−1 − 1

2
+ 1

2
z−1

1− z−1 − 1
2
− 1

2
z−1

]
.

We compute the product of the modulation matrices as

GGGm(z)HHHm(z) =

[
1+ z−1 − 1

2
+ 1

2
z−1

1− z−1 − 1
2
− 1

2
z−1

][
1
2
z+ 1

2
− 1

2
z+ 1

2

z−1 −z−1

]

=

[
(1+z−1)( 1

2
z+

1
2
)+(− 1

2
+
1
2
z−1)(z−1) (1+z−1)(− 1

2
z+

1
2
)+(− 1

2
+
1
2
z−1)(−z−1)

(1−z−1)( 1
2
z+

1
2
)+(− 1

2
− 1
2
z−1)(z−1) (1−z−1)(− 1

2
z+

1
2
)+(− 1

2
+
1
2
z−1)(−z−1)

]

=

[
2 0

0 2

]

= 2III.

Therefore, by the earlier theorems, the system is alias free and has the shift-free PR property.

3.3.10 Polyphase-Domain Conditions for Alias-Free and PR Systems

Since the polyphase matrices of a UMD filter bank completely characterize the system, it must be possible to use these

matrices in order to determine whether the alias-free or PR properties hold. First, we consider the alias-free property.

Before proceeding further, we need to introduce the notion of a pseudocirculant matrix.

Definition 3.4 (Pseudocirculant matrices). A matrix PPP(z) that is formed by taking a circulant matrix and multiplying

each element below its main diagonal by z is said to be an A-type pseudocirculant matrix. A matrix PPP(z) that is
formed by taking a circulant matrix and multiplying each element below its main diagonal by z−1 is said to be a B-type
pseudocirculant matrix. For example, the following two matrices are, respectively, A- and B-type pseudocirculant:



P0(z) P1(z) P2(z)
zP2(z) P0(z) P1(z)
zP1(z) zP2(z) P0(z)


 and




P0(z) P1(z) P2(z)
z−1P2(z) P0(z) P1(z)
z−1P1(z) z−1P2(z) P0(z)


 .
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Each successive row in a pseudocirculant matrix is the (right) circular shift of the preceding row with the circu-

lated element multiplied by z or z−1 for an A- or B-type pseudocirculant, respectively. Equivalently, each successive

column in a pseudocirculant matrix is the downward circular shift of the preceding column with the circulated ele-

ment multiplied by z−1 or z for an A- or B-type pseudocirculant, respectively. Clearly, a pseudocirculant matrix is

completely characterized by the elements of its top row. In particular, an M×M pseudocirculant matrix PPP(z) can be

expressed as

PPP(z) =





M−1
∑
k=0

Pk(z)

[
000 IIIM−1
z 000

]k
for A type

M−1
∑
k=0

Pk(z)

[
000 IIIM−1
z−1 000

]k
for B type,

(3.47)

where Pk(z) denotes the kth element in the top row of PPP(z).

Example 3.21. LetPPP(z) be a 3×3 A-type pseudocirculant matrix with the elements of its top row given by P0(z),P1(z),P2(z).
Confirm the validity of (3.47). That is, show that

PPP(z) =
2

∑
k=0

Pk(z)

[
000 III2
z 000

]k
.

Solution. We compute
[
000 III2
z 000

]k
for k = 1,2 to obtain

[
000 III2
z 000

]
=



0 1 0

0 0 1

z 0 0


 and

[
000 III2
z 000

]2
=



0 1 0

0 0 1

z 0 0





0 1 0

0 0 1

z 0 0


=



0 0 1

z 0 0

0 z 0


 .

Using the preceding results, we can write

2

∑
k=0

Pk(z)

[
000 III2
z 000

]k
=



P0(z) 0 0

0 P0(z) 0

0 0 P0(z)


+




0 P1(z) 0

0 0 P1(z)
zP1(z) 0 0


+




0 0 P2(z)
zPz(z) 0 0

0 zP2(z) 0




=



P0(z) P1(z) P2(z)
zP2(z) P0(z) P1(z)
zP1(z) zP2(z) P0(z)


 .

Thus, the stated relationship holds.

Having defined the notion of pseudocirculant matrices, we are now ready to state a necessary and sufficient con-

dition for a UMD filter bank to be alias free.

Theorem 3.12 (Necessary and sufficient conditions for alias cancellation). An M-channel UMD filter bank in either

(1,2) or (3,1) polyphase form with analysis polyphase matrix HHHp(z) and synthesis polyphase matrix GGGp(z) is alias
free if and only if the product PPP(z) =GGGp(z)HHHp(z) is such that

PPP(z) is

{
B-type pseudocirculant for (1,2) type

A-type pseudocirculant for (3,1) type.
(3.48)

If the system is alias free, it has the transfer function

T (z) =

{
z−(M−1) ∑M−1

k=0 z−kPk(zM) for (1,2) type

∑M−1
k=0 zkPk(z

M) for (3,1) type
(3.49)

where P0(z),P1(z), . . . ,PM−1(z) are the elements of the top row of PPP(z).
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+

+

zl0

zl1

zlM−1

PPP(z)

↑M

↑M

↑M

↓M

↓M

↓Mzm0

zm1

zmM−1

x̂[n]

...
...

...
...

b0[n]

b1[n]

bM−1[n]

...

c0[n]

c1[n]

cM−1[n]

d0[n]

d1[n]

dM−1[n]

...

a0[n]

a1[n]

aM−1[n]

x[n]

...
...

...
...

Figure 3.39: Polyphase representation of a UMD filter bank with the analysis and synthesis polyphase filtering com-

bined.

Proof. To begin, we redraw the UMD filter bank as shown in Figure 3.39.

(1,2)-TYPE POLYPHASE. First, we consider the case of a (1,2)-type polyphase decomposition. In this case, we

have mk =−k and lk = k− (M−1) for k = 0,1, . . . ,M−1. From the diagram, we find equations relating the various

signals. The output of the kth shift unit is given by

Ak(z) = z−kX(z).

The output of the kth downsampler is given by

Bk(z) = 1
M

M−1
∑
l=0

Ak(z
1/MW l).

The input of the kth upsampler is given by

Ck(z) =
M−1
∑
q=0

Pk,q(z)Bq(z).

The output of the kth upsampler is given by

Dk(z) =Ck(z
M).

The output of the system is given by

X̂(z) =
M−1
∑
s=0

z−(M−1−s)Ds(z).
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Combining the preceding equations, we have

X̂(z) =
M−1
∑
s=0

z−(M−1−s)Ds(z)

=
M−1
∑
s=0

z−(M−1−s)Cs(z
M)

=
M−1
∑
s=0

z−(M−1−s)
M−1
∑
q=0

Ps,q(z
M)Bq(z

M)

=
M−1
∑
s=0

z−(M−1−s)
M−1
∑
q=0

Ps,q(z
M)

[
1
M

M−1
∑
l=0

Aq(zW
l)

]

= 1
M

M−1
∑
s=0

z−(M−1−s)
M−1
∑
q=0

Ps,q(z
M)

M−1
∑
l=0

Aq(zW
l)

= 1
M

M−1
∑
s=0

z−(M−1−s)
M−1
∑
q=0

Ps,q(z
M)

M−1
∑
l=0

(zW l)−qX(zW l)

= 1
M

M−1
∑
s=0

z−(M−1−s)
M−1
∑
q=0

Ps,q(z
M)

M−1
∑
l=0

z−qW−lqX(zW l)

= 1
M

M−1
∑
l=0

M−1
∑
q=0

M−1
∑
s=0

z−(M−1−s)Ps,q(z
M)z−qW−lqX(zW l)

= 1
M

M−1
∑
l=0

X(zW l)
M−1
∑
q=0

W−lq
M−1
∑
s=0

z−qz−(M−1−s)Ps,q(z
M).

So, we have

X̂(z) = 1
M

M−1
∑
l=0

X(zW l)
M−1
∑
q=0

W−lqVq(z) (3.50a)

where

Vq(z) =
M−1
∑
s=0

z−qz−(M−1−s)Ps,q(z
M). (3.50b)

Clearly, in order to achieve alias cancellation, we must have

M−1
∑
q=0

W−lqVq(z)≡ 0 for l = 1, . . . ,M−1.

We can rewrite these conditions on aliasing in matrix form as




1 1 · · · 1

1 W−1 · · · W−(M−1)

...
...

. . .
...

1 W−(M−1) · · · W−(M−1)2







V0(z)
V1(z)

...
VM−1(z)


=




λ (z)
0
...
0


 .

Now, we observe that the matrix in the above equation isWWW
†
M . Premultiplying both sides of the above equation byWWW
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and using the fact thatWWWWWW † = MIII, we obtain




V0(z)
V1(z)

...
VM−1(z)


=

1

M




1 1 · · · 1

1 W 1 · · · WM−1

...
...

. . .
...

1 WM−1 · · · W (M−1)2







λ (z)
0
...
0


=




1
M

λ (z)
1
M

λ (z)
...

1
M

λ (z)


 .

This implies, however, that

Vl(z) =V0(z) = 1
M

λ (z)

for l = 0,1, . . . ,M−1. Therefore, the system is alias free if and only if Vl(z) is the same for all l.

Examining the expression for Vl(z) in (3.50), we see that this is a polyphase decomposition. Furthermore, since

V0(z) =V1(z) = · · ·=VM−1(z), each of these are polyphase decompositions of the same function. With this in mind,

we write

Vl(z) =
M−1
∑
s=0

z−lz−(M−1−s)Ps,l(z
M)

=
M−1
∑
s=0

z−M+1−l+sPs,l(z
M)

= z−lPM−1,l(z
M)+

M−2
∑
s=0

z−M+1−l+sPs,l(z
M) (3.51)

and

Vl+1(z) =
M−1
∑
s=0

z−(l+1)z−(M−1−s)Ps,l+1(z
M)

=
M−1
∑
s=0

z−M−l+sPs,l+1(z
M)

= z−M−lP0,l+1(z
M)+

M−1
∑
s=1

z−M−l+sPs,l+1(z
M)

= z−l [z−MP0,l+1(z
M)]+

M−2
∑
s=0

z−M+1−l+sPs+1,l+1(z
M). (3.52)

Comparing (3.51) and (3.52), we see that

Ps,l(z) =

{
Ps+1,l+1(z) for s = 0,1, . . . ,M−2

z−1P0,l+1(z) for s = M−1.

This implies that the lth column ofPPP(z) is formed by circularly shifting the (l+1)th column upwards and multiplying

the circulated element by z−1. Thus, PPP(z) is B-type pseudocirculant.
Assuming that aliasing is cancelled, the system is LTI with the output determined (from (3.50a)) by

X̂(z) = 1
M

M−1
∑
l=0

X(zW l)
M−1
∑
q=0

W−lqVq(z)

= 1
M
X(z)

M−1
∑
q=0

Vq(z)

= 1
M
X(z)[MV0(z)]

=V0(z)X(z).

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



138 CHAPTER 3. ONE-DIMENSIONAL MULTIRATE FILTER BANKS

Therefore, the transfer function T (z) =V0(z). From (3.50b), this gives us

T (z) =
M−1
∑
s=0

z−(M−1−s)Ps,0(z
M).

This expression for T (z) is in terms of the elements from the zeroth column of PPP(z). Using the properties of a

pseudocirculant matrix, however, we can rewrite T (z) in terms of the elements from the zeroth row of PPP(z). Since

PPP(z) is (B-type) pseudocirculant, we have

Pk,0(z) =

{
P0,k(z) for k = 0

z−1P0,M−k(z) for k = 1,2, . . . ,M−1.

Substituting into the equation for T (z) above, we obtain

T (z) = z−(M−1)P0,0(z
M)+

M−1
∑
s=1

z−(M−1−s)Ps,0(z
M)

= z−(M−1)P0,0(z
M)+

M−1
∑
s=1

z−(M−1−s)z−MP0,M−s(z
M)

= z−(M−1)P0,0(z
M)+

M−1
∑
s=1

z−(2M−1−s)P0,M−s(z
M)

= z−(M−1)
[
P0,0(z

M)+
M−1
∑
s=1

z−(M−s)P0,M−s(z
M)

]

Now, we employ a change of variable. Let s′ =M−s so that s=M−s′. Applying the change of variable and dropping
the primes, we obtain

T (z) = z−(M−1)
[
P0,0(z

M)+
M−1
∑
s=1

z−sP0,s(z
M)

]

= z−(M−1)
M−1
∑
s=0

z−sP0,s(z
M)

= z−(M−1)
M−1
∑
s=0

z−sPs(z
M).

Thus, the transfer function T (z) has the stated form.

(3,1)-TYPE POLYPHASE. The proof of the theorem in the case of a (3,1)-type polyphase system follows an

approach similar to that above, and is left as an exercise to the reader.

Example 3.22. Suppose that we have a two-channel UMD filter bank with analysis filter transfer functions H0(z) and
H1(z) and synthesis filter transfer functions G0(z) and G1(z) given by

H0(z) =− 1
8
+ 1

4
z−1 + 3

4
z−2 + 1

4
z−3− 1

8
z−4,

H1(z) =− 1
2
+ z−1− 1

2
z−2,

G0(z) = 1
2
+ z−1 + 1

2
z−2 and

G1(z) =− 1
8
− 1

4
z−1 + 3

4
z−2− 1

4
z−3− 1

8
z−4.

Using polyphase matrices, determine whether this system is alias free.
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Solution. Consider a (3,1)-type polyphase representation of the system. We have

H0(z) = z0
(
− 1

8
+ 3

4
z−2− 1

8
z−4
)
+ z1

(
1
4
z−2 + 1

4
z−4
)
,

H1(z) = z0
(
− 1

2
− 1

2
z−2
)
+ z1

(
z−2
)
,

G0(z) = z0
(
1
2
+ 1

2
z−2
)
+ z−1 (1) , and

G1(z) = z0
(
− 1

8
+ 3

4
z−2− 1

8
z−4
)
+ z−1

(
− 1

4
− 1

4
z−2
)
.

So, the analysis and synthesis polyphase matrices are given by

HHHp(z) =

[
− 1

8
+ 3

4
z−1− 1

8
z−2 1

4
z−1 + 1

4
z−2

− 1
2
− 1

2
z−1 z−1

]
and

GGGp(z) =

[
1
2
+ 1

2
z−1 − 1

8
+ 3

4
z−1− 1

8
z−2

1 − 1
4
− 1

4
z−1

]
.

The product PPP(z) =GGGp(z)HHHp(z) is given by

PPP(z) =

[
0 z−2

z−1 0

]
.

By inspection, we have that PPP(z) is an A-type pseudocirculant matrix. Thus, the system is alias free. Furthermore, we

can compute the distortion function T (z) for the system as

T (z) =
1

∑
k=0

zkPk(z
2) = z0(0)+ z1(z−4) = z−3.

(Note that Pk denotes the kth element in the top row of PPP(z).) Thus, the system also happens to have the PR property

with an associated reconstruction delay of 3.

Alternative Solution. Consider a (1,2)-type polyphase representation of the system. We can rewrite the analysis and

synthesis filter transfer functions as

H0(z) = z0
(
− 1

8
+ 3

4
z−2− 1

8
z−4
)
+ z−1

(
1
4
+ 1

4
z−2
)
,

H1(z) = z0
(
− 1

2
− 1

2
z−2
)
+ z−1(1),

G0(z) = z−1(1)+ z0
(
1
2
+ 1

2
z−2
)
, and

G1(z) = z−1
(
− 1

4
− 1

4
z−2
)
+ z0

(
− 1

8
+ 3

4
z−2− 1

8
z−4
)
.

So, the analysis and synthesis polyphase matrices are given by

HHHp(z) =

[
− 1

8
+ 3

4
z−1− 1

8
z−2 1

4
+ 1

4
z−1

− 1
2
− 1

2
z−1 1

]
and

GGGp =

[
1 − 1

4
− 1

4
z−1

1
2
+ 1

2
z−1 − 1

8
+ 3

4
z−1− 1

8
z−2

]
.

The product PPP(z) =GGGp(z)HHHp(z) is given by

GGGp(z)HHHp(z) =

[
z−1 0

0 z−1

]
.

Since PPP(z) is a B-type pseudocirculant matrix, the system is alias free. Furthermore, the distortion function T (z) for
the system is given by

T (z) = z−1
1

∑
k=0

z−kPk(z
2) = z−1

[
z0(z−2)+ z−1(0)

]
= z−3.

(Note that Pk denotes the kth element in the top row of PPP(z).) Thus, the system also happens to have the PR property

with an associated reconstruction delay of 3.
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Now, we introduce a necessary and sufficient condition for the PR property formulated in terms of the polyphase

matrices.

Theorem 3.13 (Necessary and sufficient conditions for PR). An M-channel UMD filter bank in either (1,2) or (3,1)
polyphase form with analysis polyphase matrix HHHp(z) and synthesis polyphase matrix GGGp(z) has the PR property if

and only if the product PPP(z) ,GGGp(z)HHHp(z) has the form

PPP(z) =





[
000 IIIM−1
z−1 000

]K
for (1,2) type

[
000 z−1

IIIM−1 000

]K
for (3,1) type

for some K ∈ Z. If this condition is satisfied, the relationship between the input signal x[n] and the reconstructed

signal x̂[n] is given by

x̂[n] = x[n−n0]

where

n0 =

{
K+M−1 for (1,2) type

K for (3,1) type.

Thus, the shift-free PR property holds if and only if

PPP(z) =





[
000 zIIIM−1
1 000

]
for (1,2) type

III for (3,1) type.

This theorem holds regardless of whether the analysis/synthesis filters are of the FIR or IIR type.

Proof. TYPE (3,1) POLYPHASE. Consider a UMD filter bank represented in (3,1)-type polyphase form. From (3.48),

we know that such a system is alias free if and only if PPP(z) is an A-type pseudocirculant matrix. That is, PPP(z) is of the
form

PPP(z) =
M−1
∑
k=0

Pk(z)

[
000 IIIM−1
z 000

]k
, (3.53)

where Pk(z) denotes the kth element in the top row of PPP(z). (Here, we have used the fact that a pseudocirculant matrix

can be expressed as in (3.47).) Furthermore, from (3.49), such an alias-free system has the distortion function

T (z) =
M−1
∑
k=0

zkPk(z
M). (3.54)

Now, suppose that the system has the PR property. Then, we have that T (z) is of the form

T (z) = z−n0 (3.55)

for some n0 ∈ Z. This implies that exactly one of the Pk(z), say PN(z), is not identically zero. In particular, we have

Pk(z) =

{
z−L for k = N

0 for k 6= N,
(3.56)
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where L ∈ Z. Combining (3.54), (3.55), and (3.56), we have

T (z) =
M−1
∑
k=0

zkPk(z
M) (3.57)

= zNPN(zM)

= zNz−ML

= z−(ML−N)

= z−n0 ,

where n0 = ML−N. Combining (3.53) and (3.56), we obtain

PPP(z) =
M−1
∑
k=0

Pk(z)

[
000 IIIM−1
z 000

]k

= PN(z)

[
000 IIIM−1
z 000

]N

= z−L
[
000 IIIM−1
z 000

]N

= z−LIIIM

[
000 IIIM−1
z 000

]N
.

Now, we observe that

z−LIIIM =

[
000 z−1

IIIM−1 000

]ML

and

[
000 IIIM−1
z 000

]
=

[
000 z−1

IIIM−1 000

]−1
.

So, we have

PPP(z) =

[
000 z−1

IIIM−1 000

]ML [
000 z−1

IIIM−1 000

]−N

=

[
000 z−1

IIIM−1 000

]ML−N
.

From (3.57), we have that n0 = ML−N. Thus, we have

PPP(z) =

[
000 z−1

IIIM−1 000

]n0
.

TYPE (1,2) POLYPHASE. Consider a UMD filter bank represented in (1,2)-type polyphase form. From (3.48),

we know that such a system is alias free if and only if PPP(z) is a B-type pseudocirculant matrix. That is, PPP(z) is of the
form

PPP(z) =
M−1
∑
k=0

Pk(z)

[
000 IIIM−1
z−1 000

]k
, (3.58)

where Pk(z) denotes the kth element in the top row of PPP(z). Furthermore, from (3.49), such an alias-free system has

the distortion function

T (z) = z−(M−1)
M−1
∑
k=0

z−kPk(z
M). (3.59)
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Now, suppose that the system has the PR property. Then, we have that T (z) is of the form

T (z) = z−n0 (3.60)

for some n0 ∈ Z. This implies that exactly one of the Pk(z), say PN(z), is not identically zero. In particular, we have

Pk(z) =

{
z−L for k = N

0 for k 6= N,
(3.61)

where L ∈ Z. Combining (3.59), (3.60), and (3.61), we have

T (z) = z−(M−1)
M−1
∑
k=0

z−kPk(z
M) (3.62)

= z−(M−1)z−NPN(zM)

= z−(M−1)z−Nz−ML

= z−(M−1+ML+N)

= z−n0 , (3.63)

where n0 = M−1+ML+N. Combining (3.58) and (3.61), we obtain

PPP(z) =
M−1
∑
k=0

Pk(z)

[
000 IIIM−1
z−1 000

]k

= PN(z)

[
000 IIIM−1
z−1 000

]N

= z−L
[
000 IIIM−1
z−1 000

]N

= z−LIIIM

[
000 IIIM−1
z−1 000

]N
.

Now, we observe that

z−LIIIM =

[
000 IIIM−1
z−1 000

]ML

.

So, we have

PPP(z) =

[
000 IIIM−1
z−1 000

]ML [
000 IIIM−1
z−1 000

]N

=

[
000 IIIM−1
z−1 000

]ML+N

.

From (3.62), we have that n0 = M−1+ML+N. Thus, we have

PPP(z) =

[
000 IIIM−1
z−1 000

]n0−(M−1)
.

Thus, if the UMD filter bank has the PR property, PPP(z) must have the form stated in the theorem. Lastly, we observe

that

[
000 IIIM−1
z−1 000

]−(M−1)
=

[
000 zIIIM−1
1 000

]
.
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So, in the case that n0 = 0, the above expression for PPP(z) simplifies to

[
000 zIIIM−1
1 000

]
.

One comment is in order concerning Theorem 3.13. If we let K = 0, PPP(z) becomes the M×M identity matrix.

Since the identity matrix is sometimes an attractive matrix with which to work, one might wonder what degree of

freedom is lost by constraining K to be zero. As it turns out, not much is sacrificed. This quantity only serves

to introduce additional delay into the analysis/synthesis filters. For this reason, we often only consider the case of

PPP(z) = III when designing PR filter banks. Delay (or advance) can always be added to the analysis and synthesis filters

after the fact if required. Finally, with PPP(z) = III, the problem of designing PR filter banks, in some sense, reduces to a

problem of factorizing the identity matrix.

From Theorem 3.13, it follows that a type (3,1) polyphase system has the shift-free PR property if and only if

PPP(z) =GGGp(z)HHHp(z) = III (3.64)

(or equivalently GGGp(z) = HHH−1p (z)). By examining the polyphase form of a UMD filter bank, we can see the reason

behind the above condition for shift-free PR. If (3.64) is satisfied, then the synthesis polyphase filtering (represented

by GGGp(z)) cancels the effects of the analysis polyphase filtering (represented by HHHp(z)). This being the case, the

filter bank, in effect, only serves to split the input signal into its polyphase components and then recombine these

components, yielding the original input signal with no shift.

The preceding theorem has some interesting implications—the most important of which is stated in the following

corollary:

Corollary 3.2. Any M-channel PR UMD filter bank in either (1,2) or (3,1) polyphase form with analysis polyphase

matrix HHHp(z) and synthesis polyphase matrix GGGp(z) must be such that the product PPP(z) ,GGGp(z)HHHp(z) has a determi-

nant of the form

detPPP(z) = (−1)K(M−1)z−K

where K is an integer. Moreover, if the analysis and synthesis filters of the UMD filter bank are of the FIR type, this

condition implies that the polyphase matrices must have determinants of the form

detHHHp(z) = α0z
−L0 and

detGGGp(z) = α1z
−L1

where the αi are nonzero constants and the Li are integers. That is, the determinants of the polyphase matrices must

be monomials.

Proof. From Theorem 3.13, we know that PPP(z) has the form

PPP(z) =





[
000 IIIM−1
z−1 000

]K
for (1,2) type

[
000 z−1

IIIM−1 000

]K
for (3,1) type,

where K is an integer. Taking the determinant of PPP(z) simply yields

detPPP(z) = (−1)K(M−1)z−K . (3.65)

Thus, detPPP(z) must be of the form stated in the theorem.
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Using both (3.65) and the fact that PPP(z) =GGGp(z)HHHp(z), we have

detGGGp(z)detHHHp(z) = (−1)K(M−1)z−K . (3.66)

Assume now that the analysis and synthesis filters are of the FIR type. This implies that detHHHp(z) and detGGGp(z) are
Laurent polynomials. The only way that the product in (3.66) can be a monomial is if both detHHHp(z) and detGGGp(z)
are themselves monomials. Thus, the last part of the theorem is proven.

Example 3.23. Suppose that we have a two-channel UMD filter bank with analysis filter transfer functions H0(z) and
H1(z), where

H0(z) = 1
2
z+ 1

2
and

H1(z) =− 1
8
z3− 1

8
z2 + z−1+ 1

8
z−1 + 1

8
z−2.

Using polyphase-domain analysis, determine the transfer functions G0(z) and G1(z) of the synthesis filters that will
yield a shift-free PR system.

Solution. In what follows, we choose to employ a type (3,1) polyphase representation of the filter bank. This choice is

convenient since the shift-free PR condition is then equivalent to the analysis and synthesis polyphase matrices being

inverses of one another (i.e.,GGGp(z)HHHp(z) = III). First, we express the analysis filters in type-3 polyphase form, yielding

H0(z) = z0
(
1
2

)
+ z1

(
1
2

)
and

H1(z) = z0
(
− 1

8
z2−1+ 1

8
z−2
)
+ z1

(
− 1

8
z2 +1+ 1

8
z−2
)
.

The analysis polyphase matrixHHHp(z) is given by

HHHp(z) =

[
1
2

1
2

− 1
8
z−1+ 1

8
z−1 − 1

8
z+1+ 1

8
z−1

]
.

Now, we observe that, for the shift-free PR condition to hold,GGGp(z) =HHH−1p (z). We compute the determinant ofHHHp(z)
as

detHHHp(z) = 1
2

(
− 1

8
z+1+ 1

8
z−1
)
− 1

2

(
− 1

8
z−1+ 1

8
z−1
)

=− 1
16
z+ 1

2
+ 1

16
z−1 + 1

16
z+ 1

2
− 1

16
z−1

= 1.

Since detHHHp(z) 6≡ 0,HHH−1p (z) is well defined. So, we have

GGGp(z) = [detHHHp(z)]
−1AdjHHHp(z)

=

[
− 1

8
z+1+ 1

8
z−1 (−1)

(
− 1

8
z−1+ 1

8
z−1
)

(−1)
(
1
2

)
1
2

]T

=

[
− 1

8
z+1+ 1

8
z−1 − 1

2
1
8
z+1− 1

8
z−1 1

2

]
.

FromGGGp(z), we can easily determine the synthesis filter transfer functions G0(z) and G1(z) to be

G0(z) = z0
(
− 1

8
z2 +1+ 1

8
z−2
)
+ z−1

(
1
8
z2 +1− 1

8
z−2
)

=− 1
8
z2 + 1

8
z+1+ z−1 + 1

8
z−2− 1

8
z−3 and

G1(z) = z0
(
− 1

2

)
+ z−1

(
1
2

)

=− 1
2
+ 1

2
z−1.
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Example 3.24. Suppose that we have a two-channel UMD filter bank with analysis filter transfer functions H0(z) and
H1(z), where

H0(z) = z+1+ z−1 and H1(z) = 1− z−1.

Determine whether a shift-free PR system can be constructed with FIR synthesis filters.

Solution. Consider a (3,1)-type polyphase representation. We have

H0(z) = z0 (1)+ z1
(
1+ z−2

)
and

H1(z) = z0 (1)+ z1
(
−z−2

)
.

The analysis polyphase matrixHHHp(z) is given by

HHHp(z) =

[
1 1+ z−1

1 −z−1
]
.

In order for PR to be achieved with FIR synthesis filters, we must have that detHHHp(z) is a monomial. Computing the

determinant, we have

detHHHp(z) =−z−1−
(
1+ z−1

)

=−z−1−1− z−1

=−1−2z−1.

Since detHHHp(z) is not a monomial, it is not possible to construct a shift-free PR system with FIR synthesis filters.

3.3.11 Biorthonormal and Orthonormal UMD Filter Banks

A UMD filter bank may be associated with a biorthonormal or orthonormal signal expansion. In particular, we have

the results stated below.

Theorem 3.14 (Biorthonormality). Suppose that we have an M-channel UMD filter bank with analysis filters {Hk(z)},
synthesis filters {Gk(z)}, analysis modulation matrix HHHm(z), synthesis modulation matrix GGGm(z), analysis polyphase
matrix HHHp(z), and synthesis polyphase matrix GGGp(z). Let hk[n] and gk[n] denote the inverse Z transforms of Hk(z) and
Gk(z), respectively, for k = 0,1, . . . ,M−1. Then, the above system computes a biorthonormal signal expansion if and

only if

〈h∗k [Mm−·],gl [·]〉= δ [k− l]δ [m].

Furthermore, this condition is equivalent to each of the following:

HHHm(z)ggg(z) =
[
M 0 · · · 0

]T
, (3.67)

GGGm(z)HHHm(z) = MIII, and (3.68)

GGGp(z)HHHp(z) =





[
000 zIIIM−1
1 000

]
for (1,2) type

III for (3,1) type.

(3.69)

Theorem 3.15 (Orthonormality conditions). Suppose that we have an M-channel UMD filter bank with analysis filters

{Hk(z)}, synthesis filters {Gk(z)}, analysis modulation matrix HHHm(z), synthesis modulation matrix GGGm(z), analysis
polyphase matrix HHHp(z), and synthesis polyphase matrix GGGp(z). Let hk[n] and gk[n] denote the inverse Z transforms

of Hk(z) and Gk(z), respectively, for k = 0,1, . . . ,M− 1. Then, the above system computes an orthonormal signal

expansion if and only if

〈gk[·−Mm],gl [·]〉= δ [k− l]δ [m], hk[n] = g∗k [−n].
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Furthermore, this condition is equivalent to each of the following:

GGGT
m(z−1)ggg∗(z

−1) =
[
M 0 · · · 0

]T
, HHHm(z) =GGGT

m∗(z
−1); (3.70)

GGGm(z)GGGT
m∗(z

−1) = MIII, HHHm(z) =GGGT
m∗(z

−1); and (3.71)

GGGp(z)GGG
T
p∗(z

−1) =





[
000 zIIIM−1
1 000

]
for (1,2) type

III for (3,1) type,

HHHp(z) =GGGT
p∗(z

−1). (3.72)

Proof. An orthonormal system is simply a special case of a biorthonormal system where each basis function and its

dual are equal. Thus, we have gk[n] = h∗k [−n]. In the Z domain, this is equivalent to

Gk(z) = Hk∗(z
−1).

Thus, an orthonormal system is a biorthonormal system that also satisfies each of the following equivalent conditions:

hhh(z) = ggg∗(z
−1),

HHHm(z) =GGGT
m∗(z

−1), and

HHHp(z) =GGGT
p∗(z

−1).

(In the case of the polyphase matrices, we are assuming a (3,1) type polyphase representation.) Using Theorem 3.14,

we have

GGGm(z)ggg∗(z
−1) =

[
M 0 · · · 0

]T
,

GGGm(z)HHHm(z) = MIII⇔GGGm(z)GGGT
m∗(z

−1) = MIII, and

GGGp(z)HHHp(z) = III⇔GGGp(z)GGG
T
p∗(z

−1) = III.

As an aside, we observe that the conditionGGGm(z)GGGT
m∗(z

−1) =MIII in (3.71) is equivalent to 1√
M
GGGm(z) being parau-

nitary. Similarly, the condition GGGp(z)GGG
T
p∗(z

−1) = III in (3.72) is equivalent to GGGp(z) being paraunitary. For the above

reason, we sometime refer to an orthonormal UMD filter bank as a paraunitary filter bank.

3.4 Two-Channel UMD Filter Banks

Now, we consider the special case of two-channel UMD filter banks. Recall that the general z-domain input-output

relationship for anM-channel UMD filter bank is given by

AAA(z) = 1
M
HHHT

m(z)ggg(z).

In the case of a two-channel PR system with reconstruction delay n0, we have
[
z−n0

0

]

︸ ︷︷ ︸
AAA(z)

= 1
2

[
H0(z) H1(z)
H0(−z) H1(−z)

]

︸ ︷︷ ︸
HHHT

m(z)

[
G0(z)
G1(z)

]

︸ ︷︷ ︸
ggg(z)

.

Rearranging the above equation and solving for ggg(z), we have
[
2z−n0

0

]
=

[
H0(z) H1(z)
H0(−z) H1(−z)

][
G0(z)
G1(z)

]

⇒
[
G0(z)
G1(z)

]
=

[
H0(z) H1(z)
H0(−z) H1(−z)

]−1

︸ ︷︷ ︸
HHH−Tm (z)

[
2z−n0

0

]
. (3.73)
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Now, we computeHHH−Tm (z) in the preceding equation. The determinant ofHHHT
m(z) is given by

detHHHT
m(z) = H0(z)H1(−z)−H0(−z)H1(z).

In what follows, we assume that detHHHT
m(z) 6≡ 0 so thatHHH−Tm (z) is well defined. In this case, we have

HHH−Tm (z) =
1

detHHHT
m(z)

AdjHHHT
m(z)

=
1

detHHHm(z)

[
H1(−z) −H0(−z)
−H1(z) H0(z)

]T

=
1

detHHHm(z)

[
H1(−z) −H1(z)
−H0(−z) H0(z)

]
.

Substituting this expression forHHH−Tm (z) into (3.73) yields

[
G0(z)
G1(z)

]
=

1

detHHHm(z)

[
H1(−z) −H1(z)
−H0(−z) H0(z)

][
2z−n0

0

]
.

Thus, we have that the synthesis filter transfer functions G0(z) and G1(z) are given by

G0(z) =

(
2

zn0 detHHHm(z)

)
H1(−z) and (3.74a)

G1(z) =−
(

2

zn0 detHHHm(z)

)
H0(−z). (3.74b)

Suppose now that the analysis filters are FIR and the synthesis filters required for PR are also FIR. Then, we have

that detHHHm(z) must be a monomial. Consequently, the synthesis filter transfer functions must be of the form

G0(z) = az−bH1(−z) and G1(z) =−az−bH0(−z),

where a∈C\{0} and b∈Z are constants determined by n0 and detHHHm(z). Thus, the transfer functions of the analysis
and synthesis filters are very similar. That is, G0(z) and G1(z) are modulated, shifted, and scaled versions of H1(z)
and H0(z), respectively.

Example 3.25. Consider the two-channel UMD filter bank having analysis filters with transfer functions H0(z),H1(z)
given by

H0(z) =− 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2 and H1(z) =− 1

2
z2 + z− 1

2
.

Determine the transfer functions G0(z) and G1(z) of the synthesis filters required for shift-free PR.

Solution. First, we compute the determinant of the analysis modulation matrixHHHm(z). This yields

detHHHm(z) = H0(z)H1(−z)−H0(−z)H1(z)

=−2z.

Now, we can compute the transfer functions of the synthesis filters as follows:

G0(z) =

(
2

detHHHm(z)

)
H1(−z)

=
(

2
−2z
)(
− 1

2
z2− z− 1

2

)

=−z−1
(
− 1

2
z2− z− 1

2

)

= 1
2
z+1+ 1

2
z−1 and
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G1(z) =−
(

2

detHHHm(z)

)
H0(−z)

=−
(

2
−2z
)(
− 1

8
z2− 1

4
z+ 3

4
− 1

4
z−1− 1

8
z−2
)

= z−1
(
− 1

8
z2− 1

4
z+ 3

4
− 1

4
z−1− 1

8
z−2
)

=− 1
8
z− 1

4
+ 3

4
z−1− 1

4
z−2− 1

8
z−3.

Theorem 3.16. Suppose that a two-channel orthonormal UMD filter bank has linear-phase FIR analysis and synthesis

filters with real coefficients. Then, the number of nonzero coefficients in each of the analysis and synthesis filters

cannot exceed two.

Proof. See [29, p. 159].

From the above theorem, we can see that, except in the trivial case of filter banks with two-tap filters, orthonor-

mality and symmetry are mutually exclusive. This result has important consequences. In many applications, both

orthonormality and symmetry are desirable. Unfortunately, we cannot have both (except for the trivial case noted

above). In order to simultaneously achieve orthonormality and symmetry with longer filters, we must drop one or

more of the following constraints: real filter coefficients, FIR filters, two channels.

It is helpful to note that linear-phase FIR PR filter banks can only assume a limited number of forms in the

two-channel case. The possible forms are identified by the theorem below.

Theorem 3.17. Suppose that a two-channel PR UMD filter bank is such that all of its filters are FIR and have linear

phase. Then, the analysis filters have one of the following forms:

1. Both filters are symmetric and of odd lengths, differing by an odd multiple of two.

2. One filter is symmetric and the other is antisymmetric, and both are of even length with their lengths differing

by an even (possibly zero) multiple of two.

3. One filter is of odd length, while the other is of even length. Both filters have all of their zeros on the unit circle.

Either both filters are symmetric, or one is symmetric and the other is antisymmetric.

Proof. For a sketch of a proof, see [33, Proposition 3.11, p. 134]. (See also [29, Theorem 4.3, p. 111].)

It is worth noting that the last of the three cases in the above theorem is of little practical interest, as the analysis

filters cannot have good frequency responses in this case.

3.5 Design of UMD Filter Banks

In this section, we briefly consider a design technique for shift-free PR filter banks. We consider both the biorthonor-

mal and orthonormal types of shift-free PR systems. Before we begin, however, we introduce the definition below.

Definition 3.5 (Nyquist filter). A filter with impulse response h[n] is said to be a Nyquist (M) filter (or M-th band

filter) if

(↓M)h = cδn

for some constant c. That is, all of the elements of the sequence h with indices divisible by M are zero, except for the

element with index zero. A filter satisfying the above condition withM = 2 is called a halfband filter.

It follows from the definition of a halfband filter that, if H(z) is halfband, then H(z)+H(−z) = 2c (where c is as

defined above).
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Now, let us consider a two-channel PR UMD filter bank with analysis and synthesis filter transfer functions

H0(z),H1(z) and G0(z),G1(z), respectively. Since the system has the PR property, we have

H0(z)G0(z)+H1(z)G1(z) = 2z−n0 , (3.75)

where n0 is the reconstruction delay of the system. Now, we use (3.74) to rewrite the above equation exclusively in

terms of H0(z) and G0(z). From (3.74), we have

H1(z) =
(−z)n0 detHHHm(−z)

2
G0(−z).

Now, we substitute the expression for H1(z) from above and the expression for G1(z) from (3.74) into (3.75). This

process yields

H0(z)G0(z)−
((

(−z)n0 detHHHm(−z)
2

)
G0(−z)

)((
2

zn0 detHHHm(z)

)
H0(−z)

)
= 2z−n0

⇒ H0(z)G0(z)−
(

(−1)n0 detHHHm(−z)
detHHHm(z)

)
H0(−z)G0(−z) = 2z−n0 .

Observing that detHHHm(z) =−det(HHHm(−z)), we can simplify the above equation to obtain

H0(z)G0(z)+(−1)n0H0(−z)G0(−z) = 2z−n0 . (3.76)

Let us define

P(z) = H0(z)G0(z).

Then, we can rewrite (3.76) as

P(z)+(−1)n0P(−z) = 2z−n0 .

Let us further suppose that the system has the shift-free PR property (i.e., n0 = 0). In this case, we have

P(z)+P(−z) = 2. (3.77)

This implies that all of the terms in P(z) with even-indexed powers of z are zero except for the z0 term. In other words,

P(z) is halfband. Thus, we trivially have that H0(z)G0(z) is halfband. This result suggests a simple design technique

for shift-free PR UMD filter banks.

From the above results, we can see that the following process can be used to design a shift-free PR system:

1. Find a P(z) satisfying (3.77) (i.e., P(z) is halfband).

2. Decompose P(z) into two factors. Assign one factor to H0(z) and one factor to G0(z).

3. Using (3.74), determine H1(z) and G1(z) from H0(z) and G0(z).

Example 3.26 (Biorthonormal filter bank design). Consider the halfband filter with transfer function

P(z) =− 1
16
z3 + 9

16
z+1+ 9

16
z−1− 1

16
z−3.

From P(z), construct two distinct shift-free PR UMD filter banks.

Solution. Clearly, we have that P(z)+P(−z) = 2. We begin by factoring P(z) to obtain

P(z) =− 1
16

(z+1)4(z−1−4z−2 + z−3)

=− 1
16
z−3(z+1)4(z−2+

√
3)(z− (2+

√
3)).

Now, we consider two distinct factorizations of P(z).
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FIRST SYSTEM. Consider the factorization P(z) = H0(z)G0(z), where

H0(z) =− 1
8
z−2(z+1)2(z−2+

√
3)(z− (2+

√
3))

=− 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2

G0(z) = 1
2
z−1(z+1)2

= 1
2
z+1+ 1

2
z−1.

For this particular system, H0 and G0 have linear phase. Moreover, H0 and G0 each have a second order zero at the

Nyquist frequency.

SECOND SYSTEM. Consider the factorization P(z) = H0(z)G0(z), where

H0(z) =− 1
2
z−1(z+1)(z−2+

√
3)

=− 1
2
z+
(
1−
√
3

2

)
+
(
2−
√
3

2

)
z−1

G0(z) = 1
8
z−2(z+1)3(z− (2+

√
3))

= 1
8
z2 +

(
1−
√
3

8

)
z−
(
3+3
√
3

8

)
−
(
5+3
√
3

8

)
z−1−

(
2+
√
3

8

)
z−2.

For this particular system, neitherH0 norG0 have linear phase. Also,H0 has a first order zero at the Nyquist frequency,

and G0 has a third order zero at the Nyquist frequency.

In the case of each of the above systems, the transfer functions of the remaining filters can be obtained via (3.74).

In the case of an orthonormal filter bank, we have G0(z) = H0(z
−1) (Here, we assume the filter coefficients to be

real.) Suppose that we could factor P(z) as

P(z) =C(z)C(z−1)

for some C(z). Then, we could choose H0(z) =C(z) and G0(z) =C(z−1). If P(z) is a symmetric halfband filter, we

can always decompose P(z) in this way. This process is known as spectral factorization. Thus, we have a means for

constructing an orthonormal filter bank.

The following process can be used to construct an orthonormal filter bank:

1. Select a P(z) satisfying the halfband condition (3.77) that is also symmetric.

2. Decompose P(z) into the form P(z) =C(z)C(z−1). Then, choose H0(z) =C(z) and G0(z) =C(z−1).

3. Using (3.74), determine H1(z) and G1(z) from H0(z) and G0(z).

Example 3.27 (Orthonormal filter bank design). Use the spectral factorization method in order to design a two-

channel orthonormal UMD filter bank that satisfies the following constraints: 1) the analysis and synthesis filters

are of length four; and 2) each of the analysis and synthesis lowpass filters has a second order zero at the Nyquist

frequency.

Solution. First, we need to determine a symmetric halfband P(z) to use as the basis of the design. Since H0 and G0

must each have a second order zero at the Nyquist frequency, we need to select a P(z) of the form

P(z) = (z+1)2(1+ z−1)2Q(z), (3.78)

where Q(z) is to be determined. To obtain length four filters, P(z) should have terms in z3,z2, . . . ,z−3. Thus, Q(z)
must have terms in z−1,z0,z1. Furthermore, since P(z) must be symmetric, Q(z) must also be symmetric. Thus, Q(z)
is of the form

Q(z) = a1z+a0 +a1z
−1.
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Now, we must solve for the coefficients a0,a1. Expanding P(z) we have

P(z) = z−2(z+1)4(a1z+a0 +a1z
−1)

= (z+1)2(1+ z−1)2(a1z+a0 +a1z
−1)

= (z2 +4z+6+4z−1 + z−2)(a1z+a0 +a1z
−1)

= a1z
3 +(4a1 +a0)z

2 +(7a1 +4a0)z+(8a1 +6a0)+(7a1 +4a0)z
−1 +(4a1 +a0)z

−2 +a1z
−3.

Equating the coefficients of z2 and z−2 with zero and the coefficient of z0 with one, we have

4a1 +a0 = 0 and 8a1 +6a0 = 1.

Solving for a0 and a1, we obtain

a0 = 1
4

and a1 =− 1
16

.

Thus, we have

Q(z) =− 1
16
z+ 1

4
− 1

16
z−1. (3.79)

Now that Q(z) is known in (3.78), we need to factor the resulting P(z). To do this, we need to factor Q(z) in the form
Q(z) =C(z)C(z−1).

We want to express Q(z) in the form

Q(z) = (az−1 +b)(az+b)

= (ab)z+(a2 +b2)+(ab)z−1.

Comparing this expression for Q(z) to (3.79), we have

ab =− 1
16

and a2 +b2 = 1
4
.

Now, we must solve for a and b. First, we solve for a. We have

a2 +(− 1
16a

)2 = 1
4

⇒ a2 + 1
256a2

= 1
4

⇒ 256a4 +1 = 64a2

⇒ 256a4−64a2 +1 = 0.

Solving the quadratic equation in a2 for a2 yields

a2 =
64±
√

642−4(256)
2(256)

= 64±32
√
3

512

= 2±
√
3

16
.

We arbitrarily choose the solution a2 = 2−
√
3

16
. Solving for a from a2, we obtain

a =±
√

2−
√
3

16

=± 1
4

√
2−
√
3

=± 1

4
√
2

√
( 1−
√
3

2
)2

=±
(
1−
√
3

4
√
2

)
.
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We arbitrarily choose the solution a = 1−
√
3

4
√
2
. Now, we solve for b. We have

b =− 1

16

(
1−
√
3

4
√
2

)

=− 1

2
√
2(1−

√
3)

=− 1+
√
3

2
√
2(1−

√
3)(1+

√
3)

= 1+
√
3

4
√
2

.

From above, we have that one solution for a and b is given by

a = 1−
√
3

4
√
2

and b = 1+
√
3

4
√
2

.

We obtain

Q(z) =
(
1+
√
3

4
√
2

+ 1−
√
3

4
√
2
z−1
)(

1−
√
3

4
√
2
z+ 1+

√
3

4
√
2

)

=
(

1

4
√
2

)2(
1+
√
3+(1−

√
3)z−1

)(
(1−
√
3)z+1+

√
3
)

.

Combining this result with (3.78), we have

P(z) =
(

1

4
√
2

)2
(z+1)2(1+ z−1)2(1+

√
3+(1−

√
3)z)(1+

√
3+(1−

√
3)z−1).

From this, we can trivially factor P(z) in the form of P(z) = G0(z)G0(z
−1). This yields

G0(z) = 1

4
√
2
(1+ z−1)2(1+

√
3+(1−

√
3)z−1)

= 1

4
√
2

(
(1+
√
3)+(3+

√
3)z−1 +(3−

√
3)z−2 +(1−

√
3)z−3

)
.

We have that H0(z) = G0(z
−1). The remaining filters are easily deduced from G0(z) and H0(z). (As it turns out, this

particular filter bank is quite a famous one. This filter bank is associated with one member of a family of orthonormal

wavelet systems proposed by Daubechies.)

In addition to the relatively simple filter-bank design technique introduced above, many other design methods have

also been proposed. Many of these methods are based on optimization [3, 8, 9, 10, 15, 20, 24, 25, 26, 32].

3.6 Implementation of UMD Filter Banks

In principle, the design of a PR UMD filter bank amounts to decomposing the identity matrix into two factors with

desired properties. These two factors are simply the polyphase matrices of the filter bank. Once we have determined

the analysis and synthesis polyphase matricesHHHp(z) andGGGp(z), respectively, we are ready to proceed to the implemen-

tation of the filter bank. Of course, the filter bank could be realized by directly implementing the filtering operations

in each of the polyphase matrices, but it is often beneficial to break the filtering process into a number of smaller and

simpler cascaded stages.

Consider for a moment the analysis side of the filter bank. Instead of implementing HHHp(z) directly, we further

decomposeHHHp(z) as follows
HHHp(z) =EEEn−1(z) · · ·EEE1(z)EEE0(z).

Each of the {EEE i(z)} can then be taken to represent a single filtering stage in the final implementation as depicted in

Figure 3.40. Similarly,GGGp(z) can be decomposed to produce

GGGp(z) =RRRm−1(z) · · ·RRR1(z)RRR0(z).
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...

EEE0(z) EEE1(z)

...
...

· · ·

EEEn−1(z)

...

· · ·

· · ·

...· · ·
· · ·

Figure 3.40: Block cascade realization of the analysis

polyphase matrix.

...
...

...

· · ·

...

· · ·

· · ·

...· · ·
· · ·

RRR0(z) RRR1(z) RRRm−1(z)

Figure 3.41: Block cascade realization of the synthe-

sis polyphase matrix.

This corresponds to the cascade realization of the synthesis polyphase matrix shown in Figure 3.41. In the event that

GGGp(z)HHHp(z) = III, we haveGGGp(z) =HHH−1p (z). Thus, we could chooseGGGp(z) as

GGGp(z) =EEE−10 (z)EEE−11 (z) · · ·EEE−1n−1(z).

This factorization results in a certain symmetry between the analysis and synthesis sides of the filter bank which can

often be advantageous.

Assuming that we want to realize the polyphase matrices with a number of cascaded blocks, one might wonder

what type of polyphase matrix factorization should be employed. In the sections that follow, we will introduce a few

possibilities.

3.6.1 Lattice Realization of Paraunitary PR UMD Filter Banks

In the case of paraunitary (i.e., orthonormal) filter banks, one very popular implementation strategy is the lattice

realization. The lattice realization is a polyphase scheme based on a so called lattice factorization of the polyphase

matrices. In a lattice factorization, the matrix factors correspond to rotations (up to scale factor) and delays. To avoid

unnecessary complexity in what follows, we consider the case of a two-channel filter bank and (1,2)-type polyphase
representation.

A lattice realization is parameterized by set of J+1 rotation angles {θk}Jk=0. Consider a rotation matrix RRR associ-

ated with the rotation angle θ ∈ [−π,π). We have

RRR =

[
cosθ sinθ
−sinθ cosθ

]
.

The matrix RRR can be rewritten as

RRR =

[
cosθ sinθ
−sinθ cosθ

]
=





cosθ

[
1 tanθ

− tanθ 1

]
θ 6∈ {−π

2
, π
2
}

[
0 1

−1 0

]
θ = π

2

[
0 −1
1 0

]
θ =−π

2
.

By expressing RRR in this manner, the number of elements in the matrix part of the expression that are not trivial

multipliers (i.e., not zero or plus/minus one) can be reduced to at most two. This transformation is exploited in the

lattice realization in order to reduce the number of multiplication operations needed.
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With a lattice realization, the analysis polyphase matrixHHHp(z) and synthesis polyphase matrixGGGp(z) are factored
as

HHHp(z) = SRRRJΛΛΛ(z)RRRJ−1ΛΛΛ(z) · · ·RRR1ΛΛΛ(z)RRR0ΛΛΛ(±1) and (3.80a)

GGGp(z) = SΛΛΛ(±1)RRRT
0ΓΓΓ(z)RRRT

1 · · ·RRRT
J−1ΓΓΓ(z)RRRT

J , (3.80b)

where

ΛΛΛ(z) =

[
1 0

0 z−1

]
, ΓΓΓ(z) =

[
z−1 0

0 1

]
, RRRk =





[
1 αk

−αk 1

]
θk 6∈ {−π

2
, π
2
}

[
0 −1
1 0

]
θk =−π

2

[
0 1

−1 0

]
θk = π

2
,

βk =

{
cosθk θk 6∈ {−π

2
, π
2
}

1 θk ∈ {−π
2
, π
2
},

S =
J

∏
k=0

βk, and αk = tanθk.

The matrix decompositions ofHHHp(z) andGGGp(z) in (3.80) are called lattice factorizations. Note that if θk 6∈ {−π
2
, π
2
},

then

detRRRk = 1+α2
k and RRR−1k = 1

1+α2
k

RRRT
k = 1

1+α2
k

[
1 −αk

αk 1

]
;

and if θk ∈ {−π
2
, π
2
}, then

detRRRk = 1 and RRR−1k =RRRT
k .

Examining the various matrix factors, we see thatRRRk is a rotation matrix (up to scale factor), andΛΛΛ(z) andΓΓΓ(z) are
delay matrices. The matrix factorsRRRk,ΛΛΛ(z), andΓΓΓ(z) correspond to the computational structures shown in Figures 3.42

and 3.43. The lattice realization has the general structure shown in Figure 3.44. Each of the analysis and synthesis

sides consist of J+1 rotations separated by J delays. Observe that each stage on the synthesis side essentially undoes

the effect of the corresponding stage on the analysis side. Therefore, it should not be surprising that the PR property

is achieved.

The lattice realization provides a complete parameterization of two-channel paraunitary filter banks. That is, any

2×2 real coefficient causal FIR paraunitary matrix admits a lattice factorization. For a proof, see [31, Section 14.3,

pp. 727–731] or [29, Theorem 4.7, pp. 139–140]. In addition to completeness, the lattice realization has a number of

other desirable characteristics:

• It structurally imposes the paraunitary and PR properties (i.e., the properties hold regardless of the choice of the

parameters {θk}Jk=0).

• It has a hierarchical structure in the sense that, if the lattice structure is truncated after only N stages, the

resulting filter bank will still have the paraunitary and PR properties.

• It is robust to coefficient quantization error (i.e., the paraunitary and PR properties will still hold even if the

{αk} are quantized).

• It is such that the analysis and synthesis sides have high degree of symmetry (i.e., have very similar computa-

tional structures).

• It has the lowest implementation complexity amongst all known structures for paraunitary filter banks.
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(a)

(b)

(c)

Figure 3.42: Computational structures associated with the matrix factor RRRk for (a) θ 6∈ {−π
2
, π
2
}, (b) θ = −π

2
, and

(c) θ = π
2
.

(a)
(b)

Figure 3.43: Computational structures associated with the matrix factors (a) ΛΛΛ(z) and (b) ΓΓΓ(z).
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(a)

(b)

Figure 3.44: General structure of the lattice realization of a paraunitary filter bank. (a) Analysis and (b) synthesis

sides.
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In order to construct a lattice realization of a filter bank, we need to determine the lattice coefficients {αk} associ-
ated with given analysis filters H0(z) and H1(z). For simplicity, in what follows, we assume that θk 6∈ {−π

2
, π
2
}. Let

H
(m)
0 (z) and H

(m)
1 (z) denote the transfer functions of the analysis filters obtained from the m-stage lattice. So, we have

H
(m)
0 (z) = H

(m−1)
0 (z)+αmz

−2H(m−1)
1 (z) and

H
(m)
1 (z) =−αmH

(m−1)
0 (z)+ z−2H(m−1)

1 (z).

We can then determine the coefficient αm by inverting the preceding recursion to obtain

H
(m−1)
0 (z) = 1

1+α2
m

(
H

(m)
0 (z)−αmH

(m)
1 (z)

)
and

H
(m−1)
1 (z) = 1

1+α2
m
z2
(

αmH
(m)
0 (z)+H

(m)
1 (z)

)
.

To find the lattice coefficients {ak}, we initially set H
(J)
0 (z) = H0(z) and H

(J)
1 (z) = H1(z); then, we iterate. In each

step, we choose αm so that the highest power of z−1 in H(m)
0 (z)−αmH

(m)
1 (z) is cancelled.

Although, in our discussion above, we have exclusively considered the case of two-channel filter banks, the lattice

realization can be generalized to the M-channel case (where M > 2). For additional information on lattice realiza-

tions of paraunitary filter banks (including the generalization to the M-channel case), the reader is referred to [31,

Sections 6.4 and 6.5, pp. 302–322] and [31, Sections 14.3 and 14.4, pp. 727–740].

3.6.2 Lattice Realization of Linear-Phase PR UMD Filter Banks

A lattice structure can also be used for realizing linear-phase filter banks. In this case, the lattice realization is

parameterized by a set of J + 1 lattice coefficients {αk}Jk=0. The analysis polyphase matrix HHHp(z) and synthesis

polyphase matrixGGGp(z) are factored as

HHHp(z) =
[
1 1
1 −1

]
TTT JΛΛΛ(z) · · ·ΛΛΛ(z)TTT 1ΛΛΛ(z)TTT 0 and

GGGp(z) = 1
β SSS0ΓΓΓ(z)SSS1ΓΓΓ(z) · · ·ΓΓΓ(z)SSSJ

[
1 1
1 −1

]
,

where

TTT k =

[
1 αk

αk 1

]
, SSSk =

[
1 −αk

−αk 1

]
, ΛΛΛ(z) =

[
1 0

0 z−1

]
, ΓΓΓ(z) =

[
z−1 0

0 1

]
, and

β =
J

∏
k=0

(1−α2
k ).

Note that SSSk = (1−α2
k )TTT

−1
k (i.e., SSSk is the inverse of TTT k up to a scale factor). The filtering networks associated with

the matrix factors TTT k and SSSk are depicted in Figure 3.45. The general structure of the lattice realization is shown in

Figure 3.46.

As it turns out, every linear-phase PR filter bank with filters of equal and even length has a lattice factorization.

(See [29, Theorem 4.8, p. 140].) Unfortunately, not all linear-phase PR filter banks have filters of equal and even

length. Therefore, not all linear-phase PR filter banks can be realized using the lattice structure from above. This

said, however, the lattice realization is still quite useful. It structurally imposes the PR and linear-phase properties

and has other advantages similar to the case of the paraunitary lattice structure. For additional information on lattice

realizations for linear-phase filter banks, the reader is referred to [31, Chapter 7, pp. 337–352].

3.6.3 Lifting Realization of PR UMD Filter Banks

Suppose we have an M-channel PR UMD filter bank with FIR filters. Denote the transfer functions of the analysis

and synthesis filters as Hk(z) and Gk(z), respectively. Further, assume that the system is represented in either type
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(a) (b)

Figure 3.45: Polyphase filtering networks associated with the matrices (a) TTT k and (b) SSSk.

(a)

(b)

Figure 3.46: General structure of the lattice realization for a linear-phase filter bank. (a) Analysis and (b) synthesis

side.
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(1,2) or type (3,1) polyphase form with analysis and synthesis polyphase matricesHHHp(z) andGGGp(z), respectively. In
a lifting realization, a UMD filter bank is implemented in its polyphase form. The distinguishing characteristic of this

realization is the type of network used to implement the polyphase filtering.

Fundamental to the idea of the lifting realization is the lifting factorization which decomposes a matrix into two

types of factors:

1. Scaling (type S). This type of M×M matrix has all of the elements on the main diagonal equal to one except

the (k,k) entry which is α and all off-main-diagonal elements equal to zero. Such a matrix is completely

characterized by the pair (k,α) and is denoted SM(k,α). In cases where the size of the matrix is clear from the

context, the subscript M is omitted.

2. Adding (type A). This type ofM×M matrix has all ones on the main diagonal, α at position (k, l), and all other
entries zero. Such a matrix is completely characterized by the triple (k, l,α) and is denoted AM(k, l,α). Again,
the subscript M may be omitted in cases where the size of the matrix is clear from the context.

More specifically, the lifting factorization decomposes a matrix into zero or more constant type S factors that either

premultiply or postmultiply zero or more type A factors.

In a lifting realization, the polyphase filtering is implemented directly from lifting factorization of the analysis and

synthesis polyphase matrices. More specifically, the analysis polyphase matrix HHHp(z) is decomposed using a lifting

factorization as

HHHp(z) = SSSσ−1 · · ·SSS1SSS0AAAλ−1(z) · · ·AAA1(z)AAA0(z) (3.81)

where the SSSk are type S matrices with all constant entries and the AAAk(z) are type A elementary matrices (which

can depend on z). In a lifting realization, the decomposition of the synthesis polyphase matrix GGGp(z) is completely

determined by the decomposition used for the analysis polyphase matrixHHHp(z) and is given by

GGGp(z) =AAA−10 (z)AAA−11 (z) · · ·AAA−1λ−1(z)SSS
−1
0 SSS−11 · · ·SSS−1σ−1 (3.82)

Furthermore, this choice of decomposition forGGGp(z) implies thatGGGp(z)=HHH−1p (z). Note thatA−1(k, l,α)=A(k, l,−α)

and S−1(k,α) = S(k,α−1). That is, the inverse of a type A matrix is another type A matrix, and the inverse of a type S

matrix is another type S matrix. Thus, in equation (3.82) the AAA−1k (z) are type A matrices and the SSS−1k are type S

matrices. Hence, the decomposition given for GGGp(z) is, in fact, a lifting factorization of the matrix. Moreover, each

pair of corresponding matrices AAAk(z) and AAA
−1
k (z) are identical except for one element which differs only in sign. Sim-

ilarly, each pair of corresponding matrices SSSk and SSS
−1
k are identical except for one element which differ in a reciprocal

relationship.

From the definition of the lifting realization, it follows that such a realization exists if and only if a lifting factor-

ization of HHHp(z) exists and GGGp(z) =HHH−1p (z). We shall revisit this issue later, but for the time being it suffices to say

that any UMD filter bank can be made to satisfy these conditions through an appropriate normalization of its analysis

and synthesis filters.

The decompositions in (3.81) and (3.82) correspond to block cascade realizations of the analysis and synthesis

filtering, respectively. Since the UMD filter bank hasM channels, each filtering block hasM inputs andM outputs and

is characterized by an M×M matrix. Each of the type A factors corresponds to a block that adds a filtered version of

a signal in one channel to a signal in another channel. This corresponds to a single ladder step in a ladder network as

depicted in Figure 3.47(a). To simplify the diagram only the kth and lth inputs and outputs are shown. All other inputs

pass directly through to their corresponding outputs unchanged. Clearly, the inverse of this network is another network

of the same form, namely the one shown in Figure 3.47(b). Each of the type S factors corresponds to a block that

scales the signal in a single channel. Such a scaling unit is shown in Figure 3.48(a). Only the kth input and output are

shown as all other inputs pass directly through to their corresponding outputs without modification. The inverse of this

network is another network of the same form, namely the one shown in Figure 3.48(b). Since the lifting factorization

consists of only type A and type S factors, this decomposition yields a ladder structure with some additional scaling

elements. The ladder structure is followed by a scaling on the analysis side and preceded by a scaling on the synthesis

side of the filter bank. Due to the similarities between the factors in both of these decompositions, the structures used

to perform the analysis and synthesis filtering possess a certain degree of symmetry. This symmetry has important

consequences as will become evident later.
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A(z)

+
uk[n] vk[n]

vl [n]ul [n]

(a)

A(z)

+
−

vl [n]

vk[n] uk[n]

ul [n]

(b)

Figure 3.47: Lifting step. (a) A lifting step and (b) its inverse.

α
uk[n] vk[n]

(c)

α−1
vk[n] uk[n]

(d)

Figure 3.48: Scaling step. (a) A scaling step and (b) its inverse.

The resulting structure for the general two-channel case is shown in Figure 3.49 (where some of the Ai(z) may

be identically zero). Notice the symmetry between the forward and inverse transform structures. By inspection, it is

obvious that the filter bank has PR. The synthesis side simply undoes step-by-step each operation performed on the

analysis side.

In the M-channel case, the lifting realization is completely analogous to the 2-band case, and has the general

form shown in Figure 3.50. The SSSk and SSS
−1
k blocks corresponds to scaling operations. The AAAk(z) and AAA

−1
k (z) blocks

correspond to ladder steps. Moreover, the scaling and ladder steps on the analysis side are simply the inverses of the

scaling and ladder steps on the synthesis side.

The lifting realization is a particularly interesting one, primarily because of its use of ladder networks. Such

networks have the remarkable property that they can be made to maintain their invertibility even in the presence of

certain types of quantization error, particularly the rounding error introduced by finite-precision arithmetic. To see

why this is so, consider the two ladder steps shown in Figure 3.47. Clearly, if exact arithmetic is employed, these

two networks invert one another. Suppose now that the filtering operations (associated with A(z)) are implemented

using finite-precision arithmetic and some roundoff error is incurred. When we cascade these two networks together,

both ladder-step filters are presented with the same input. Since the two filters are identical (and assumed to use

the same implementation strategy), they will both incur the same rounding error, and their outputs will be identical.

Therefore, whatever value is added by the adder in the first network will be subtracted by the adder in the second

network. Consequently, the two networks continue to invert one another, even in the presence of rounding error. It is

not difficult to see that we can apply this argument repeatedly in order to show that a ladder network with any number

of ladder steps can maintain its invertibility even in the presence of rounding error. In other words, such networks are

fundamentally reversible in nature.

3.6.3.1 Existence of Lifting Realization

Having decided to use a lifting realization, we must now concern ourselves with the existence of such a realization.

That is, we would like to know if any UMD filter bank can be implemented using lifting. In order to determine this,

we must revisit the conditions for existence stated earlier. That is, a UMD filter bank can be realized using lifting if

and only if the following conditions are satisfied:

a lifting factorization ofHHHp(z) exists and (3.83)

GGGp(z) =HHH−1p (z). (3.84)

Assuming that the realization exists, its uniqueness is also of concern.

First, let us consider condition (3.83). We would like to know what conditions must hold in order for the analysis
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A1(z)A0(z) A2λ−1(z)

+ +

+ + s0

s1

A2λ−2(z)

· · ·

· · ·

· · ·FPT
x[n]

y0[n]

y1[n]

(a)

A0(z)A1(z)A2λ−2(z)A2λ−1(z) IPT

+

+ +

+s−11

s−10

· · ·

· · ·

· · ·
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y0[n]

y1[n] − −

−−

(b)

Figure 3.49: Lifting realization of a two-channel UMD filter bank. (a) Analysis side. (b) Synthesis side.
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Figure 3.50: General M-band lifting structure. (a) Analysis side (forward transform). (b) Synthesis side (inverse

transform).
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polyphase matrix HHHp(z) to have a lifting factorization. To help us answer this question, we rely on the following

theorem:

Theorem 3.18. Any M×M Laurent polynomial matrixUUU(z) admits a factorization of the form

UUU(z) = SSS0(z)SSS1(z) · · ·SSSQ−1(z)AAA0(z)AAA1(z) · · ·AAAP−1(z)

where the SSSk(z) are type S elementary matrices and the AAAk(z) are type A elementary matrices and all factors are

Laurent polynomial matrices. For any particular set of SSSk(z), a set of AAAk(z) can be found to complete the factorization
if and only if

Q−1
∏
k=0

detSSSk(z) = detUUU(z)

When the factorization can be completed, the choice of AAAk(z) is not unique.

Proof. See [1].

Recall, the form of the lifting factorization of HHHp(z) is given by equation (3.81). Clearly, this factorization is a

special case of the decomposition considered in Theorem 3.18. That is, the lifting factorization is a special case where

the type S matrices are constrained to be constant (i.e., independent of z). If in the theorem, we assume that the SSSk
are constant, this implies that detUUU(z) must also be constant in order for the decomposition to exist. Relating this

back to the original problem, a lifting factorization of the analysis polyphase matrix exists if and only if detHHHp(z) is a
nonzero constant. Moreover, the theorem also tells us that the factorization is never unique when it exists. Since the

lifting factorization ofHHHp(z) determines the structure of the lifting realization, the nonuniqueness of the factorization

also implies the nonuniqueness of the lifting realization structure.

For a lifting realization to exist, we therefore require

detHHHp(z) = α and (3.85)

GGGp(z) =HHH−1p (z) (3.86)

where α is a nonzero constant. Since we are considering FIR PR UMD filter banks, the analysis and synthesis

polyphase matrices must satisfy the conditions

detHHHp(z) = αz−K0 and (3.87)

GGGp(z) =





[
000 IIIM−1
z−1 000

]K1

HHH−1p (z) type (1,2)

[
000 z−1

IIIM−1 000

]K1

HHH−1p (z) type (3,1)

(3.88)

where α is a nonzero constant and the Kk are integers. From (3.87) and (3.88), we can see that conditions (3.85) and

(3.86) are not generally satisfied. In order for the conditions to be satisfied, we must have K0 = K1 = 0. Fortunately,

it is always possible to normalize the analysis and synthesis filters so that these constraints are met. To show this, we

rely on the following theorem:

Theorem 3.19. Suppose we are given an M-channel PR UMD filter bank with FIR filters. Denote the transfer

functions of the analysis and synthesis filters of the UMD filter bank as Hk(z) and Gk(z), respectively. Assume the

system is represented in either type (1,2) or type (3,1) polyphase form and has analysis and synthesis polyphase

matrices HHHp(z) and GGGp(z), respectively. Since the system is PR and has FIR filters, we have

detHHHp(z) = α0z
−K0

and

GGGp(z) =





[
000 IIIM−1
z−1 000

]K1

HHH−1p (z) type (1,2)

[
000 z−1

IIIM−1 000

]K1

HHH−1p (z) type (3,1)
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where α0 is a nonzero constant, and K0,K1 ∈ Z.
Suppose we normalize the analysis and synthesis filters to obtain a new set of analysis and synthesis filters with

transfer functions H ′k(z) and G′k(z), respectively, where this normalization is defined as follows:

H ′k(z) = β0z
−L0Hk(z) and

G′k(z) = β1z
−L1Gk(z).

Denote the analysis and synthesis polyphase matrices associated with the new filters as HHH ′p(z) andGGG
′
p(z), respectively.

Given the above normalization, the following assertions are true:

detHHH ′p(z) = α0βM
0 (−1)L0(M−1)zL0+K0 and

GGG′p(z) =





β0β1

[
000 IIIM−1
z−1 000

]L0+L1+K1

(HHH ′p(z))
−1 type (1,2)

β0β1

[
000 z−1

IIIM−1 000

]L0+L1+K1

(HHH ′p(z))
−1 type (3,1).

This implies that with an appropriate normalization, we can force detHHH ′p(z) to be any arbitrary nonzero constant

up to sign while simultaneously satisfying the constraint GGG′p(z) = [HHH ′p(z)]
−1.

Proof. See [1].

Let us now normalize the filters of the system to obtain new analysis and synthesis filters with transfer functions

H ′k(z) and G′k(z), respectively, as specified by

H ′k(z) = β0z
K0Hk(z) and (3.89)

G′k(z) = β1z
K1−K0Gk(z) (3.90)

where β0 = 1/β1. Denote the new analysis and synthesis polyphase matrices obtained from this normalization as

HHH ′p(z) andGGG
′
p(z), respectively. From the above theorem, this normalization will always yield a new system satisfying

detHHH ′p(z) = α0βM
0 (−1)K0(M−1) and (3.91)

GGG′p(z) = [HHH ′p(z)]
−1. (3.92)

Clearly, this new system satisfies conditions (3.85) and (3.86). Therefore, a lifting realization of the new system must

always exist. Moreover, we can see from above that it is always possible to further force detHHH ′p(z) ∈ {−1,1} by
choosing β0 = |α|−1/M . If we can always force detHHH ′p(z) ∈ {−1,1}, this implies we can always choose the scaling

factors on the analysis side in the lifting realization to be ±1. This turns out to be useful in some applications (e.g.,

constructing reversible transforms).

It is important to note that the normalization process does not affect the fundamental behavior of the UMD filter

bank. The relative magnitude and phase responses of the analysis filters remain unchanged since all have an equal

gain and equal phase shift added. The same statement also holds true for the synthesis filters. The PR property is

not affected although the reconstruction delay will generally change as the normalization process forces a particular

reconstruction delay.

The normalization suggested above is not the only one possible. Another possibility is suggested by Daubechies

and Sweldens in [13]. In this case, they propose changing the phase delay and gain of a single analysis filter. The

author felt that in some cases it might be more desirable to distribute the phase delay and gain change equally across

all of the analysis filters—hence, the reason for proposing the above normalization scheme.

By using the lifting realization of a UMD filter bank, we obtain a transform with several desirable properties:

• The transform can be calculated in place without the need for auxiliary memory.

• Even in the presence of coefficient quantization error or roundoff error (for the ladder step filters), the PR

property is retained.
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• The inverse transform has the same computational complexity as the forward transform.

• Asymptotically, for long filters, the lifting realization yields a more computationally efficient structure than the

standard realization [13].

• The lifting realization can be used to easily construct reversible transforms.

• The PR property is structurally imposed, regardless of the choice of lifting filters.

3.6.3.2 Lifting Factorization Algorithm

Lifting factorizations can be computed using a matrix Euclidean algorithm. To compute the lifting factorization of the

analysis polyphase matrixHHHp(z), we proceed as follows:

1. Assume that the filter bank has been normalized (as described previously) so that detHHHp(z) is a nonzero constant.

2. Choose any SSSk for k = 0,1, . . . ,σ −1 from S(·) that satisfy

σ−1
∏
k=0

detSSSk = detHHHp(z).

For example, if detHHHp(z) = d, we can simply select σ = 1 and SSS0 = S(0,d).

3. Calculate the quantity BBB(z) as

BBB(z) =

[
σ−1
∏
k=0

SSS−1k

]
HHHp(z).

4. Perform operations from A(·) (i.e., type A row/column operations) on BBB(z) until it is reduced to an identity

matrix. The idea here is similar to Gaussian elimination except that division of arbitrary Laurent polynomials

is avoided and replaced by division with remainder (via the Euclidean algorithm). This process yields

DDDν−1(z) · · ·DDD1(z)DDD0(z)BBB(z)CCC0(z)CCC1(z) · · ·CCCµ−1(z) = III

where the DDDk(z) andCCCk(z) correspond to type A elementary row and column operations on BBB(z), respectively.
From this, we can write the factorization of BBB(z) as

BBB(z) =DDD−10 (z)DDD−11 (z) · · ·DDD−1ν−1(z)CCC
−1
µ−1(z) · · ·CCC−11 (z)CCC−10 (z). (3.93)

5. The lifting factorization ofHHHp(z) is then

HHHp(z) =

[
σ−1
∏
k=0

SSSk

]
BBB(z)

where BBB(z) is given by (3.93).

Since the choice of SSSk(z),CCCk(z), and DDDk(z) are not unique for a given HHHp(z), the factorization is also not unique. In

particular, the CCCk(z) and DDDk(z) are influenced by the terms cancelled during Euclidean division and the sequence of

rows and columns operated on during the reduction of BBB(z).
It is important to emphasize that in a lifting decomposition all factors are Laurent polynomial matrices. Although

the factorization algorithm is similar in spirit to Gaussian elimination, Gaussian elimination cannot be used since it

requires closure on division. Laurent polynomials are not closed on division. That is, the quotient of two Laurent

polynomials is generally a rational polynomial expression and not another Laurent polynomial. For more information

on matrix Euclidean algorithms, the reader is referred to [14] (see Theorem 22.8).

To demonstrate the technique for finding lifting realizations of filter banks, some examples are provided below.
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Example 3.28. Consider the two-channel shift-free PRUMDfilter bank having analysis transfer functionsH0(z),H1(z),
where

H0(z) = 1
2
(1+ z), and H1(z) = 1− z.

Find a lifting realization of the system.

Solution. We find the analysis polyphase matrixHHHp(z) corresponding to a (3,1)-type decomposition. Calculating the

analysis polyphase matrixHHHp(z), we obtain

HHHp(z) =

[
1
2

1
2

1 −1

]
.

Moreover, we also have that detHHHp(z) ≡ −1. Since detHHHp(z) is a constant, a lifting realization exists and no re-

normalization of the analysis filters is required.

Now, we apply elementary row and column operations to HHHp(z). Since HHHp(z) is not unimodular, we must first

apply a scaling operation. We multiply row 1 of HHHp(z) by −1. This forces the resulting product to be unimodular.

This process yields
[
1 0

0 −1

]

︸ ︷︷ ︸
SSS0(z)

[
1
2

1
2

1 −1

]

︸ ︷︷ ︸
HHHp(z)

=

[
1
2

1
2

−1 1

]

︸ ︷︷ ︸
SSS0(z)HHHp(z)

.

We add a multiple of column 1 to column 0 to obtain
[

1
2

1
2

−1 1

]

︸ ︷︷ ︸
SSS0(z)HHHp(z)

[
1 0

1 1

]

︸ ︷︷ ︸
CCC0(z)

=

[
1 1

2

0 1

]

︸ ︷︷ ︸
SSS0(z)HHHp(z)CCC0(z)

.

We add a multiple of column 0 to column 1 yielding
[
1 1

2

0 1

]

︸ ︷︷ ︸
SSS0(z)HHHp(z)CCC0(z)

[
1 − 1

2

0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
1 0

0 1

]

︸ ︷︷ ︸
III

.

Combining the above results, we have

SSS0(z)HHHp(z)CCC0(z)CCC1(z) = III.

Thus, a lifting factorization ofHHHp(z) is given by

HHHp(z) = SSS−10 (z)CCC−11 (z)CCC−10 (z)

=

[
1 0

0 −1

]−1 [
1 − 1

2

0 1

]−1 [
1 0

1 1

]−1

=

[
1 0

0 −1

][
1 1

2

0 1

][
1 0

−1 1

]

= S(1,−1)A(0,1, 1
2
)A(1,0,−1).

From the preceding result, it immediately follows that a lifting factorization of the synthesis polyphase matrix GGGp(z)
is given by

GGGp(z) =CCC0(z)CCC1(z)SSS0(z)

=

[
1 0

1 1

][
1 − 1

2

0 1

][
1 0

0 −1

]

= A(1,0,1)A(0,1,− 1
2
)S(1,−1).
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A1(z)A0(z)

+

+

s1

s0

↓ 2

↓ 2

z

y1[n]

y0[n]x[n]

(a)

A0(z)A1(z)

+

+s−11

s−10 ↑ 2

↑ 2

z−1

+

−

−

y0[n]

y1[n]

x̂[n]

(b)

Figure 3.51: Example lifting realization. (a) Analysis side. (b) Synthesis side.

These lifting factorizations yield the realization shown in Figure 3.51, where

A0(z) =−1, A1(z) = 1
2
, s0 = 1, and s1 =−1.

By inspection, it is obvious that the UMD filter bank has the shift-free PR property. The synthesis side undoes

step-by-step each operation performed on the analysis side.

Example 3.29. Consider the two-channel shift-free PRUMDfilter bank with analysis filter transfer functionsH0(z),H1(z),
where

H0(z) =− 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2 and H1(z) =− 1

2
z2 + z− 1

2
.

Find two distinct lifting realizations of this system.

Solution. Let us consider the (3,1)-type polyphase representation of the system. First, we determine the analysis

polyphase matrixHHHp(z). We can rewrite the analysis filter transfer functions as

H0(z) = z0
(
− 1

8
z2 + 3

4
− 1

8
z−2
)
+ z1

(
1
4
+ 1

4
z−2
)

and H1(z) = z0
(
− 1

2
z2− 1

2

)
+ z1 (1) .

From this, we can trivially write the analysis polyphase matrixHHHp(z) as

HHHp(z) =

[
− 1

8
z+ 3

4
− 1

8
z−1 1

4
+ 1

4
z−1

− 1
2
z− 1

2
1

]
.

One can confirm that detHHHp(z) is unimodular (i.e., detHHHp(z) ≡ 1). Therefore, no scaling operations are necessary in

what follows.

FIRST REALIZATION. We perform elementary column operations onHHHp(z) in order to transform it into an identity
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matrix. First, we add a multiple of column 1 to column 0 as follows:

[
− 1

8
z+ 3

4
− 1

8
z−1 1

4
+ 1

4
z−1

− 1
2
z− 1

2
1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

a1z+a0 1

]

︸ ︷︷ ︸
CCC0(z)

=

[
− 1

8
z+ 3

4
− 1

8
z−1 +(a1z+a0)

(
1
4
+ 1

4
z−1
)

1
4
+ 1

4
z−1

− 1
2
z− 1

2
+(a1z+a0) 1

]
(3.94)

=

[(
− 1

8
+ 1

4
a1
)
z+
(
3
4
+ 1

4
a1 + 1

4
a0
)
+
(
− 1

8
+ 1

4
a0
)
z−1 1

4
+ 1

4
z−1(

− 1
2
+a1

)
z+
(
− 1

2
+a0

)
1

]

Let us choose the coefficients a0,a1 to cancel the terms in z and z−1. Clearly, we require

− 1
8
+ 1

4
a1 = 0 and − 1

8
+ 1

4
a0 = 0.

Solving for a0,a1, we obtain

a0 = 1
2

and a1 = 1
2
.

Thus, we have

[
− 1

8
z+ 3

4
− 1

8
z−1 1

4
+ 1

4
z−1

− 1
2
z− 1

2
1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

1
2
z+ 1

2
1

]

︸ ︷︷ ︸
CCC0(z)

=

[
1 1

4
+ 1

4
z−1

0 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

.

Now, we can trivially obtain

[
1 1

4
+ 1

4
z−1

0 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

[
1 − 1

4
− 1

4
z−1

0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
1 0

0 1

]

︸ ︷︷ ︸
III

.

So, in summary, we have

HHHp(z)CCC0(z)CCC1(z) = III.

Thus, the lifting factorization ofHHHp(z) is given by

HHHp(z) =CCC−11 (z)CCC−10 (z)

=

[
1 1

4
+ 1

4
z−1

0 1

][
1 0

− 1
2
z− 1

2
1

]

= A(0,1, 1
4
+ 1

4
z−1)A(1,0,− 1

2
− 1

2
z).

This factorization yields the filtering structure shown in Figure 3.51, where

A0(z) =− 1
2
z− 1

2
, A1(z) = 1

4
+ 1

4
z−1, and s0 = s1 = 1.

SECOND REALIZATION. Again, we apply elementary column operations to HHHp(z). We commence as before,

leading to (3.94). Unlike before, however, we will choose to cancel the terms in z1 and z0. So, we need to choose the

coefficients a0,a1 to satisfy

− 1
8
+ 1

4
a1 = 0 and 3

4
+ 1

4
a1 + 1

4
a0 = 0.

Solving for a0,a1, we obtain

a0 =− 7
2

and a1 = 1
2
.
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Thus, we have

[
− 1

8
z+ 3

4
− 1

8
z−1 1

4
+ 1

4
z−1

− 1
2
z− 1

2
1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

1
2
z− 7

2
1

]

︸ ︷︷ ︸
CCC0(z)

=

[
−z−1 1

4
+ 1

4
z−1

−4 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

.

We add a multiple of column 0 to column 1 to obtain

[
−z−1 1

4
+ 1

4
z−1

−4 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

[
1 a1z+a0
0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
−z−1 (a1z+a0)(−z−1)+ 1

4
+ 1

4
z−1

−4 (a1z+a0)(−4)+1

]

=

[
−z−1

(
1
4
−a1

)
+
(
1
4
−a0

)
z−1

−4 (−4a1)z+(1−4a0)

]
.

Let us choose to cancel the terms in z0 and z−1. So, we want a0,a1 to satisfy

1
4
−a1 = 0 and 1

4
−a0 = 0.

Solving for a0,a1, we obtain

a0 = 1
4

and a1 = 1
4
.

Thus, we have

[
−z−1 1

4
+ 1

4
z−1

−4 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

[
1 1

4
z+ 1

4

0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
−z−1 0

−4 −z

]
.

︸ ︷︷ ︸
HHHp(z)CCC0(z)CCC1(z)

We add a multiple of column 1 to column 0 to produce

[
−z−1 0

−4 −z

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)CCC1(z)

[
1 0

a−1z−1 1

]

︸ ︷︷ ︸
CCC2(z)

=

[
−z−1 0

−4− z(a−1z−1) z

]

=

[
−z−1 0

−4−a−1 z

]
.

︸ ︷︷ ︸
HHHp(z)CCC0(z)CCC1(z)CCC2(z)

Let us cancel the terms in z0. So, we require

−4−a−1 = 0 ⇒ a−1 =−4.

Thus, we have

HHHp(z)CCC0(z)CCC1(z)

[
1 0

−4z−1 1

]

︸ ︷︷ ︸
CCC2(z)

=

[
−z−1 0

0 −z

]

︸ ︷︷ ︸
DDD(z)

.

So, in summary, we have

HHHp(z)CCC0(z)CCC1(z)CCC2(z) =DDD(z).
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Thus, a factorization ofHHHp(z) is given by

HHHp(z) =DDD(z)CCC−12 (z)CCC−11 (z)CCC−10 (z)

=

[
−z−1 0

0 −z

][
1 0

4z−1 1

][
1 − 1

4
z− 1

4

0 1

][
1 0

− 1
2
z+ 7

2
1

]
.

This is not quite of the form of a lifting factorization, however (due the form of the leftmost factor). To deal with the

diagonal matrix factor, we observe that

[
K 0

0 1/K

]
=

[
1 K−K2

0 1

][
1 0

−1/K 1

][
1 K−1

0 1

][
1 0

1 1

]
.

So, we have that

[
−z−1 0

0 −z

]
=

[
1 −z−1− z−2

0 1

][
1 0

z−1 1

][
1 −1− z−1

0 1

][
1 0

1 1

]
.

Using the preceding relationship, we obtain the lifting factorization ofHHHp(z) given by

HHHp(z) =

[
1 −z−1− z−2

0 1

][
1 0

z−1 1

][
1 −1− z−1

0 1

][
1 0

1 1

][
1 0

4z−1 1

][
1 − 1

4
z− 1

4

0 1

][
1 0

− 1
2
z+ 7

2
1

]

=

[
1 −z−1− z−2

0 1

][
1 0

z−1 1

][
1 −1− z−1

0 1

][
1 0

1+4z−1 1

][
1 − 1

4
z− 1

4

0 1

][
1 0

− 1
2
z+ 7

2
1

]

= A(0,1,−z−1− z−2)A(1,0,z−1)A(0,1,−1− z−1)A(1,0,1+4z−1)A(0,1,− 1
4
z− 1

4
)A(1,0,− 1

2
z+ 7

2
).

The lifting realization of the system is then obtained as in the earlier examples.

Example 3.30. Consider the two-channel shift-free PRUMDfilter bank with analysis filter transfer functionsH0(z),H1(z),
where

H0(z) = 1
2
z+ 1

2
and H1(z) =− 1

8
z3− 1

8
z2 + z−1+ 1

8
z−1 + 1

8
z−2.

Find a lifting realization of this system.

Solution. First, we find the analysis polyphase matrix HHHp(z) corresponding to a (3,1)-type decomposition. We rear-

range the analysis filter transfer functions to obtain

H0(z) = z0
(
1
2

)
+ z1

(
1
2

)
and H1(z) = z0

(
− 1

8
z2−1+ 1

8
z−2
)
+ z1

(
− 1

8
z2 +1+ 1

8
z−2
)
.

From this, we can trivially write the analysis polyphase matrixHHHp(z) as

HHHp(z) =

[
1
2

1
2

− 1
8
z−1+ 1

8
z−1 − 1

8
z+1+ 1

8
z−1

]
.

SinceHHHp(z) is unimodular, no scaling operations are required in what follows.

Now, we apply A-type elementary column operations in order to transform the matrix HHHp(z) into an identity

matrix. First, we perform column operations in an attempt to force an entry of one on the first main diagonal element.

We add a multiple of the 1th column to the 0th column. We have

[
1
2

1
2

− 1
8
z−1+ 1

8
z−1 − 1

8
z+1+ 1

8
z−1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

1 1

]

︸ ︷︷ ︸
CCC0(z)

=

[
1 1

2

− 1
4
z+ 1

4
z−1 − 1

8
z+1+ 1

8
z−1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

.
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Now, we add a multiple of the 0th column to the 1th column.

[
1 1

2

− 1
4
z+ 1

4
z−1 − 1

8
z+1+ 1

8
z−1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

[
1 − 1

2

0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
1 0

− 1
4
z+ 1

4
z−1 − 1

2

(
− 1

4
z+ 1

4
z−1
)
+
(
− 1

8
z+1+ 1

8
z−1
)
]

=

[
1 0

− 1
4
z+ 1

4
z−1 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)CCC1(z)

.

We obtain

[
1 0

− 1
4
z+ 1

4
z−1 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)CCC1(z)

[
1 0

1
4
z− 1

4
z−1 1

]

︸ ︷︷ ︸
CCC2(z)

=

[
1 0

0 1

]

︸ ︷︷ ︸
III

.

So, in summary, we have

HHHp(z)CCC0(z)CCC1(z)CCC2(z) = III.

Thus, the lifting factorization ofHHHp(z) is given by

HHHp(z) =CCC−12 (z)CCC−11 (z)CCC−10 (z)

=

[
1 0

− 1
4
z+ 1

4
z−1 1

][
1 1

2

0 1

][
1 0

−1 1

]

= A(1,0,− 1
4
z+ 1

4
z−1)A(0,1, 1

2
)A(1,0,−1).

The lifting realization of the filter bank is trivially obtained from the above factorization ofHHHp(z).

Example 3.31. Consider the two-channel shift-free PRUMDfilter bank with analysis filter transfer functionsH0(z),H1(z),
where

H0(z) = 1
64
z4− 8

64
z2 + 16

64
z+ 46

64
+ 16

64
z−1− 8

64
z−2 + 1

64
z−4 and

H1(z) = 1
16
z4− 9

16
z2 + z− 9

16
+ 1

16
z−2.

Find a lifting realization of this system. Choose the lifting filters to be symmetric.

Solution. First, we find the analysis polyphase matrix HHHp(z) corresponding to a (3,1)-type decomposition. We rear-

range the analysis filter transfer functions to obtain

H0(z) = z0
(

1
64
z4− 8

64
z2 + 46

64
− 8

64
z−2 + 1

64
z−4
)
+ z1

(
16
64

+ 16
64
z−2
)

and

H1(z) = z0
(

1
16
z4− 9

16
z2− 9

16
+ 1

16
z−2
)
+ z1 (1) .

From this, we can trivially write the analysis polyphase matrix

HHHp(z) =

[
1
64
z2− 8

64
z+ 46

64
− 8

64
z−1 + 1

64
z−2 16

64
+ 16

64
z−1

1
16
z2− 9

16
z− 9

16
+ 1

16
z−1 1

]
.

One can confirm that detHHHp(z)≡ 1. Therefore, we do not need to concern ourselves with scaling operations.

Now, we apply A-type elementary column operations to HHHp(z) in order to obtain an identity matrix. First, we
perform column operations in an attempt to force a value of one on the first element of the main diagonal. We add a
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multiple of column 1 to column 0. This yields

[
1
64 z

2− 8
64 z+

46
64 − 8

64 z
−1 + 1

64 z
−2 16

64 + 16
64 z
−1

1
16 z

2− 9
16 z− 9

16 + 1
16 z
−1 1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

a2z
2 +a1z+a0 +a−1z−1 1

]

︸ ︷︷ ︸
CCC0(z)

=

[
1
64 z

2− 8
64 z+

46
64 − 8

64 z
−1 + 1

64 z
−2 +

(
a2z

2 +a1z+a0 +a−1z−1
)(

16
64 + 16

64 z
−1
)

16
64 + 16

64 z
−1

1
16 z

2− 9
16 z− 9

16 + 1
16 z
−1 +

(
a2z

2 +a1z+a0 +a−1z−1
)

1

]

=

[(
1
64 + 16

64a2

)
z2 +

(
− 8

64 + 16
64a1 + 16

64a2

)
z+
(
46
64 + 16

64a0 + 16
64a1

)
+
(
− 8

64 + 16
64a−1 + 16

64a0

)
z−1 +

(
1
64 + 16

64a−1
)
z−2 16

64 + 16
64 z
−1

(
1
16 +a2

)
z2 +

(
− 9

16 +a1
)
z+
(
− 9

16 +a0
)
+
(

1
16 +a−1

)
z−1 1

]
.

Since we want a symmetric lifting filter, we must choose to cancel the terms in z2,z1,z−1,z−2. So, the coefficients

a−1,a0,a1,a2 must satisfy

1
64

+ 16
64
a2 = 0, − 8

64
+ 16

64
a1 + 16

64
a2 = 0, − 8

64
+ 16

64
a0 + 16

64
a−1 = 0, and 1

64
+ 16

64
a−1 = 0.

Solving for a−1,a0,a1,a2, we obtain

a2 =− 1
16

, a1 = 9
16

, a0 = 9
16

, and a−1 =− 1
16

.

Thus, we have

[
1
64
z2− 8

64
z+ 46

64
− 8

64
z−1 + 1

64
z−2 16

64
+ 16

64
z−1

1
16
z2− 9

16
z− 9

16
+ 1

16
z−1 1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

− 1
16
z2 + 9

16
z+ 9

16
− 1

16
z−1 1

]

︸ ︷︷ ︸
CCC0(z)

=

[
1 16

64
+ 16

64
z−1

0 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

.

Trivially, we have

[
1 16

64
+ 16

64
z−1

0 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

[
1 − 16

64
− 16

64
z−1

0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
1 0

0 1

]

︸ ︷︷ ︸
III

.

So, in summary, we have

HHHp(z)CCC0(z)CCC1(z) = III.

Thus, the lifting factorization ofHHHp(z) is given by

HHHp(z) =CCC−11 (z)CCC−10 (z)

=

[
1 16

64
+ 16

64
z−1

0 1

][
1 0

1
16
z2− 9

16
z− 9

16
+ 1

16
z−1 1

]

= A
(
0,1, 16

64
+ 16

64
z−1
)
A
(
1,0, 1

16
z2− 9

16
z− 9

16
+ 1

16
z−1
)
.

Example 3.32. Consider the two-channel shift-free PRUMDfilter bank with analysis filter transfer functionsH0(z),H1(z),
where

H0(z) = 3
128

z4− 6
128

z3− 16
128

z2 + 38
128

z+ 90
128

+ 38
128

z−1− 16
128

z−2− 6
128

z−3 + 3
128

z−4 and H1(z) =− 1
2
z2 + z− 1

2
.

Find a lifting realization of this system with symmetric lifting filters.
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Solution. First, we find the analysis polyphase matrix HHHp(z) corresponding to a (3,1)-type decomposition. We rear-

range the analysis filter transfer functions to obtain

H0(z) = z0
(

3
128

z4− 16
128

z2 + 90
128
− 16

128
z−2 + 3

128
z−4
)
+ z
(
− 6

128
z2 + 38

128
+ 38

128
z−2− 6

128
z−4
)

and

H1(z) = z0
(
− 1

2
z2− 1

2

)
+ z(1) .

From this, we can trivially write the analysis polyphase matrix

HHHp(z) =

[
3
128

z2− 16
128

z+ 90
128
− 16

128
z−1 + 3

128
z−2 − 6

128
z+ 38

128
+ 38

128
z−1− 6

128
z−2

− 1
2
z− 1

2
1

]
.

We have that detHHHp(z)≡ 1. Therefore, no scaling operations are required.

Now, we apply A-type elementary column operations toHHHp(z) in order to reduce it to an identity matrix. First, we
add a multiple of column 1 to column 0. This process yields

[
3

128
z2 − 16

128
z+ 90

128
− 16

128
z−1 + 3

128
z−2 − 6

128
z+ 38

128
+ 38

128
z−1 − 6

128
z−2

− 1
2
z− 1

2
1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

a1z+a0 1

]

︸ ︷︷ ︸
CCC0(z)

=




3
128

z2 − 16
128

z+ 90
128
− 16

128
z−1 + 3

128
z−2 +

(
a1z+a0

)(
− 6

128
z+ 38

128
+ 38

128
z−1 − 6

128
z−2

)
− 6

128
z+ 38

128
+ 38

128
z−1 − 6

128
z−2

− 1
2
z− 1

2
+
(
a1z+a0

)
1




=



(

3
128
− 6

128
a1

)
z2 +

(
− 16

128
+ 38

128
a1 − 6

128
a0

)
z+
(

90
128

+ 38
128

a0 + 38
128

a1

)
+
(
− 16

128
+ 38

128
a0 − 6

128
a1

)
z−1 +

(
3

128
− 6

128
a0

)
z−2 − 6

128
z+ 38

128
+ 38

128
z−1 − 6

128
z−2(

− 1
2

+a1

)
z+
(
− 1

2
+a0

)
1


 .

Since we want a symmetric lifting filter, we must choose to cancel the terms in z2 and z−2. So, the coefficients a0,a1
must satisfy

3
128
− 6

128
a1 = 0 and 3

128
− 6

128
a0 = 0.

Solving for a0,a1, we obtain

a0 = 1
2

and a1 = 1
2
.

Thus, we have
[

3
128 z

2− 16
128 z+

90
128 − 16

128 z
−1 + 3

128 z
−2 − 6

128 z+
38
128 + 38

128 z
−1− 6

128 z
−2

− 1
2 z− 1

2 1

]

︸ ︷︷ ︸
HHHp(z)

[
1 0

1
2 z+

1
2 1

]

︸ ︷︷ ︸
CCC0(z)

=

[
1 − 6

128 z+
38
128 + 38

128 z
−1− 6

128 z
−2

0 1

]
.

︸ ︷︷ ︸
HHHp(z)CCC0(z)

Trivially, we have

[
1 − 6

128
z+ 38

128
+ 38

128
z−1− 6

128
z−2

0 1

]

︸ ︷︷ ︸
HHHp(z)CCC0(z)

[
1 6

128
z− 38

128
− 38

128
z−1 + 6

128
z−2

0 1

]

︸ ︷︷ ︸
CCC1(z)

=

[
1 0

0 1

]

︸ ︷︷ ︸
III

.

So, in summary, we have

HHHp(z)CCC0(z)CCC1(z) = III.

Thus, a lifting factorization ofHHHp(z) is given by

HHHp(z) =CCC−11 (z)CCC−10 (z)

=

[
1 − 6

128
z+ 38

128
+ 38

128
z−1− 6

128
z−2

0 1

][
1 0

− 1
2
z− 1

2
1

]

= A
(
0,1,− 6

128
z+ 38

128
+ 38

128
z−1− 6

128
z−2
)
A
(
1,0,− 1

2
z− 1

2

)
.
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↓ 2H0(z)↓ 2H0(z)↓ 2H0(z)

H1(z) ↓ 2

↓ 2H1(z)

↓ 2H1(z)

↑ 2

↑ 2

G0(z)

G1(z)

+ ↑ 2 G0(z) + ↑ 2 G0(z) +

↑ 2 G1(z)

↑ 2 G1(z)

y0[n]

y1[n]

y2[n]

y3[n]

x̂[n]x[n]

Figure 3.52: Example of a tree-structured filter bank.

3.7 Filter Banks and Series Expansions of Signals

Although a UMD filter bank can be seen as a structure that computes a series expansion of a discrete-time signal,

this is not the only interpretation. In fact, as we will see later, such a filter bank can also be viewed as computing

coefficients for a series expansion of a continuous-time signal from the coefficients of a related series expansion of

the same signal. In this case, x[n] is interpreted as the expansion coefficients of the original series, and the subband

signals {yk[n]} represent the expansion coefficients of the new series. As we shall see in next chapter, this scenario

corresponds to a single-level M-band wavelet decomposition. In other words, UMD filter banks compute wavelet

series expansions (i.e., wavelet transforms).

3.8 Tree-Structured Filter Banks

As shown in Figure 3.32, the analysis side of anM-channel UMD filter bank decomposes the input signal x[n] intoM
subband signals {yk[n]}. The synthesis side then recombines these subband signals to obtain x̂[n], the reconstructed
version of the original signal. There is nothing, however, to prevent the use of additional UMD filter banks to further

decompose some or all of the subband signals {yk[n]}. Of course, some or all of the resulting subband signals can

again be decomposed with even more UMD filter banks. In other words, this idea can be applied recursively, and the

final result is a filter bank with a tree structure.

In Figure 3.52, we show an example of a tree-structured filter bank obtained by recursively decomposing the

lowpass subband signal of a two-channel UMD filter bank. Using the noble identities, this filter bank can also be

equivalently expressed in the form shown in Figure 3.53, where

H ′0(z) = H0(z)H0(z
2)H0(z

4),

H ′1(z) = H0(z)H0(z
2)H1(z

4),

H ′2(z) = H0(z)H1(z
2),

H ′3(z) = H1(z),

G′0(z) = G0(z)G0(z
2)G0(z

4),

G′1(z) = G0(z)G0(z
2)G1(z

4),

G′2(z) = G0(z)G1(z
2), and

G′3(z) = G1(z).

In passing, we note that if a tree-structured filter bank is such that 1) only the lowpass subband signal is decom-

posed at each level in the tree, 2) the same basic UMD filter bank building block is used for decomposition at all

levels, and 3) this basic block has PR and satisfies certain regularity conditions, then the tree-structured filter bank

can be shown to compute a wavelet transform. In the two-channel case, such a tree-structured filter bank is called an

octave-band filter bank. The analysis side of the octave-band filter bank calculates the forward wavelet transform

and the synthesis side calculates the inverse wavelet transform.

At this point, our motivation for studying UMD filter banks becomes apparent. Under the conditions stated above,

a UMD filter bank can be directly linked to a wavelet decomposition. Thus, UMD filter banks can be used to both

design and implement wavelet transforms.
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↓ 8H ′0(z)

H ′1(z) ↓ 8

↑ 8

↑ 8

G′0(z)

G′1(z)

+

H ′2(z)

H ′3(z)

↓ 4

↓ 2

↑ 4

↑ 2

G′2(z)

G′3(z)

+

+

y0[n]

y1[n]

y2[n]

y3[n]

x[n] x̂[n]

Figure 3.53: Equivalent non-uniformly decimated filter bank.

+

+

↓M

↑M

↓M ↑M

↑M

↓M

G0(z)

GM−1(z)

G1(z)

H0(z)

H1(z)

HM−1(z)

...

x̂[n]

...

y0[n]

...

y1[n]

yM−1[n]uM−1[n]

u1[n]

u0[n] v0[n]

v1[n]

vM−1[n]

...

x[n]

...
...

w0[n]

w1[n]

wM−1[n]

Figure 3.54: An M-channel UMD filter bank.

3.9 Filter Banks and Finite-Extent Signals

Consider an M-channel UMD filter bank like the one shown in Figure 3.54. So far, we have assumed that such

a system operates on sequences of infinite extent (i.e., sequences defined on Z). In many practical applications,

however, the sequences of interest are defined only on some bounded domain such as a finite subset of the integers

(e.g., {0,1, . . . ,N−1}). Consequently, a means is needed to facilitate the handling of finite-extent sequences by filter

banks. As we shall see, a number of complications arise when dealing with finite-extent sequences.

For example, let us consider a sequence x[n] defined only for n ∈ {0,1,2,3} Suppose that we wish to process

x using the filter bank from Figure 3.54 with M = 2. Defining downsampling and upsampling for a finite-extent

sequence is not too problematic. For example, we could simply define these operations as:

x[0] x[1] x[2] x[3]
↑2−→ x[0] 0 x[1] 0 x[2] 0 x[3] 0 and

x[0] x[1] x[2] x[3]
↓2−→ x[0] x[2].

In contrast, however, filtering a finite-extent sequence is problematic. Consider filtering the sequence x with a fil-

ter having impulse response h, where h[n] = 0 for n 6∈ {−1,0,1} (i.e., h is a three-tap FIR filter). In general, the

convolution result y = h∗ x is given by

y[n] = h∗ x[n] = ∑
k∈Z

h[k]x[n− k] = h[−1]x[n+1]+h[0]x[n]+h[1]x[n−1].

Consider calculating y for the same domain on which x is defined (i.e., for {0,1,2,3}). First, consider computing y[0].
We have

y[0] = h[−1]x[1]+h[0]x[0]+h[1]x[−1]︸ ︷︷ ︸
undefined

.
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Observe that the quantity x[−1], appearing in the preceding equation, is not defined since −1 is not in the domain of

x. Similarly, consider computing y[3]. We have

y[3] = h[−1] x[4]︸︷︷︸
undefined

+h[0]x[3]+h[1]x[2].

Observe that the quantity x[4], appearing in the preceding equation, is not defined since 4 is not in the domain of x.

In short, we have a problem. That is, the convolution result y[n] is not well defined for every n in the domain of x.

This is the so called boundary problem for filtering (since it occurs when computing the convolution result at points

near the boundary of the sequence’s domain). Generally, unless h is of the form h[n] = Kδ [n] (i.e., the filter is trivial),
the boundary filtering problem will always occur. If h[n] 6= 0 for some n < 0, the boundary problem will occur when

filtering near the “right” edge of the sequence’s domain. If h[n] 6= 0 for some n > 0, the boundary problem will occur

when filtering near the “left” edge of the sequence’s domain.

There are two general approaches to dealing with the boundary filtering problem. The first approach is signal

extension. With this approach, we extend a finite-extent sequence so that the resulting sequence is defined for all Z.
Then, the filter bank is made to operate on the extended sequence. Since the extended sequence is defined for all Z,
the boundary problem is avoided. The second approach is filter modification. That is, we change the filter near the

sequence boundaries (effectively shortening the length of the filter) so that samples outside the sequence’s domain are

not required in the convolution computation. Of the above two approaches, the second one is more general, in the

sense that signal-extension methods can also be equivalently described in terms of filter modification. Unfortunately,

modifying the filters is often more complicated, as one must be careful not to adversely affect properties of the filter

bank (such as PR).

Another issue that arises when handling finite-extent sequences relates to the number of samples being processed.

The analysis and synthesis sides of the filter bank each perform a linear transformation. The analysis side maps

N samples to N′ samples. If the net number of samples does not increase (i.e., N′ ≤ N), we say that transform is

nonexpansive. In many applications, the nonexpansive property is extremely important. If a transform is expansive,

the transformed representation of the sequence is inefficient/redundant (i.e., we are representing a fundamentally N-

dimensional vector as a vector in a space of dimension greater than N). This is undesirable in many applications,

especially signal compression. Moreover, many complicating factors often arise in practical systems when using

expansive transforms. For example, since N 6= N′, the amounts of memory required to hold the original sequence

and its corresponding subband signals differ. Thus, extra bookkeeping is required to keep track of the differing sizes

of arrays used to hold sequence samples. Also, we cannot compute the transform in place, since the transformed

sequence requires more storage than the original sequence.

In the sections that follow, we will study three techniques for handling finite-extent sequences with filter banks,

namely, the zero-padding, periodic-extension, and symmetric-extension methods. All of these techniques are based

on signal extension. Also, we will explain how the lifting realization can easily accommodate finite-extent sequences

via either signal extension or filter modification. As we will see, some of the preceding methods lead to nonexpansive

transforms, while others do not.

3.9.1 Zero-Padding Method

Of the various techniques for handling finite-extent signals with filter banks, arguably the simplest is zero padding.

This method relies on the so called zero-padding signal-extension scheme. Suppose that we have a finite-extent

sequence x defined on {0,1, . . . ,N− 1} (i.e., a sequence of length N). The process of zero padding transforms x to

the new sequence y defined for all Z, where

y[n] =

{
x[n] n ∈ {0,1, . . . ,N−1}
0 otherwise.

(3.95)

In other words, y is obtained by padding x with zeros before its first sample and after its last sample. The zero padding

process is illustrated in Figure 3.55.

In passing, we note the following property of convolution, which will be important later.
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0 1 2 3

x[n]

1

2

3

4

n

(a)

0 1 2 3 4 5 6−1−2−3

y[n]

1

2

3

4

· · · · · ·
n

(b)

Figure 3.55: Zero padding example. (a) Original and (b) extended sequences.

Theorem 3.20. Let x and h be sequences with support in {M0,M0+1, . . . ,M1} and {N0,N0+1, . . . ,N1}, respectively,
with the size of these sets being L0 = M1−M0 +1 and L1 = N1−N0 +1, respectively. Then, y = x∗h has support in

{M0 +N0,M0 +N0 +1, . . . ,M1 +N1} with size L0 +L1−1.

From the above result, if a filtering operation is performed with a nontrivial filter (i.e., a filter with more than

one tap), the number of samples needed to characterize the convolution result is greater than the number of samples

needed to characterize the input to the filter.

Now, consider the M-channel filter bank from Figure 3.54 with FIR filters. Suppose that we have a finite-extent

sequence x′ defined on {0,1, . . . ,N− 1} (i.e., a sequence of length N) that we want to process with the filter bank.

To eliminate the problems associated with finite-extent sequences, we use zero padding to transform x′ into the new

sequence x, and then use this new sequence as the input to the analysis side of the filter bank. When using zero

padding, the output of the analysis side of the filter bank is completely characterized by a finite number N′ of samples

(namely, the samples which can possibly be nonzero). Unfortunately, due to the result of Theorem 3.20, we have that

N′ > N (unless the analysis filters are trivial). Since the analysis side of the filter bank maps N samples to N′ samples,

where N′ > N, the transformation associated with the analysis side of the filter bank is expansive. As mentioned

previously, expansive transforms are highly undesirable in many applications. Furthermore, the zero padding process

can potentially introduce a significant amount of high-frequency spectral content in the extended sequence, due to

large jumps where the padding starts. For the preceding reasons, the use of zero padding is often avoided.

3.9.2 Periodic-Extension Method

Another technique for handling finite-extent sequences with filter banks is the periodic-extension method. This ap-

proach makes use of the so called periodic-extension signal-extension method. Let x denote a finite-extent sequence

defined on {0,1, . . . ,N−1} (i.e., a sequence of length N). The process of periodic extension transforms x to the new

N-periodic sequence y defined on Z, where

y[n] = x[mod(n,N)] for all n ∈ Z. (3.96)

In other words, periodic extension transforms a sequence containing N elements to an N-periodic sequence defined

on Z. An example of a sequence x and its periodically extended version y is illustrated in Figure 3.56.

Before presenting the details of the periodic-extension method, we must also introduce some important properties

of LTI systems and downsamplers/upsamplers in relation to periodic sequences. These properties are stated in the

theorems below.

Theorem 3.21. If the input to a LTI system is N-periodic, then output of the system is N-periodic.

Theorem 3.22. If the input to an M-fold downsampler is N-periodic and M|N, then the output of the downsampler is
( N
M

)-periodic.

Theorem 3.23. If the input to an M-fold upsampler is N-periodic, then the output of the upsampler is MN-periodic.
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0 1 2 3

x[n]

1
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3

4

n

(a)

0 1 2 3 4 5 6 7−1−2−3−4

· · · · · ·

y[n]

n

1

2

3

4

(b)

Figure 3.56: Periodic extension example. (a) Original and (b) extended sequences.

With the above properties in mind, we are now in a position to introduce the periodic-extension method. Consider

a finite-extent sequence x′ defined on {0,1, . . . ,N− 1} (i.e., a signal of length N). Suppose that we would like to

process x′ using theM-channel filter bank shown in Figure 3.54. With periodic extension, instead of using the system

directly as it is shown in Figure 3.54, we employ the modified structure shown in Figure 3.57.

Consider the analysis side of the modified structure shown in Figure 3.57(a). For the input to the filter bank,

we choose x as the periodic extension of x′ (as given by (3.96)). Because x[n] is defined for all n ∈ Z, the boundary
problem is eliminated. Since x isN-periodic (by construction) andHk is LTI, uk must beN-periodic (by Theorem 3.21).

Suppose now thatM|N. Then, it follows from the N-periodicity of uk and Theorem 3.22 that yk is ( N
M

)-periodic, Since

yk is ( N
M

)-periodic, it can be completely characterized by N
M

samples. For each yk, we define a new sequence y′k as
y′k[n] = yk[n] for n ∈ {0,1, . . . , N

M
−1}. In other words, y′k is a finite-extent sequence consisting of the N

M
samples from

one period of yk. Since each sequence y′k consists of
N
M

samples and there are M such sequences, the output of the

analysis side of the filter bank is comprised of M
(
N
M

)
= N samples. Thus, the analysis side of the filter bank maps N

samples to N′ samples, where N′ = N, and corresponds to a nonexpansive transform.

The synthesis side of the modified filter bank structure shown in Figure 3.57(b) works in a similar way as the

analysis side. It is left as an exercise to the reader to consider the synthesis side in more detail. For this purpose,

Theorem 3.23 is useful.

The periodic-extension method has a number of desirable characteristics. First, it can be used with a filter bank

having any number of channels. Second, it works for any analysis and synthesis filters, including IIR filters (although

one must be careful to handle the initial conditions appropriately). The periodic-extension method, however, has two

significant disadvantages. First, it requires that M|N. (For example, if M = 2, N must be even.) Second, the process

of periodically extending a sequence typically introduces large jumps at the splice points between periods, which

artificially increases the amount of high-frequency content in the sequence. This increase in high-frequency content

can be highly undesirable in some applications (e.g., signal compression).

3.9.3 Symmetric-Extension Method

Another approach to handing finite-extent sequences with filter banks is the symmetric-extension method, which is

based on a signal-extension scheme known as symmetric extension. Before presenting the details of the symmetric-

extension method, we first provide some related background information.

A sequence x of the form

x[n] = (−1)sx[2c−n],

where s ∈ {0,1} and c ∈ 1
2
Z (i.e., c is an integer multiple of 1

2
), is said to have symmetry about the point c. If s = 0 or

s = 1, the sequence is said to be symmetric or antisymmetric, respectively. If the symmetry point c ∈ Z (i.e., c falls

on a sample point) or c ∈ 1
2
Zodd (i.e., c falls half way between sample points), the symmetry is referred to as whole

sample (WS) or half sample (HS), respectively. (Recall that Zodd denotes the set of odd integers.) Some examples

of sequences having symmetry are shown in Figure 3.58. In each case, the symmetry point is indicated with a dotted

line.
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Figure 3.57: Filter bank with periodic extension. (a) Analysis and (b) synthesis sides.
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Figure 3.58: Examples of sequences with symmetry. An example of a sequence that is (a) WS symmetric, (b) HS

symmetric, (c) WS antisymmetric, and (d) HS antisymmetric.

Let x be a (finite-extent) sequence defined on {0,1, . . . ,N− 1} (i.e., a sequence of length N). From x, we can

construct a sequence defined on Z that is both periodic and symmetric. This is accomplished by applying a symmetry

operation to the samples in x and then repeating the resulting samples periodically. In doing so, we have some

flexibility in the number of times that we choose to repeat the first and last samples of x. To indicate that the first and

last samples are repeated a and b times, respectively, we refer to the extension process as type (a,b). Here, we will
consider the case of (a,b)-type extension for a,b ∈ {0,1}. This leads to four distinct symmetric extensions of x. Two

cases are illustrated in Figure 3.59. In more precise terms, the (a,b)-type symmetric extension y of x is given by

y[n] = x [min{mod(n,P),P−a−mod(n,P)}] , (3.97)

where P = max{2N+a+b−2,1}. Note that y is P-periodic and symmetric about 0 if a = 0 or − 1
2
if a = 1.

Suppose that we have a sequence that is both periodic and has symmetry. For an N-periodic sequence with

symmetry, the symmetry points always occur in pairs within each period. In particular, if one symmetry point is c0,

the other symmetry point c1 within same period (with c1 > c0) is given by c1 = c0 + N
2
. From this, it follows that:

• if N is even, the symmetry points are either both WS or both HS; and

• if N is odd, one symmetry point is WS and the other is HS.

This leads to six distinct symmetry types for periodic sequences as illustrated in Figure 3.60. Due to periodicity and

symmetry, an N-periodic sequence with symmetry can be characterized by only a finite number N′ of its samples,

where N′ ≈ 1
2
N. The set of indices for the independent samples can always be chosen as a set of consecutive integers.

In particular, given the symmetry point c, the indices of a complete set of independent samples is given by:

• ⌈c⌉ ,⌈c⌉+1, . . . ,
⌊
c+ N

2

⌋
if the sequence is symmetric; and

•
⌈
c+ 1

2

⌉
,
⌈
c+ 1

2

⌉
+1, . . . ,

⌊
c+ N−1

2

⌋
if the sequence is antisymmetric.

Depending on the parity (i.e., evenness/oddness) of N and type of symmetry, several cases are possible. For each of

these cases, the indices of the independent samples and N′ are listed in Table 3.1.
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Figure 3.59: Symmetric extension example. (a) Original sequence and the result produced by applying (b) (0,0) and

(c) (1,1) symmetric extension.

Table 3.1: The indices of the independent samples and their number for the various cases

N Symmetry c0 c1 Indices of Independent Samples N′

even symmetric or antisymmetric HS HS ck + 1
2
,ck + 3

2
, . . . ,ck + N−1

2
N
2

even symmetric WS WS ck,ck +1, . . . ,ck + N
2

N+2
2

odd symmetric WS HS c0,c0 +1, . . . ,c0 + N−1
2

c1 + 1
2
,c1 + 3

2
, . . . ,c1 + N

2

N+1
2

even antisymmetric WS WS ck +1,ck +2, . . . ,ck + N−2
2

N−2
2

odd antisymmetric WS HS c0 +1,c0 +2, . . . ,c0 + N−1
2

c1 + 1
2
,c1 + 3

2
, . . . ,c1 + N−2

2

N−1
2
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Figure 3.60: Examples of various N-periodic symmetric/antisymmetric sequences with symmetry points c0 and c1.

(a) Even-period HS symmetric, (b) even-period HS antisymmetric, (c) odd-period WS-HS symmetric, (d) odd-period

WS-HS antisymmetric, (e) even-period WS symmetric, and (f) even-period WS antisymmetric sequences.
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Figure 3.61: Filter bank with symmetric extension. (a) Analysis and (b) synthesis sides.

Lastly, we introduce a few basic facts regarding the effects of downsampling and convolution on periodic se-

quences with symmetry. These facts are stated in the theorems below.

Theorem 3.24. If a symmetric or antisymmetric sequence with the symmetry point c is downsampled by the factor M

and c
M
∈ 1

2
Z, then the resulting downsampled sequence is symmetric or antisymmetric, respectively, with the symmetry

point c
M
.

Theorem 3.25. If a symmetric sequence with the symmetry point c is input to a symmetric or antisymmetric filter with

group delay d, then the output is symmetric or antisymmetric, respectively, with the symmetry point c+d.

With the preceding background in place, we can now present the symmetric-extension method. The symmetric-

extension method for handing finite-extent sequences with filter banks was first proposed by Smith and Eddins [27]

and has subsequently received considerable attention (e.g., [2, 4, 5, 17, 19, 21, 22, 23, 28]). With this method, the

input to the filter bank is extended to be both periodic and symmetric. Then, both the symmetry and periodicity

properties are exploited to obtain a transform that is nonexpansive. The method can only be applied in the case of

filter banks with filters having linear phase.

Consider the two-channel filter bank as shown in Figure 3.54, where M = 2. With the symmetric-extension

method, we add preprocessing and postprocessing steps to each of the analysis and synthesis sides of the filter bank

to obtain the modified system depicted in Figure 3.61. In what follows, we will consider only on the analysis side (as

shown in Figure 3.61(a)), since the case of the synthesis side (shown in Figure 3.61(b)) involves the same principles.

Consider the analysis side of the structure shown in Figure 3.61(a). Suppose that we have a finite-length sequence

x′ defined on {0,1, . . . ,N−1} (i.e., a sequence of length N). The basic idea behind the symmetric-extension method

is as follows. We choose the input x to analysis side of filter bank as the symmetric extension of x′. Thus, x is periodic
with a period of approximately 2N. Recall that the analysis filters must have linear phase (i.e., their impulse responses

have symmetry). Furthermore, we assume that their group delays satisfy certain constraints (to be introduced later).

From the periodicity and symmetry of x, the symmetry of hk, and Theorem 3.25, each uk is symmetric/antisymmetric

and is periodic with a period of approximately 2N. We can conclude, from Theorem 3.24 and our assumption regarding

the analysis-filter group delays, that each subband signal yk is symmetric/antisymmetric and periodic with a period of

approximately N. Since each subband signal yk has symmetry, only about one half of the samples in a single period

are required to characterize the sequence. In other words, we need approximately N
2
samples from each subband

signal, for a total of approximately 2(N
2
) = N samples. Thus, subject to the assumptions indicated above, we have a

transform that is nonexpansive. Note that words like “approximately” frequently appear in the preceding discussion.

This is because some technical details have been omitted in order to simplify the initial presentation of the method.

Now, we will consider the method in more detail.
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Table 3.2: The number of independent samples (for the case of odd-length filters)

Symmetry

N N−1 y0 y1 N0 N1 N′

even odd WS-HS HS-WS
(N−1)+1

2
= N

2

(N−1)+1

2
= N

2
N

even odd HS-WS WS-HS
(N−1)+1

2
= N

2

(N−1)+1

2
= N

2
N

odd even WS HS
(N−1)+2

2
= N+1

2
N−1
2

N

odd even HS WS N−1
2

(N−1)+2

2
= N+1

2
N

Note: The symmetry points for yk are
λ+γk
2

and
λ+γk+N−1

2
.

Recall Theorem 3.17 (on page 148). For a two-channel PR filter bank with linear-phase filters (having practically

useful frequency responses), the filter lengths must be all even or all odd. Moreover, the analysis filters must be such

that

1. both are of odd length and symmetric; or

2. both are of even length, with one being symmetric and the other being antisymmetric.

So, we consider each of these possibilities in turn.

CASE OF ODD-LENGTH FILTERS. First, we consider the case of odd-length analysis filters. Let γk denote the

group delay of analysis filter Hk. In the case of odd-length filters, H0 and H1 are both symmetric and γk ∈ Z. Without

loss of generality, we assume that γ0 and γ1 have opposite parity (i.e., γ0 and γ1 are such that one is odd and one is

even). Consider the analysis side of the filter bank in Figure 3.61(a). We choose the input x to the filter bank as the

following (0,0) symmetric extension of x′:

x[n] = x′ [min{mod(n−λ ,2N−2),2N−2−mod(n−λ ,2N−2)}] for all n ∈ Z,

where λ ∈Z. For greater flexibility, we allow the extended sequence to be shifted via the parameter λ . (The preceding
equation is identical to (3.97) when λ = 0.) We have that x is (2N−2)-periodic and symmetric with a WS symmetry

point at λ . From the properties of convolution, uk is (2N− 2)-periodic with symmetry center λ + γk ∈ Z. From the

properties of downsampling, yk is (N−1)-periodic with symmetry center
λ+γk
2
∈ 1

2
Z. Observe that one of {λ+γk

2
}1k=0

is in Z and one is in 1
2
Zodd (i.e., one is WS and one is HS). Let N0 and N1 denote the number of samples needed to

completely characterize y0 and y1, respectively, and let N′ = N0 +N1. Using Table 3.1, we can find the indices of a

set of independent samples for each of {yk}1k=0 in order to determine {Nk}1k=0 and N
′. The results obtained are shown

in Table 3.2. From this table, we can see that N′ = N in every case. Thus, a nonexpansive transform is obtained.

CASE OF EVEN-LENGTH FILTERS. Next, we consider the case of even-length analysis filters. Let γk denote the
group delay of analysis filter Hk. Without loss of generality, we assume that H0 is symmetric, H1 is antisymmetric,

γk ∈ 1
2
Zodd, and γ0− γ1 ∈ Z. Consider the analysis side of the filter bank in Figure 3.61(a). We choose the input x to

the filter bank as the following (1,1) symmetric extension of x′:

x[n] = x′ [min{mod(n−λ ,2N),2N−1−mod(n−λ ,2N)}] for all n ∈ Z,

where λ ∈ Z. (Again, the parameter λ simply introduces a shift in the extended sequence.) We have that x is

2N-periodic and HS symmetric about λ − 1
2
. From properties of convolution, uk is 2N-periodic and WS symmet-

ric/antisymmetric about 2λ−1
2

+ γk = λ + γk− 1
2
∈ Z. From properties of downsampling, yk is N-periodic and WS or

HS symmetric/antisymmetric about
2λ+2γk−1

4
∈ 1

2
Z. Observe that { 2λ+2γk−1

4
}1k=0 are both even multiples or both odd

multiples of 1
2
. Let N0 and N1 denote the number of samples needed to completely characterize y0 and y1, respectively,

and let N′ = N0 +N1. Using Table 3.1, we can find the indices of a set of independent samples for each of {yk}1k=0

in order to determine {Nk}1k=0 and N′. The results obtained are shown in Table 3.3. From this table, we can see that

N′ = N in every case. Thus, a nonexpansive transform is obtained.

Since we have shown that a nonexpansive transform is obtained in the case of even-length and odd-length filters,

the symmetric-extension method clearly works in all cases.
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Table 3.3: The number of independent samples (for the case of even-length filters)

Symmetry

N y0 y1 N0 N1 N′

even HS symmetric HS antisymmetric N
2

N
2

N

even WS symmetric WS antisymmetric N+2
2

N−2
2

N

odd WS-HS symmetric WS-HS antisymmetric N+1
2

N−1
2

N

odd HS-WS symmetric HS-WS antisymmetric N+1
2

N−1
2

N

Note: The symmetry points for yk are
2λ+2γk−1

4
and

2λ+2γk+2N−1
4

.
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+
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Figure 3.62: Lifting step. (a) A lifting step and (b) its inverse.

The symmetric-extension method has a number of desirable characteristics. First, it does not introduce as much

high-frequency spectral content as periodic extension, since large jumps are always avoided at the splice points be-

tween periods. Second, it works regardless of the parity (i.e., evenness/oddness) of N. Unfortunately, the method also

has some disadvantages. First, it requires that the filters have linear phase and satisfy certain constraints on their group

delays. Second, the method does not extend cleanly to theM-channel case, where M > 2.

3.9.4 Per-Lifting-Step Extension Method

Another alternative for handling finite-extent sequences with filter banks is offered by the per-lifting-step (PLS) ex-

tension method. This particular technique is used in conjunction with the lifting realization of a filter bank. As it turns

out, the lifting realization can very easily accommodate finite-extent sequences.

Recall that the lifting realization (introduced earlier in Section 3.6.3) makes use of two types of polyphase filtering

networks, namely, lifting and scaling steps. These networks appear earlier in Figures 3.47 and 3.48. As far as finite-

extent sequences are concerned, the scaling steps pose no problems. The lifting steps are potentially problematic,

however, as they involve convolution. So, we must find a way in which to address the boundary problem during

convolution in each lifting step.

The polyphase filtering networks for a lifting step and its inverse are shown in Figure 3.62. Consider the network

for the lifting step shown in Figure 3.62(a). The lifting step is characterized by the equation

vk[n] = uk[n]+ (ul ∗ f )[n]. (3.98)

When computing ul ∗ f in the preceding equation, we typically need to evaluate ul at points outside of its domain. This

leads to the so called boundary problem. This problem, however, is easily rectified. Let E denote an arbitrary signal-

extension operator that maps a sequence defined on a finite subset of Z to a sequence defined on Z. For example, E

could be chosen as zero extension (3.95), periodic extension (3.96), or symmetric extension (3.97), amongst many

other possibilities as well. We can then replace the computation in (3.98) by

vk[n] = uk[n]+ (E(ul)∗ f )[n].

In other words, we extend the sequence ul before computing the convolution. In so doing, we avoid the boundary

problem. Due to the symmetry in the analysis and synthesis sides of the lifting realization of a filter bank, as long

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



3.10. FILTER BANKS AND MULTIDIMENSIONAL SIGNALS 185

as we employ the same extension operator E for corresponding lifting steps on the analysis and synthesis sides, the

PR property will be maintained. The above approach also leads to nonexpansive transforms, since each lifting step

preserves the total number of samples being processed.

In passing, we note that instead of extending ul in (3.98), we could have modified f so as to avoid the boundary

problem. This approach also would also maintain the PR property of the filter bank as long as the same filter-

modification strategy is applied to corresponding lifting steps on the analysis and synthesis sides of the filter bank.

As it turns out, in some cases, by making an appropriate choice of the extension operator, one can achieve identical

behavior to the symmetric-extension method discussed earlier. That is, for some filter banks, the symmetric-extension

method can be implemented using the PLS-extension scheme [2].

The PLS-extension method has numerous desirable attributes. First, it is conceptually simple and relatively easy

to implement. Second, it can be applied to any filter bank that has a lifting realization, regardless of the number

of channels. Third, it provides great flexibility, since the extension operator can be chosen arbitrarily. Perhaps, the

only disadvantage of the PLS-extension method is that is requires the use of the lifting realization. This restriction,

however, is not so burdensome, since the lifting realization is often used in practice (due to its many advantages).

3.10 Filter Banks and Multidimensional Signals

The UMD filter banks that we have considered so far are fundamentally one-dimensional in nature. That is, the filter

banks are only capable of processing one-dimensional signals. Many types of signals, however, are multidimensional

in nature (e.g., images, video, volumetric medical data, and so on). Clearly, a means is needed for handling such

signals. For this reason, one might wonder how we can construct a filter bank that is capable of processing such

multidimensional signals.

As it turns out, the easiest way in which to construct a multidimensional filter bank is from one-dimensional

building blocks. In other words, we construct a multidimensional filter bank as a composition of one-dimensional

filter banks. Or put another way, we view a multidimensional signal as being comprised of one-dimensional slices,

which are then processed with one-dimensional filter banks. For example, consider a two-dimensional signal x. The

kth (one-dimensional) horizontal slice of x is given by xh,k[n] = x[n,k] and the kth (one-dimensional) vertical slice of

x is given by xv,k[n] = x[k,n]. To begin, we apply a (one-dimensional) filter bank to each horizontal slice of x. For

each horizontal slice that is processed, M one-dimensional subband signals are produced. Then, for each channel, we

vertically stack the one-dimensional subband signals to produce M two-dimensional signals. Next, for each of the M

two-dimensional subband signals, we apply the (one-dimensional) filter bank to each vertical slice. This yieldsM new

subband signals for each of the M original subband signals, for a total of M2 subbands. This process is illustrated in

Figure 3.63.

In effect, we have constructed the M2-channel two-dimensional filter bank, shown in Figure 3.64 where J(M) =

M2. The filters {Hk}M
2−1

k=0 and {Gk}M
2−1

k=0 employ two-dimensional filtering operations that are composed from one-

dimensional operations, and the two-dimensional downsamplers/upsamplers are composed from one-dimensional

downsamplers/upsamplers.

Although we have considered the two-dimensional case here for simplicity, this idea trivially extends to any

arbitrary number of dimensions. More specifically, we construct a D-dimensional filter bank by applying a one-

dimensional filter bank in each of the D dimensions. The resulting D-dimensional filter bank has MD channels (and

the MD subband signals are each D dimensional). where the analysis/synthesis filtering operations and downsam-

pling/upsampling operations are defined in D dimensions (as a composition of one-dimensional operations). This

system is shown in Figure 3.64, where J(M) = MD. The analysis/synthesis filters {Hk}M
D−1

k=0 and {Gk}M
D−1

k=0 cor-

respond to D-dimensional filtering operations composed from one-dimensional operations, and the D-dimensional

downsampling/upsampling operations are composed from one-dimensional operations.

The above approach to constructing multidimensional filter banks has a number of desirable characteristics. It

is conceptually simple and easy to analyze, requiring only one-dimensional signal-processing theory. The approach

is also computationally efficient, as all operations are fundamentally one-dimensional in nature. Although the above

approach is adequate for many applications, it also has some significant disadvantages. First, since the multidimen-

sional filter bank is composed from one-dimensional operations, it cannot exploit the true multidimensional nature of

the signal being processed. Second, the flexibility in the partitioning of the frequency-domain into subbands is quite
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(a)

(b)

Figure 3.63: Processing two-dimensional signals with one-dimensional filter banks. Processing of (a) horizontal and

(b) vertical slices.

Figure 3.64: Separable multidimensional UMD filter bank.
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Figure 3.65: The M-channel transmultiplexer.

limited. Third, the number of channels possessed by the multidimensional filter bank is constrained to beMD. Some-

times, this restriction on the number of channels might be overly constraining. For example, the number of channels

can become quite large, depending on D andM. In particular, the number of channels increases exponentially with D

and as a Dth-order polynomial withM (e.g., if D = 2, number of channels increases quadratically withM).

3.11 Transmultiplexers

Although the primary focus of this chapter is UMD filter banks, we would like to take a moment to briefly introduce

another type of multirate system, called a transmultiplexer, that is very closely related to a UMD filter bank. A

transmultiplexer is simply the system obtained by swapping the analysis and synthesis sides of a UMD filter bank.

More specifically, the general structure of an M-channel transmultiplexer is shown in Figure 3.65. The synthesis

side of the transmultiplexer (on the left side of the figure) multiplexesM signals {xk}M−1k=0 onto single signal y, and the

analysis side (on the right side of the figure) demultiplexes y into M signals {x̂k}M−1k=0 . As a matter of terminology, a

transmultiplexer is said to have the PR property if, for each k ∈ {0,1, . . . ,M−1},

x̂k[n] = xk[n−dk]

for some d0,d1, . . . ,dM−1 ∈ Z and all n ∈ Z. One can show that a transmultiplexer has the PR property if its corre-

sponding UMD filter bank has the PR property.

3.12 Applications of UMD Filter Banks and Other Multirate Systems

Although we have considered several types of multirate systems in this chapter, our primary focus has been UMD

filter banks. An M-channel UMD filter bank can be used to decompose a signal into M frequency bands (determined

by the frequency responses of the analysis filters {Hk}M−1k=0 ), as shown in Figure 3.66. Therefore, a filter bank is

potentially useful whenever it is beneficial to process a signal in terms of its different frequency bands. In practice, we

usually have some processing block inserted between the analysis and synthesis sides of the filter bank, as shown in

Figure 3.67. Often a PR system is desired so that any difference between x and x̂ is due to subband processing and not

distortion caused by the filter bank itself. Some applications of filter banks are explored in Chapter 10. As it turns out,

filter banks are also a basic building block in the computational structure for the discrete wavelet transform (DWT).

In addition to UMD filter banks, we have also discussed sampling-rate converters. In practice, many different

sampling rates are often used for a particular type of data. For example, in the case of audio data, some commonly-

used sampling rates include:

• studio recording: 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 192 kHz

• MPEG-1 Audio Layer 3 (MP3): 44.1 kHz (typical), 32 kHz, 48 kHz
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Figure 3.66: Partitioning of a signal into its frequency bands.
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Figure 3.67: A UMD filter bank with processing performed on subband signals.

• Digital Audio Tape (DAT): 48 kHz (typical), 44.1 kHz, 32 kHz

• Compact Disc (CD): 44.1 kHz

• DVD Audio: 44.1 kHz, 192 kHz

• GSM-FR: 8 kHz

Since many different sampling rates are used, a means is needed to convert between sampling rates. In earlier sections,

we examined how to efficiently perform sampling rate conversion when the conversion factor is rational (or integer).

Lastly, we also briefly introduced transmultiplexers. Since transmultiplexers can be used to perform signal mul-

tiplexing, they are extremely useful in communication systems. Applications of transmultiplexers are examined in

more depth in Chapter 10.

3.13 Problems

3.1 For the system shown in each of the figures below, find an expression for y[n] in terms of x[n]. Use multirate

identities in order to simplify your solution.
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↑ 3 ↓ 2 ↓ 3 ↑ 2
x[n] y[n]

(a)

z−4 ↑ 3 ↓ 2↓ 2
x[n] y[n]

(b)

↑ 5 z−k ↓ 5
y[n]x[n]

(c)

↑M H(zM) ↓M
x[n] y[n]

(d)

3.2 Suppose that we have the system shown in the figure (a) below, where

H(e jω) =

{
1 for 0≤ |ω|< π

2

0 for π
2
≤ |ω| ≤ π

and

G(e jω) =

{
2 for 0≤ |ω|< π

2

0 for π
2
≤ |ω| ≤ π.

Let X(e jω),V (e jω), Y (e jω),W (e jω), and X̂(e jω) denote the Fourier transforms of x[n], v[n], y[n], w[n], and x̂[n],
respectively. Let X1(e

jω) and X2(e
jω) be as given in figures (b) and (c), respectively. Sketch V (e jω), Y (e jω),

W (e jω), and X̂(e jω) if X(e jω) is equal to each of the following:

(a) X(e jω) = X1(e
jω); and

(b) X(e jω) = X2(e
jω).

H(z) ↓ 2 ↑ 2 G(z)
x[n] v[n] y[n] w[n] x̂[n]

(a)

0−π
2

π
2

ω

X1(e
jω)

1

(b)

0

1

X2(e
jω)

ω
−π π

(c)

3.3 (a) For the decimator shown in the figure below, sketch the frequency response H(e jω) of the ideal filter that
prevents aliasing.

H(z) ↓ 3
x[n] y[n]
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(b) For the interpolator shown in the figure below, sketch the frequency response G(e jω) of the ideal filter that
eliminates imaging.

G(z)↑ 5
x[n] y[n]

(c) Determine the frequency response H(e jω) of the ideal lowpass filter H necessary to avoid aliasing and

imaging in the system shown in the figure below.

↑ 3 H(z) ↓ 2
x[n] y[n]

3.4 A system is said to be (N2,N1)-periodically time varying if shifting the input by N1 shifts the output by N2 for

each possible input.

(a) Show that the M-fold downsampler is a linear (1,M)-periodically-time-varying system.

(b) Show that the M-fold upsampler is a linear (M,1)-periodically-time-varying system.

3.5 Let x[n] be periodic with (fundamental) period N. Let y[n] be the M-fold downsampled version of x[n] (i.e.,
y[n] = x[Mn]).
(a) Show that y[n] is periodic.
(b) In the absence of any further knowledge about x[n], find the smallest period L (expressed in terms of M and

N) for which y[n] is periodic.

3.6 For each of the systems below with input x and output y, find an expression for y in terms of x. (The expression

should be in the time domain.)

(a) an M-fold decimator (as shown in figure (a) below);

(b) an L-fold interpolator (as shown in figure (b) below); and

(c) a M
L
-fold decimator/interpolator (as shown in figure (c) below).

H(z) ↓M
x[n] v[n] y[n]

(a)

↑ L H(z)
x[n] v[n] y[n]

(b)

↑ L H(z) ↓M
x[n] v[n] y[n]w[n]

(c)

3.7 Show that the relationship between the input and output of a two-fold downsampler can be expressed in matrix

form as yyy = AAAxxx where xxx and yyy are the input and output, respectively. Describe the form of AAA. The relationship

between the input and output of a two-fold upsampler can also be expressed in matrix form as yyy=BBBxxx. Describe

the relationship between AAA and BBB.

3.8 Determine the matrix representation of the following operators:

(a) (↑ 2)(↓ 2);
(b) (↓ 2)(↑ 2); and
(c) (↑ 3)(↓ 3).
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3.9 In each of the cases below, find the specified polyphase representation of the given filter with the transfer

function F(z). Be sure to explicitly identify the polyphase components in each case.

(a) F(z) = z3+3z2+2z−1
8z4+6z2+1

, type-1 two-phase;

(b) F(z) =− 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2, type-3 two-phase;

(c) F(z) = 3
128

z5 + 3
128

z4− 22
128

z3− 22
128

z2 + z−1+ 22
128

z−1 + 22
128

z−2− 3
128

z−3− 3
128

z−4, type-2 three-phase;

(d) F(z) = 30
128

+ 73
128

z−1 + 42
128

z−2− 12
128

z−3− 8
128

z−4 + 3
128

z−5, type-4 three-phase; and

(e) F(z) =− 3
64
z2 + 15

64
z+ 39

64
+ 17

64
z−1− 3

64
z−2− 1

64
z−3, type-1 two-phase.

3.10 Find the type-1 two-phase polyphase representation of the filters with each of the transfer functions given below.

In your final answer, each polyphase component should be given in the form of a single rational expression.

(a) F(z) =
1

1− 5
6
z−1 + 1

6
z−2

;

(b) F(z) =
1+2z−1

1− 3
4
z−1 + 1

8
z−2

.

[Hint: Decompose the denominator of F(z) into first order factors and then use the approach from Exam-

ple 3.14.]

3.11 Find the type-1 four-phase polyphase representation of the filters with each of the following transfer functions:

(a) F(z) =
1

1− 5
6
z−1 + 1

6
z−2

;

(b) F(z) =
1+2z−1 +3z−2

1− z−1 + 3
16
z−2

.

[Hint: Determine what polynomial multiplies 1−az−1 to produce 1−a4z−4.]

3.12 Let F(z) be the transfer function of a symmetric or antisymmetric filter. Suppose that F(z) has the two-phase
polyphase representation

F(z) = zm0F0(z
2)+ zm1F1(z

2)

(where m0 and m1 are distinct modulo 2). Determine the symmetry properties (i.e., symmetry type and symme-

try center) of each of the polyphase components F0(z) and F1(z) if:
(a) the filter F is symmetric and of even length;

(b) the filter F is symmetric and of odd length;

(c) the filter F is antisymmetric and of even length; and

(d) the filter F is antisymmetric and of odd length.

[Hint: A symmetric/antisymmetric sequence is of the form f [n] = (−1)s f [2c−n] where s ∈ {0,1} and 2c ∈ Z.
In particular, if f is symmetric then s= 0, and if f is antisymmetric then s= 1. If f has whole-sample symmetry

then c is an integer, and if f has half-sample symmetry then c is an odd integer multiple of one half.] [Hint: It

is probably easiest to consider all parts of the problem together, rather than separately.]

3.13 Determine the two-phase polyphase components of a symmetric half-band filter. Generalize the result to a

symmetricM-th band filter.

3.14 Let F(z) andG(z) be transfer functions of filters. Suppose that F(z) andG(z) have the polyphase representations
given by

F(z) =
M−1
∑
k=0

zkFk(z
M) and G(z) =

M−1
∑
k=0

zkGk(z
M).

Determine the relationship between the polyphase components of F(z) and G(z) if
(a) G(z) = zMF(z);
(b) G(z) = zF(z);
(c) G(z) = F(z−1); and
(d) G(z) = F(az).
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3.15 Let HHHp(z) and GGGp(z) denote the analysis and synthesis polyphase matrices, respectively, of a UMD filter bank.

For each pair of polyphase matrices of the specified type given below, find the corresponding analysis and syn-

thesis filters.

(a) type (1,2),HHHp(z) =

[
1 1

−1 1

]
,GGGp(z) =

[
1 −1
1 1

]
;

(b) type (3,1),HHHp(z) =

[
1
16
z+ 1

2
− 1

16
z−1 − 1

16
z+ 1

2
+ 1

16
z−1

−1 1

]
,GGGp(z) =

[
1 1

16
z− 1

2
− 1

16
z−1

1 1
16
z+ 1

2
− 1

16
z−1

]
; and

(c) type (3,1),HHHp(z) =

[
az+b cz+d

−1 1

]
,GGGp(z) =

[
1 e+ f z−1

1 g+hz−1

]
.

3.16 Let Hk(z) and Gk(z) denote the analysis and synthesis filter transfer functions of a UMD filter bank. For each

of the systems given below, find the analysis and synthesis polyphase matrices, HHHp(z) and GGGp(z), respectively,
for the specified polyphase representation.

(a) H0(z) = z+1, H1(z) = z−1, G0(z) = 1+ z−1, G1(z) =−1+ z−1, type (1,2);
(b)H0(z) = 1

2
z+ 1

2
, H1(z) = 3

128
z5+ 3

128
z4− 22

128
z3− 22

128
z2+z−1+ 22

128
z−1+ 22

128
z−2− 3

128
z−3− 3

128
z−4, G0(z) =

−z−1H1(−z), G1(z) = z−1H0(−z), type (3,1);
(c) H0(z) = a0 + a1z

−1 + a2z
−2 + a3z

−3, H1(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3, G0(z) = H0(z

−1), G1(z) =
H1(z

−1), type (1,2).

3.17 Let Hk(z) and Gk(z) denote the analysis and synthesis filter transfer functions of a UMD filter bank. Find

the analysis and synthesis modulation matrices, HHHm(z) and GGGm(z), respectively, for each of the systems given

below.

(a) H0(z) = z+1, H1(z) = z−1, G0(z) = 1+ z−1, G1(z) = 1+ z−1,
(b) H0(z) =− 1

16
z3+ 1

16
z2+ 1

2
z+ 1

2
+ 1

16
z−1− 1

16
z−2, H1(z) = z−1, G0(z) =−z−1H1(−z), G1(z) = z−1H0(−z).

3.18 Let H0(z) and H1(z) denote the analysis filters of a 2-channel UMD filter bank. Let HHHp(z) denote the type-

(3,1) analysis polyphase matrix. Let N denote the length of H0(z). Express HHHp(z) in terms of the polyphase

components of H0(z) for each of the following cases:

(a) H1(z) = H0(−z);
(b) H1(z) = z−(N−1)H0(z

−1); and
(c) H1(z) = z−(N−1)H0(−z−1).

3.19 Consider a two-channel orthonormal FIR shift-free-PR UMD filter bank with lowpass analysis filter having

the transfer function H0(z). Let P(z) denote the Z-transform of the autocorrelation of Z−1H0 (i.e., P(z) =
H0(z)H0(z

−1). One can show that P(z) satisfies P(z)+P(−z) = 2. Use this fact to show that the length of H0

must be even (aside from the trivial case when the length is one).

3.20 Prove that there are no real symmetric/antisymmetric orthonormal FIR 2-channel UMD filter banks, except the

Haar/Haar-like case.

3.21 A two-channel orthonormal FIR UMD filter bank with real-valued filter coefficients cannot have linear-phase,

except for the trivial two-tap (e.g., Haar) case. Show that other solutions exist if the filter coefficients can be

complex valued.

3.22 For a two-channel linear-phase FIR PR UMD filter bank, show that:

(a) The analysis/synthesis filter lengths are either all odd or all even.

(b) The analysis filters must be both of odd length and symmetric, or both of even length with one symmetric

and the other antisymmetric.

(c) If we let N0 and N1 denote the lengths of the analysis filters, then N0 +N1 +2 is divisible by four.

3.23 Consider a two-channel UMD filter bank with analysis filter transfer functions H0(z) and H1(z). Suppose that
H0(z) corresponds to a symmetric lowpass filter with even length and H1(z) = H0(−z).
(a) Verify that H1(z) corresponds to an antisymmetric highpass filter.

(b) Find the transfer functions, G0(z) and G1(z), of the synthesis filters that cancel aliasing.
(c) Determine whether the resulting system can have the PR property.
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3.24 Suppose that we have a two-channel FIR UMDfilter bank with analysis filtersH0 andH1, whereH0 is symmetric

and of even length, and H1 is antisymmetric and of even length. Consider the four-channel tree-structured

filter bank corresponding to the two-fold iteration of UMD filter bank (where iteration is done on the lowpass

channel). Determine the lengths and symmetries of the filters of this new filter bank.

3.25 Let Hk(z) for k = 0,1, . . . ,M− 1 denote the analysis filter transfer functions for an M-channel UMD filter

bank. For each set of analysis filters given below, find a set of synthesis filters that result in a shift-free PR

system. Indicate whether the resulting synthesis filters are stable (assuming that they have right-sided impulse

responses). [Hint: Find the analysis polyphase matrix for a (3,1) type polyphase decomposition. Then, find the

corresponding synthesis polyphase matrix needed in order to achieve the shift-free PR property.]

(a) H0(z) = 1√
2
z+ 1√

2
, H1(z) = 1√

2
z− 1√

2

(b) H0(z) = 1, H1(z) = 2+ z−1 + z−5, H2(z) = 3+ z−1 +2z−2

(c) H0(z) = 1, H1(z) = 2+ z−1 + z−5, H2(z) = 3+2z−1 + z−2.
(d) H0(z) = 1, H1(z) = 2+ z−1, H2(z) = 3+2z−1 + z−2

(e) H0(z) = 2+6z−1 + z−2 +5z−3 + z−5, H1(z) = H0(−z)
(f) H0(z) = 1

64
z4− 8

64
z2 + 16

64
z+ 46

64
+ 16

64
z−1− 8

64
z−2 + 1

64
z−4, H1(z) = 1

16
z4− 9

16
z2 + z− 9

16
+ 1

16
z−2.

(g) H0(z) = 1
3
+ 1

3
z+ 1

3
z2, H1(z) =− 1

3
+ 2

3
z2, and H2(z) =− 1

3
z+ 2

3
z2.

3.26 Suppose that we are given an alias-freeM-channel UMD filter bank with distortion function T (z), analysis filter
transfer functions {Hk(z)}, and synthesis filter transfer functions {Gk(z)}. From this filter bank, we generate a

new filter bank having analysis filter transfer functions {H ′k(z)} and synthesis filter transfer functions {G′k(z)},
where

H ′k(z) = Gk(z) and G′k(z) = Hk(z) for k = 0,1, . . . ,M−1.

(In other words, the new filter bank is formed by exchanging the analysis and synthesis filters of the original

filter bank.) Show that this new filter bank is also alias free with distortion function T (z).

3.27 Suppose that we are given an M-channel UMD filter bank having analysis filter transfer functions {Hk(z)}
and synthesis filter transfer functions {Gk(z)}, respectively. From this filter bank, we derive a new filter bank

having analysis filter transfer functions {H ′k(z)} and synthesis filter transfer functions {G′k(z)}. For each of the

following choices of {H ′k(z)} and {G′k(z)}, determine under what circumstances (if any) the new filter bank will

have PR:

(a) H ′k(z) = Hk(z
2), G′k(z) = Gk(z

2);
(b) H ′k(z) = Hk(−z), G′k(z) = Gk(−z);
(c) H ′k(z) = Hk(z

L), G′k(z) = Gk(z
L);

(d) H ′k(z) =

{
z−MH0(z) for k = 0

Hk(z) otherwise
, G′k(z) =

{
zMG0(z) for k = 0

Gk(z) otherwise

3.28 Consider the system shown in figure (a) below. This system is equivalent to the system shown in figure (b).

↓ 2H0(z)

↓ 2H1(z)

↑ 2 G0(z) +

↑ 2 G1(z)

↓ 2H0(z)↓ 2H0(z)

H1(z) ↓ 2

↓ 2H1(z)

↑ 2

↑ 2

G0(z)

G1(z)

+ ↑ 2 G0(z) +

↑ 2 G1(z)

↓ 2H0(z)

↓ 2H1(z)

↑ 2 G0(z) +

↑ 2 G1(z)

x̂[n]x[n] y0[n]

y1[n]

y4[n]

y3[n]

y2[n]

(a)
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↓ 8H ′0(z)

H ′1(z) ↓ 8

↑ 8

↑ 8

G′0(z)

G′1(z)

+

H ′2(z)

H ′3(z)

↓ 4

↓ 4

↑ 4

↑ 4

G′2(z)

G′3(z)

+

+

H ′4(z) ↓ 4 ↑ 4 G′4(z)

+

y0[n]

y1[n]

y2[n]

y3[n]

x[n] x̂[n]

y4[n]

(b)

(a) Find H ′k(z) and G′k(z) in terms of Hk(z) and Gk(z).
(b) Suppose that the two-channel UMDfilter bank with analysis filtersH0(z),H1(z) and synthesis filtersG0(z),G1(z)
has the shift-free PR property. Show that the system in figure (b) has the shift-free PR property.

(c) Suppose that the system in part (b) has the PR property but with a nonzero shift. Determine whether the

system in figure (b) has the PR property.

3.29 Let Hk(z) for k = 0,1, . . . ,M−1 denote the analysis filter transfer functions for anM-channel UMD filter bank.

For each set of analysis filters given below, determine whether the shift-free PR property can be achieved with

FIR synthesis filters. [Note: It is not necessary to find the actual synthesis filters if they exist.]

(a) H0(z) =− 1
16
z3 + 1

16
z2 + 1

2
z+ 1

2
+ 1

16
z−1− 1

16
z−2, H1(z) = z−1

(b) H0(z) = z+ 1
4
, H1(z) = 1+ z3

(c) H0(z) = 1
3
+ 1

3
z−1 + 1

3
z−2, H1(z) =−1− z−1 +2z−2.

3.30 Use the biorthogonality condition for shift-free PR to derive the corresponding modulation matrix condition. In

other words, show that

〈
gp[·],h∗q[Mn−·]

〉
= δ [p−q]δ [n] ⇒ GGGm(z)HHHm(z) = MIII.

3.31 Consider the system with inputs x0[n] and x1[n] and outputs x̂0[n] and x̂1[n] as shown in the figure below. Such

a system is known as a two-channel transmultiplexer.

H0(z)

H1(z) ↓ 2

G0(z) +

G1(z)↑ 2

↑ 2 ↓ 2
y[n]x0[n]

x1[n]

x̂0[n]

x̂1[n]

Let X0(z), X1(z), X̂0(z), and X̂1(z) denote the Z transforms of x0[n], x1[n], x̂0[n], and x̂1[n], respectively.
(a) Find expressions for X̂0(z) and X̂1(z) in terms of X0(z) and X1(z). [Hint: Use the polyphase identity in

conjunction with the linearity of the system.]

(b) A two-channel transmultiplexer is said to have the shift-free PR property if

x̂k[n]≡ xk[n] for k ∈ {0,1}

(i.e., corresponding inputs and outputs are equal). Determine the conditions that H0(z), H1(z), G0(z), and G1(z)
must satisfy in order for the system to have the shift-free PR property.

3.32 Suppose that we have a two-channel UMD filter bank with input x[n] and output x̂[n]. Denote the transfer

functions of the analysis and synthesis filters as H0(z) and H1(z) and G0(z) and G1(z), respectively. Suppose
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that the analysis and synthesis filters are such that

H0(z)G0(z)+H1(z)G1(z) = 0 and

H0(−z)G0(z)+H1(−z)G1(z) = 2.

One can readily confirm that this system does not have the PR property. In spite of this, however, the input can

be recovered exactly from the output. Explain how this is possible. Sketch a diagram of the system that would

be used to recover the original input signal.

3.33 Suppose that we have an M-channel UMD filter bank. Let HHHp(z) and GGGp(z) denote the analysis and synthesis

polyphase matrices, respectively. LetHHHm(z) andGGGm(z) denote the analysis and synthesis modulation matrices,

respectively. Further, defineDDD(z) = diag
[
1 z · · · zM−1

]
andWWW =WWWM . Show that:

(a)HHHm(z) = zM−1HHHp(z
M)DDD(z−1)JJJWWW for (4, ·) type

(b)GGGm(z) =WWWDDD(z)GGGp(z
M) for (·,3) type

3.34 Suppose that we have a two-channel UMD filter bank with analysis filters H0(z),H1(z) and synthesis filters

G0(z),G1(z).
(a) Show that the synthesis filters required for a shift-free PR system are given by

G0(z) =− z−1

∆(z2)
H1(−z) and

G1(z) =
z−1

∆(z2)
H0(−z),

where ∆(z) is the determinant of the type-3 polyphase matrix of the analysis bank. [Hint: Consider a type (3,1)
polyphase decomposition of the system, and use Theorem 3.13.]

(b) Use the result of part (a) to show that, in a shift-free PR FIR UMD filter bank, the transfer functions of the

analysis and synthesis filters are related as follows:

G0(z) =−azbH1(−z) and

G1(z) = azbH0(−z).

where a ∈ C and b ∈ Z.

3.35 Suppose that we have a two-channel shift-free PR UMD filter bank with analysis filters H0(z),H1(z). For each
of the following, find a lifting realization of the filter bank with symmetric lifting filters.

(a) H0(z) = − 1
8
z2 + 1

4
z+ 3

4
+ 1

4
z−1− 1

8
z−2, H1(z) = − 1

128
z6 + 2

128
z5 + 7

128
z4− 70

128
z2 + 124

128
z− 70

128
+ 7

128
z−2 +

2
128

z−3− 1
128

z−4.
(b)H0(z) =− 1

256
z6+ 18

256
z4− 16

256
z3− 63

256
z2+ 144

256
z+ 348

256
+ 144

256
z−1− 63

256
z−2− 16

256
z−3+ 18

256
z−4+ 1

256
z−6,H1(z) =

− 1
16
z4 + 9

16
z2− 16

16
z+ 9

16
− 1

16
z−2.

3.36 Suppose that we have a two-channel shift-free PR UMD filter bank with analysis filters H0(z),H1(z). For each
of the following, find a lifting realization of the filter bank.

(a) H0(z) = 1
2
z+ 1

2
, H1(z) =− 1

8
z3− 1

8
z2 + z−1+ 1

8
z−1 + 1

8
z−2

(b) H0(z) = 1
2
z+ 1

2
, H1(z) = 3

128
z5 + 3

128
z4− 22

128
z3− 22

128
z2 + z−1+ 22

128
z−1 + 22

128
z−2− 3

128
z−3− 3

128
z−4.

3.37 Consider a two-channel UMD filter bank with analysis filters having transfer functions H0(z) and H1(z), where

H0(z) = a0 +a1z
−1 +a2z

−2 and

H1(z) = b0 +b1z
−1 +b2z

−2.

Determine a set of constraints, expressed in terms of the coefficients a0,a1,a2,b0,b1,b2, that must be satisfied

in order for PR to be possible with:

(a) FIR synthesis filters

(b) IIR synthesis filters (without concern for stability).
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3.38 Let {Hk} and {Gk} respectively denote the transfer functions of the analysis and synthesis filters of a two-

channel PR UMD filter bank with reconstruction delay n0. Let GGGm(z) denote the synthesis modulation matrix

for the system. Use the modulation-domain PR condition to show that

H0(z) =
2

zn0 detGGGm(z)
G1(−z) and H1(z) =

−2
zn0 detGGGm(z)

G0(−z).

3.39 Consider a two-channel UMD filter bank with analysis and synthesis filter transfer functions {Hk(z)}1k=0 and

{Gk(z)}1k=0 and analysis and synthesis modulation matrices HHHm(z) and GGGm(z), all respectively. Show that the

conditionGGGm(z)HHHm(z) = 2III is equivalent to

Hk(z)Gk(z)+Hk(−z)Gk(−z) = 2 and

H1−k(z)Gk(z)+H1−k(−z)Gk(−z) = 0

for k ∈ {0,1}.

3.40 Suppose that F(z) has theM-phase polyphase components {Pk(z)}M−1k=0 and {Qk(z)}M−1k=0 of the respective types

indicated below. Find an expression for Qk(z) in terms of Pk(z).
(a) type 1 and type 2;

(b) type 1 and type 3;

(c) type 3 and type 4.

3.41 Let {H0,H1} and {G0,G1} respectively denote the analysis and synthesis filters of a two-channel filter bank. Let
P(z) denote the transfer function of a halfband filter. For each of the cases below, use the spectral factorization

of P(z) to determine the filters H0 and G0 of a shift-free PR filter bank satisfying the given design criteria.

(a) P(z) = − 1
16
z−3(z+1)4(z2−4z+1); H0 has a length of five, linear phase, a DC gain of one, and a second-

order zero at the Nyquist frequency; and G0 has a length of three, linear phase, and a second-order zero at the

Nyquist frequency;

(b) P(z) = 1
2
(z+1)(1+ z−1); filter bank is orthonormal; H0 and G0 are each of length two and G0 is causal.

(c) P(z) =− 1
1024

z−7(z+1)6(z2−4z+1)(z6−2z5−5z4 +28z3−5z2−2z+1); H0 has a length of nine, linear

phase, a DC gain of one, and a second-order zero at the Nyquist frequency; and G0 has a length of seven, linear

phase, and a fourth-order zero at the Nyquist frequency.

(d) P(z) = 1
8192

z−9(z+1)8(z2−4z+1)2(z6−9z4 +32z3−9z2 +1); H0 has a length of 13, linear phase, a DC

gain of one, a fourth-order zero at the Nyquist frequency, and an impulse response with support in {0,1, . . . ,12};
and G0 has a length of 7, linear phase, and a fourth-order zero at the Nyquist frequency;

(e) P(z) = 1
2
z−3(z+1)2(z2− z+1)2 = 1

2
(z+1)(z−1+1)(z2− z+1)(z−2− z−1+1); the system is orthonormal;

H0 is causal, has a length of 4, linear phase, and a first-order zero at the Nyquist frequency.

3.42 Using the time domain, show that ↑ L and ↓M commute if and only if L and M are coprime.

3.43 Consider anM-channel UMD filter bank with the analysis filter transfer functions {Hk}M−1k=0 and type-1 analysis

polyphase matrixHHHp. Given that H0(z) = 1+ z−1 + . . .+ z−(M−1) and Hk(z) = H0(zW
k
M), findHHHp.

3.44 Show that:

(a) the passband gain of the antialiasing filter used in anM-fold decimator should be one.

(b) the passband gain of the antiimaging filter used in an M-fold interpolator should be M.
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Chapter 4

Univariate Wavelet Systems

4.1 Introduction

Earlier, we introduced a number of characteristics that a good basis for representing functions might possess. First,

a basis should be easy to describe (i.e., highly structured). It should have desirable localization properties in both

time and frequency. It may be beneficial for a basis to be invariant under certain elementary operations such as

shifts and dilations. One might like the basis functions to possess certain smoothness attributes (e.g., continuous,

n-times differentiable) or to have certain moment properties. Some of the above criteria are in direct conflict with one

another. Ultimately, the application at hand will determine the best choice of basis. A wavelet system corresponds to

a particular choice of basis for representing functions. What makes a wavelet system special is the particular structure

of its basis functions.

Often, it is beneficial to examine a function at different resolutions. In the case of a low resolution (i.e., coarse

scale) representation of a function, many details are lost, but the general trends in function behavior are still apparent.

At higher resolutions, more details of the original function are present. The notion of a multiresolution representation

of a function is illustrated in Figure 4.1. In Figure 4.1(a), we have the original function. Then, we approximate this

function at coarse, medium, and fine scales in Figures 4.1(b), (c), and (d), respectively. As we increase the resolution

(i.e., move to finer scales), an improved approximation of the original function is obtained. Another example is given

in Figure 4.2. In this case, the function corresponds to an image. In Figure 4.2(a), we have the original image. Then,

the image is represented at coarse, medium, and fine scales in Figures 4.2(b), (c), and (d), respectively. Again, as we

move to progressively higher resolutions (i.e., finer scales), we add more detail from the original function, and obtain

a better approximation. Although this example considers a function that corresponds to an image, the multiresolution

concept is useful for many classes of functions.

The idea of representing functions at different resolutions (or scales) leads to the notion of a multiresolution

approximation, which we will formally introduce shortly. (As it turns out, wavelets are related to the missing detail in

a coarse scale representation of a function that must be added when moving to a representation at a finer scale.)

4.2 Dyadic Wavelet Systems

With wavelet systems, we represent functions at different resolutions where each successive resolution differs in scale

by some integer factor. In the case that this factor is two, we have what is called a dyadic wavelet system. In what

follows, we will focus our attention on dyadic systems. This is the most commonly used type of wavelet system.

4.2.1 Multiresolution Approximations (MRAs)

One of the fundamental building blocks of wavelet systems is the multiresolution approximation (MRA). With a

MRA, a function can be viewed at different resolutions (or scales). The formal definition of a MRA is given below.
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Figure 4.1: Multiresolution approximation of a function. (a) Original function. Approximation of the function at

(b) coarse, (c) medium, and (d) fine scales.
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(a) (b)

(c) (d)

Figure 4.2: Multiresolution representation of an image. (a) Original image. Image represented at (b) coarse

(c) medium, and (d) fine scales.
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Definition 4.1 (Multiresolution approximation). A sequence {Vp}p∈Z of closed subspaces of L2(R) is said to be a

(dyadic) multiresolution approximation (MRA) if the following properties hold:

1. for all p ∈ Z, Vp ⊂Vp−1 (nesting);

2. lim
p→∞

Vp =
⋂

p∈Z

Vp = {0} (separation);

3. lim
p→−∞

Vp = clos

(
⋃

p∈Z

Vp

)
= L2(R) (density);

4. for all p ∈ Z, f (t) ∈Vp⇔ f (2t) ∈Vp−1 (scale invariance);

5. for all k ∈ Z, f (t) ∈V0⇔ f (t− k) ∈V0 (shift invariance); and

6. there exists φ such that {φ(·−n)}n∈Z is a Riesz basis of V0 (shift-invariant Riesz basis).

As a matter of terminology, we refer to the spaces Vp in the above definition as approximation spaces (or scaling

spaces). In the above definition, we can see that a single prototype function φ is used to generate a (Riesz) basis of

V0. This prototype function is referred to as a scaling function.

It is worth noting that some of the properties of a MRA given in the above definition are redundant. That is, some

of the properties can be inferred from the others. For example, the scale invariance and shift-invariant Riesz basis

properties imply the shift invariance property. Also, the separation property can be deduced from the other properties

of the MRA [6, p. 51, Definition 3.4].

The shift-invariance and scale-invariance properties together imply the relationship stated in the lemma below.

This relationship is sometimes a useful one.

Lemma 4.1. Let {Vp}p∈Z be a MRA. Then,

for all p,k ∈ Z, f (t) ∈Vp⇔ f (t−2pk) ∈Vp.

Proof. From the scale invariance property of the MRA (applied |p| times), we have

f (t) ∈Vp⇒ g(t) = f (2pt) ∈V0.

From the shift invariance property of the MRA, we have

g(t) ∈V0⇒ hk(t) = g(t− k) ∈V0.

From the scale invariance property of the MRA (applied |p| times), we have

hk(t) ∈V0⇒ hk(2
−pt) ∈Vp. (4.1)

From the definitions of g and hk, we can write

hk(t) = g(t− k)

= f (2p[t− k])

= f (2pt−2pk) and

hk(2
−pt) = f (2p[2−pt]−2pk)

= f (t−2pk).

Substituting this latter expression for hk(2
−pt) into (4.1), we conclude

f (t−2pk) ∈Vp.

Thus, we have shown that f (t) ∈Vp⇒ f (t−2pk) ∈Vp, for all k ∈ Z. The implication in the other direction trivially

follows.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



4.2. DYADIC WAVELET SYSTEMS 203

Let PVp denote the projection operator onto the space Vp. Then, the density property implies that

for all f ∈ L2(R), lim
p→−∞

PVp f = f .

Similarly, the separation property implies that

for all f ∈ L2(R), lim
p→∞

PVp f = 0.

Many sequences of spaces satisfy the nesting, separation, and density properties, yet have nothing to do with a

MRA. The multiresolution nature of the MRA comes from the scale invariance property. All of the spaces in a MRA

are scaled versions of V0 (i.e., the other spaces are generated by dilation of the elements in V0). For this reason, the

scale invariance property is fundamentally important.

At this point, a few brief comments are in order regarding notation. Two different conventions are commonly

employed for the indexing of approximation spaces. With the first convention, the scale of Vp becomes coarser (i.e.,

resolution decreases) as p increases. This is the convention followed herein. Some examples of other works employing

this convention include [9, 17, 18, 20, 24, 25]. With the second convention, the scale of Vp becomes finer (i.e.,

resolution increases) as p increases. Some examples of works employing this convention include [3, 4, 5, 6, 13, 22].

Since two differing conventions are frequently employed, one must be mindful of the particular convention followed

by any given author.

Having introduced the concept of a MRA, we now consider some examples. In what follows, we identify several

specific examples of MRAs.

Example 4.1 (Piecewise constant approximations). The simplest MRA is associated with piecewise constant approx-

imations. In this case, the space V0 is comprised of all functions f ∈ L2(R) such that f is constant on intervals of the

form [n,n+1), where n ∈ Z. More generally, Vp is comprised of all functions f ∈ L2(R) such that f is constant over

intervals of the form [n2p,(n+1)2p), where n ∈ Z.
Consider any arbitrary function f ∈V0. Since an integer shift of a function f that is constant over intervals of the

form [n,n+1) is also constant over intervals of the same form, the shift invariance property is satisfied. Consider any

arbitrary function f ∈Vp. Since f is constant on intervals of the form [n2p,(n+1)2p), f (2t) is constant on intervals of
the form [n2p−1,(n+1)2p−1). Therefore, the scale invariance property is satisfied. Clearly,Vp ⊂Vp−1, since functions
constant on intervals of the form [n2p,(n+ 1)2p) are also constant on intervals of the form [n2p−1,(n+ 1)2p−1).
Hence, the nesting property is satisfied. One can show that an orthonormal basis of V0 is given by {φ(· − k)}k∈Z,

where

φ(t) = χ[0,1)(t) =

{
1 for t ∈ [0,1)

0 otherwise.

Thus, the shift-invariant Riesz basis property is satisfied. A plot of φ is given in Figure 4.3.

Since piecewise constant functions are dense in L2(R), the density property holds. The reader can confirm that

the separation property of a MRA is also satisfied.

In some applications, it is desirable for approximations of smooth functions to themselves be smooth. Unfortu-

nately, piecewise constant approximations are not smooth. So, if smooth approximations are required, this MRA is

not particularly useful.

An example of approximating a function using different approximation spaces is illustrated in Figure 4.4.

Example 4.2 (Shannon approximations). The Shannon approximation utilizes bandlimited functions in order to form

its approximation spaces. The space Vp is comprised of the set of all f ∈ L2(R) such that supp f̂ ⊂ [−2−pπ,2−pπ]
(i.e., f is bandlimited to frequencies in the range −2−pπ to 2−pπ).

By using the Shannon sampling theorem (i.e., Theorem 2.51), one can show that an orthonormal basis of V0 is

given by {φ(·− k)}k∈Z, where

φ(t) = sincπt.

Hence, the shift-invariant Riesz basis property is satisfied. A plot of φ is given in Figure 4.5.
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Figure 4.3: Scaling function for piecewise constant approximations.
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Figure 4.4: Piecewise constant approximation. (a) Original function. Projection of function onto the approximation

spaces (b) V0, (c) V−1, and (d) V−2.
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Figure 4.5: Scaling function for Shannon approximations.

From the dilation property of the Fourier transform, we have

f ∈ L2(R),supp f̂ ⊂ [−2−pπ,2−pπ] ⇔ f (2t) ∈ L2(R),supp f̂ (2·)⊂ [−2−(p−1)π,2−(p−1)π].

We also have

f ∈ L2(R),supp f̂ ⊂ [−2−pπ,2−pπ]⇔ f ∈Vp

f ∈ L2(R),supp f̂ ⊂ [−2−(p−1)π,2−(p−1)π]⇔ f ∈Vp−1.

Combining the above sets of equivalences, we obtain

f (t) ∈Vp⇔ f (2t) ∈Vp−1.

Thus, the scale invariance property is satisfied.

From the translation property of the Fourier transform, we have that supp f̂ = supp ̂f (·− k) for all k ∈ Z. So,

f ∈V0⇔ f (t− k) ∈V0 for all k ∈ Z. Therefore, the shift invariance property is satisfied.

Let PVp denote the projection operator onto Vp. Then, we have

P̂Vp f (ω) = f̂ (ω)χ[−2−pπ,2−pπ](ω).

The function PVp f (t) decays as O(|t|−1), although f itself might have compact support. For finite p, the space Vp

contains only functions that are not compactly supported (aside from the trivial zero function).

Example 4.3 (Continuous piecewise linear approximations). Consider a MRA associated with continuous piecewise

linear approximations. The space V0 is the set of all continuous functions f ∈ L2(R) such that f is linear on intervals

of the form [n,n+1), where n ∈ Z. More generally, the space Vp is the set of all continuous functions f ∈ L2(R) such
that f is linear on intervals of the form [n2p,(n+1)2p).

Clearly, if a function f is linear on intervals of the form [n2p,(n+1)2p) and continuous, then f is also linear on

intervals of the form [n2p−1,(n+1)2p−1) and continuous. Therefore, the nesting property is satisfied.

One can show that a Riesz basis of V0 is given by {φ(·− k)}k∈Z, where

φ(t) =

{
1−|t| for |t|< 1

0 otherwise.

Hence, the shift-invariant Riesz basis property is satisfied. (The above basis is not orthonormal, however.) A plot of

φ is given in Figure 4.6.
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Figure 4.6: Scaling function for piecewise linear approximations.
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Figure 4.7: Continuous piecewise linear approximation. (a) Original function. Projection of function onto the approx-

imation spaces (b) V0, (c) V−1, and (d) V−2.
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(The restriction that the functions in each approximation space be continuous is required. Without this constraint,

there would not exist a single function whose integer shifts constitute a Riesz basis of V0.)

An example of approximating a function using different approximation spaces is illustrated in Figure 4.7.

Example 4.4 (Cubic spline approximations). Consider a MRA associated with cubic spline approximations. The

space Vp is comprised of all functions f ∈ L2(R) such that f , f ′, and f ′′ are continuous, and f is piecewise cubic on

intervals of the form [n2p,(n+1)2p), where n ∈ Z.
One can show that a Riesz basis of V0 is given by {φ(·− k)}k∈Z, where

φ(t) =





1
6
t3 + t2 +2t+ 4

3
for −2≤ t ≤−1

− 1
2
t3− t2 + 2

3
for −1≤ t ≤ 0

1
2
t3− t2 + 2

3
for 0≤ t ≤ 1

− 1
6
t3 + t2−2t+ 4

3
for 1≤ t ≤ 2.

Hence, the shift-invariant Riesz basis property is satisfied. (The above basis is not orthonormal, however.) A plot of

φ is provided in Figure 4.8.

It is left as an exercise to the reader to show that the remaining properties of a MRA are satisfied.

An example of approximating a function using different approximation spaces is illustrated in Figure 4.9.

From the piecewise constant and cubic spline approximations, one can see a pattern beginning to emerge. That

is, approximating subspaces on regular meshes automatically satisfies the requirements of a MRA. For example, the

requirements of a MRA are satisfied by a B-spline approximation of any order.

Example 4.5. Let Vp denote the space comprised of all functions f ∈ L2(R) such that supp f ⊂ [−2−p,2−p]. Deter-
mine whether {Vp}p∈Z constitutes a MRA.

Solution. We need to determine whether {Vp}p∈Z satisfies the properties of a MRA.

NESTING. Consider the nesting property. We have

Vp = { f ∈ L2(R) : supp f ⊂ [−2−p,2−p]} and

Vp−1 = { f ∈ L2(R) : supp f ⊂ [−2−p+1,2−p+1]}.

Since [−2−p,2−p]⊂ [−2−p+1,2−p+1], it is clear that any function inVp is also inVp−1. Therefore, the nesting property
is satisfied.

SEPARATION AND DENSITY. Again, we have

Vp = { f ∈ L2(R) : supp f ⊂ [−2−p,2−p]}.

From this, it follows that

lim
p→∞

Vp = { f ∈ L2(R) : supp f ⊂ [0,0]}= {0} and

lim
p→−∞

Vp = { f ∈ L2(R) : supp f ⊂ R}= L2(R).

Therefore, the separation and density properties are satisfied.

SCALE INVARIANCE. Suppose f ∈Vp. Then,

supp f (t)⊂ [−2−p,2−p]

which implies

supp f (2t)⊂ [−2−p−1,2−p−1].

Since [−2−p−1,2−p−1]⊂ [−2−p+1,2−p+1], f (2t) ∈Vp−1. Thus, we have

f (t) ∈Vp⇒ f (2t) ∈Vp−1.
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Figure 4.8: Scaling function for cubic spline approximations.
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Figure 4.9: Cubic spline approximation. (a) Original function. Projection of function onto the approximation spaces

(b) V0, (c) V−1, and (d) V−2.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



4.2. DYADIC WAVELET SYSTEMS 209

Suppose f (2t) ∈Vp−1. Then,

supp f (2t)⊂ [−2−p+1,2−p+1]

which implies

supp f (t)⊂ [−2−p+2,2−p+2].

Since [−2−p+2,2−p+2] 6⊂ [−2−p,2−p], it is not necessarily true that f (t) ∈Vp. Thus, we have

f (2t) ∈Vp−1 6⇒ f (t) ∈Vp.

Therefore, the scale invariance property is not satisfied.

SHIFT INVARIANCE. Suppose that f ∈ V0. Then, supp f ⊂ [−1,1]. Further suppose that supp f = [−1,1]. For
k 6= 0, supp f (t− k) = [−1+ k,1+ k] 6⊂ [−1,1]. So, f (t− k) is not necessarily in V0. Therefore, the shift invariance

property is not satisfied.

SHIFT-INVARIANT RIESZ BASIS. Since the shift invariance property is not satisfied, there cannot exist a shift-

invariant Riesz basis of V0. (Clearly, a basis {φ(· − k)}k∈Z of V0 must be such that φ(· − k) ∈ V0 for all k ∈ Z. For
any nonzero function φ ∈ V0, however, there exists some k ∈ Z for which φ(·− k) 6∈ V0.) Therefore, the Riesz basis

property is not satisfied.

From the results above, we conclude that the sequence of subspaces {Vp}p∈Z does not satisfy the properties of a

MRA.

4.2.2 Existence of Riesz Basis

As we saw earlier, a MRA must have a shift-invariant Riesz basis. For this reason, one might wonder what conditions

a function φ must satisfy in order for {φ(·−n)}n∈Z to constitute a Riesz basis for its closed linear span. The answer

to this question is given by the theorem below.

Theorem 4.1 (Condition for Riesz basis). A family {θ(·−n)}n∈Z is a Riesz basis of the space V0 it generates (i.e., its

closed linear span) if and only if there exist A > 0 and B > 0 such that

for ω ∈ [−π,π], A≤ ∑
k∈Z

∣∣θ̂(ω−2πk)
∣∣2 ≤ B a.e.. (4.2)

If such A and B do exist, they are the lower and upper Riesz bounds of {θ(·−n)}n∈Z, respectively.

Proof. Any f ∈V0 can be decomposed as

f (t) = ∑
n∈Z

a[n]θ(t−n) (4.3)

(where a ∈ l2(Z)). Taking the Fourier transform of both sides of the preceding equation yields

f̂ (ω) = ∑
n∈Z

a[n]F{θ(·−n)}

= ∑
n∈Z

a[n]e− jnω θ̂(ω).

In other words, we have

f̂ (ω) = â(ω)θ̂(ω)

where â(ω) is the 2π-periodic function

â(ω) = ∑
n∈Z

a[n]e− jnω .
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Using the Parseval identity, we can write

‖ f‖2 =
1

2π

∫ ∞

−∞

∣∣ f̂ (ω)
∣∣2 dω

=
1

2π

∫ ∞

−∞

∣∣â(ω)θ̂(ω)
∣∣2 dω

=
1

2π

∫ ∞

−∞
|â(ω)|2

∣∣θ̂(ω)
∣∣2 dω.

Now, we split this integral over R into intervals of length 2π to obtain

‖ f‖2 =
1

2π ∑
k∈Z

∫ 2π

0
|â(ω−2πk)|2

∣∣θ̂(ω−2πk)
∣∣2 dω.

Since â(ω) is 2π-periodic we know that â(ω) = â(ω−2πk). So, we have

‖ f‖2 =
1

2π

∫ 2π

0
∑
k∈Z

|â(ω)|2
∣∣θ̂(ω−2πk)

∣∣2 dω

=
1

2π

∫ 2π

0
|â(ω)|2 ∑

k∈Z

∣∣θ̂(ω−2πk)
∣∣2 dω. (4.4)

(4.2)⇒ RIESZ BASIS. Now, we show that condition (4.2) implies a Riesz basis. By assumption, (4.2) is satisfied.

So, replacing ∑k∈Z

∣∣θ̂(ω−2πk)
∣∣2 by its lower bound A yields the inequality

‖ f‖2 ≥ 1

2π

∫ 2π

0
|â(ω)|2Adω ⇒ 1

A
‖ f‖2 ≥ 1

2π

∫ 2π

0
|â(ω)|2 dω.

Replacing the same summation by its upper bound B, we obtain

‖ f‖2 ≤ 1

2π

∫ 2π

0
|â(ω)|2Bdω ⇒ 1

B
‖ f‖2 ≤ 1

2π

∫ 2π

0
|â(ω)|2 dω.

Combining these inequalities, we obtain

1
B
‖ f‖2 ≤ 1

2π

∫ 2π

0
|â(ω)|2 dω ≤ 1

A
‖ f‖2 . (4.5)

By the Parseval identity, however, we know that

1
2π

∫ 2π

0
|â(ω)|2 dω = ∑

n∈Z

|a[n]|2 .

So, we have

1
B
‖ f‖2 ≤ ∑

n∈Z

|a[n]|2 ≤ 1
A
‖ f‖2 (4.6)

(or equivalently, A∑n∈Z |a[n]|2 ≤ ‖ f‖2 ≤ B∑n∈Z |a[n]|2). Thus, {θ(·−n)}n∈Z satisfies the Riesz condition. The linear

independence of {θ(·−n)}n∈Z follows from (4.6) and (4.3). That is, if f = 0, then a[n] = 0 for all n∈Z, which shows
the linear independence of {θ(·−n)}n∈Z. Hence, (4.2) implies a Riesz basis.

RIESZ BASIS⇒ (4.2). Now, we show that a Riesz basis implies (4.2). Since {θ(·−n)}n∈Z is a Riesz basis, (4.6)

is valid for any a[n] ∈ l2(Z). Suppose now that (4.2) is violated. That is, ∑k∈Z

∣∣θ̂(ω−2kπ)
∣∣2 does not satisfy (4.2)

for almost all ω ∈ [−π,π]. In this case, we can construct a 2π-periodic function â(ω) whose support corresponds to
frequencies where (4.2) does not hold. Next, we can deduce from (4.4) that (4.5) and (4.6) are not valid for a[n]. Thus,
{θ(·−n)}n∈Z cannot be a Riesz basis, and we have a contradiction. Hence, a Riesz basis implies that (4.2) must hold.
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From the preceding theorem, we also trivially have the following result.

Theorem 4.2. The family {θ(·− k)}k∈Z is an orthonormal basis of the space that it generates if and only if

∑
k∈Z

∣∣θ̂(ω +2πk)
∣∣2 = 1. (4.7)

Proof. We observe that an orthonormal basis is simply a Riesz basis with both Riesz bounds equal to one. Thus, from

Theorem 4.1, we have that {θ(·− k)}k∈Z is an orthonormal basis of the space that it generates if and only if

1≤ ∑
k∈Z

∣∣θ̂(ω +2πk)
∣∣2 ≤ 1

which is obviously equivalent to (4.7).

From Theorem 4.1, for any given function θ , the quantity ∑k∈Z

∣∣θ̂(ω−2πk)
∣∣2 determines whether {θ(·−n)}n∈Z

constitutes a Riesz basis. As it turns out, this quantity has an important interpretation in terms of θ . This relationship
is further elucidated by the theorem below.

Theorem 4.3 (Autocorrelation sequences and shift-invariant Riesz bases). Let θ be a function with Fourier transform

θ̂ . Let a[n] denote the autocorrelation sequence of θ . That is, a[n] is given by

a[n] =
∫ ∞

−∞
θ(t)θ ∗(t−n)dt. (4.8)

Then, the (discrete-time) Fourier transform â(ω) of a[n] is the quantity

â(ω) = ∑
k∈Z

∣∣θ̂(ω−2πk)
∣∣2 .

Proof. From (4.8), we can use the Parseval identity to write

a[n] =
1

2π

∫ ∞

−∞
θ̂(ω)

[
θ̂(ω)e− jnω

]∗
dω

=
1

2π

∫ ∞

−∞
θ̂(ω)θ̂ ∗(ω)e jnωdω

=
1

2π

∫ ∞

−∞

∣∣θ̂(ω)
∣∣2 e jnωdω.

Now, we split the integral over R into intervals of length 2π to obtain

a[n] =
1

2π ∑
k∈Z

∫ 2π

0

∣∣θ̂(ω−2πk)
∣∣2 e jn(ω−2πk)dω

=
1

2π ∑
k∈Z

∫ 2π

0

∣∣θ̂(ω−2πk)
∣∣2 e jnωdω.

Reversing the order of the summation and integration, we have

a[n] =
1

2π

∫ 2π

0
∑
k∈Z

∣∣θ̂(ω−2πk)
∣∣2 e jnωdω.

Now, we observe that the expression on the right-hand side of the preceding equation is an inverse (discrete-time)

Fourier transform integral. Thus, we have

a[n] =
1

2π

∫ 2π

0
â(ω)e jnωdω
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where

â(ω) = ∑
k∈Z

∣∣θ̂(ω−2πk)
∣∣2 .

In other words, ∑k∈Z

∣∣θ̂(ω−2πk)
∣∣2 is the (discrete-time) Fourier transform of the autocorrelation sequence a of θ .

Thus, from the above theorem, we can see that the quantity ∑k∈Z

∣∣θ̂(ω−2πk)
∣∣2 is the (discrete-time) Fourier

transform of the autocorrelation sequence of θ . In passing, it is worthwhile to mention that the autocorrelation

sequence (by virtue of its definition) satisfies a[n] = a∗[−n]. Thus, if θ is real valued, then a[n] is an even sequence.

In light of the above result, we now determine whether a number of prototype functions generate shift-invariant

Riesz bases. Some of the functions considered in what follows are taken from the MRA examples introduced earlier.

Example 4.6 (Haar scaling function). Consider the scaling function

φ(t) = χ[0,1)(t) =

{
1 for t ∈ [0,1)

0 otherwise.

Show that {φ(·− k)}k∈Z is a Riesz basis and determine the associated Riesz bounds.

Solution. We compute the autocorrelation sequence a[k] of φ(t). We have

a[0] =
∫ ∞

−∞
φ(t)φ ∗(t)dt

=
∫ ∞

−∞
(χ[0,1)(t))

2dt

=
∫ 1

0
dt

= 1.

Due to the form of φ (i.e., suppφ ⊂ [0,1]), a[n] = 0 for n 6= 0. So, we have

â(ω) = ∑
n∈Z

a[n]e− jnω = 1.

Thus, â(ω) is trivially bounded by

1≤ â(ω)≤ 1.

Therefore, {φ(·−k)}k∈Z is a Riesz basis with both bounds equal to one. In other words, {φ(·−k)}k∈Z is an orthonor-

mal basis. (We could have arrived at the same conclusion by simply observing that a[n] = δ [n], which is the defining

property of an orthonormal basis.)

Example 4.7 (Shannon scaling function). Consider the scaling function

φ(t) = sincπt.

Show that {φ(·− k)}k∈Z is a Riesz basis and determine the corresponding Riesz bounds.
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Solution. We need to compute the autocorrelation sequence a[n] of φ(t). Using the Parseval identity, we have

a[n] =
∫ ∞

−∞
φ(t)φ ∗(t−n)dt

= 1
2π

∫ ∞

−∞
φ̂(ω)

(
e− jnω φ̂(ω)

)∗
dω

= 1
2π

∫ ∞

−∞
φ̂(ω)e jnω φ̂ ∗(ω)dω

= 1
2π

∫ ∞

−∞

(
rect ω

2π

)2
e jnωdω

= 1
2π

∫ π

−π
e jnωdω.

There are two cases to consider. First, consider the case that n = 0. We have

a[n] = 1
2π

∫ π

−π
dω

= 1.

Now, consider the case that n 6= 0. We have

a[n] = 1
2π

[
1
jn
e jnω

]∣∣∣
π

−π

= 1
j2πn

[
e jπn− e− jπn

]

= 1
πn sinπn

= 0.

Combining the above two cases, we obtain

a[n] = δn.

Clearly, {φ(· − n)}n∈Z is an orthonormal basis (for its closed linear span). Therefore, we trivially have that {φ(· −
n)}n∈Z is a Riesz basis with both Riesz bounds equal to one.

Example 4.8 (Quadratic spline scaling function). Consider the scaling function

φ(t) =





1
2
t2 for 0≤ t < 1

−t2 +3t− 3
2

for 1≤ t < 2
1
2
t2−3t+ 9

2
for 2≤ t < 3

0 otherwise.

Show that {φ(·− k)}k∈Z is a Riesz basis and determine the associated Riesz bounds.

Solution. To begin, we compute the autocorrelation sequence a[n] of φ(t). We have

a[0] =
∫ ∞

−∞
φ 2(t)dt

=
∫ 1

0
( 1
2
t2)2dt+

∫ 2

1
(−t2 +3t− 3

2
)2dt+

∫ 3

2
( 1
2
t2−3t+ 9

2
)2dt

= 1
20

+ 9
20

+ 1
20

= 11
20

,
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a[1] =
∫ ∞

−∞
φ(t)φ(t−1)dt

=
∫ 2

1
(−t2 +3t− 3

2
)( 1

2
(t−1)2)dt+

∫ 3

2
( 1
2
t2−3t+ 9

2
)(−(t−1)2 +3(t−1)− 3

2
)dt

= 13
120

+ 13
120

= 26
120

= 13
60

, and

a[2] =
∫ ∞

−∞
φ(t)φ(t−2)dt

=
∫ 3

2
( 1
2
t2−3t+ 9

2
)( 1

2
(t−2)2)dt

= 1
120

.

Since suppφ ⊂ [0,3], a[n] = 0 for n≥ 3. Since a[n] is even, we also have

a[−1] = 13
60

, a[−2] = 1
120

, and a[n] = 0 for n≤−3.

Now, we compute the (discrete-time) Fourier transform of a to obtain

â(ω) = ∑
n∈Z

a[n]e− jnω

= 11
20

+ 13
60

(e jω + e− jω)+ 1
120

(e j2ω + e− j2ω)

= 11
20

+ 13
30
cosω + 1

60
cos2ω.

To determine the Riesz bounds, we need to find the bounds of â. We have that

d
dω â(ω) = 0 ⇒ − 13

30
sinω− 1

30
sin2ω = 0 ⇒ ω ∈ {0,±π,±2π, . . .}.

Thus, â(ω) has a minimum of 2
15

at ω = π and a maximum of 1 at ω = 0. Thus, we have

2
15
≤ â(ω)≤ 1.

Therefore, {φ(·− k)}k∈Z is a Riesz basis with lower and upper Riesz bounds of 2
15

and 1, respectively.

Example 4.9 (Cubic spline scaling function). Consider the scaling function

φ(t) =





1
6
t3 + t2 +2t+ 4

3
for −2≤ t ≤−1

− 1
2
t3− t2 + 2

3
for −1≤ t ≤ 0

1
2
t3− t2 + 2

3
for 0≤ t ≤ 1

− 1
6
t3 + t2−2t+ 4

3
for 1≤ t ≤ 2

Show that {φ(·− k)}k∈Z is a Riesz basis and determine the associated Riesz bounds.

Solution. We compute the autocorrelation sequence a[n] of φ(t). We have

a[0] =
∫ ∞

−∞
φ 2(t)dt

=
∫ −1

−2
( 1
6
t3 + t2 +2t+ 4

3
)2dt+

∫ 0

−1
(− 1

2
t3− t2 + 2

3
)2dt

+
∫ 1

0
( 1
2
t3− t2 + 2

3
)2dt+

∫ 2

1
(− 1

6
t3 + t2−2t+ 4

3
)2dt

= 1
252

+ 33
140

+ 33
140

+ 1
252

= 151
315

,
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a[1] =
∫ ∞

−∞
φ(t)φ(t−1)dt

=
∫ 0

−1
(− 1

2
t3− t2 + 2

3
)( 1

6
(t−1)3 +(t−1)2 +2(t−1)+ 4

3
)dt

+
∫ 1

0
( 1
2
t3− t2 + 2

3
)(− 1

2
(t−1)3− (t−1)2 + 2

3
)dt

+
∫ 2

1
(− 1

6
t3 + t2−2t+ 4

3
)( 1

2
(t−1)3− (t−1)2 + 2

3
)dt

= 43
1680

+ 311
1680

+ 43
1680

= 397
1680

,

a[2] =
∫ ∞

−∞
φ(t)φ(t−2)dt

=
∫ 1

0
( 1
2
t3− t2 + 2

3
)( 1

6
(t−2)3 +(t−2)2 +2(t−2)+ 4

3
)dt

+
∫ 2

1
(− 1

6
t3 + t2−2t+ 4

3
)(− 1

2
(t−2)3− (t−2)2 + 2

3
)dt

= 1
84

+ 1
84

= 1
42

, and

a[3] =
∫ ∞

−∞
φ(t)φ(t−3)dt

=
∫ 2

1
(− 1

6
t3 + t2−2t+ 4

3
)( 1

6
(t−3)3 +(t−3)2 +2(t−3)+ 4

3
)dt

= 1
5040

.

Since suppφ ⊂ [−2,2], a[n] = 0 for n≥ 4. Moreover, we can determine a[n] for n < 0, by observing that a[n] is even.
This yields

a[−1] = 397
1680

,a[−2] = 1
42

,a[−3] = 1
5040

, and a[n] = 0 for n≤−4.

Computing the (discrete-time) Fourier transform of a[n], we obtain

â(ω) = ∑
n∈Z

a[n]e− jnω

= 151
315

+ 397
1680

(e jω + e− jω)+ 1
42

(e j2ω + e− j2ω)+ 1
5040

(e j3ω + e− j3ω)

= 151
315

+ 397
840

cosω + 1
21
cos2ω + 1

2520
cos3ω.

One can show that â(ω) has a minimum at ω = π given by

â(π) = 151
315
− 397

840
+ 1

21
− 1

2520
= 17

315
.

Likewise, one can show that â(ω) has a maximum at ω = 0 given by

â(0) = 151
315

+ 397
840

+ 1
21

+ 1
2520

= 1.

Thus, â(ω) is bounded by

17
315
≤ â(ω)≤ 1.

Therefore, {φ(·− k)}k∈Z is a Riesz basis with lower and upper Riesz bounds of 17
315

and 1, respectively.
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4.2.3 Wavelet Spaces

As noted earlier, the MRA is one of the fundamental building blocks of wavelet systems. AMRA is simply a collection

of subspaces called approximation (or scaling) spaces. These spaces, however, are not the only ones of interest in the

context of wavelet systems. As we shall see, there is another set of spaces that are also very important.

Consider a MRA associated with the approximation space sequence {Vp}p∈Z. For each p∈Z, sinceVp is a proper

subspace of Vp−1, there must be some spaceWp such thatWp is the algebraic complement of Vp in Vp−1 (by virtue of

Theorem 2.9). That is, there must exist a spaceWp such that

Vp−1 =Vp⊕Wp. (4.9)

(Here, we are using the isomorphic form of the direct sum.) From this direct sum decomposition of Vp−1, it trivially
follows that Vp∩Wp = {0}. As a matter of terminology, we refer toWp as a wavelet space. Thus, we can associate a

sequence {Wp}p∈Z of wavelet spaces with a MRA.

It follows from the structure of a MRA and the definition of the wavelet spaces that

Vk ∩Vl =Vl for k < l,

Wk ∩Wl = {0} for k 6= l, and

Vk ∩Wl = {0} for k ≥ l.

Through a trivial change of variable, we can rewrite (4.9) as

Vp =Vp+1⊕Wp+1.

Applying this formula recursively several times yields

Vp =Vp+1⊕Wp+1

=Vp+2⊕Wp+2⊕Wp+1

=Vp+3⊕Wp+3⊕Wp+2⊕Wp+1.

Repeating this process ad infinitum, we obtain

Vp =⊕∞
k=p+1Wk.

Taking the limit as p→−∞, we have

lim
p→−∞

Vp = lim
p→−∞

∞⊕

k=p+1

Wk.

From the density property of the MRA (i.e., limp→−∞Vp = L2(R)), we have

clos

(
⊕

p∈Z

Wp

)
= L2(R).

In other words, we have decomposed the space L2(R) into a sequence of mutually disjoint subspaces (i.e., the wavelet

spaces). The basis functions for these wavelet spaces together form a Riesz basis for L2(R). Diagrammatically, we

have decomposed L2(R) using the structure illustrated in Figure 4.10.
In general, we have that Vp andWp are disjoint. Suppose now that, in addition, Vp ⊥Wp. In other words,Wp is the

orthogonal complement of Vp in Vp−1. In this case, not only is Vp−1 =Vp⊕Wp but

Vp−1 =Vp

⊥
⊕Wp,
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L2(R)−→ ·· · V−2 −→V−1 −→V0 −→V1 −→V2 · · · −→ {0}ց ց ց ց
W−1 W0 W1 W2

Figure 4.10: MRA decomposition of L2(R).

or equivalently

Vp =Vp+1

⊥
⊕Wp+1.

(Again, here we continue to use the isomorphic form of direct sum.) Recursive application of the preceding formula

yields

Vp =Vp+1

⊥
⊕Wp+1

=Vp+2

⊥
⊕Wp+2

⊥
⊕Wp+1

=Vp+3

⊥
⊕Wp+3

⊥
⊕Wp+2

⊥
⊕Wp+1.

Continuing this process ad infinitum, we obtain

Vp =
⊥⊕∞

k=p+1
Wk.

Taking the limit as p→−∞, we have

lim
p→−∞

Vp = lim
p→−∞

⊥⊕∞

k=p+1
Wk.

Using the density property of the MRA, we have

clos

( ⊥⊕
p∈Z

Wp

)
= L2(R).

Thus, the space L2(R) has been decomposed into a sequence of mutually orthogonal subspaces (i.e., the wavelet

spaces). The basis functions for these spaces collectively form an orthonormal basis for L2(R).
As we will see, depending on whether the wavelet subspaces are mutually orthogonal or only mutually disjoint,

we obtain wavelet systems with distinct structures. The first case (where the wavelet spaces are mutually orthogonal)

leads to what are called orthonormal and semiorthogonal wavelet systems. The second case leads to what are called

biorthonormal wavelet systems.

From the earlier results, we have that a MRA is associated with a sequence {Wp}p∈Z of wavelet spaces. It is

now worthwhile to examine some of the properties possessed by this sequence of wavelet spaces. Several important

properties are given by the theorem below.

Theorem 4.4 (Properties of wavelet spaces). Let {Wp}p∈Z denote the sequence of wavelet spaces associated with a

MRA. The wavelet spaces are such that

1. clos

(
⊕

p∈Z

Wp

)
= L2(R) (density);

2. for all p ∈ Z, x(t) ∈Wp⇔ x(2t) ∈Wp−1 (scale invariance);
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3. for all k ∈ Z, x(t) ∈W0⇔ x(t− k) ∈W0 (shift invariance); and

4. there exists ψ such that {ψ(·− k)}k∈Z is a Riesz basis of W0 (shift-invariant Riesz basis).

Proof. The density property essentially follows from the definition of {Wp}p∈Z and properties of a MRA. The scale

invariance and shift invariance properties follow from the corresponding properties of a MRA. The proof of the shift-

invariant Riesz basis property is more involved and better deferred until later.

From the above theorem, we see that a Riesz basis of the wavelet spaceW0 is generated by the integer translates

of a single prototype function ψ . As a matter of terminology, we refer to ψ as a wavelet function. Essentially, the

wavelet function plays the same role for wavelet spaces as the scaling function does for approximation spaces.

At this point, a few comments of a pragmatic nature are in order. In practice, we often have a function represented

in some approximation space, say Vρ , and we want to find a representation in terms of the approximation space Vρ ′ ,

where ρ ′ > ρ , and wavelet spacesWp for ρ < p ≤ ρ ′. That is, we want to express the function in terms of its lower

resolution representation plus the additional details necessary to obtain the original higher resolution version. In such

a situation, we employ a decomposition of the form

Vρ =Vρ+1⊕Wρ+1

=Vρ+2⊕Wρ+2⊕Wρ+1

=Vρ ′ ⊕
ρ ′⊕

k=ρ+1

Wk.

Notice that we are only using a finite number of approximation and wavelet spaces.

4.2.4 Bases of Scaling and Wavelet Spaces

Consider a MRA associated with approximation space sequence {Vp}p∈Z and wavelet space sequence {Wp}p∈Z. Let

{φ(·−n)}n∈Z and {ψ(·−n)}n∈Z denote the Riesz bases ofV0 andW0, respectively. Suppose that φ and ψ are known.

Then, it turns out that we can trivially find a basis for each of the other approximation and wavelet spaces.

To begin, we observe that the following result holds.

Theorem 4.5. Suppose that the set {θ(·−n)}n∈Z is a Riesz basis. Then, for each p ∈ Z, the set {θp,k}k∈Z given by

θp,k(t) = 2−p/2θ(2−pt− k)

is also a Riesz basis with the same Riesz bounds as {θ(·−n)}n∈Z.

Proof. The proof makes use of Theorem 4.1 and is left as an exercise for the reader.

Now, we consider the basis for each of the approximation spaces. The basis for each of these spaces can be

determined using the theorem below.

Theorem 4.6 (Bases of approximation spaces). Suppose that we have a MRA {Vp}p∈Z and {φ(·−n)}n∈Z is a Riesz

basis of V0 with the dual basis {φ̃(·−n)}n∈Z. Then, for each p ∈ Z, the set {φp,k}k∈Z given by

φp,k(t) = 2−p/2φ(2−pt− k)

is a Riesz basis of Vp with the same Riesz bounds as {φ(·−n)}n∈Z and with the dual basis {φ̃p,k}k∈Z given by

φ̃p,k(t) = 2−p/2φ̃(2−pt− k).
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Proof. For any f (t) ∈ Vp, we have that f (2pt) ∈ V0. This follows from the scale invariance property of the MRA.

Since f (2pt) ∈V0, we can expand this function in terms of the basis of V0. This gives us

f (2pt) = ∑
n∈Z

〈
f (2p·), φ̃(·−n)

〉
φ(t−n)

= ∑
n∈Z

[∫ ∞

−∞
f (2pτ)φ̃ ∗(τ−n)dτ

]
φ(t−n).

Now, we employ a change of variable. Let t ′ = 2pt so that t = 2−pt ′ and dt = 2−pdt ′. Also, let τ ′ = 2pτ so that

τ = 2−pτ ′ and dτ = 2−pdτ ′. Applying the change of variable, we obtain

f (t ′) = ∑
n∈Z

[∫ ∞

−∞
f (τ ′)φ̃ ∗(2−pτ ′−n)2−pdτ ′

]
φ(2−pt ′−n).

Dropping the primes and using straightforward algebraic manipulation, we have

f (t) = ∑
n∈Z

[∫ ∞

−∞
f (τ)φ̃ ∗(2−pτ−n)2−pdτ

]
φ(2−pt−n)

= ∑
n∈Z

2−p
〈
f (·), φ̃(2−p ·−n)

〉
φ(2−pt−n)

= ∑
n∈Z

〈
f (·),2−p/2φ̃(2−p ·−n)

〉
2−p/2φ(2−pt−n).

Thus, we have shown that any f (t) ∈Vp has a representation of the form

f (t) = ∑
n∈Z

〈
f (·), φ̃p,n(·)

〉
φp,n(t),

where

φ̃p,k(t) = 2−p/2φ̃(2−pt− k) and

φp,k(t) = 2−p/2φ(2−pt− k).

We must now show that, for each p ∈ Z, the family {φp,k}k∈Z constitutes a Riesz basis. Observe that the set

{φp,k}k∈Z is of the same form considered by Theorem 4.5. Since {φ0,k(t)}k∈Z = {φ(t − k)}k∈Z is a Riesz basis

for V0, we can use Theorem 4.5 to conclude that {φp,k}k∈Z is a Riesz basis for Vp with the same Riesz bounds as

{φ(·−n)}n∈Z.

Now, we consider the basis of each of the wavelet spaces. The basis of each of these spaces can be determined

using the theorem below.

Theorem 4.7 (Bases of wavelet spaces). Suppose that we have a MRA {Vp}p∈Z with corresponding wavelet spaces

{Wp}p∈Z (i.e., Vp−1 = Vp⊕Wp) and {ψ(·− n)}n∈Z is a Riesz basis of W0 with the dual basis {ψ̃(·− n)}n∈Z. Then,

for each p ∈ Z, {ψp,k}k∈Z given by

ψp,k(t) = 2−p/2ψ(2−pt− k)

is a Riesz basis of Wp with the same Riesz bounds as {ψ(·−n)}n∈Z, and with a dual basis {ψ̃p,k}k∈Z given by

ψ̃p,k(t) = 2−p/2ψ̃(2−pt− k).

Proof. The proof is essentially the same as the proof for Theorem 4.6 with the scaling function φ replaced by the

wavelet function ψ .
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Figure 4.11: Example of a refinable function. (a) The Haar scaling function. The (b) first and (c) second terms in the

refinement equation.

4.2.5 Scaling and Wavelet Equations

In the context of wavelet systems, we often encounter equations that relate a function to translated and dilated versions

of itself. We more formally define this particular type of equation below.

Definition 4.2 (Refinement equation). An equation of the form

φ(t) = ∑
n∈Z

a[n]φ(Mt−n), (4.10)

where M ∈ Z and M ≥ 2, is called an M-scale refinement equation (or dilation equation). The sequence a[n] is
referred to as a refinement mask. The solution of (4.10) is called an M-refinable function (or distribution). The

symbol of a refinable function is the quantity 1
M
â(ω/M).

Refinement equations play a crucial role in wavelet systems. Clearly, any dilation equation admits a trivial solution

of φ(t)≡ 0. We are usually interested in nontrivial solutions, however. If a nontrivial solution does exist, the solution

is not unique. If φ(t) is a solution, then αφ(t) is also a solution, where α is a constant.

For the time being, we will only interest ourselves in 2-scale refinement equations and 2-refinable functions. A

few examples of refinable functions are given below. Although the functions in these examples can be expressed in

closed form, many refinable functions cannot be expressed in this way.

Example 4.10 (Haar scaling function). Consider the function

φ(t) = χ[0,1)(t).

One can confirm that φ satisfies the following refinement equation

φ(t) = φ(2t)+φ(2t−1).

This refinement relationship is illustrated in Figure 4.11.

Example 4.11 (Linear B-spline scaling function). Consider the function

φ(t) =

{
1−|t| for |t|< 1

0 otherwise.

One can confirm that φ satisfies the following refinement equation

φ(t) = 1
2
φ(2t+1)+φ(2t)+ 1

2
φ(2t−1).

This refinement relationship is illustrated in Figure 4.12.
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Figure 4.12: Linear B-spline scaling function. (a) scaling function The (a) first, (b) second, and (c) third terms in the

refinement equation.

As it turns out, the scaling function φ of a MRA satisfies a refinement equation (i.e., φ is refinable). The particular

form of the refinement relationship is given by the theorem below.

Theorem 4.8 (Scaling equation). Suppose that we have a MRA {Vp}p∈Z and V0 has the Riesz basis {φ(·− n)}n∈Z.

Then, φ satisfies a refinement equation of the form

φ(t) =
√
2 ∑
n∈Z

c[n]φ(2t−n), (4.11a)

where

c[n] =
〈

φ(·),
√
2φ̃(2 ·−n)

〉
. (4.11b)

Proof. Trivially, we have that φ(t) ∈ V0. From the scale invariance property of the MRA, we know that φ(t) ∈
V0 ⇒ φ(t/2) ∈ V1. Since, from the nesting property of the MRA, V1 ⊂ V0, we can further deduce that φ(t/2) ∈ V0.
Consequently, φ(t/2) can be expanded in terms of the basis of V0 as

φ( t
2
) = ∑

n∈Z

〈
φ( 1

2
·), φ̃(·−n)

〉
φ(t−n)

= ∑
n∈Z

[∫ ∞

−∞
φ( τ

2
)φ̃ ∗(τ−n)dτ

]
φ(t−n)

which, by substitution, is equivalent to

φ(t) = ∑
n∈Z

[∫ ∞

−∞
φ( τ

2
)φ̃ ∗(τ−n)dτ

]
φ(2t−n).
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Now, we employ a change of variable. Let τ ′ = 1
2
τ so that τ = 2τ ′ and dτ = 2dτ ′. Applying the change of variable

and then performing straightforward algebraic manipulation, we obtain

φ(t) = ∑
n∈Z

[∫ ∞

−∞
φ(τ ′)φ̃ ∗(2τ ′−n)2dτ ′

]
φ(2t−n)

= 2 ∑
n∈Z

〈
φ(·), φ̃(2 ·−n)

〉
φ(2t−n)

=
√
2 ∑
n∈Z

〈
φ(·),

√
2φ̃(2 ·−n)

〉
φ(2t−n)

=
√
2 ∑
n∈Z

c[n]φ(2t−n).

The refinement mask in (4.11a) is the sequence c′[n] =
√
2c[n]. One might wonder why we write the scaling

equation in terms of c[n] instead of the refinement mask c′[n] directly. This choice is somewhat arbitrary. Many

authors, however, have adopted this convention. For this reason, this convention has been adopted herein. One must

be mindful that more than one convention is used in the literature, however. Depending on which convention is

employed, various formulae derived from the scaling equation may contain different constants.

Often, we are interested in the Fourier transform of the scaling equation. Sometimes, the Fourier transform

representation provides us with additional insight into the behavior of the scaling function. The Fourier transform of

the scaling equation is given by the theorem below.

Theorem 4.9 (Fourier transform of the scaling equation). Let φ be a scaling function with scaling equation coefficient

sequence c. Then, φ̂ is given by

φ̂(ω) = 1√
2
ĉ(ω

2
)φ̂(ω

2
) (4.12)

which can be equivalently expressed in terms of an infinite product as

φ̂(ω) = φ̂(0)
∞

∏
p=1

ĉ(2−pω)√
2

. (4.13)

Proof. Taking the Fourier transform of both sides of the scaling equation (4.11a) yields

φ̂(ω) = 1
2
(
√
2) ∑

n∈Z

c[n]e− jnω/2φ̂(ω
2
)

= 1√
2

[
∑
n∈Z

c[n]e− jnω/2

]
φ̂(ω

2
).

Let ĉ(ω) = ∑n∈Z c[n]e
− jnω (i.e., ĉ is the (discrete-time) Fourier transform of c). With this definition, we have

φ̂(ω) = 1√
2
ĉ(ω

2
)φ̂(ω

2
).

Recursively applying this formula, we have

φ̂(ω) = 1√
2
ĉ(ω

2
)φ̂(ω

2
)

= 1√
2
ĉ(ω

2
)
[

1√
2
ĉ(ω

4
)φ̂(ω

4
)
]

= ( 1√
2
)2ĉ(ω

2
)ĉ(ω

4
)φ̂(ω

4
)

= ( 1√
2
)2ĉ(ω

2
)ĉ(ω

4
)
[

1√
2
ĉ(ω

8
)φ̂(ω

8
)
]

= ( 1√
2
)3ĉ(ω

2
)ĉ(ω

4
)ĉ(ω

8
)φ̂(ω

8
)

=

[
N

∏
p=1

1√
2
ĉ(2−pω)

]
φ̂(2−Nω).
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Taking the limit as N→ ∞, we obtain

φ̂(ω) = φ̂(0)
∞

∏
p=1

1√
2
ĉ(2−pω).

Although the wavelet function does not satisfy a refinement equation, it can be expressed in terms of dilated and

translated versions of the scaling function. This leads to what is known as the wavelet equation, given by the theorem

below.

Theorem 4.10 (Wavelet equation). Suppose that we have a MRA {Vp}p∈Z with wavelet subspaces {Wp}p∈Z, where

V0 has the Riesz basis {φ(·−n)}n∈Z andW0 has the Riesz basis {ψ(·−n)}n∈Z. Then, ψ(t) can be expressed in terms
of an equation of the form

ψ(t) =
√
2 ∑
n∈Z

d[n]φ(2t−n)

where

d[n] =
〈

ψ(·),
√
2φ̃(2 ·−n)

〉
.

Proof. Trivially, we have that ψ(t) ∈W0. From the nesting property of the MRA,W0 ⊂V−1⇒ ψ(t) ∈V−1. From the

scale invariance property of the MRA, ψ(t) ∈ V−1⇒ ψ(t/2) ∈ V0. Consequently, ψ(t/2) can be expanded in terms

of the basis of V0 as

ψ( 1
2
t) = ∑

n∈Z

〈
ψ( 1

2
·), φ̃(·−n)

〉
φ(t−n)

= ∑
n∈Z

[∫ ∞

−∞
ψ( τ

2
)φ̃ ∗(τ−n)dτ

]
φ(t−n).

Now, we employ a change of variable. Let t ′ = 1
2
t so that t = 2t ′ and dt = 2dt ′. Also, let τ ′ = τ/2 so that τ = 2τ ′ and

dτ = 2dτ ′. Applying the change of variable, we obtain

ψ(t ′) = ∑
n∈Z

[∫ ∞

−∞
ψ(τ ′)φ̃ ∗(2τ ′−n)2dτ ′

]
φ(2t ′−n)

= 2 ∑
n∈Z

[∫ ∞

−∞
ψ(τ ′)φ̃ ∗(2τ ′−n)dτ ′

]
φ(2t ′−n).

Dropping the primes and simplifying, we have

ψ(t) = 2 ∑
n∈Z

〈
ψ(·), φ̃(2 ·−n)

〉
φ(2t−n)

=
√
2 ∑
n∈Z

〈
ψ(·),

√
2φ̃(2 ·−n)

〉
φ(2t−n)

=
√
2 ∑
n∈Z

d[n]φ(2t−n).

Note that the wavelet equation is not a refinement equation. That is, while the scaling function φ is refinable, the

wavelet function ψ is not refinable.

Often, we are interested in the Fourier transform of the wavelet equation. This is given by the theorem below.
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Theorem 4.11 (Fourier transform of wavelet equation). Let φ and ψ be the scaling and wavelet functions of a MRA.

Suppose that φ has scaling equation coefficient sequence c and ψ has the wavelet equation coefficient sequence d.

Then, ψ̂ is given by

ψ̂(ω) = 1√
2
d̂(ω

2
)φ̂(ω

2
)

which can be equivalently expressed in terms of an infinite product as

ψ̂(ω) = 1√
2
φ̂(0)d̂(ω

2
)

∞

∏
p=1

1√
2
ĉ(2−p−1ω).

Proof. Taking the Fourier transform of both sides of the wavelet equation, we obtain

ψ̂(ω) =
√
2 ∑
n∈Z

d[n] 1
2
φ̂(ω

2
)e− jnω/2

= 1√
2

[
∑
n∈Z

d[n]e− jnω/2

]
φ̂(ω

2
).

Let d̂(ω) = ∑n∈Z d[n]e− jnω (i.e., d̂ is the discrete-time Fourier transform of d). With this definition, we can rewrite

the above equation as

ψ̂(ω) = 1√
2
d̂(ω

2
)φ̂(ω

2
).

Using Theorem 4.9, we can re-express φ̂(ω/2) in terms of an infinite product, and then simplify to obtain

ψ̂(ω) = 1√
2
d̂(ω

2
)

[
∞

∏
p=1

1√
2
ĉ(2−pω/2)

]
φ̂(0)

= 1√
2
φ̂(0)d̂(ω

2
)

∞

∏
p=1

1√
2
ĉ(2−p−1ω).

4.2.6 Generating MRAs from Scaling Functions

Rather than defining an MRA in terms of its approximation spaces, we can use the scaling function as the starting

point for defining a MRA. To begin, we make an appropriate choice of scaling function φ . Then, from this scaling

function, we can generate each of the approximation spaces of the MRA. This process is formalized by the theorem

below.

Theorem 4.12. Suppose that φ ∈ L2(R) satisfies a refinement relation of the form

φ(t) = ∑
k∈Z

c[k]φ(2t− k),

where ∑k∈Z |c[k]|2 < ∞. Further, suppose that {φ(·− k)}k∈Z is a Riesz basis for the space that it generates. Define

φp,k(t) = 2−p/2φ(2−pt− k)

and let Vp be the space generated by {φp,k}k∈Z. Then, the sequence {Vp}p∈Z of spaces constitutes a MRA.

Proof. NESTING. First, let us show that the nesting property is satisfied. In other words, we must prove that

for all p ∈ Z, x ∈Vp⇒ x ∈Vp−1.
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Suppose that x(t) ∈Vp. Since x(t) ∈Vp, we can expand x(t) in terms of the basis of Vp as

x(t) = ∑
k∈Z

akφp,k(t)

= ∑
k∈Z

ak2
−p/2φ(2−pt− k).

Using the refinement relation for φ(t), we can rewrite this equation as

x(t) = ∑
k∈Z

ak2
−p/2

[
∑
l∈Z

c[l]φ(2[2−pt− k]− l)

]

= ∑
k∈Z

ak2
−p/2 ∑

l∈Z

c[l]φ(2−(p−1)t−2k− l).

Now, we employ a change of variable. Let l′ = 2k+ l so that l = l′−2k. Applying the change of variable and dropping

the primes, we have

x(t) = ∑
k∈Z

ak2
−p/2 ∑

l∈Z

c[l−2k]φ(2−(p−1)t− l)

= ∑
k∈Z

∑
l∈Z

2−p/2akc[l−2k]φ(2−(p−1)t− l)

= ∑
k∈Z

∑
l∈Z

21/2akc[l−2k]
[
2−(p−1)/2φ(2−(p−1)t− l)

]

= ∑
k∈Z

∑
l∈Z

21/2akc[l−2k]φp−1,l(t)

= ∑
l∈Z

(
∑
k∈Z

21/2akc[l−2k]

)
φp−1,l(t).

Thus, we have expressed x(t) in terms of the basis of Vp−1. This implies that x(t) ∈ Vp−1. Therefore, the nesting

property is satisfied.

SHIFT INVARIANCE. Now, let us show that the shift invariance property is satisfied. In other words, we must

show

for all n ∈ Z, x(t) ∈V0⇔ x(t−n) ∈V0.

Suppose that x ∈V0. Since x ∈V0, we can expand x in terms of the basis of V0 as

x(t) = ∑
k∈Z

akφ(t− k).

Substituting t−n for t in the preceding equation, we obtain

x(t−n) = ∑
k∈Z

akφ(t−n− k).

Now we employ a change of variable. Let k′ = n+k so that k = k′−n. Applying this change of variable and dropping

the primes, we have

x(t−n) = ∑
k∈Z

ak−nφ(t− k).

Thus, we have expressed x(t − n) in terms of the basis of V0. Thus, x(t − n) ∈ V0. Therefore, the shift invariance

property holds.

SCALE INVARIANCE. Now, let us prove that the scale invariance property is satisfied. That is, we must show

for all p ∈ Z, x(t) ∈Vp⇔ x(2t) ∈Vp−1.
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First, we show that x(t) ∈Vp⇒ x(2t) ∈Vp−1. Suppose that x(t) ∈Vp. Since x(t) ∈Vp, we can expand x(t) in terms of

the basis of Vp as

x(t) = ∑
k∈Z

akφp,k(t)

= ∑
k∈Z

ak2
−p/2φ(2−pt− k).

Substituting 2t for t in this equation, we obtain

x(2t) = ∑
k∈Z

ak2
−p/2φ(2−p[2t]− k)

= ∑
k∈Z

ak2
−p/2φ(2−(p−1)t− k)

= ∑
k∈Z

2−1/2ak2
−(p−1)/2φ(2−(p−1)t− k)

= ∑
k∈Z

2−1/2akφp−1,k(t).

Thus, we have expressed x(2t) in terms of the basis of Vp−1. This implies that x(2t) ∈Vp−1.
Now, we show x(2t) ∈Vp−1⇒ x(t) ∈Vp. Suppose that x(2t) ∈Vp−1. Since x(2t) ∈Vp−1, we can expand x(2t) in

terms of the basis of Vp−1 as

x(2t) = ∑
k∈Z

akφp−1,k(t)

= ∑
k∈Z

ak2
−(p−1)/2φ(2−(p−1)t− k).

Substituting t/2 for t in this equation, we obtain

x(t) = ∑
k∈Z

ak2
−(p−1)/2φ(2−(p−1)t/2− k)

= ∑
k∈Z

ak2
−(p−1)/2φ(2−pt− k)

= ∑
k∈Z

21/2ak2
−p/2φ(2−pt− k)

= ∑
k∈Z

21/2akφp,k(t).

Thus, we have expressed x(t) in terms of the basis of Vp. This implies that x(t) ∈ Vp. Combining the above results,

we have that the scale invariance property holds.

DENSITY AND SEPARATION. One can also show that the separation and density properties hold [9, Proposition

5.3.1, p. 141], [9, Proposition 5.3.2, p. 142]. The proof is somewhat technical and omitted here. (In the case of the

density property, the assumption is made that φ̂(ω) is bounded for all ω and continuous near ω = 0.)

4.2.7 Dual MRAs

Consider a MRA {Vp}p∈Z with scaling function φ , wavelet space sequence {Wp}p∈Z, and the corresponding wavelet

function ψ . In order to compute the expansion coefficients of an arbitrary function in terms of the basis of each of

the approximation and/or wavelet spaces, we must take an inner product of the function with the appropriate dual

basis functions. In this context, the functions φ̃ and ψ̃ become quite important. So far, we have focused our attention

primarily on φ and ψ and the spaces that they generate. One might wonder what structure (if any) is associated with

the functions φ̃ and ψ̃ . An interesting result in this regard is given by the theorem below.
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Theorem 4.13 (Dual MRAs). Let {Vp}p∈Z be a MRA with scaling function φ , wavelet space sequence {Wp}p∈Z, and

corresponding wavelet function ψ . Suppose that the dual Riesz bases of {φ(·− k)}k∈Z and {ψ(·− k)}k∈Z are given

by {φ̃(·−k)}k∈Z and {ψ̃(·−k)}k∈Z, respectively. Then, φ̃ is also the scaling function of a MRA {Ṽp}p∈Z with wavelet

space sequence {W̃p}p∈Z and the corresponding wavelet function ψ̃ .

The above theorem is significant because it shows that MRAs occur in pairs. As a matter of terminology, {Ṽp}p∈Z

is said to be the dual MRA of {Vp}p∈Z. Furthermore, it follows that if {Ṽp}p∈Z is the dual of {Vp}p∈Z then {Vp}p∈Z

is also trivially the dual of {Ṽp}p∈Z. In other words, this duality property is symmetric. As a matter of terminology,

we refer to φ̃ and ψ̃ as the dual scaling function and dual wavelet function, respectively.

An important relationship exists between the approximation and wavelet spaces of a MRA and its dual as stated

by the theorem below.

Theorem 4.14. Suppose that {Vp}p∈Z and {Ṽp}p∈Z are dual MRAs with corresponding wavelet space sequences

{Wp}p∈Z and {W̃p}p∈Z, respectively. Then, we have

for all p ∈ Z, Vp ⊥ W̃p and Wp ⊥ Ṽp.

Proof. Let {φp,k}p∈Z and {φ̃p,k}p∈Z be Riesz bases of Vp and Ṽp as defined previously. We define the following

(possibly oblique) projection operators:

Pp f = ∑
k∈Z

〈
f , φ̃p,k

〉
φp,k,

P̃p f = ∑
k∈Z

〈
f ,φp,k

〉
φ̃p,k,

Qp f = Pp−1 f −Pp f , and

Q̃p f = P̃p−1 f − P̃p f .

(Note that the range spaces of Qp and Q̃p are Wp and W̃p, respectively.) In other words, Pp, P̃p, Qp, and Q̃p are

projections onto Vp, Ṽp,Wp, and W̃p, respectively.

First, we show thatWp ⊥ Ṽp for all p ∈ Z. Choose any arbitrary vector f ∈Wp. Since f ∈Wp, we have Qp f = f ,

or equivalently

Pp−1 f −Pp f = f .

Since f ∈Wp ⊂Vp−1, we also have

Pp−1 f = f .

Combining the above two expressions for f , we have that Pp f = 0, or equivalently

∑
k∈Z

〈
f , φ̃p,k

〉
φp,k = 0.

Thus,
〈
f , φ̃p,k

〉
= 0 for all k ∈ Z. This implies that f ⊥ Ṽp. Furthermore, since f was chosen as any arbitrary vector in

Wp, we also have thatWp ⊥ Ṽp.

Now, we show that Vp ⊥ W̃p for all p ∈ Z. Choose any arbitrary vector f ∈ W̃p. Since f ∈ W̃p, we have Q̃p f = f ,

or equivalently

P̃p−1 f − P̃p f = f .

Since f ∈ W̃p ⊂ Ṽp−1, we also have

P̃p−1 f = f .

Combining the above two expressions for f , we have that P̃p f = 0, or equivalently

∑
k∈Z

〈
f ,φp,k

〉
φ̃p,k = 0.

Thus,
〈
f ,φp,k

〉
= 0 for all k ∈ Z. This implies that f ⊥Vp. Furthermore, since f was chosen as any arbitrary vector in

W̃p, we also have that W̃p ⊥Vp.
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In light of the above result, we observe that if the corresponding approximation and wavelet spaces associated

with a MRA are orthogonal (i.e., for all p ∈ Z, Vp ⊥Wp), then the MRA is self dual.

4.2.8 Wavelet Systems

A wavelet system is simply a basis of L2(R) that is derived from a MRA. When constructing wavelet systems, we

have a number of degrees of freedom available to us. In particular, we have some flexibility in the structure of

approximation and wavelet spaces and the bases employed for these spaces. By exploiting this flexibility, we can

obtain wavelet systems with differing types of structure. This leads to three different types of wavelet systems:

orthonormal, semiorthogonal, and biorthonormal.

In what follows, we consider a MRA {Vp}p∈Z with scaling function φ , wavelet space sequence {Wp}p∈Z, and

corresponding wavelet function ψ . Let the dual Riesz bases of {φ(·− k)}k∈Z and {ψ(·− k)}k∈Z be given by {φ̃(·−
k)}k∈Z and {ψ̃(· − k)}k∈Z, respectively. Let the dual MRA of {Vp}p∈Z be {Ṽp}p∈Z with wavelet space sequence

{W̃p}p∈Z.

The most constrained type of wavelet system is an orthonormal wavelet system. With this type of system, the

basis of each of the approximation and wavelet spaces is chosen to be orthonormal, and each wavelet space is chosen

to be orthogonal to its corresponding approximation space. That is, we have

{φ(·− k)}k∈Z is orthonormal, {ψ(·− k)}k∈Z is orthonormal, and

for each p ∈ Z, Vp ⊥Wp.

From this, it follows that

φ̃ = φ , ψ̃ = ψ, {φ(·− k)}k∈Z ⊥ {ψ(·− k)}k∈Z,

Ṽp =Vp, W̃p =Wp, {Wp}p∈Z is mutually orthogonal.

Clearly, the MRA {Vp}p∈Z is self dual. That is, there is only one (distinct) MRA associated with an orthonormal

wavelet system.

Sometimes, it can be overly restrictive to require the use of an orthonormal basis for each of the approximation

and wavelet spaces. Dropping this constraint leads to what is called a semiorthogonal wavelet system. With this type

of system, we choose to use a Riesz basis for each of the approximation and wavelet spaces, and each wavelet space

is chosen to be orthogonal to its corresponding approximation space. That is, we have

{φ(·− k)}k∈Z is a Riesz basis, {ψ(·− k)}k∈Z is a Riesz basis, and

for each p ∈ Z, Vp ⊥Wp.

From this, it follows that

{φ(·− k)}k∈Z and {φ̃(·− k)}k∈Z are dual Riesz bases,

{ψ(·− k)}k∈Z and {ψ̃(·− k)}k∈Z are dual Riesz bases,

{φ(·− k)}k∈Z ⊥ {ψ(·− k)}k∈Z,

{φ̃(·− k)}k∈Z ⊥ {ψ̃(·− k)}k∈Z,

Ṽp =Vp, W̃p =Wp, and {Wp}p∈Z is mutually orthogonal.

Clearly, the MRA {Vp}p∈Z is self dual. Thus, there is only one (distinct) MRA associated with a semiorthogonal

system.

Sometimes, even the requirement that the corresponding approximation and wavelet spaces be orthogonal is too

restrictive. By dropping this constraint, we obtain what is called a biorthonormal wavelet system. That is, we have

{φ(·− k)}k∈Z is a Riesz basis, {ψ(·− k)}k∈Z is a Riesz basis, and

for each p ∈ Z, Vp ⊥ W̃p andWp ⊥ Ṽp.
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From this, it follows that

{φ(·− k)}k∈Z and {φ̃(·− k)}k∈Z are dual Riesz bases,

{ψ(·− k)}k∈Z and {ψ̃(·− k)}k∈Z are dual Riesz bases,

{φ(·− k)}k∈Z ⊥ {ψ̃(·− k)}k∈Z,

{ψ(·− k)}k∈Z ⊥ {φ̃(·− k)}k∈Z,

{Wp}p∈Z is mutually disjoint, and

{W̃p}p∈Z is mutually disjoint.

With a biorthonormal system, it is not necessarily true that Vp ⊥Wp. Consequently, {φ(·− k)}k∈Z and {ψ(·− k)}k∈Z

are not necessarily orthogonal. Moreover, the spaces in {Wp}p∈Z are not necessarily mutually orthogonal. These

spaces are only guaranteed to be mutually disjoint. The MRA {Vp}p∈Z is no longer necessarily self dual. Thus, there

are potentially two distinct MRAs associated with a biorthonormal wavelet system.

As one proceeds from orthonormal to semiorthogonal to biorthonormal systems, the amount of structure de-

creases (i.e., the degrees of freedom increase). Although orthonormal wavelets systems are often desirable, due to

the orthonormal bases employed, the orthonormality constraint can often be overly restrictive. For this reason, some

applications use biorthonormal (or semiorthogonal) wavelet systems.

4.2.9 Examples of Wavelet Systems

In this section, we introduce a number of wavelet systems.

Example 4.12 (Haar wavelet system). One of the simplest examples of an orthonormal wavelet system is the Haar

wavelet system. This system is associated with the MRA based on piecewise constant approximations, as introduced

in Example 4.1.

The scaling function φ satisfies the refinement relationship

φ(t) =
√
2
(

1√
2
φ(2t)+ 1√

2
φ(2t−1)

)
.

The wavelet function ψ can be expressed in terms of the scaling function as

ψ(t) =
√
2
(

1√
2
φ(2t)− 1√

2
φ(2t−1)

)
.

Fortunately, φ and ψ can be expressed in closed form as

φ(t) = χ[0,1)(t) =

{
1 if 0≤ t < 1

0 otherwise
and

ψ(t) = χ[0,1/2)(t)−χ[1/2,1)(t) =





1 if 0≤ t < 1
2

−1 if 1
2
≤ t < 1

0 otherwise.

These two functions are plotted in Figure 4.13. (Since the system is orthonormal, φ̃ = φ and ψ̃ = ψ .)

Example 4.13 (Shannon wavelet system). Another classic example of an orthonormal wavelet system is the Shannon

wavelet system. This system is associated with the MRA introduced in Example 4.2, which is based on spaces of

bandlimited functions.

The scaling function φ satisfies the refinement equation

φ(t) =
√
2 ∑
k∈Z

ckφ(2t− k)
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Figure 4.13: The Haar scaling and wavelet functions. The (a) scaling function and (b) wavelet function.

where

ck =





1√
2

k = 0
√
2(−1)(k−1)/2

kπ odd k

0 even k, k 6= 0.

The wavelet function ψ can be expressed in terms of the scaling function as

ψ(t) =
√
2 ∑
k∈Z

dkφ(2t− k)

where dk = (−1)kck.
Fortunately, φ and ψ can be expressed in closed form as

φ(t) = sincπt and

ψ(t) =
(
cos 3π

2
t
)
sinc π

2
t.

These two functions are plotted in Figure 4.14. (Since this system is orthonormal, φ̃ = φ and ψ̃ = ψ .) In passing, we

note that

φ̂(ω) = χ[−π,π](ω) and ψ̂(ω) = χ[−2π,−π)(ω)+ χ(π,2π](ω).

Example 4.14 (Daubechies-2 wavelet system). One famous example of a wavelet system is the Daubechies-2 wavelet

system. This system is orthonormal.

The scaling function φ satisfies the refinement equation

φ(t) =
√
2

2

∑
k=−1

ckφ(2t− k)

where

c−1 = 1+
√
3

4
√
2

, c0 = 3+
√
3

4
√
2

, c1 = 3−
√
3

4
√
2

, and c2 = 1−
√
3

4
√
2

.

The wavelet function ψ is given by

ψ(t) =
√
2

2

∑
k=−1

dkφ(2t− k),

where dk = (−1)1−kc1−k. The scaling and wavelet functions are plotted in Figures 4.15(a) and 4.15(b), respectively.

(Since the system is orthonormal, φ̃ = φ and ψ̃ = ψ .)
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Figure 4.14: The Shannon scaling and wavelet functions. The (a) scaling function and (b) wavelet function.
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Figure 4.15: The Daubechies-2 scaling and wavelet functions. The (a) scaling function and (b) wavelet function.
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Example 4.15 (Le Gall 5/3 wavelet system). In this example, we introduce a biorthonormal wavelet system proposed

in [12]. This particular wavelet system has proven to be extremely useful in signal coding applications (e.g., image

compression).

This wavelet system is, in part, associated with the MRA introduced in Example 4.3. This is the synthesis MRA.

The (primal) scaling function φ satisfies the refinement equation

φ(t) =
√
2

1

∑
k=−1

ckφ(2t− k)

where

c−1 = c1 = 1

2
√
2
, and c0 = 1√

2
.

The (primal) wavelet function ψ can be expressed in terms of the scaling function as

ψ(t) =
√
2

3

∑
k=−1

dkφ(2t− k)

where

d−1 = d3 =− 1

4
√
2
, d0 = d2 =− 2

4
√
2
, and d1 = 6

4
√
2
.

The above functions can be expressed in closed form as

φ(t) =

{
1−|t| t ∈ [−1,1]
0 otherwise

and

ψ(t) =





3
2
−4
∣∣t− 1

2

∣∣ t ∈ (0,1)

− 3
4
+ 1

2

∣∣t− 1
2

∣∣ t ∈ (−1,0]∪ [1,2)

0 otherwise.

The functions φ and ψ are plotted in Figures 4.16(a) and (b), respectively.

The dual scaling function φ̃ satisfies the refinement equation

φ̃(t) =
√
2

2

∑
k=−2

c̃kφ̃(2t− k)

where c̃k = (−1)kd1−k. The dual wavelet function ψ̃ can be expressed as

ψ̃(t) =
√
2

2

∑
k=0

d̃kφ̃(2t− k)

where d̃k = (−1)k+1c1−k. Unfortunately, there is no closed form expression for φ̃ and ψ̃ . These functions are (ap-

proximately) plotted in Figures 4.16(c) and (d), respectively. In actual fact, these plots are somewhat misleading, as

one can show that φ̃ is infinite at every dyadic point [22, p. 248].

Example 4.16 (Cohen-Daubechies-Feauveau 9/7 wavelet system). The Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet

system has found wide application in signal coding applications (e.g., the JPEG-2000 image compression stan-

dard [15] and FBI fingerprint compression standard [11]). This system is biorthonormal.

The (primal) scaling function φ satisfies the refinement equation

φ(t) =
√
2

3

∑
k=−3

ckφ(2t− k)
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Figure 4.16: The Le Gall 5/3 scaling and wavelet functions. The (a) primal scaling function, (b) primal wavelet

function, (c) dual scaling function, and (d) dual wavelet function.
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where

c−3 = c3 = 1

32
√
2 x1
≈−0.06453888262894, c−2 = c2 = 2x1+1

16
√
2 x1
≈−0.04068941760956,

c−1 = c1 = 16x1−1
32
√
2 x1
≈ 0.41809227322221, c0 = 6x1−1

8
√
2 x1
≈ 0.78848561640566,

x1 = A+B− 1
6
, A = 3

√
63−14

√
15

1080
√
15

, and B =− 3

√
63+14

√
15

1080
√
15

.

The (primal) wavelet function ψ is given by

ψ(t) =
√
2

5

∑
k=−3

dkφ(2t− k)

where

d−3 = d5 =− 5

32
√
2
x1 ≈ 0.0378284555069955,

d−2 = d4 = 5

4
√
2
x1Rex2 ≈ 0.0238494650193800,

d−1 = d3 =− 5

8
√
2
x1(4 |x2|2 +4Rex2−1)≈−0.1106244044184234,

d0 = d2 = 5

4
√
2
x1(8 |x2|2−Rex2)≈−0.3774028556126539,

d1 =− 5

16
√
2
x1(48 |x2|2−16Rex2 +3)≈ 0.8526986790094035, and

x2 =− 1
2
(A+B)− 1

6
+ j

√
3
2

(A−B).

The functions φ and ψ are plotted in Figures 4.17(a) and (b), respectively.

The dual scaling function φ̃ satisfies the refinement equation

φ̃(t) =
√
2

4

∑
k=−4

c̃kφ̃(2t− k)

where c̃k = (−1)kd1−k. The dual wavelet function ψ̃ is given by

ψ̃(t) =
√
2

4

∑
k=−2

d̃kφ̃(2t− k)

where d̃k = (−1)k+1c1−k. The functions φ̃ and ψ̃ are plotted in Figures 4.17(c) and (d), respectively.

4.2.10 Relationship Between Wavelets and Filter Banks

Consider a wavelet system with MRA {Vp}p∈Z and wavelet space sequence {Wp}p∈Z. Let {φp,k}k∈Z and {ψp,k}k∈Z

denote the bases ofVp andWp, respectively. Suppose that we have a function f ∈Vp. Since f ∈Vp, f has an expansion

in terms of the basis of Vp given by

f (t) = ∑
n∈Z

ap[n]φp,n(t). (4.14)

Furthermore, as Vp =Vp+1⊕Wp+1, we can also expand f in terms of the bases of Vp+1 andWp+1 to obtain

f (t) = ∑
n∈Z

ap+1[n]φp+1,n(t)+ ∑
n∈Z

bp+1[n]ψp+1,n(t) (4.15)

(i.e., f is the sum of a function inVp+1 and a function inWp+1). Thus, we have two different representations of f . One

might wonder if there exists a simple technique for computing (4.14) from (4.15) and vice versa. In other words, given

ap[n], we would like to be able to determine ap+1[n] and bp+1[n]; or given ap+1[n] and bp+1[n], we would like to be

able to determine ap[n]. Fortunately, there is a very elegant technique for accomplishing exactly this. This technique

is known as the Mallat algorithm and is given by the theorem below.
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Figure 4.17: The CDF 9/7 scaling and wavelet functions. The (a) primal scaling function, (b) primal wavelet function,

(c) dual scaling function, and (d) dual wavelet function.
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Theorem 4.15 (Mallat algorithm). Consider a wavelet system with MRA {Vp}p∈Z, scaling function φ , wavelet space
sequence {Wp}p∈Z, wavelet function ψ , dual scaling function φ̃ , and dual wavelet function ψ̃ . Let the scaling equation

coefficient sequences of φ and φ̃ be denoted as c and c̃, respectively. Let the wavelet equation coefficient sequences of

ψ and ψ̃ be denoted as d and d̃, respectively. Define the basis functions for the various spaces as before

φp,n(t) = 2−p/2φ(2−pt−n),

ψp,n(t) = 2−p/2ψ(2−pt−n),

φ̃p,n(t) = 2−p/2φ̃(2−pt−n), and

ψ̃p,n(t) = 2−p/2ψ̃(2−pt−n).

Any f ∈Vp can be represented in each of the following forms:

f = ∑
n∈Z

ap[n]φp,n and (4.16)

f = ∑
n∈Z

ap+1[n]φp+1,n + ∑
n∈Z

bp+1[n]ψp+1,n. (4.17)

Given ap[n], we can compute the corresponding ap+1[n] and bp+1[n] as follows:

ap+1[n] = (↓ 2)(ap ∗h0[n]) and (4.18a)

bp+1[n] = (↓ 2)(ap ∗h1[n]) , (4.18b)

where h0[n] = c̃∗[−n] and h1[n] = d̃∗[−n]. Given ap+1[n] and bp+1[n], we can compute the corresponding ap[n] as
follows:

ap[n] = ((↑ 2)ap+1[n])∗g0[n]+ ((↑ 2)bp+1[n])∗g1[n], (4.19)

where g0[n] = c[n] and g1[n] = d[n].

Proof. ANALYSIS. To begin, let us consider the determination of ap+1[n] and bp+1[n] from ap[n].
First, we consider the calculation of ap+1[n]. We have

ap+1[n] =
〈
f , φ̃p+1,n

〉

=

〈
∑
k∈Z

ap[k]φp,k, φ̃p+1,n

〉

= ∑
k∈Z

ap[k]
〈
φp,k, φ̃p+1,n

〉
. (4.20)

Now, we focus our attention on expressing φ̃p+1,n in a form that will allow us to further simplify the above equation.

We use the scaling equation for φ̃ to write

φ̃p+1,n(t) = 2−(p+1)/2φ̃(2−(p+1)t−n)

= 2−(p+1)/2

(
√
2∑
l∈Z

c̃[l]φ̃(2[2−(p+1)t−n]− l)

)

= 2−p/2 ∑
l∈Z

c̃[l]φ̃(2−pt−2n− l)

= ∑
l∈Z

c̃[l]2−p/2φ̃(2−pt− [2n+ l])

= ∑
l∈Z

c̃[l]φ̃p,2n+l(t).
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Substituting this expression for φ̃p+1,n in (4.20), we obtain

ap+1[n] = ∑
k∈Z

ap[k]

〈
φp,k, ∑

l∈Z

c̃[l]φ̃p,2n+l

〉

= ∑
k∈Z

∑
l∈Z

ap[k]c̃
∗[l]
〈
φp,k, φ̃p,2n+l

〉

= ∑
k∈Z

∑
l∈Z

ap[k]c̃
∗[l]δ [2n+ l− k]

= ∑
k∈Z

ap[k]c̃
∗[k−2n]

= ∑
k∈Z

ap[k]h0[2n− k]

= (↓ 2)(ap ∗h0[n]) .

Thus, we have shown that (4.18a) is correct.

Next, we consider the computation of bp+1[n]. We have

bp+1[n] =
〈
f , ψ̃p+1,n

〉

=

〈
∑
k∈Z

ap[k]φp,k, ψ̃p+1,n

〉

= ∑
k∈Z

ap[k]
〈
φp,k, ψ̃p+1,n

〉
. (4.21)

Now, we focus our attention on finding an equivalent expression for ψ̃p+1,n that will allow us to simplify the above

equation further. Using the wavelet equation for ψ̃ , we can write

ψ̃p+1,n(t) = 2−(p+1)/2ψ̃(2−(p+1)t−n)

= 2−(p+1)/2

(
√
2∑
l∈Z

d̃[l]φ̃(2[2−(p+1)t−n]− l)

)

= 2−p/2 ∑
l∈Z

d̃[l]φ̃(2−pt−2n− l)

= ∑
l∈Z

d̃[l]2−p/2φ̃(2−pt− [2n+ l])

= ∑
l∈Z

d̃[l]φ̃p,2n+l(t).

Substituting the above expression for ψ̃p+1,n in (4.21), we obtain

bp+1[n] = ∑
k∈Z

ap[k]

〈
φp,k, ∑

l∈Z

d̃[l]φ̃p,2n+l

〉

= ∑
k∈Z

∑
l∈Z

ap[k]d̃
∗[l]
〈
φp,k, φ̃p,2n+l

〉

= ∑
k∈Z

∑
l∈Z

ap[k]d̃
∗[l]δ [2n+ l− k]

= ∑
k∈Z

ap[k]d̃
∗[k−2n]

= ∑
k∈Z

ap[k]h1[2n− k]

= (↓ 2)(ap ∗h1[n]) .
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Thus, we have shown that (4.18b) is correct.

SYNTHESIS. Let us consider the computation of ap[n] from ap+1[n] and bp+1[n]. We have

ap[n] =

〈
∑
k∈Z

ap+1[k]φp+1,k + ∑
k∈Z

bp+1[k]ψp+1,k, φ̃p,n

〉
. (4.22)

Now, we find equivalent expressions for φp+1,k and ψp+1,k that will allow us to simplify the above equation further.

Using the scaling equation for φ , we can write

φp+1,k(t) = 2−(p+1)/2φ(2−(p+1)t− k)

= 2−(p+1)/2

(
√
2∑
l∈Z

c[l]φ(2[2−(p+1)t− k]− l)

)

= 2−p/2 ∑
l∈Z

c[l]φ(2−pt−2k− l)

= ∑
l∈Z

c[l]2−p/2φ(2−pt− [2k+ l])

= ∑
l∈Z

c[l]φp,2k+l .

Using the wavelet equation for ψ , we can write

ψp+1,k(t) = 2−(p+1)/2ψ(2−(p+1)t− k)

= 2−(p+1)/2

(
√
2∑
l∈Z

d[l]φ(2[2−(p+1)t− k]− l)

)

= 2−p/2 ∑
l∈Z

d[l]φ(2−pt−2k− l)

= ∑
l∈Z

d[l]2−p/2φ(2−pt− [2k+ l])

= ∑
l∈Z

d[l]φp,2k+l .

Substituting the expressions obtained above for φp+1,k and ψp+1,k into (4.22) and simplifying, we obtain

ap[n] =

〈
∑
k∈Z

ap+1[k] ∑
l∈Z

c[l]φp,2k+l + ∑
k∈Z

bp+1[k] ∑
l∈Z

d[l]φp,2k+l , φ̃p,n

〉

=

〈
∑
k∈Z

∑
l∈Z

(ap+1[k]c[l]+bp+1[k]d[l])φp,2k+l , φ̃p,n

〉

= ∑
k∈Z

∑
l∈Z

(ap+1[k]c[l]+bp+1[k]d[l])
〈
φp,2k+l , φ̃p,n

〉

= ∑
k∈Z

∑
l∈Z

(ap+1[k]c[l]+bp+1[k]d[l])δ [2k+ l−n]

= ∑
k∈Z

(ap+1[k]c[n−2k]+bp+1[k]d[n−2k])

= ∑
k∈Z

ap+1[k]c[n−2k]+ ∑
k∈Z

bp+1[k]d[n−2k]

= ∑
k∈Z

ap+1[k]g0[n−2k]+ ∑
k∈Z

bp+1[k]g1[n−2k]

= ((↑ 2)ap+1[n])∗g0[n]+ ((↑ 2)bp+1[n])∗g1[n].

Thus, we have shown that (4.19) holds.
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Figure 4.18: Computational structure associated with the Mallat algorithm.

Upon more careful inspection of (4.18), we see that this formula can be computed with the structure shown in

Figure 4.18(a). Likewise, (4.19) can be computed with the structure shown in Figure 4.18(b). In other words, the

Mallat algorithm is associated with a two-channel UMD filter bank. We use the analysis side of the filter bank to

move from a representation of the form of (4.16) to (4.17), and the synthesis side to move from a representation of the

form of (4.17) to (4.16). The Mallat algorithm is of great importance as it establishes a link between wavelet systems

and filter banks.

4.2.11 Filter Banks and Wavelet Systems: Samples Versus Expansion Coefficients

A wavelet series is a representation scheme for continuous-time signals. As we have seen, however, a relationship

exists between wavelet series and the discrete-time computations performed by a filter bank. In particular, this rela-

tionship between wavelet series and filter banks is given by the Mallat algorithm. As was shown earlier, the Mallat

algorithm allows us to move between wavelet series representations that utilize basis functions from different combi-

nations of approximation and wavelet spaces. This is accomplished with the filter bank structure from Figure 4.18.

When viewed from a wavelet perspective, the sequences processed by filter banks correspond to expansion coeffi-

cients of a wavelet series, not samples of a signal. This is an important distinction to make. Since sample values and

expansion coefficients are fundamentally different quantities, this raises the issue of how to convert between them.

For example, suppose that we want to process a (continuous-time) signal x using a wavelet series representa-

tion. We need a way to determine an initial representation of x in terms of the basis {φp,n}n∈Z for some suitable

approximation space Vp. That is, given x ∈Vp, we need to find an expansion for x of the form

x = ∑
n∈Z

ap[n]φp,n,

where the coefficient sequence ap is to be determined. To determine ap, we compute inner products. In particular, we

have

ap[n] =
〈
x, φ̃p,n

〉
,

where {φ̃p,n}n∈Z is the dual basis of {φp,n}n∈Z. Essentially, we are projecting x onto the spaceVp, where the projection

operator being employed may or may not be orthogonal.

Some practical issues arise in the computation of the above inner products. Since we are performing processing

in discrete time, we usually do not explicitly know x (i.e., the original continuous-time signal before sampling). We

only have samples of x. Of course, we could reconstruct x from its samples under the assumption that x is bandlimited

and was sampled at a sufficiently high rate to avoid aliasing (i.e., we can use sinc interpolation). The regeneration of

x from its samples, however, is a rather painful process, with the above inner-product computation also being quite

tedious.

In addition to the problem of how to choose an initial expansion-coefficient sequence, we face one further problem.

After processing is completed, we probably want the final output of our discrete-time system to correspond to sample

values, not expansion coefficients. Essentially, as a final processing step, we need to perform a conversion from

expansion coefficients to their corresponding sample values.

Since converting between expansion coefficients and sample values is a tedious process and can often lead to many

other practical problems, we would prefer to avoid such conversions if possible. This leads to the frequent use of a

very mathematically inelegant but often highly effective solution. Namely, in many practical applications, we instead
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choose ap as a sampled version of x (i.e., ap[n] = x(nT ) for some choice of sampling period T ). In other words, we

use samples of x as expansion coefficients and vice versa. It is important to understand, however, that strictly speaking

this is wrong, since it is not necessarily true that ap[n] = x(nT ). In theory, we should apply a prefiltering operation to

convert sample values into expansion coefficients (before processing is started) and a postfiltering operation to convert

expansion coefficients into sample values (after processing is complete).

Although the sample values and expansion coefficients generally tend not to be equivalent, in some circumstances,

they can be. We explore this situation in what follows. Before proceeding further, however, we need to introduce the

notion of an interpolating function.

Definition 4.3 (Interpolating function). A function f defined on R is said to be interpolating if f (n) = δ [n] for all
n ∈ Z.

Some examples of interpolating functions include χ[0,1) (i.e., the Haar scaling function) and sinc(π·) (i.e., the

Shannon scaling function).

Now, consider a wavelet series expansion associated with the (primal) scaling function φ . If φ is interpolating, we

can show that ap[n] equals x(nT ) to within a scale factor. Suppose that x is represented in terms of the basis for Vp as

x(t) = ∑
k∈Z

ap[k]φp,k(t)

= ∑
k∈Z

ap[k]2
−p/2φ(2−pt− k).

If we evaluate x(t) at points of the form t = 2pn where n ∈ Z (i.e., periodic sampling with period 2p), we obtain

x(2pn) = ∑
k∈Z

ap[k]2
−p/2φ(2−p[2pn]− k)

= ∑
k∈Z

ap[k]2
−p/2φ(n− k).

We now employ a change of variable. Let k′ = n− k so k = n− k′. Applying the change of variable and dropping the

primes, we obtain

x(2pn) = ∑
k∈Z

ap[n− k]2−p/2φ(k)

= 2−p/2ap[n].

(We used the fact that φ is interpolating in the last simplification step.) Thus, if φ is interpolating, ap is given (up to a

scale factor) by the samples of x sampled with period 2p, with the scale factor being one when p = 0. Unfortunately,

most φ are not interpolating. So, this equivalence between sample values and expansion coefficients does not usually

hold.

Whether it is advisable to use sample values as expansion coefficients and vice versa is open to debate. Mathe-

matical purists would probably cringe at the idea of doing so. In many applications, however, this approach (although

technically incorrect) does not cause any serious problems and has the important benefit of greatly simplifying things.

This said, however, it is important to understand that expansion coefficients and sample values are not necessarily the

same. Therefore, in some situations, treating these two different entities as the same may cause problems. For this

reason, one needs to exercise good judgement in this regard.

Although the above sample-value versus expansion-coefficient issue is frequently ignored by authors, this is not

always so. The interested reader can find this matter discussed, for example, in [22, pp. 232–233].

4.2.12 Characterizing Biorthonormal and Orthonormal Wavelet Systems

Often, we are interested in biorthonormal and orthonormal wavelet systems. For this reason, it is useful to characterize

biorthonormal and orthonormal properties in terms of scaling and wavelet equation coefficient sequences.

Let {φp,k}p∈Z, {φ̃p,k}p∈Z, {ψp,k}p∈Z, and {ψ̃p,k}p∈Z denote the Riesz bases ofVp, Ṽp,Wp, W̃p, respectively, where

φp,k, φ̃p,k, ψp,k, ψ̃p,k are as defined in earlier sections.
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A biorthonormal system is such that

〈
φp,k, φ̃p,l

〉
= δ [k− l], (4.23a)

〈
ψp,k, ψ̃p,l

〉
= δ [k− l], (4.23b)

〈
φp,k, ψ̃p,l

〉
= 0, and (4.23c)

〈
ψp,k, φ̃p,l

〉
= 0. (4.23d)

An orthonormal system is such that

〈
φp,k,φp,l

〉
= δ [k− l],

〈
ψp,k,ψp,l

〉
= δ [k− l], and

〈
φp,k,ψp,l

〉
= 0.

In what follows, we will encounter several integrals of the form

2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

λ1[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

λ ∗2 [r]φ̃ ∗(2[2−pt− l]− r)

]
dt.

So, before we continue, we will derive a simplified expression for the above integral. We have

2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

λ1[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

λ ∗2 [r]φ̃ ∗(2[2−pt− l]− r)

]
dt

=2−p+1
∫ ∞

−∞

[
∑
q∈Z

λ1[q]φ(2−p+1t−2k−q)

][
∑
r∈Z

λ ∗2 [r]φ̃ ∗(2−p+1t−2l− r)

]
dt

=2−p+1 ∑
q∈Z

∑
r∈Z

λ1[q]λ
∗
2 [r]

∫ ∞

−∞
φ(2−p+1t−2k−q)φ̃ ∗(2−p+1t−2l− r)dt. (4.24)

Now, we momentarily shift our focus to the computation of the integral appearing on the last line above. We employ a

change of variable. Let t ′ = 2−p+1t−2k−q so that t = 2p−1t ′+2pk+2p−1q and dt = 2p−1dt ′. Applying the change

of variable and dropping the primes, we have

∫ ∞

−∞
φ(2−p+1t−2k−q)φ̃ ∗(2−p+1t−2l− r)dt =

∫ ∞

−∞
φ(t)φ̃ ∗(2−p+1[2p−1t+2pk+2p−1q]−2l− r)2p−1dt

= 2p−1
∫ ∞

−∞
φ(t)φ̃ ∗(t+2k+q−2l− r)dt

= 2p−1
〈
φ(·), φ̃(·− [2l−2k+ r−q])

〉

= 2p−1δ [2l−2k+ r−q].

Substituting this result into (4.24), we have

2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

λ1[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

λ ∗2 [r]φ̃ ∗(2[2−pt− l]− r)

]
dt

=2−p+1 ∑
q∈Z

∑
r∈Z

λ1[q]λ
∗
2 [r]2p−1δ [2l−2k+ r−q]

= ∑
q∈Z

∑
r∈Z

λ1[q]λ
∗
2 [r]δ [2l−2k+ r−q]

= ∑
q∈Z

λ1[q]λ
∗
2 [q+2k−2l]

=〈λ1[·],λ2[·−2(l− k)]〉 . (4.25)
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Consider the inner product
〈
φp,k, φ̃p,l

〉
in (4.23a). Using (4.25), we can write

〈
φp,k, φ̃p,l

〉
=
∫ ∞

−∞
2−p/2φ(2−pt− k)2−p/2φ̃ ∗(2−pt− l)dt

= 2−p
∫ ∞

−∞
φ(2−pt− k)φ̃ ∗(2−pt− l)dt

= 2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

c[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

c̃∗[r]φ̃ ∗(2[2−pt− l]− r)

]
dt

= 〈c[·], c̃[·−2(l− k)]〉 .

Using this result and (4.23a), we can deduce

〈c[·], c̃[·−2n]〉= δ [n]. (4.26)

Consider the inner product
〈
φp,k, ψ̃p,l

〉
in (4.23c). Using (4.25), we can write

〈
φp,k, ψ̃p,l

〉
=
∫ ∞

−∞
2−p/2φ(2−pt− k)2−p/2ψ̃∗(2−pt− l)dt

= 2−p
∫ ∞

−∞
φ(2−pt− k)ψ̃∗(2−pt− l)dt

= 2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

c[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

d̃∗[r]φ̃ ∗(2[2−pt− l]− r)

]
dt

=
〈
c[·], d̃[·−2(l− k)]

〉
.

Using this result and (4.23c), we can deduce

〈
c[·], d̃[·−2n]

〉
= 0. (4.27)

Consider the inner product
〈
ψp,k, ψ̃p,l

〉
in (4.23b). Using (4.25), we can write

〈
ψp,k, ψ̃p,l

〉
=
∫ ∞

−∞
2−p/2ψ(2−pt− k)2−p/2ψ̃∗(2−pt− l)dt

= 2−p
∫ ∞

−∞
ψ(2−pt− k)ψ̃∗(2−pt− l)dt

= 2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

d[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

d̃∗[r]φ̃ ∗(2[2−pt− l]− r)

]
dt

=
〈
d[·], d̃[·−2(l− k)]

〉
.

Using this result and (4.23b), we can conclude

〈
d[·], d̃[·−2n]

〉
= δ [n]. (4.28)

Consider the inner product
〈
ψp,k, φ̃p,l

〉
in (4.23d). Using (4.25), we can write

〈
ψp,k, φ̃p,l

〉
=
∫ ∞

−∞
2−p/2ψ(2−pt− k)2−p/2φ̃ ∗(2−pt− l)dt

= 2−p
∫ ∞

−∞
φ(2−pt− k)ψ̃∗(2−pt− l)dt

= 2−p
∫ ∞

−∞

[
21/2 ∑

q∈Z

d[q]φ(2[2−pt− k]−q)

][
21/2 ∑

r∈Z

c̃∗[r]φ̃ ∗(2[2−pt− l]− r)

]
dt

= 〈d[·], c̃[·−2(l− k)]〉 .
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Using this result and (4.23d), we can conclude

〈d[·], c̃[·−2n]〉= 0. (4.29)

From Section 4.2.10, we know that a wavelet system is associated with a two-channel UMD filter bank. We can

relate c, c̃, d, and d̃ to the analysis and synthesis filter impulse responses h0, h1, g0, and g1. Rewriting (4.26), (4.27),

(4.28), and (4.29) in terms of h0, h1, g0, and g1, we obtain

〈g0[·],h∗0[2n−·]〉= δ [n],

〈g0[·],h∗1[2n−·]〉= 0,

〈g1[·],h∗1[2n−·]〉= δ [n], and

〈g1[·],h∗0[2n−·]〉= 0,

or equivalently

〈gk[·],h∗l [2n−·]〉= δ [k− l]δ [n]. (4.30)

The astute reader will recognize (4.30) as the time-domain condition for a two-channel UMD filter bank with the

shift-free PR property. (See Theorem 3.14 on page 145 or (3.32).)

If the wavelet system is orthonormal, we have c̃ = c and d̃ = d. In this case, (4.26), (4.27), (4.28), and (4.29)

simplify to

〈gk[·],gl [·−2n]〉= δ [k− l]δ [n], hk[n] = g∗k [−n].

Again, the astute reader will recognize this as the condition for an orthonormal filter bank. (See Theorem 3.15 on

page 145.)

Now, we consider some of the above conditions expressed in the Fourier domain. First, we need the result given

below.

Lemma 4.2. For any two sequences f and g, we have

〈 f [·],g[·−2n]〉= αδ [n] ⇔ f̂ (ω)ĝ∗(ω)+ f̂ (ω +π)ĝ∗(ω +π) = 2α, where α ∈ C.

Proof. Define v[n] = g∗[−n]. Using this definition, we can write

〈 f [·],g[·−2n]〉= αδ [n]

⇔ ∑
k∈Z

f [k]g∗[k−2n] = αδ [n]

⇔ ∑
k∈Z

f [k]v[2n− k] = αδ [n]

⇔ (↓ 2)( f ∗ v[n]) = αδ [n].

Taking the Fourier transform of both sides of the preceding equation and using the fact that v̂(ω) = ĝ∗(ω), we obtain

⇔ (↓ 2)( f̂ (ω)v̂(ω)) = α

⇔ 1
2
f̂ (ω)v̂(ω)+ 1

2
f̂ (ω +π)v̂(ω +π) = α

⇔ f̂ (ω)v̂(ω)+ f̂ (ω +π)v̂(ω +π) = 2α

⇔ f̂ (ω)ĝ∗(ω)+ f̂ (ω +π)ĝ∗(ω +π) = 2α.
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Using the above lemma, we can equivalently express (4.26), (4.27), (4.28), and (4.29) as

ĉ(ω) ˆ̃c∗(ω)+ ĉ(ω +π) ˆ̃c∗(ω +π) = 2, (4.31a)

ĉ(ω) ˆ̃d∗(ω)+ ĉ(ω +π) ˆ̃d∗(ω +π) = 0, (4.31b)

d̂(ω) ˆ̃d∗(ω)+ d̂(ω +π) ˆ̃d∗(ω +π) = 2, and (4.31c)

d̂(ω) ˆ̃c∗(ω)+ d̂(ω +π) ˆ̃c∗(ω +π) = 0. (4.31d)

Rewriting these equations in terms of analysis and synthesis filter impulse responses, we have

ĝ0(ω)ĥ0(ω)+ ĝ0(ω +π)ĥ0(ω +π) = 2,

ĝ0(ω)ĥ1(ω)+ ĝ0(ω +π)ĥ1(ω +π) = 0,

ĝ1(ω)ĥ1(ω)+ ĝ1(ω +π)ĥ1(ω +π) = 2, and

ĝ1(ω)ĥ0(ω)+ ĝ1(ω +π)ĥ0(ω +π) = 0.

These equations, however, are nothing more than a restatement of the biorthonormality (i.e., shift-free PR) condition

for a UMD filter bank, obtained by evaluatingHHHm(z)GGGm(z) = 2III for z = e jω .

If the wavelet system is orthonormal, c̃ = c and d̃ = d, and (4.31) simplifies to

|ĉ(ω)|2 + |ĉ(ω +π)|2 = 2, (4.33a)

ĉ(ω)d̂∗(ω)+ ĉ(ω +π)d̂∗(ω +π) = 0, and (4.33b)
∣∣d̂(ω)

∣∣2 +
∣∣d̂(ω +π)

∣∣2 = 2. (4.33c)

Rewriting (4.33) in terms of analysis and synthesis filter impulse responses, we have

|ĝ0(ω)|2 + |ĝ0(ω +π)|2 = 2, (4.34a)

ĝ0(ω)ĝ∗1(ω)+ ĝ0(ω +π)ĝ∗1(ω +π) = 0, and (4.34b)

|ĝ1(ω)|2 + |ĝ1(ω +π)|2 = 2. (4.34c)

These equations, however, are simply a restatement of the (shift-free PR) orthonormality condition for a UMD filter

bank, obtained by evaluatingGGGT
m∗(z

−1)GGGm(z) = 2III for z = e jω .

From the above results, we see that orthonormal wavelet systems are associated with orthonormal filter banks.

Similarly, biorthonormal wavelet systems are associated with biorthonormal filter banks.

4.2.13 Properties of Scaling and Wavelet Functions

Since scaling and wavelet functions play an important role in characterizing wavelet systems, it is beneficial to ex-

amine some of the properties of such functions. First, we introduce some properties of scaling functions as given

below.

Theorem 4.16 (Properties of scaling function). Suppose that φ is a compactly supported function with zeroth moment

µ0 6= 0 and stable integer shifts (i.e., {φ(·− k)}k∈Z is a Riesz basis), and φ satisfies a refinement equation with mask√
2c[n]. Then, we have

1
µ0

∑
k∈Z

φ(t− k) = 1, (4.35)

φ̂(2πk) = 0 for all k ∈ Z\{0}, (4.36)

ĉ(0) =
√
2, and (4.37)

ĉ(π) = 0. (4.38)
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Proof. Since φ ∈ L2 with compact support, we also have that φ ∈ L1. So, by the Riemann-Lebesgue lemma, φ̂ is

continuous and decays to zero at infinity. As c has finite support, ĉ is continuous. Since φ̂ and ĉ are both continuous,

(4.12) must hold at every point. For ω = 0, we have

φ̂(0) = 1√
2
ĉ(0)φ̂(0).

Since, by assumption, φ̂(0) 6= 0, we have ĉ(0) =
√
2. Thus, (4.37) is satisfied. Furthermore, by the periodicity of ĉ,

we have

ĉ(2πk) =
√
2 for all k ∈ Z.

So, by substitution into the Fourier transform of the scaling equation, we have

φ̂(4πk) = 1√
2
ĉ(2πk)φ̂(2πk) = φ̂(2πk)

or more generally

φ̂(2nπk) = φ̂(2πk) n ∈ N.

Since
∣∣φ̂(ω)

∣∣→ 0 as |ω|→∞, we have φ̂(2πk) = 0 for all k∈Z\{0}. Thus, (4.36) holds. Furthermore, by considering

the Fourier transform of φ , we can conclude from (4.36) that (4.38) holds. (See the proof of Theorem 4.40 for more

details.)

Using the Poisson summation formula and (4.36), we can write

∑
k∈Z

φ(t− k) = ∑
k∈Z

φ̂(2πk)e j2πkt

= φ̂(0)

= µ0.

Thus, (4.35) holds.

The results of the above theorem are quite interesting. In particular, (4.35) is a quite remarkable property of scaling

functions. Regardless of the “complexity” in the appearance of a scaling function φ , the integer shifts of φ always

sum to a constant (in particular, they sum to the zeroth moment of φ ).

Theorem 4.17 (Sum of dyadic samples of scaling function). Let φ(t) be a scaling function with zeroth moment µ0.

Then,

∑
k∈Z

φ(k/2P) = 2Pµ0,

where P ∈ Z and P≥ 0.

Proof. Define the sequence

a[n] = ∑
k∈Z

φ(k/2n).

We can expand φ(k/2n) using the refinement equation for φ(t) to obtain

a[n] = ∑
k∈Z

(
√
2∑
l∈Z

c[l]φ(2[k/2n]− l)

)

=
√
2 ∑
k∈Z

∑
l∈Z

c[l]φ(k/2n−1− l)

=
√
2 ∑
k∈Z

∑
l∈Z

c[l]φ

(
k−2n−1l
2n−1

)

=
√
2∑
l∈Z

c[l] ∑
k∈Z

φ

(
k−2n−1l
2n−1

)
.
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Now, we employ a change of variable. Let k′ = k−2n−1l so that k = k′+2n−1l. Applying the change of variable and

dropping the primes, we obtain

a[n] =
√
2∑
l∈Z

c[l] ∑
k∈Z

φ(k/2n−1)

=
√
2∑
l∈Z

c[l]a[n−1]

=
√
2a[n−1] ∑

l∈Z

c[l].

Since ∑l∈Z c[l] =
√
2, we can simplify the preceding equation, yielding

a[n] =
√
2a[n−1]

√
2

= 2a[n−1].

So, we have

a[n]−2a[n−1] = 0.

We can use the unilateral Z transform to solve this difference equation. Let A(z) denote the Z transform of a[n].
Taking the Z transform of both sides of the above equation, we have

zA(z)− za[0]−2A(z) = 0

which implies

A(z) =
a[0]

1−2z−1
.

Taking the inverse Z transform of A(z), we obtain

a[n] = 2na[0] for n≥ 0. (4.39)

Now, we must determine a[0]. From the definition of a[n], we observe that a[n]/2n is a Riemann sum whose limit as

n→ ∞ is the definition of a Riemann integral. Thus, we have

lim
n→∞

a[n]

2n
=
∫ ∞

−∞
φ(t)dt. (4.40)

From (4.39), we can also write

lim
n→∞

a[n]

2n
= lim

n→∞

2na[0]

2n
= a[0]. (4.41)

Combining (4.40) and (4.41), we have

a[0] =
∫ ∞

−∞
φ(t)dt.

So, (4.39) simplifies to

a[n] = 2nµ0.

From definition of a[n], we have

∑
k∈Z

φ(k/2n) = 2nµ0.

This is precisely the result that we were required to prove.
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Theorem 4.18. If φ , φ̃ ∈ L1(R)∩L2(R) are biorthogonal scaling functions, then

µ0 = 1/(µ̃∗0 ),

where µ0 and µ̃0 are the zeroth moments of φ and φ̃ , respectively.

Proof. Since φ satisfies a partition of unity relationship, we can expand the constant one in a series to obtain

1 = ∑
k∈Z

〈
1, φ̃(·− k)

〉
φ(t− k)

= ∑
k∈Z

(∫ ∞

−∞
φ̃ ∗(τ− k)dτ

)
φ(t− k)

= ∑
k∈Z

µ̃∗0φ(t− k)

= µ̃∗0 ∑
k∈Z

φ(t− k)

= µ̃∗0 µ0.

Thus, we have that µ0µ̃∗0 = 1, or equivalently, µ0 = 1/(µ̃∗0 ).

Since a scalar multiple of a solution to a refinement equation is also a solution, there is some freedom in how we

choose to normalize the scaling function of a MRA (i.e., how we select the zeroth moment of the function). The above

theorem is significant because it shows what normalization of a dual scaling function is associated with a particular

normalization of a primal scaling function.

Theorem 4.19. Let ψ be a wavelet function. Then, the zeroth moment of ψ is zero (i.e.,
∫ ∞
−∞ ψ(t)dt = 0). The wavelet

equation coefficient sequence d is such that d̂(0) = 0.

Proof. First, we consider the quantity d̂(0). By evaluating (4.31d) at ω = 0, we obtain

d̂(0) ˆ̃c∗(0)+ d̂(π) ˆ̃c∗(π) = 0.

Since ˆ̃c(0) =
√
2 and ˆ̃c(π) = 0 (from (4.37) and (4.38)), the preceding equation can be simplified to

√
2d̂(0) = 0.

Thus, we conclude that d̂(0) = 0.

We know that ψ can be expressed in terms of the scaling function as

ψ(t) =
√
2 ∑
n∈Z

d[n]φ(2t−n).

Integrating both sides of the preceding equation (with respect to t) over R, we obtain

∫ ∞

−∞
ψ(t)dt =

∫ ∞

−∞

√
2 ∑
n∈Z

d[n]φ(2t−n)dt

=
√
2 ∑
n∈Z

d[n]
∫ ∞

−∞
φ(2t−n)dt

=
√
2

[
∑
n∈Z

d[n]

]∫ ∞

−∞
φ(2t−n)dt

=
√
2d̂(0)

∫ ∞

−∞
φ(2t−n)dt

= 0.
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Theorem 4.20 (Relationship between continuous and discrete moments). Let φ be a scaling function with scaling

equation coefficient sequence c. Let ψ be a corresponding wavelet function with wavelet equation coefficient sequence

d. Denote the kth moments of φ and ψ as µk and νk, respectively. Denote the kth moments of c and d as mk and nk,

respectively. Then, we have

µk =
1

21/2(2k−1)

k−1
∑
q=0

(
k

q

)
mk−qµq for k ≥ 1 and (4.42)

νk = 2−k−1/2
k

∑
q=0

(
k

q

)
nk−qµq for k ≥ 0. (4.43)

(Note: The notation
(
n
k

)
is as defined in (E.1).)

Proof. We begin with the Fourier transform of the scaling equation which can be rewritten as

φ̂(2ω) = 2−1/2ĉ(ω)φ̂(ω).

Differentiating k times (using the Leibniz rule), we obtain

2kφ̂ (k)(2ω) = 2−1/2
k

∑
q=0

(
k

q

)
ĉ(k−q)(ω)φ̂ (q)(ω).

Substituting ω = 0 into the above equation yields

2kφ̂ (k)(0) = 2−1/2
k

∑
q=0

(
k

q

)
ĉ(k−q)(0)φ̂ (q)(0).

From the moment properties of the Fourier transform, however, this is equivalent to

2kµk = 2−1/2
k

∑
q=0

(
k

q

)
mk−qµq.

Rearranging, we have

2kµk = 2−1/2
k−1
∑
q=0

(
k

q

)
mk−qµq +2−1/2m0µk

⇒ (2k−1)µk = 2−1/2
k−1
∑
q=0

(
k

q

)
mk−qµq.

Solving for µk in the above equation yields (4.42).

The proof of (4.43) is obtained in a similar fashion as above, except we start from the Fourier transform of the

wavelet equation. The details of the proof are left as an exercise for the reader.

The above result is quite significant from a practical perspective. Often scaling and wavelet functions cannot be

expressed in closed form. In spite of this, however, we would often like to know the moments of these functions.

The above theorem provides a means to calculate the moments of these functions from their corresponding coeffi-

cient sequences (from the scaling and wavelet equations) without ever needing to explicitly compute the functions

themselves. Below, we give an example illustrating how the above theorem can be applied.

Example 4.17. Consider the Daubechies-2 scaling function φ with scaling equation coefficient sequence c, where

c0 = 1+
√
3

4
√
2

, c1 = 3+
√
3

4
√
2

, c2 = 3−
√
3

4
√
2

, and c3 = 1−
√
3

4
√
2

.

(Note that, here, φ is normalized so suppφ ⊂ [0,3].) Compute the first four moments of c. Suppose that φ is normalized

such that µ0 = 1. Compute the next three moments of φ .
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Solution. We begin by computing moments of c. From the properties of scaling function, we know (without doing

any computation) that

m0 = ĉ(0) =
√
2.

Using the definition of moments, we have

m1 = ∑
k∈Z

kck = c1 +2c2 +3c3

= 3+
√
3

4
√
2

+2
(
3−
√
3

4
√
2

)
+3
(
1−
√
3

4
√
2

)
= 3+

√
3+6−2

√
3+3−3

√
3

4
√
2

= 12−4
√
3

4
√
2

= 3−
√
3√

2
,

m2 = ∑
k∈Z

k2ck = c1 +4c2 +9c3

= 3+
√
3

4
√
2

+4
(
3−
√
3

4
√
2

)
+9
(
1−
√
3

4
√
2

)
= 3+

√
3+12−4

√
3+9−9

√
3

4
√
2

= 24−12
√
3

4
√
2

= 6−3
√
3√

2
, and

m3 = ∑
k∈Z

k3ck = c1 +8c2 +27c3

= 3+
√
3

4
√
2

+8
(
3−
√
3

4
√
2

)
+27

(
1−
√
3

4
√
2

)
= 3+

√
3+24−8

√
3+27−27

√
3

4
√
2

= 54−34
√
3

4
√
2

= 27−17
√
3

2
√
2

.

Using (4.42), we proceed to compute moments of φ . We have

µ1 = 1√
2(2−1)

0

∑
q=0

(
1

q

)
m1−qµq = 1√

2

[(
1

0

)
m1µ0

]

= 1√
2

((
1

0

)
( 3−
√
3√

2
)(1)

)
= 1√

2

(
3−
√
3√

2

)

= 3−
√
3

2
.

µ2 = 1√
2(22−1)

1

∑
q=0

(
2

q

)
m2−qµq = 1

3
√
2

[(
2

0

)
m2µ0 +

(
2

1

)
m1µ1

]

= 1

3
√
2

((
2

0

)
( 6−3

√
3√

2
)(1)+

(
2

1

)
( 3−
√
3√

2
)( 3−

√
3

2
)

)
= 1

3
√
2

(
6−3
√
3√

2
+2( 3−

√
3√

2
)( 3−

√
3

2
)
)

= 6−3
√
3

2
, and

µ3 = 1√
2(23−1)

2

∑
q=0

(
3

q

)
m3−qµq

= 1

7
√
2

((
3

0

)
m3µ0 +

(
3

1

)
m2µ1 +

(
3

2

)
m1µ2

)

= 1

7
√
2

(
(1)( 27−17

√
3

2
√
2

)(1)+(3)( 6−3
√
3√

2
)( 3−

√
3

2
)+(3)( 3−

√
3√

2
)( 6−3

√
3

2
)
)

= 1

7
√
2

(
27−17

√
3

2
√
2

+ (18−9
√
3)(3−

√
3)

2
√
2

+ (9−3
√
3)(6−3

√
3)

2
√
2

)

= 1
28

(
27−17

√
3+54−18

√
3−27

√
3+27+54−27

√
3−18

√
3+27

)

= 189−107
√
3

28
.
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Often, we are interested in the specific case when certain moments of the wavelet and/or scaling function are zero.

The below theorem is useful in this regard.

Theorem 4.21 (Equivalence of vanishing continuous and discrete moments). Let φ be a scaling function with scal-

ing equation coefficient sequence c. Let ψ be the corresponding wavelet function with wavelet equation coefficient

sequence d. Denote the kth moments of φ and ψ as µk and νk, respectively. Denote the kth moments of c and d as mk

and nk, respectively. Then, we have that

mk = 0 for k = 1,2, . . . ,η−1⇔ µk = 0 for k = 1,2, . . . ,η−1; and

nk = 0 for k = 0,1, . . . ,η−1⇔ νk = 0 for k = 0,1, . . . ,η−1.

Proof. The proof is by induction and is left as an exercise for the reader.

4.2.14 Orthogonalization of Bases

Suppose that we have a wavelet system where the bases of the approximation and wavelet spaces are only Riesz bases,

but not orthonormal. In some cases, it might be desirable to employ orthonormal bases for these spaces. Fortunately,

a shift invariant Riesz basis can always be orthonormalized. This can be accomplished using the result of the theorem

below.

Theorem 4.22 (Orthonormalization of basis). Let {θ(·−n)}n∈Z be a Riesz basis of the spaceV . Then, {θ⊥(·−n)}n∈Z

is an orthonormal basis of V , where

θ̂⊥(ω) =
θ̂(ω)

[
∑k∈Z

∣∣θ̂(ω +2πk)
∣∣2
]1/2 .

Proof. Suppose that {θ(· − k)}k∈Z is a Riesz basis of the space that it generates. Then, by virtue of Theorem 4.1,

∑k∈Z

∣∣θ̂(ω +2πk)
∣∣2 > 0 for all ω . Since this quantity is strictly positive, the Fourier transform

θ̂⊥(ω) =
θ̂(ω)

(
∑k∈Z

∣∣θ̂(ω +2πk)
∣∣2
)1/2

is well defined. Using Theorem 4.2, we can test for orthonormality. We have

∑
l∈Z

∣∣∣θ̂⊥(ω +2πl)
∣∣∣
2

= ∑
l∈Z

∣∣∣∣∣∣∣
θ̂(ω +2πk)

[
∑k∈Z

∣∣θ̂(ω +2πl+2πk)
∣∣2
]1/2

∣∣∣∣∣∣∣

2

= ∑
l∈Z

∣∣θ̂(ω +2πl)
∣∣2

∑k∈Z

∣∣θ̂(ω +2πl+2πk)
∣∣2

= ∑
l∈Z

∣∣θ̂(ω +2πl)
∣∣2

∑k∈Z

∣∣θ̂(ω +2πk)
∣∣2

=
∑l∈Z

∣∣θ̂(ω +2πl)
∣∣2

∑k∈Z

∣∣θ̂(ω +2πk)
∣∣2

= 1.

Thus, {θ⊥(·− k)}k∈Z is an orthonormal basis of its closed linear span.

Now, it remains to be shown that clos
(
span{θ⊥(·− k)}k∈Z

)
= V . It is sufficient to show that θ⊥ ∈ V and θ has

an expansion in terms of {θ⊥(·− k)}k∈Z.
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Define

ĝ(ω) =

[
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]−1/2

.

Since ĝ is a 2π-periodic function, it can be expressed in terms of the Fourier series

ĝ(ω) = ∑
k∈Z

gke
jkω .

From the convolution property of the Fourier transform, we have

θ⊥(t) = θ ∗g(t).

Taking the inverse Fourier transform of ĝ(ω), we have

g(t) = ∑
k∈Z

gkδ (t+ k).

Combining the preceding two equations, we obtain

θ⊥(t) = θ ∗g(t)

=

∫ ∞

−∞
θ(τ)g(t− τ)dτ

=
∫ ∞

−∞
θ(τ) ∑

k∈Z

gkδ (t− τ + k)dτ

= ∑
k∈Z

gk

∫ ∞

−∞
θ(τ)δ (t− τ + k)dτ

= ∑
k∈Z

gkθ(t+ k).

Thus, θ⊥ can be represented in terms of the basis {θ(·− k)}k∈Z of V . So, θ⊥ ∈V .
Consider the quantity ∑k∈Z

∣∣〈θ(·),θ⊥(·− k)
〉∣∣2. We have

∑
k∈Z

∣∣∣
〈

θ(·),θ⊥(·− k)
〉∣∣∣

2

= ∑
k∈Z

∣∣∣ 1
2π

〈
θ̂(·),e− jk·θ̂⊥(·)

〉∣∣∣
2

= ∑
k∈Z

∣∣∣∣ 1
2π

∫ ∞

−∞
θ̂(ω)e− jkω θ̂⊥

∗
(ω)dω

∣∣∣∣
2

= ∑
k∈Z

∣∣∣∣∣∣∣
1

2π

∫ ∞

−∞
θ̂(ω)

θ̂ ∗(ω)
[
∑n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2 e

− jkωdω

∣∣∣∣∣∣∣

2

= ∑
k∈Z

∣∣∣∣∣∣∣
1

2π

∫ ∞

−∞

∣∣θ̂(ω)
∣∣2

[
∑n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2 e

− jkωdω

∣∣∣∣∣∣∣

2

.
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We split the integral over R into intervals of length 2π to obtain

∑
k∈Z

∣∣∣
〈

θ(·),θ⊥(·− k)
〉∣∣∣

2

= ∑
k∈Z

∣∣∣∣∣∣∣
1
2π ∑

l∈Z

∫ 2π

0

∣∣θ̂(ω +2πl)
∣∣2

[
∑n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2 e

− jkωdω

∣∣∣∣∣∣∣

2

= ∑
k∈Z

∣∣∣∣∣∣∣
1
2π

∫ 2π

0

∑l∈Z

∣∣θ̂(ω +2πl)
∣∣2

[
∑n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2 e

− jkωdω

∣∣∣∣∣∣∣

2

= ∑
k∈Z

∣∣∣∣∣∣
1
2π

∫ 2π

0

[
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2

e− jkωdω

∣∣∣∣∣∣

2

= ∑
k∈Z

1
2π

∣∣∣∣∣∣

∫ 2π

0

[
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2

e− jkωdω

∣∣∣∣∣∣

2

.

We recognize the kth term in the right-hand side summation as 1
2π times the kth Fourier series coefficient of the

2π-periodic function
[
∑n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2

. By the Parseval identity, we have

∑
k∈Z

∣∣∣
〈

θ(·),θ⊥(·− k)
〉∣∣∣

2

= 1
2π

∥∥∥∥∥∥

[
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2∥∥∥∥∥∥

2

L2[0,2π]

= 1
2π

〈[
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2

,

[
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2
]1/2〉

L2[0,2π]

= 1
2π

∫ 2π

0
∑
n∈Z

∣∣θ̂(ω +2πn)
∣∣2 dω

= 1
2π ∑

n∈Z

∫ 2π

0

∣∣θ̂(ω +2πn)
∣∣2 dω

= 1
2π ∑

n∈Z

∫ 2π

0
θ̂(ω +2πn)θ̂ ∗(ω +2πn)dω

= 1
2π

∫ ∞

−∞
θ̂(ω)θ̂ ∗(ω)dω

= 1
2π

∥∥θ̂
∥∥2

= ‖θ‖2 .

Thus, we have

∑
k∈Z

∣∣∣
〈

θ(·),θ⊥(·− k)
〉∣∣∣

2

= ‖θ‖2 .

By the Bessel inequality, this implies that θ lies in the closed linear span of {θ⊥(· − k)}k∈Z. Therefore, the closed

linear span of {θ⊥(·− k)}k∈Z is V .

Although one can always construct an orthonormal basis using the result of the above theorem, an orthonormal

basis may not always be desirable. For example, even if θ is compactly supported, there is no guarantee that θ⊥

will also be compactly supported. Consequently, if an application requires compactly-supported basis functions, one

might need to be content with a Riesz basis that is not orthonormal.
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4.2.15 Support of Scaling and Wavelet Functions

One might wonder if there is any simple way to characterize the support of a refinable function. This is, in fact,

possible. As it turns out, there is a relationship between the support of a refinable function and the support of its

refinement mask. The relationship is introduced by the theorem below.

Theorem 4.23 (Support of refinable functions with finite masks). Suppose that we have a refinement equation of the

form

φ(t) = ∑
n∈Z

c[n]φ(2t−n) (4.44)

where

c[n] = 0 for n < N1 or n > N2

and ∑
N2
n=N1

c[n] = 1. Then, the solution to the refinement equation is a function (or distribution) with support in

[N1,N2].

Proof. The difficult part of this theorem to prove is that the solution φ must have compact support. So, we simply

assert that φ must have compact support as shown in [8, p. 497, Lemma 3.1]. Suppose that

suppφ(t)⊂ [A1,A2]

which implies

suppφ(2t− k)⊂
[
A1 + k

2
,
A2 + k

2

]
, k ∈ Z.

Consider the right-hand side of the refinement equation (4.44). The right-hand side of (4.44) is formed by summing

shifted versions of φ(2t). Thus, the lower and upper bounds of the support interval of the right-hand side will be

determined by the leftmost and rightmost shifted versions of φ(2t), respectively. The leftmost shifted version of

φ(2t), given by φ(2t−N1) has support on an interval with the lower bound
A1+N1

2
. Similarly, the rightmost shifted

version of φ(2t), given by φ(2t−N2), has its support contained on an interval with the upper bound
A2+N2

2
. Thus, the

support of the right-hand side of (4.44) is contained in [A1+N1
2

, A2+N2
2

]. Since the support of the left- and right-hand

sides of the equation must be equal, we have

A1 =
A1 +N1

2
⇒ A1 = N1 and

A2 =
A2 +N2

2
⇒ A2 = N2.

Thus, we have suppφ ⊂ [N1,N2].

From the above theorem, we see that a refinement equation with a finite mask must have a solution with compact

support. The converse of this statement, however, is not true. This is illustrated by the example below.

Example 4.18 (Compactly supported refinable function with infinite mask). Consider the refinement equation

φ(t) = ∑
n∈Z

c[n]φ(2t−n)

where c[n] = Z−1C(z) and

C(z) = 1+
1

2
z−1 +

1

4
z−2 +

∞

∑
k=0

(
−1

2

)k
3

8
z−(k+3).
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One can show [23] that the solution φ(t) to the above refinement equation is given by

φ(t) = 2χ[0,1) + χ[1,2] =





2 if 0≤ t < 1

1 if 1≤ t ≤ 2

0 otherwise.

Obviously, suppφ ⊂ [0,2]. Thus, we can see that a refinement equation with an infinite mask can, in some cases, have

a solution with compact support.

Theorem 4.24 (Compactly supported scaling and wavelet functions). Let φ be a scaling function with scaling equa-

tion coefficient sequence c. Let ψ be the corresponding wavelet function with wavelet equation coefficient sequence

d. If c[n] = 0 whenever n < N1 or n > N2, then

suppφ ⊂ [N1,N2].

If, in addition, d[n] = 0 for n < M1 and n > M2, then

suppψ ⊂
[
N1 +M1

2
,
N2 +M2

2

]
.

Proof. From Theorem 4.23, we trivially have that

suppφ(t)⊂ [N1,N2].

Consider the wavelet equation

ψ(t) =
√
2 ∑
k∈Z

d[k]φ(2t− k)

Let [A1,A2] denote the support of the right-hand side of the equation. Since the support of the left- and right-hand

sides of the equation must be equal, we have suppψ(t) ⊂ [A1,A2]. Now, we must determine A1 and A2. Since

suppφ(t)⊂ [N1,N2], we have

suppφ(2t− k)⊂
[
N1 + k

2
,
N2 + k

2

]
. (4.45)

We will use this fact in what follows.

We have that A1 is determined by the lower support bound of the leftmost-shifted function φ(2t−k)where k=M1.

Thus, from (4.45), we can write A1 = N1+M1
2

. Similarly, A2 is determined by the upper support bound of the rightmost-

shifted φ(2t−k)where k=M2. Thus, from (4.45), we can write A2 = N2+M2
2

. Combining these results, we have shown

suppψ(t)⊂ [A1,A2] =

[
N1 +M1

2
,
N2 +M2

2

]
.

Below, we provide some examples illustrating how Theorem 4.24 can be applied.

Example 4.19. Consider a wavelet system with scaling function φ , wavelet function ψ , dual scaling function φ̃ , and
dual wavelet function ψ̃ . Let c and c̃ denote the scaling equation coefficient sequences of φ and φ̃ , respectively. Let
d and d̃ denote the wavelet equation coefficient sequences of ψ and ψ̃ , respectively. Suppose that c, d, c̃, and d̃ are as

follows:

c−1 = c0 = 1√
2
,

d−5 =−d4 = 3

128
√
2
, d−4 =−d3 = 3

128
√
2
, d−3 =−d2 =− 22

128
√
2
,

d−2 =−d1 =− 22

128
√
2
, d−1 =−d0 = 1√

2
,

c̃n = (−1)ndn−1, and

d̃n = (−1)n−1cn−1.

Determine the support of φ , ψ , φ̃ , and ψ̃ .
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Solution. We use the result of Theorem 4.24. The sequence cn is zero for n <−1 or n > 0. Therefore, we conclude

suppφ ⊂ [−1,0].

The sequence dn is zero for n <−5 or n > 4. Therefore, we conclude

suppψ ⊂ [−1−5
2

, 0+4
2

] = [−3,2].

The sequence c̃n is zero for n <−4 or n > 5. Therefore, we conclude

supp φ̃ ⊂ [−4,5].

The sequence d̃n is zero for n < 0 or n > 1. Therefore, we conclude

supp ψ̃ ⊂ [−4+0
2

, 5+1
2

] = [−2,3].

Example 4.20. Consider the Daubechies-2, Le-Gall-5/3, and CDF-9/7 wavelet systems introduced earlier. For each

of these systems, find the support of the scaling and wavelet functions.

Solution. (a) Consider the Daubechies-2 wavelet system. We use the result of Theorem 4.24. We have that cn = 0 for

n <−1 or n > 2. So, we conclude

suppφ ⊂ [−1,2].

We have that dn = 0 for n <−1 or n > 2. So, we conclude

suppψ ⊂ [ (−1)+(−1)
2

, 2+2
2

] = [−1,2].

The above support intervals are consistent with the plots of φ , ψ , φ̃ , and ψ̃ shown in Figure 4.15.

(b) Consider the Le Gall 5/3 wavelet system. We have that cn = 0 for n <−1 or n > 1. Therefore, we conclude

suppφ ⊂ [−1,1].

We have dn = 0 for n <−1 or n > 3. Thus, we have

suppψ ⊂
[

(−1)+(−1)
2

, 1+3
2

]
= [−1,2].

We have c̃n = 0 for n <−2 or n > 2. So, we have

supp φ̃ ⊂ [−2,2].

We have d̃n = 0 for n < 0 or n > 2. So, we have

supp ψ̃ ⊂
[−2+0

2
, 2+2

2

]
= [−1,2].

The above support intervals are consistent with the plots of φ , ψ , φ̃ , and ψ̃ shown in Figure 4.16.

(c) Consider the CDF 9/7 wavelet system. We have that cn = 0 for n <−3 or n > 3. Therefore, we conclude

suppφ ⊂ [−3,3].

We have dn = 0 for n <−3 or n > 5. Thus, we have

suppψ ⊂
[

(−3)+(−3)
2

, 3+5
2

]
= [−3,4].
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We have c̃n = 0 for n <−4 or n > 4. So, we have

supp φ̃ ⊂ [−4,4].

We have d̃n = 0 for n <−2 or n > 4. So, we have

supp ψ̃ ⊂
[
−4+(−2)

2
, 4+4

2

]
= [−3,4].

The above support intervals are consistent with the plots of φ , ψ , φ̃ , and ψ̃ shown in Figure 4.17.

We can also say something about the value of a scaling function at the end points of its support interval. In

particular, we have the result below.

Theorem 4.25. Let φ be a scaling function with scaling equation coefficient sequence c, where c[n] = 0 for c < N1 or

c > N2. If c[N1] 6= 1√
2
, then φ(N1) = 0. If c[N2] 6= 1√

2
, then φ(N2) = 0.

Proof. Using the scaling equation, we can evaluate φ at the integer points (i.e., for n ∈ Z) yielding

φ(n) =
√
2

N2

∑
k=N1

c[k]φ(2n− k).

Now, we employ a change of variable. Let k′ = 2n− k so that k = 2n− k′. Applying the change of variable and

dropping the primes, we obtain

φ(n) =
√
2

2n−N1

∑
k=2n−N2

c[2n− k]φ(k). (4.46)

Using (4.46) and the fact that φ(k) = 0 for k 6∈ [N1,N2], we can write

φ(N1) =
√
2

N1

∑
k=2N1−N2

c[2N1− k]φ(k)

=
√
2c[N1]φ(N1).

If
√
2c[N1] 6= 1 (or equivalently, c[N1] 6= 1√

2
), then the preceding equation implies that φ(N1) = 0. Also, using (4.46)

and the fact that φ(k) = 0 for k 6∈ [N1,N2], we can write

φ(N2) =
√
2
2N2−N1

∑
k=N2

c[2N2− k]φ(k)

=
√
2c[N2]φ(N2).

If
√
2c[N2] 6= 1 (or equivalently, c[N2] 6= 1√

2
), then the preceding equation implies that φ(N2) = 0.

4.2.16 Order of Approximation

Polynomials are a useful tool for the approximation of many classes of functions. In many practical applications,

polynomials often prove to be a suitable model for signals. Since polynomials are often a useful tool for approxima-

tion, one might be interested in knowing how well polynomials can be approximated by the bases associated with a

wavelet system.

As we have already seen, any scaling function satisfies a partition of unity relationship. In other words, the integer

shifts of a scaling function can be used to reproduce any constant function. In some cases, however, it so happens that
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scaling functions can exactly represent polynomials of higher orders. The polynomial approximation properties of a

scaling function are related to the number of vanishing moments of the corresponding dual wavelet function.

Suppose, for a moment, that the integer shifts of a scaling function could reproduce polynomials of order η . In
many situations, this can be quite advantageous. Why is this so? Consider the representation of a function that is

well approximated by a polynomial of order η , such as a piecewise smooth function. Since the scaling function can

exactly reproduce polynomials of order η , the wavelet coefficients will essentially be zero over all regions where the

function in question is well approximated by a polynomial of order η . In this way, very sparse representations can

be obtained for piecewise smooth functions (i.e., representations with relatively few nonzero expansion coefficients).

This has major advantages in a broad spectrum of applications.

In order to characterize the approximation properties of scaling functions, we will need an important result from

approximation theory which is given below.

Theorem 4.26 (Strang-Fix condition). Let φ be a scaling function with the scaling equation coefficient sequence c.

Further, let φ̂ and ĉ denote the Fourier transforms of φ and c, respectively. If ĉ(ω) has a pth order zero at π , then
φ̂(ω) must have a pth order zero at all frequencies of the form ω = 2πk, where k ∈ Z\{0}.

Proof. Consider the quantity φ̂(2πk) for any arbitrary k ∈ Z \ {0}. We can express k in the form of k = 2nl, where

n, l ∈ Z, n≥ 0, and l is odd. Now, we apply formula (4.12) recursively n times to obtain

φ̂(ω) = 1√
2
ĉ(ω/2)φ̂(ω/2)

=

[
n+1

∏
q=1

1√
2
ĉ(2−qω)

]
φ̂(2−(n+1)ω)

= 1√
2
ĉ(2−(n+1)ω)

[
n

∏
q=1

1√
2
ĉ(2−qω)

]
φ̂(2−n−1ω)

= 1√
2
ĉ(2−n−1ω)

[
n

∏
q=1

1√
2
ĉ(2−qω)

]
φ̂(2−n−1ω).

Now, consider the factor ĉ(2−n−1ω) above. We are evaluating ĉ(ω ′) at ω ′= 2−n−1ω = 2−n−12πk= 2−n−12π2nl = πl,
where l is odd. In other words, we are evaluating ĉ(ω ′) at an odd integer multiple of π . By assumption, however, ĉ(ω)
has a pth order zero at ω = π . Therefore, by periodicity, ĉ(ω) also has a pth order zero at all odd integer multiples of

π . Thus, c(2−n−1ω) has a pth order zero at ω = π . Consequently, φ̂(ω) has a pth order zero at ω = 2πk.

Now, we are in a position to study the approximation properties of scaling functions more closely. In fact, we can

characterize the approximation properties of scaling functions as given by the theorem below.

Theorem 4.27 (Order of approximation). Let φ be a scaling function with the scaling equation coefficient sequence

c. Let ψ̃ denote the corresponding dual wavelet function with the wavelet equation coefficient sequence d̃. Suppose

that φ̂ and ˆ̃ψ are η−1 times differentiable. Then, the following statements are equivalent:

1. φ has approximation order η;

2. for any 0≤ k < η , qk(t) = ∑
n∈Z

nkφ(t−n) is a kth degree polynomial;

3. ĉ(ω) has a η th order zero at ω = π;

4. ψ̃ has η vanishing moments (i.e., ψ̃ has all of its moments of order less than η vanish);

5. ˆ̃d(ω) has a η th order zero at ω = 0.

Proof. 4⇔ 5. We observe that 5 is equivalent to d̃ having η vanishing moments (from the moment properties of the

Fourier transform). From Theorem 4.21, this is equivalent to ψ̃ having η vanishing moments.
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3⇔ 5. From the biorthogonality condition (4.31a), we have ĉ(ω) ˆ̃c∗(ω)+ ĉ(ω +π) ˆ̃c∗(ω +π) = 2. Letting ω = 0,

this becomes

ĉ(0) ˆ̃c∗(0)+ ĉ(π) ˆ̃c∗(π) = 2.

From this, we can conclude that ĉ(π)= 0⇒ ĉ(0) 6= 0. From the biorthogonality condition (4.31c), we have d̂(ω) ˆ̃d∗(ω)+

d̂(ω +π) ˆ̃d∗(ω +π) = 2. Letting ω = 0, we have

d̂(0) ˆ̃d∗(0)+ d̂(π) ˆ̃d∗(π) = 2.

From this, we can deduce that ˆ̃d(0) = 0⇒ ˆ̃d(π) 6= 0. From the biorthogonality condition (4.31b), we have

ĉ(ω) ˆ̃d∗(ω)+ ĉ(ω +π) ˆ̃d∗(ω +π) = 0. (4.47)

Letting ω = 0, this becomes

ĉ(0) ˆ̃d∗(0)+ ĉ(π) ˆ̃d∗(π) = 0.

In combination with the above results, we can deduce that ĉ(π) = 0⇒ ˆ̃d(0) = 0 and ˆ̃d(0) = 0⇒ ĉ(π) = 0. This shows

the equivalence for η = 1. To show the equivalence holds for higher order η , we differentiate (4.47) and use a similar

argument as above.

3⇒ 2. Consider the function f (t) = t pφ(t), where f̂ (ω) = jpφ̂ (p)(ω). Using the Poisson summation formula,

we can write

∑
n∈Z

f (t+n) = ∑
n∈Z

f̂ (2πn)e j2πnt

which gives us

∑
n∈Z

(t+n)pφ(t+n) = ∑
n∈Z

jpφ̂ (p)(2πn)e j2πnt . (4.48)

From the Strang-Fix condition and moment properties of the Fourier transform, we can simplify the preceding equa-

tion to obtain

µp = ∑
l∈Z

(t− l)pφ(t− l) for 0≤ p < η .

Now, let us consider q0(t). We trivially have that

q0(t) = µ0. (4.49)
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Now let us consider qp(t) for p > 0. For 1≤ p < η , we have

µp = ∑
n∈Z

(t−n)pφ(t−n)

= ∑
n∈Z

p

∑
k=0

(
p

k

)
t p−k(−n)kφ(t−n)

= ∑
n∈Z

p

∑
k=0

(−1)k
(
p

k

)
t p−knkφ(t−n)

= ∑
n∈Z

(
p−1
∑
k=0

(−1)k
(
p

k

)
t p−knk +(−1)pnp

)
φ(t−n)

= ∑
n∈Z

p−1
∑
k=0

(−1)k
(
p

k

)
t p−knkφ(t−n)+ ∑

n∈Z

(−1)pnpφ(t−n)

=
p−1
∑
k=0

∑
n∈Z

(−1)k
(
p

k

)
t p−knkφ(t−n)+(−1)p ∑

n∈Z

npφ(t−n)

=
p−1
∑
k=0

(−1)k
(
p

k

)
t p−k ∑

n∈Z

nkφ(t−n)+(−1)p ∑
n∈Z

npφ(t−n)

=
p−1
∑
k=0

(−1)k
(
p

k

)
t p−kqk(t)+(−1)pqp(t).

Rearranging, we have

µp−
p−1
∑
k=0

(−1)k
(
p

k

)
t p−kqk(t) = (−1)pqp(t).

Rearranging further, we obtain

qp(t) = (−1)pµp− (−1)p
p−1
∑
k=0

(−1)k
(
p

k

)
t p−kqk(t)

= (−1)pµp−
p−1
∑
k=0

(−1)p+k

(
p

k

)
t p−kqk(t). (4.50)

Combining (4.49) and (4.50), we have

qp(t) =

{
(−1)pµp−∑

p−1
k=0 (−1)p+k

(
p
k

)
t p−kqk(t) for 1≤ p < η

µ0 for p = 0.
(4.51)

Thus, we have a recursive formula for computing qp(t). Observe that, for 0≤ p< η , qp(t) is a pth degree polynomial.

For example, computing qp(t) for the first few p, we have

q0(t) = µ0,

q1(t) = (−1)1µ1−
0

∑
k=0

(−1)1+k

(
1

k

)
t1−kqk(t)

=−µ1− [−tq0(t)]
= µ0t−µ1, and
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q2(t) = (−1)2µ2−
1

∑
k=0

(−1)2+k

(
2

k

)
t2−kqk(t)

= µ2− (t2q0(t)−2tq1(t))

= µ2− t2q0(t)+2tq1(t)

= µ2−µ0t
2 +2t(−µ1 + µ0t)

= µ0t
2−2µ1t+ µ2.

From (4.51), we can derive an expression for t p in terms of φ for p < η . For example, one can show that

t p = ∑
n∈Z

ap[n]φ(t−n), (4.52a)

where

ap[n] =





1
µ0

for p = 0
1

µ0
n+ µ1

µ2
0

for p = 1

1
µ0
n2 + 2µ1

µ2
0

n+
−µ2µ0+2µ2

1

µ3
0

for p = 2.

(4.52b)

Since we are clearly interested in the number of zeros that ĉ(ω) has at ω = π , it is convenient to have a method to

quickly determine this quantity. To this end, we will often find the result below to be helpful.

Theorem 4.28 (Sum rule). Let c be a sequence. Then, ĉ(ω) has a η th order zero at ω = π if and only if

∑
n∈Z

(−1)nnkc[n] = 0 for k = 0,1, . . . ,η−1.

This is often referred to as the sum rule of order η .

Proof. The Fourier transform ĉ of c is given by ĉ(ω) = ∑n∈Z c[n]e
− jωn. Differentiating this equation k times, we

obtain

ĉ(k)(ω) = ∑
n∈Z

(− jn)kc[n]e− jωn

= (− j)k ∑
n∈Z

nkc[n]e− jωn.

Evaluating ĉ(k)(ω) at ω = π , we have

ĉ(k)(π) = (− j)k ∑
n∈Z

(−1)nnkc[n].

Now, we observe that ĉ(ω) having a η th order zero at ω = π is (by definition) equivalent to ĉ(k)(π) = 0 for k =
0,1, . . . ,η−1. Thus, we obtain the condition stated in the theorem by observing that

c(k)(π) = 0 ⇔ (− j)k ∑
n∈Z

(−1)nnkc[n] = 0 ⇔ ∑
n∈Z

(−1)nnkc[n] = 0.

Using the above theorem, we can determine the approximation order of a scaling function relatively easily. This

is illustrated by the example below.
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Example 4.21. Let φ and φ̃ denote the scaling and dual scaling functions of a wavelet system, respectively. Suppose

that φ and φ̃ have scaling equation coefficient sequences c and c̃, respectively, where

c−2 = c3 =− 1

8
√
2
, c−1 = c2 = 1

8
√
2
, c0 = c1 = 1√

2
, and

c̃−1 = c̃0 = 1

2
√
2
.

Determine the approximation order of each of the scaling functions.

Solution. We employ the sum rule to determine the approximation order. First, we consider the scaling function φ .
We check whether c satisfies a sum rule of order one. We have

∑
n∈Z

(−1)ncn = (1)(− 1

8
√
2
)+(−1)( 1

8
√
2
)+(1)( 1√

2
)+(−1)( 1√

2
)+(1)( 1

8
√
2
)+(−1)(− 1

8
√
2
)

=− 1

8
√
2
− 1

8
√
2
+ 1√

2
− 1√

2
+ 1

8
√
2
+ 1

8
√
2

= 0.

We check whether c satisfies a sum rule of order two. We have

∑
n∈Z

(−1)nncn = (1)(−2)(− 1

8
√
2
)+(−1)(−1)( 1

8
√
2
)+(−1)(1)( 1√

2
)+(1)(2)( 1

8
√
2
)+(−1)(3)(− 1

8
√
2
)

= 2

8
√
2
+ 1

8
√
2
− 1√

2
+ 2

8
√
2
+ 3

8
√
2

= 0.

We check whether c satisfies a sum rule of order three. We have

∑
n∈Z

(−1)nn2cn = (1)(−2)2(− 1

8
√
2
)+(−1)(−1)2( 1

8
√
2
)+(−1)(1)2( 1√

2
)+(1)(2)2( 1

8
√
2
)+(−1)(3)2(− 1

8
√
2
)

=− 4

8
√
2
− 1

8
√
2
− 1√

2
+ 4

8
√
2
+ 9

8
√
2

= 0.

We check whether c satisfies a sum rule of order four. We have

∑
n∈Z

(−1)nn3cn = (1)(−2)3(− 1

8
√
2
)+(−1)(−1)3( 1

8
√
2
)+(−1)(1)3( 1√

2
)+(1)(2)3( 1

8
√
2
)+(−1)(3)3(− 1

8
√
2
)

= 1√
2
+ 1

8
√
2
− 1√

2
+ 1√

2
+ 27

8
√
2

= 9

2
√
2

6= 0.

Thus, c satisfies a third-order sum rule. Therefore, the approximation order of φ is three. That is, φ can be used to

represent polynomials of degree two or less (i.e., quadratic polynomials).

Second, we consider the dual scaling function φ̃ . We check whether c̃ satisfies a sum rule of order one. We have

∑
n∈Z

(−1)nc̃n = (−1)( 1

2
√
2
)+(1)( 1

2
√
2
)

= 0.

We check whether c̃ satisfies a sum rule of order two. We have

∑
n∈Z

(−1)nnc̃n = (−1)(−1)( 1

2
√
2
)

6= 0.

Thus, c̃ satisfies a first-order sum rule. The approximation order of φ̃ is one. That is, φ̃ can be used to represent

constant polynomial functions.

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



262 CHAPTER 4. UNIVARIATE WAVELET SYSTEMS

Using our knowledge of the approximation properties of scaling functions, we can represent a given polynomial

in terms of the integer shifts of a given scaling function. Below, we provide some examples to demonstrate how this

can be done.

Example 4.22. The Daubechies-2 scaling function φ has the scaling equation coefficient sequence c given by

c−1 = 1+
√
3

4
√
2

, c0 = 3+
√
3

4
√
2

, c1 = 3−
√
3

4
√
2

, and c2 = 1−
√
3

4
√
2

.

One can show that ĉ has a second-order zero at π . Suppose that φ has been normalized such that its first two moments

are given by

µ0 = 1 and µ1 = 1−
√
3

2
.

(Note: These moments are for suppφ ⊂ [−1,2].) Using the integer shifts of φ , represent the function f (t) = 3t−1 on

the interval [0,2] (with as few terms as possible).

Solution. Since ĉ has a second-order zero at π , the integer shifts of φ can represent linear (and constant) functions

exactly. From the support of c, we can infer that suppφ ⊂ [−1,2]. Furthermore, since c−1 6= 1√
2
and c2 6= 1√

2
,

φ(−1) = 0 and φ(2) = 0. Since suppφ(t−k)⊂ [−1+k,2+k] and φ(−1) = φ(2) = 0, φ(t−k) has partial support in
[0,2] for k ∈ {−1,0,1,2}. Thus, we seek an expansion of the form

f (t) =
2

∑
k=−1

akφ(t− k) for t ∈ [0,2].

Using (4.52b), we have that the coefficient sequence a is given by

an = 3
(

1
µ0
n+ µ1

µ2
0

)
−
(

1
µ0

)

= 3
(
n+ 1−

√
3

2

)
−1

= 6n+3−3
√
3−2

2

= 6n+1−3
√
3

2
.

In other words, we have that

f (t) = −5−3
√
3

2
φ(t+1)+ 1−3

√
3

2
φ(t)+ 7−3

√
3

2
φ(t−1)+ 13−3

√
3

2
φ(t−2),

for t ∈ [0,2]. A plot of the resulting function is given in Figure 4.19.

Example 4.23. Consider the scaling function φ with the scaling coefficient sequence ck, where

(c−2,c−1,c0,c1,c2,c3) =
(
− 1

8
√
2
, 1

8
√
2
, 8

8
√
2
, 8

8
√
2
, 1

8
√
2
,− 1

8
√
2

)

and the zeroth moment of φ is one. One can show that ĉ has a third-order zero at π . Represent f (t) = 10t2 on the

interval I = [−2,2] using integer shifts of φ .

Solution. Since ĉ has a third-order zero at π , {φ(·− k)}k∈Z can locally represent quadratic functions exactly. From

the support of c, we can infer that suppφ ⊂ [−2,3]. Furthermore, since c−2 6= 1√
2
and c3 6= 1√

2
, φ(−2) = 0 and

φ(3) = 0. Since suppφ(t − k) ⊂ [−2+ k,3+ k] and φ(−2) = φ(3) = 0, φ(t − k) has partial support in [−2,2] for
k ∈ {−4,−3,−2,−1,0,1,2,3}. Thus, we seek an expansion of the form

f (t) =
3

∑
k=−4

akφ(t− k) for t ∈ [−2,2].
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Figure 4.19: Representing linear function on interval using Daubechies-2 scaling function.

Let mk and µk denote the kth moments of c and φ , respectively. Using (4.52b), we have that the coefficient sequence

a is given by

an = 10

(
1

µ0
n2 + 2µ1

µ2
0

n+
−µ2µ0+2µ2

1

µ3
0

)
.

Now, we compute the necessary moments mk. We have

m0 =
√
2,

m1 = ∑
k∈Z

kck = (−2)
(
− 1

8
√
2

)
+(−1)

(
1

8
√
2

)
+(1)

(
8

8
√
2

)
+(2)

(
1

8
√
2

)
+(3)

(
− 1

8
√
2

)

= 2−1+8+2−3
8
√
2

= 8

8
√
2

= 1√
2
, and

m2 = ∑
k∈Z

k2ck = (−2)2
(
− 1

8
√
2

)
+(−1)2

(
1

8
√
2

)
+(1)2

(
8

8
√
2

)
+(2)2

(
1

8
√
2

)
+(3)2

(
− 1

8
√
2

)

= −4+1+8+4−9
8
√
2

= 0.

Next, we compute the necessary moments µk. We have

µ1 = 1√
2(2−1)

0

∑
q=0

(
1

q

)
m1−qµq = 1√

2

(
1

0

)
m1µ0

= 1√
2
( 1√

2
)(1)

= 1
2
, and

µ2 = 1√
2(22−1)

1

∑
q=0

(
2

q

)
m2−qµq = 1

3
√
2

[(
2

0

)
m2µ0 +

(
2

1

)
m1µ1

]

= 1

3
√
2

[
− 1

2
√
2
+2
(

1√
2

)(
1
2

)]

= 1
6
.
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−20
0

20

40

60

80

100

120

140

−6 −4 −2 0 2 4 6

Figure 4.20: Representing quadratic function on interval using scaling function.

Combining the above results, we have

an = 10
(
n2 +n+(− 1

6
)+2( 1

2
)2
)

= 10
(
n2 +n+ 1

3

)

= 10
(
3n2+3n+1

3

)
.

Thus, we have that

f (t) = 370
3

φ(t+4)+ 190
3

φ(t+3)+ 70
3

φ(t+2)+ 10
3

φ(t+1)+ 10
3

φ(t)+ 70
3

φ(t−1)+ 190
3

φ(t−2)+ 370
3

φ(t−3),

for t ∈ [−2,2]. A plot of the resulting approximation is shown in Figure 4.20.

4.2.17 Determination of Scaling and Wavelet Functions

Most of the time, it is not possible to derive a closed-form expression for a solution to a refinement equation. For

this reason, we usually need to compute such solutions numerically. In what follows, we look at a few methods for

determining solutions to refinement equations.

4.2.17.1 Spectral Method

Conceptually, one of the simplest methods for computing the scaling function is to use the infinite product formula

for the Fourier transform of the scaling function. Recall that we can write

φ̂(ω) = φ̂(0)
∞

∏
p=1

1√
2
ĉ(ω/2p).

So, in principle, we can approximate the above infinite product by its first k factors. Then, we can take the inverse

Fourier transform of the result in order to find an approximation to φ(t). While this approach works, it is neither very

exact nor particularly fast. This leads us to consider other methods for determining the scaling function.

4.2.17.2 Eigenmethod

Another technique for solving refinement equations determines the solution at dyadic points. First, we solve an

eigenproblem to find the solution at integers. Then, we employ the scaling equation to compute the solution at half

integers, quarter integers, and so on. This approach is both exact and fast. It can be used to evaluate the solution at

any dyadic point.
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Consider the scaling equation

φ(t) =
√
2 ∑
k∈Z

ckφ(2t− k).

Without loss of generality, we assume

cn = 0 for n < 0 or n > N, c0 6= 0, and cN 6= 0.

(If φ has support on a different interval, we can always shift it so it has support on [0,N].) The form of cn implies

suppφ(t)⊂ [0,N].
We evaluate the scaling equation at integer n to obtain

φ(n) =
√
2 ∑
k∈Z

ckφ(2n− k).

Now, we employ a change of variable. Let k′ = 2n− k so that k = 2n− k′. Applying this change of variable and

dropping the primes, we obtain

φ(n) =
√
2 ∑
k∈Z

c2n−kφ(k).

Since suppφ ⊂ [0,N], φ(k) can only be nonzero at the integers k ∈ {0,1, . . . ,N}, and we have

φ(n) =
√
2

N

∑
k=0

c2n−kφ(k).

Writing the preceding equation for n = 0,1, . . . ,N in matrix form, we have




φ(0)
φ(1)
φ(2)

...
φ(N−1)

φ(N)




︸ ︷︷ ︸
φφφ

=




√
2




c0 0 0 0 0 · · · 0 0 0

c2 c1 c0 0 0 · · · 0 0 0

c4 c3 c2 c1 c0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · cN cN−1 cN−2
0 0 0 0 0 · · · 0 0 cN







︸ ︷︷ ︸
MMM




φ(0)
φ(1)
φ(2)

...
φ(N−1)

φ(N)




︸ ︷︷ ︸
φφφ

(4.53)

which can be written more compactly as

φφφ =MMMφφφ ,

where [MMM]p,q =
√
2c2p−q. Finding a solution to this equation is equivalent to solving the eigenproblem

MMMvvv = λvvv,

where λ = 1. We must find an eigenvector vvv ofMMM with a corresponding eigenvalue λ of one. If no such eigenvector

exists, then the refinement equation has no solution. Suppose that such a solution does exist. Then, the eigenvector vvv

gives us φφφ . From φφφ , we trivially obtain φ(t) at the integers.
Now, let us return to the refinement equation. From the refinement equation, we can evaluate φ at a point n/2p as

follows

φ(n/2p) =
√
2 ∑
k∈Z

ckφ(2[n/2p]− k)

=
√
2 ∑
k∈Z

ckφ

(
n−2p−1k

2p−1

)
. (4.54)
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Letting p = 1 in (4.54), we have

φ(n/2) =
√
2 ∑
k∈Z

ckφ(n− k).

The right-hand side of the preceding equation depends on φ(t) evaluated only at integers. The left hand side gives us

φ(t) at any half integer. So, we can calculate φ(t) at all of the half integers. Letting p = 2 in (4.54), we have

φ(n/4) =
√
2 ∑
k∈Z

ckφ

(
n−2k

2

)
.

The right-hand side of the preceding equation depends only on φ(t) evaluated at half integers (which are known

quantities). The left-hand side gives us φ(t) at quarter integers. So, we can calculate φ(t) at all of the quarter integers.
We can repeat this process ad infinitum to compute φ(t) at all dyadic points.

Observe that if a solution to a refinement equation exists, the solution is not unique. If vvv is a solution, so too is

avvv for any a ∈ C. The solution of a refinement equation is only determined up to a scale factor. Also, the possibility

exists that the eigenvalue of one may be repeated. In this case, we can obtain solutions for vvv that are not related by a

scale factor. For example, the refinement equation associated with the Haar scaling function has a repeated eigenvalue

of one. (We obtain the distinct eigenvectors [1 0 ]T and [0 1 ]T , leading to the solutions φ = χ[0,1) and φ = χ(0,1].)

We can also make another interesting observation. Recall that c0 and cN are assumed to be nonzero. From (4.53),

we have φ(0) =
√
2c0φ(0) and φ(N) =

√
2cNφ(N). This implies, however, that φ(0) = 0 if c0 6= 1/

√
2 and φ(N) = 0

if cN 6= 1/
√
2.

If φ(0) and φ(N) known to be zero, we can reduce the number of equations/unknowns in (4.53). This process

yields

φφφ ′ =MMM′φφφ ′,

where

φφφ ′ =
[
φ(1) φ(2) · · · φ(N−1)

]T
and

MMM′ =
√
2




c1 c0 0 0 · · · 0 0

c3 c2 c1 c0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · cN cN−1


 .

In a similar manner, we can compute the derivatives of φ provided that they exist. We begin by differentiating the

scaling equation to obtain

(Dφ)(t) = 2
√
2 ∑
k∈Z

c[k](Dφ)(2t− k).

We evaluate Dφ(t) at the integers and write the resulting equations in matrix form to obtain

φφφ ′ = 2MMMφφφ ′

where

φφφ ′ =
[
φ ′(0) φ ′(1) · · · φ ′(N)

]T
.

Now, we observe that φφφ ′ is an eigenvector ofMMM′ corresponding to an eigenvalue of 1
2
. Having determined φ ′(t) at the

integers, we can then compute φ ′(t) at the half integers, quarter integers, and so on. One can show [16, p. 37] that the

correct normalization of the nth derivative is given by

∑
k∈Z

knDnφ(k) = (−1)nn!µ0.

Below, we provide some examples to demonstrate the use of the eigenmethod approach for solving refinement

equations.
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Example 4.24. Consider the refinement equation

φ(t) =
√
2

2

∑
k=0

ckφ(2t− k)

where

c0 = 1

2
√
2
, c1 = 1√

2
, and c2 = 1

2
√
2
.

(Note that φ is a translated version of the primal scaling function from the Le Gall 5/3 wavelet system of Exam-

ple 4.15.) Determine whether or not a solution to this refinement equation exists. If the equation does have a solution,

let φ0 denote that particular normalization of the solution with a zeroth moment of unity, and evaluate φ0 at all half

integers (i.e., 1
2
Z).

Solution. We have the eigenproblem

φφφ =MMMφφφ

where

MMM =
√
2



c0 0 0

c2 c1 c0
0 0 c2




=
√
2




1

2
√
2

0 0
1

2
√
2

1√
2

1

2
√
2

0 0 1

2
√
2




=




1
2

0 0
1
2

1 1
2

0 0 1
2


 , and

φφφ =
[
φ(0) φ(1) φ(2)

]T
.

Solving this eigenproblem yields

φφφ =
[
0 1 0

]T
.

Or alternatively, we can observe that c0,c2 6= 1/
√
2, which implies that φ(0) = φ(2) = 0. This allows us to reduce the

eigenproblem to the simpler one given by

MMM′φφφ ′ = φφφ ′

where

MMM′ = [1] and φφφ ′ = [φ(1)].

By inspection, we have

φφφ ′ = 1.

Observe that this is the desired normalization of the solution sought (since, the value of φφφ ′ and (4.35) together imply

that φ has a zeroth moment equal to one). Thus, we have

φ(1) = 1 and φ(t) = 0 for t ∈ Z\{1}.
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We can then use the scaling equation to determine φ(t) at the half integer points. In particular, from (4.54) with p= 1,

we have

φ( 1
2
) =
√
2 ∑
k∈Z

ckφ(1− k)

=
√
2[c0φ(1)]

=
√
2[ 1

2
√
2
(1)]

= 1
2

and

φ( 3
2
) =
√
2 ∑
k∈Z

ckφ(3− k)

=
√
2[c2φ(1)]

=
√
2[ 1

2
√
2
(1)]

= 1
2
.

So, we have

φ( 1
2
) = φ( 3

2
) = 1

2
.

Example 4.25. Consider the refinement equation

φ(t) =
√
2

3

∑
k=0

ckφ(2t− k)

where

c0 = 1+
√
3

4
√
2

, c1 = 3+
√
3

4
√
2

, c2 = 3−
√
3

4
√
2

, and c3 = 1−
√
3

4
√
2

.

(Note that φ is the scaling function of the Daubechies-2 wavelet system of Example 4.14.) Determine whether or

not a solution to this refinement equation exists. If the equation does have a solution, let φ0 denote the particular

normalization of the solution with a zeroth moment equal to unity, and evaluate φ0 at all half integers (i.e.,
1
2
Z).

Solution. Since c0 6= 1√
2
and c3 6= 1√

2
, we have φ(0) = φ(3) = 0. Consequently, we can reduce this problem to the

simpler one of finding φ(1) and φ(2). We have the eigenproblem

φφφ =MMMφφφ

where

MMM =
√
2

[
c1 c0
c3 c2

]

=
√
2

[
3+
√
3

4
√
2

1+
√
3

4
√
2

1−
√
3

4
√
2

3−
√
3

4
√
2

]

=

[
3+
√
3

4
1+
√
3

4
1−
√
3

4
3−
√
3

4

]
and

φφφ =
[
φ(1) φ(2)

]T
.
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Solving this eigenproblem (e.g., by using Maple), we obtain

φφφ =
[
1+
√
3

2
1−
√
3

2

]T
.

Now, we observe that φφφ corresponds to the desired normalization of the solution sought (due to (4.35) with t = 0).

Thus, we have

φ(1) = 1+
√
3

2
≈ 1.366025 and φ(2) = 1−

√
3

2
≈−0.366025.

Now, using (4.54) with p = 1, we evaluate φ at the half integers to obtain

φ( 1
2
) =
√
2 ∑
k∈Z

ckφ(1− k)

=
√
2[c0φ(1)]

=
√
2[ 1+

√
3

4
√
2

( 1+
√
3

2
)]

= (1+
√
3)2

8

= 1+2
√
3+3

8

= 4+2
√
3

8

= 2+
√
3

4

≈ 0.93301,

φ( 3
2
) =
√
2 ∑
k∈Z

ckφ(3− k)

=
√
2[c1φ(2)+ c2φ(1)]

=
√
2[ 3+

√
3

4
√
2

( 1−
√
3

2
)+ 3−

√
3

4
√
2

( 1+
√
3

2
)]

= (3+
√
3)(1−

√
3)+(3−

√
3)(1+

√
3)

8

= 3−3
√
3+
√
3−3+3+3

√
3−
√
3−3

8

= 0, and

φ( 5
2
) =
√
2 ∑
k∈Z

ckφ(5− k)

=
√
2[c3φ(2)]

=
√
2[ 1−

√
3

4
√
2

( 1−
√
3

2
)]

= (1−
√
3)2

8

= 1−2
√
3+3

8

= 4−2
√
3

8

= 2−
√
3

4

≈ 0.066987.

So, we have

φ( 1
2
) = 2+

√
3

4
, φ( 3

2
) = 0, and φ( 5

2
) = 2−

√
3

4
.
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4.2.17.3 Cascade Algorithm

Another approach to determining the scaling function involves repeated application of a filter bank. This method is

known as the cascade algorithm. This algorithm is fast. It is not exact but often yields a good approximation. This

approach is formalized by the theorem below.

Theorem 4.29 (Cascade algorithm). Suppose that we have a refinement equation

φ(t) =
√
2 ∑
n∈Z

c[n]φ(2t−n). (4.55)

Define the iterative process

φ (k+1)(t) =
√
2 ∑
n∈Z

c[n]φ (k)(2t−n) (4.56)

where we choose φ (0)(t) such that

∫ ∞

−∞
φ (0)(t)dt = µ0 6= 0.

If this iterative process converges to a fixed point, this fixed point is a solution to (4.55) normalized such that∫ ∞
−∞ φ(t)dt = µ0.

Proof. Taking the Fourier transform of both sides of (4.56), we obtain

φ̂ (k+1)(ω) = 1
2

√
2 ∑
n∈Z

c[n]e− jnω/2φ̂ (k)(ω/2)

= 1√
2 ∑
n∈Z

c[n]e− jnω/2φ̂ (k)(ω/2)

= 1√
2
ĉ(ω/2)φ̂ (k)(ω/2)

where ĉ(ω) = ∑n∈Z c[n]e
− jnω (i.e., ĉ is the discrete-time Fourier transform of c). Equivalently, we can write

φ̂ (k)(ω) = 1√
2
ĉ(ω/2)φ̂ (k−1)(ω/2).

Recursively applying this formula (k−1) times, we obtain

φ̂ (k)(ω) = 1√
2
ĉ(ω/2)φ̂ (k−1)(ω/2)

=
(

1√
2
ĉ(ω/2)

)(
1√
2
ĉ(ω/4)

)
φ̂ (k−2)(ω/4)

=

(
k

∏
p=1

1√
2
ĉ(ω/2p)

)
φ̂ (0)(ω/2k).

Taking the limit as k→ ∞, we have

φ̂ (∞)(ω) = lim
k→∞

φ̂ (k)(ω)

= lim
k→∞

(
k

∏
p=1

1√
2
ĉ(ω/2p)

)
φ̂ (0)(ω/2k)

=

(
∞

∏
p=1

1√
2
ĉ(ω/2p)

)
φ̂ (0)(0)

=

(
∞

∏
p=1

1√
2
ĉ(ω/2p)

)
φ̂(0)

= φ̂(ω).
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Taking the inverse Fourier transform, we obtain

φ (∞)(t) = φ(t).

Therefore, if the stated iterative process converges to a fixed point, this fixed point is a solution to (4.55).

In practice, we usually choose φ (0) = χ[0,1). With such a choice, we then have that φ (k) is of the form

φ (k)(t) = ∑
n∈Z

a(k)[n]χ[n2−k,(n+1)2−k)(t).

That is, φ (k) is piecewise constant on intervals of the form [n2−k,(n+ 1)2−k), where n ∈ Z. Furthermore, one can

show that the sequence a(k) is given by

a(k)[n] =

{([
(↑ 2)a(k−1)

]
∗ (
√
2c)
)

[n] for k ≥ 1

δ [n] for k = 0.

The above algorithm can be implemented very conveniently in software. We need only compute the sequence a(κ) for

some sufficiently large κ . From the resulting sequence, we can then trivially deduce φ (κ).

Below, we provide some examples demonstrating how the cascade algorithm can be used to solve refinement

equations.

Example 4.26 (Linear B-spline scaling function). Consider the refinement equation

φ(t) = 1
2
φ(2t)+φ(2t−1)+ 1

2
φ(2t−2).

This refinement equation is associated with the linear B-spline scaling function from Example 4.11 (to within a

normalizing shift). Using three iterations of the cascade algorithm, find an approximate solution to the refinement

equation having a zeroth moment of one.

Solution. Applying the cascade algorithm, starting with φ (0) = χ[0,1), we obtain

a(0)[0] = 1,

(a(1)[0],a(1)[1],a(1)[2]) =
(
1
2
,1, 1

2

)
,

(a(2)[0],a(2)[1], . . . ,a(2)[6]) =
(
1
4
, 1
2
, 3
4
,1, 3

4
, 1
2
, 1
4

)
,

(a(3)[0],a(3)[1], . . . ,a(3)[14]) =
(
1
8
, 1
4
, 3
8
, 1
2
, 5
8
, 3
4
, 7
8
,1, 7

8
, 3
4
, 5
8
, 1
2
, 3
8
, 1
4
, 1
8

)
,

and so on. The results of the first few iterations are illustrated in Figure 4.21. As we would expect, as we iterate, the

approximate solution appears to be converging to the linear B-spline scaling function (up to a shift), shown earlier in

Figure 4.12(a) on page 221.

Example 4.27. Consider the refinement equation φ(t) = ∑k∈Z ckφ(2t−n), where

(c0,c1,c2,c3,c4,c5) =
(
− 1

8
, 1
8
, 8
8
, 8
8
, 1
8
,− 1

8

)
and cn = 0 for n 6∈ {0,1, . . . ,5}.

Let φ (n)(t) denote the approximate solution to the above equation obtained after n iterations of the cascade algorithm,

starting from the function φ (0)(t) = χ[0,1)(t). Calculate φ (1)(t) and φ (2)(t).

Solution. Applying the cascade algorithm, starting with φ (0) = χ[0,1), we obtain

a(0)[0] = 1,

(a(1)[0],a(1)[1], . . . ,a(1)[5]) =
(
− 1

8
, 1
8
, 8
8
, 8
8
, 1
8
,− 1

8

)
,

(a(2)[0],a(2)[1], . . . ,a(2)[15]) =
(

1
64

,− 1
64

,− 9
64

,− 7
64

,− 1
64

, 17
64

, 57
64

, 71
64

, 71
64

, 57
64

, 17
64

,− 1
64

,− 7
64

,− 9
64

,− 1
64

, 1
64

)
.
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Figure 4.21: Cascade algorithm applied to B-spline scaling function.
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Note that

a(2)[0] = ((↑ 2)a(1))∗ c)[0] = (− 1
8
)(− 1

8
) = 1

64
,

a(2)[1] = ((↑ 2)a(1))∗ c)[1] = (− 1
8
)( 1

8
)+(0)(− 1

8
) =− 1

64
,

a(2)[2] = ((↑ 2)a(1))∗ c)[2] = (− 1
8
)( 8

8
)+(0)( 1

8
)+( 1

8
)(− 1

8
) =− 9

64
,

a(2)[3] = ((↑ 2)a(1))∗ c)[3] = (− 1
8
)( 8

8
)+(0)( 8

8
)+( 1

8
)( 1

8
)+(0)(− 1

8
) =− 7

64
,

a(2)[4] = ((↑ 2)a(1))∗ c)[4] = (− 1
8
)( 1

8
)+(0)( 8

8
)+( 1

8
)( 8

8
)+(0)( 1

8
)+( 8

8
)(− 1

8
) =− 1

64
,

a(2)[5] = ((↑ 2)a(1))∗ c)[5] = (− 1
8
)(− 1

8
)+(0)( 1

8
)+( 1

8
)( 8

8
)+(0)( 8

8
)+( 8

8
)( 1

8
)+(0)(− 1

8
) = 17

64
,

a(2)[6] = ((↑ 2)a(1))∗ c)[6] = (0)(− 1
8
)+( 1

8
)( 1

8
)+(0)( 8

8
)+( 8

8
)( 8

8
)+(0)( 1

8
)+( 8

8
)(− 1

8
) = 57

64
, and

a(2)[7] = ((↑ 2)a(1))∗ c)[7] = ( 1
8
)(− 1

8
)+(0)( 1

8
)+( 8

8
)( 8

8
)+(0)( 8

8
)+( 8

8
)( 1

8
)+(0)(− 1

8
) = 71

64
.

Since a(1) and c are symmetric, a(2) is symmetric. Because a(2) is symmetric, the remaining nonzero elements of this

sequence can be trivially deduced. Thus, φ (0), φ (1), and φ (2) have the graphs shown in Figures 4.22(a), (b), and (c),

respectively.

4.3 M-adic Wavelet Systems

Multiresolution representations of functions are often extremely useful. Sometimes, however, we may not wish to

restrict ourselves to multiresolution representations that are based on a scale factor of two. Although in some applica-

tions, a factor of two might be a very natural choice, in others a more appropriate choice may exist. In what follows,

we will explore the generalization of wavelet systems to arbitrary integer scale factors (greater than or equal to two).

As we shall see, many results in the more general case are very similar to those in the dyadic case.

4.3.1 MRAs

In the more general M-adic case, we need to modify the definition of a MRA. For an M-adic wavelet system, a MRA

is as defined previously except that the scale invariance property becomes:

for all p ∈ Z, f ∈Vp⇔ f (M·) ∈Vp−1, where M ∈ Z and M ≥ 2.

One can show that the scale invariance and shift invariance properties together imply that

for all p ∈ Z, f ∈Vp⇔ f (·−Mpk) ∈Vp.

In what follows, we present some examples of MRAs.

Example 4.28 (Piecewise constant approximations). The idea of piecewise constant approximations can be gener-

alized from the dyadic case in Example 4.1 to arbitrary dilation factors. The space V0 is comprised of all functions

f ∈ L2(R) such that f is constant on intervals of the form [n,n+ 1), where n ∈ Z. More generally, Vp is comprised

of all functions f ∈ L2(R) such that f is constant over intervals of the form [nMp,(n+1)Mp), where n ∈ Z. One can
show that {φ(· − k)}k∈Z is a Riesz basis of V0, where φ = χ[0,1). In fact, one can show that {Vp}p∈Z constitutes a

MRA.

Example 4.29 (Bandlimited approximations). Consider the sequence {Vp}p∈Z of subspaces of L2(R) given by

Vp = { f : supp f̂ ⊂ [−M−pπ,M−pπ]},

where M ∈ Z and M ≥ 2. The above sequence of subspaces constitutes a MRA. (In the case that M = 2, we have the

Shannon MRA from Example 4.2.) One can show that a Riesz basis of V0 is given by {φ(·−n)}n∈Z, where

φ(t) = sincπt.
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Figure 4.22: Results of the cascade algorithm.
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V−2 · · · {0}L2(R) · · ·

Figure 4.23: MRA decomposition of L2(R).

From the dilation property of the Fourier transform, we have

supp f̂ ⊂ [−M−pπ,M−pπ]⇔ supp f̂ (M·)⊂ [−M−(p−1)π,M−(p−1)π].

From the definition of {Vp}p∈Z, we have

supp f̂ ⊂ [−M−pπ,M−pπ]⇔ f ∈Vp and

supp f̂ ⊂ [−M−(p−1)π,M−(p−1)π]⇔ f ∈Vp−1.

Combining the above equivalences, we conclude that f ∈ Vp ⇔ f (M·) ∈ Vp−1. Thus, the scale invariance property

holds. From the translation property of the Fourier transform, we have

supp f̂ = supp ̂f (·−n) for all n ∈ Z.

From this, it follows that f ∈V0⇔ f (·−n) ∈V0 for all n ∈ Z. Thus, the shift invariance property holds. We leave it

as an exercise for the reader to confirm that the other properties of a MRA also hold.

4.3.2 Wavelet Spaces

Consider a MRA with the approximation space sequence {Vp}p∈Z. Since Vp is a proper subspace of Vp−1 there must

be some spaceUp which is the algebraic complement of Vp in Vp−1. In other words, we have

Vp−1 =Vp⊕Up.

Unfortunately, in the case ofM-adic MRAs whereM > 2, it is not possible for the integer shifts of a single function to

form a basis forU0. In fact, one can show that we need the integer shifts ofM−1 functions. Thus, we need to further

partition the spaceUp into theM−1 subspaces {Wq,p}q∈{1,2,...,M−1}. That is, we have

Up =
M−1⊕

q=1

Wq,p.

This leads to the relationship

Vp−1 =Vp⊕
(

M−1⊕

k=1

Wk,p

)
.

We refer to theWq,p spaces as wavelet spaces. Notice, however, that we now have M−1 wavelet spaces at each level

in the MRA. This leads to the decomposition of L2(R) illustrated in Figure 4.23.
One can show that the various spaces have the following properties:

Vk ∩Vl =Vl for k < l

Wq,p∩Wl,k = {0} for (q, p) 6= (l,k); and

Vk ∩Wq,p = {0} for k ≥ p.

Moreover, the wavelet spaces have the additional properties given by the theorem below.
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Theorem 4.30 (Properties of wavelet spaces (M-adic case)). Let {Wq,p}(q,p)∈{1,2,...,M−1}×Z denote the wavelet spaces

associated with a MRA. Then, these spaces are such that

1. clos
(⊕

(q,p)∈{1,2,...,M−1}×ZWq,p

)
= L2(R) (density);

2. for each q ∈ {1,2, . . . ,M−1}, f ∈Wq,p⇔ f (M·) ∈Wq,p−1 for all p ∈ Z (scale invariance);

3. for each q ∈ {1,2, . . . ,M−1}, f ∈Wq,0⇔ f (·−n) ∈Wq,0 for all n ∈ Z (shift invariance); and

4. for each q ∈ {1,2, . . . ,M−1}, there exists ψq such that {ψq(·−n)}n∈Z is a Riesz basis of Wq,0 (shift-invariant

Riesz basis).

The basis of each wavelet spaceWq,0 is generated by the integer shifts of a single function ψq. We refer to ψq as

a wavelet function. Notice that, in the M-adic case, we have M−1 wavelet functions (since there are M−1 wavelet

spaces at each level in the MRA).

4.3.3 Bases of Scaling and Wavelet Spaces

Consider a MRA associated with the approximation space sequence {Vp}p∈Z. Let {φ(· − n)}n∈Z denote the Riesz

basis of V0. For each q ∈ {1,2, . . . ,M− 1}, let {ψq(· − n)}n∈Z denote the Riesz basis of Wq,0. Suppose that φ and

{ψq}q∈{1,2,...,M−1} are known. Then, just like in the dyadic case, we can trivially determine a basis for each of the

other approximation and wavelet spaces. In the M-adic case, we have the more general result below.

Theorem 4.31 (Bases of approximation spaces). Suppose that we have a MRA {Vp}p∈Z and {φ(·−n)}n∈Z is a Riesz

basis of V0 with the dual basis {φ̃(·−n)}n∈Z. Then, for each p ∈ Z, the set {φp,n}n∈Z given by

φp,n(t) = M−p/2φ(M−pt−n)

is a Riesz basis of Vp with the same Riesz bounds as {φ(·−n)}n∈Z and the dual basis {φ̃p,n}n∈Z given by

φ̃p,n(t) = M−p/2φ̃(M−pt−n).

Proof. The proof is analogous to that of Theorem 4.6.

Now, we consider the bases the wavelet spaces. The basis of each of these spaces can be determined using the

theorem below.

Theorem 4.32 (Bases of wavelet spaces). Suppose that we have a MRA {Vp}p∈Z with the corresponding wavelet

spaces {Wq,p}(q,p)∈{1,2,...,M−1}×Z and {ψq(· − n)}n∈Z is a Riesz basis of Wq,0 with the dual basis {ψ̃q(· − n)}n∈Z.

Then, for each p ∈ Z, {ψq,p,n}n∈Z given by

ψq,p,n(t) = M−p/2ψq(M
−pt−n)

is a Riesz basis of Wq,p with the same Riesz bounds as {ψ(·−n)}n∈Z and dual basis {ψ̃q,p,n}n∈Z given by

ψ̃q,p,n(t) = M−p/2ψ̃q(M
−pt−n).

Proof. The proof is essentially the same as the proof for Theorem 4.31 with the scaling function φ replaced by the

wavelet function ψq.
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Figure 4.24: Example of a 3-adic refinable function. (a) Refinable function. (b,c,d) Components of refinable function.

4.3.4 Scaling and Wavelet Equations

Here, we introduce some examples ofM-refinable functions where M > 2.

Example 4.30. Consider the function

φ(t) = χ[0,1)(t).

One can confirm that φ satisfies a refinement relationship for any choice of dilation factor M (where M ≥ 2). In

particular, we have

φ(t) =
M−1
∑
k=0

φ(Mt− k).

This relationship is illustrated in Figure 4.24 for the case of M = 3.

Example 4.31. Consider the function

φ(t) =





t for 0≤ t < 1

2− t for 1≤ t < 2

0 otherwise.

One can confirm that φ is 3-refinable. In particular, we have

φ(t) =
4

∑
k=0

c[k]φ(3t− k),

where c is given by

(c[0],c[1], . . . ,c[4]) =
(
1
3
, 2
3
,1, 2

3
, 1
3

)
.

(We already saw that φ is also 2-refinable. In passing, we note that most 2-refinable functions are not 3-refinable, and

vice versa. One can show, however, that B-spline functions are both 2- and 3-refinable [19, Section 4.5]. We leave it

as an exercise for the reader to confirm that φ is also refinable for other choices of dilation factor.)

Just like in the 2-scale case, in theM-scale case, the scaling function φ is refinable. In theM-scale case, however,

φ isM-refinable. This leads to the scaling equation as given by the theorem below.

Theorem 4.33 (Scaling equation (M-adic case)). Suppose that we have an M-adic MRA {Vp}p∈Z andV0 has the Riesz

basis {φ(·−n)}n∈Z. Then, φ satisfies a refinement equation of the form

φ(t) = M1/2 ∑
n∈Z

c[n]φ(Mt−n) (4.57a)

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



278 CHAPTER 4. UNIVARIATE WAVELET SYSTEMS

where

c[n] =
〈

φ ,M1/2φ̃(M ·−n)
〉

. (4.57b)

Proof. The proof is analogous to that of the dyadic case.

Often, it is convenient to work with the Fourier transform of the scaling equation, which is given by the following

theorem.

Theorem 4.34 (Fourier transform of scaling equation (M-adic case)). Let φ be an M-adic scaling function with

scaling equation coefficient sequence c. Then, φ̂ is given by

φ̂(ω) = M−1/2ĉ(M−1ω)φ̂(M−1ω)

which can be equivalently expressed in terms of an infinite product as

φ̂(ω) = φ̂(0)
∞

∏
p=1

M−1/2ĉ(M−pω).

Proof. The proof is analogous to that of the dyadic case.

Although the wavelet functions are not refinable, they can be represented in terms of dilated and translated versions

of the scaling function. For each wavelet function, this leads to a wavelet equation, as given by the theorem below.

Theorem 4.35 (Wavelet equation (M-adic case)). Suppose that we have a MRA {Vp}p∈Z with corresponding wavelet

subspaces {Wq,p}(q,p)∈{1,2,...,M−1}×Z, where V0 has the Riesz basis {φ(·−n)}n∈Z andWq,0 has the Riesz basis {ψq(·−
n)}n∈Z. Then, ψq can be expressed in terms of an equation of the form

ψq(t) = M1/2 ∑
n∈Z

dq[n]φ(Mt−n)

where

dq[n] =
〈

ψq,M
1/2φ̃(M ·−n)

〉
.

Proof. The proof is analogous to that of the dyadic case.

Often, the Fourier transform of a wavelet equation is useful to know. It is given by the theorem below.

Theorem 4.36 (Fourier transform of the wavelet equation (M-adic case)). Let φ and {ψq}q∈{1,2,...,M−1} be the scaling
and wavelet functions of a MRA. Suppose that φ has the scaling equation coefficient sequence c and ψq has the

wavelet equation coefficient sequence dq. Then, ψ̂q is given by

ψ̂q(ω) = M−1/2d̂q(M
−1ω)φ̂(M−1ω)

which can be equivalently expressed in terms of an infinite product as

ψ̂q(ω) = M−1/2φ̂(0)d̂q(M
−1ω)

∞

∏
p=1

M−1/2ĉ(M−p−1ω).

Proof. The proof is analogous to that of the dyadic case.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



4.3. M-ADIC WAVELET SYSTEMS 279

4.3.5 Dual MRAs

Just like in the dyadic case, each MRA is associated with a dual MRA. This fact is formalized in the following

theorem.

Theorem 4.37 (Dual MRAs). Let {Vp}p∈Z be a MRA with scaling function φ , with corresponding wavelet spaces

{Wq,p}(q,p)∈{1,2,...,M−1}×Z, and corresponding wavelet function ψq. Suppose that the dual Riesz bases of {φ(· −
k)}k∈Z and {ψq(·− k)}k∈Z are given by {φ̃(·− k)}k∈Z and {ψ̃q(·− k)}k∈Z, respectively. Then, φ̃ is also the scaling

function of a MRA {Ṽp}p∈Z with corresponding wavelet spaces {W̃q,p}(q,p)∈{1,2,...,M−1}×Z and the corresponding

wavelet functions {ψ̃q}q∈{1,2,...,M−1}.
Proof. The proof is left as an exercise for the reader.

An important relationship between a MRA and its dual is given by the theorem below.

Theorem 4.38. Suppose that {Vp}p∈Z and {Ṽp}p∈Z are dual MRAs with corresponding wavelet spaces {Wq,p}(q,p)∈{1,2,...,M−1}×Z

and {W̃q,p}(q,p)∈{1,2,...,M−1}×Z, respectively. Then, we have

for all (q, p) ∈ {1,2, . . . ,M−1}×Z, Vp ⊥ W̃q,p and Wq,p ⊥ Ṽp.

Proof. The proof follows from that of the dyadic case, by observing thatWq,p is contained in the algebraic complement

of Vp in Vp−1 and W̃q,p is contained in the algebraic complement of Ṽp in Ṽp−1.

4.3.6 Wavelet Systems

Like in the dyadic case, we have three basic types of wavelet systems: orthonormal, semiorthogonal, and biorthogonal.

The definitions are analogous to the dyadic case.

4.3.7 Examples of Wavelet Systems

In what follows, we provide some examples ofM-adic wavelet systems (where M > 2).

Example 4.32 (Bandlimited approximations). In this example, we introduce a family of wavelet systems based on

spaces of bandlimited functions. This is a straightforward generalization of the Shannon wavelet system considered

in Example 4.13.

Let us construct a MRA {Vp}p∈Z as follows. For each p ∈ Z, we let Vp be the set of all functions f (in L2(R))
such that

supp f̂ ⊂ [−M−pπ,M−pπ]

(i.e., Vp is the set of all functions bandlimited to [−M−pπ,M−pπ]). Denote the corresponding wavelet spaces as

{Wq,p}(q,p)∈{}×Z. Then, for each (q, p), one can chooseWq,p as the set of all functions f such that

supp f̂ ⊂ [−(q+1)M−(p−1)π,−qM−(p−1)π]∪ [qM−(p−1)π,(q+1)M−(p−1)π].

The scaling function φ is given by

φ(t) = sincπt

and for each q ∈ {1,2, . . . ,M−1}, the wavelet function ψq is given by

ψq(t) = cos
(

(2q−1)πt
2

)
sinc

(
πt
2

)
.

One can readily show that the Fourier transforms of the above functions are given by

φ̂(ω) = χ[−π,π](ω) and

ψ̂q(ω) = χ[−(q+1)π,−qπ](ω)+ χ[qπ,(q+1)π](ω).
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Example 4.33 (Belogay-Wang wavelet system). In this example, we introduce the 3-adic Belogay-Wang wavelet

system proposed in [2]. This particular system is orthonormal with symmetric basis functions.

The scaling function φ satisfies the refinement equation

φ(t) =
5

∑
k=0

c[k]φ(3t− k)

where c is given by

(c[0],c[1], . . . ,c[5]) =
(
2−
√
6

4
, 1
2
, 2+
√
6

4
, 2+
√
6

4
, 1
2
, 2−
√
6

4

)
.

Furthermore, it can be shown that φ is continuous. The wavelet functions ψ1 and ψ2 can be expressed in terms of the

scaling function as

ψ1(t) =
5

∑
k=0

d1[k]φ(3t− k) and

ψ2(t) =
2

∑
k=0

d2[k]φ(3t− k),

where d1 and d2 are given by [1]

(d1[0],d1[1], . . . ,d1[5]) =
(
2−
√
6

4
, 1
2
, 2+
√
6

4
,− 2+

√
6

4
,− 1

2
,− 2−

√
6

4

)
and

(d2[0],d2[1],d2[2]) =
(
1
2
,−1, 1

2

)
.

The scaling and wavelet functions are plotted in Figure 4.25. (Since the system is orthonormal, φ̃ = φ , ψ̃1 = ψ1, and

ψ̃2 = ψ2.)

Observe that this system is orthonormal with basis functions that are real, symmetric, compactly supported, and

of “nontrivial” length. As was noted earlier, a wavelet system with all of these properties is not possible in the dyadic

case.

4.3.8 Relationship Between Wavelet Systems and Filter Banks

Just like in the 2-scale case, there is also a relationship between wavelet systems and filter banks in the M-scale case

(where M > 2). In particular, we have the result below.

Theorem 4.39 (Mallat algorithm). Consider a wavelet system with approximation space sequence {Vp}p∈Z, scaling

function φ , wavelet spaces {Wq,p}(q,p)∈{1,2,...,M−1}×Z, wavelet functions {ψq}q∈{1,2,...,M−1}, dual scaling function φ̃ ,

and dual wavelet functions {ψ̃q}q∈{1,2,...,M−1}. Let the scaling equation coefficient sequences of φ and φ̃ be denoted

as c and c̃, respectively. Let the wavelet equation coefficient sequences of ψq and ψ̃q be denoted as dq and d̃q,

respectively. Define the basis functions for the various spaces as before:

φp,n(t) = M−p/2φ(M−pt−n),

ψq,p,n(t) = M−p/2ψq(M
−pt−n),

φ̃p,n(t) = M−p/2φ̃(M−pt−n), and

ψ̃q,p,n(t) = M−p/2ψ̃q(M
−pt−n).

Any f ∈Vp can be represented in each of the following forms:

f = ∑
n∈Z

ap[n]φp,n and (4.59)

f = ∑
n∈Z

ap+1[n]φp+1,n +
M−1
∑
q=1

∑
n∈Z

bq,p+1[n]ψq,p+1,n. (4.60)
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Figure 4.25: Belogay-Wang scaling and wavelet functions. (a) Scaling function and (b) and (c) wavelet functions.
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H0(z)

H1(z)

HM−1(z)

↓M

↓M

↓M

ap[n]

...
...

bM−1,p+1[n]

b1,p+1[n]

ap+1[n]

...
...

(a)

G1(z)

G0(z) +

+

GM−1(z)

↑M

↑M

↑M

...
...

ap[n]ap+1[n]

b1,p+1[n]

bM−1,p+1[n]

...
...

(b)

Figure 4.26: Computational structure associated with the Mallat algorithm (M-adic case).

Given ap, we can compute the corresponding ap+1 and bq,p+1 as follows:

ap+1 = (↓M)(ap ∗h0) and (4.61a)

bq,p+1 = (↓M)(ap ∗hq) , (4.61b)

where h0[n] = c̃∗[−n] and hq[n] = d̃∗q [−n] for q ∈ {1,2, . . . ,M− 1}. Given ap+1 and bq,p+1, we can compute the

corresponding ap as follows:

ap = ((↑M)ap+1)∗g0 +
M−1
∑
q=1

(
(↑M)bq,p+1

)
∗gq, (4.62)

where g0[n] = c[n] and gq[n] = dq[n] for q ∈ {1,2, . . . ,M−1}.
From the above theorem, we can see that the process of moving between representations of functions at different

resolutions is accomplished by UMD filter banks. In particular, the Mallat algorithm is associated with the analysis

and synthesis sides of an M-channel UMD filter bank as shown in Figure 4.26.

4.3.9 Characterizing Biorthonormal and Orthonormal Wavelet Systems

From Theorem 4.38, we have that
〈
φp,k, φ̃p,l

〉
= δ [k− l], (4.63a)

〈
ψq,p,k, ψ̃q,p,l

〉
= δ [k− l], (4.63b)

〈
φp,k, ψ̃q,p,l

〉
= 0, and (4.63c)

〈
ψq,p,k, φ̃p,l

〉
= 0. (4.63d)

In a similar fashion as in the dyadic case, we can show that these relationships imply

〈c[·], c̃[·−Mn]〉= δ [n], (4.64a)
〈
dq[·], d̃q[·−Mn]

〉
= δ [n], (4.64b)

〈
c[·], d̃q[·−Mn]

〉
= 0, and (4.64c)

〈
dq[·], c̃[·−Mn]

〉
= 0. (4.64d)

We would like to rewrite the above relationships in the Fourier domain. To this end, the result below will be helpful.

Lemma 4.3. For any two sequences f and g, and α ∈ C, we have

〈 f [·],g[·−Mn]〉= αδ [n] ⇔
M−1
∑
l=0

f̂ (ω− 2πl
M

)ĝ∗(ω− 2πl
M

) = Mα.
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Proof. Define v[n] = g∗[−n]. Using this definition, we can write

〈 f [·],g[·−Mn]〉= αδ [n]

⇔ ∑
k∈Z

f [k]g∗[k−Mn] = αδ [n]

⇔ ∑
k∈Z

f [k]v[Mn− k] = αδ [n]

⇔ ((↓M)( f ∗ v))[n] = αδ [n].

Taking the Fourier transform of both sides of the preceding equation and using the fact that v̂(ω) = ĝ∗(ω), we obtain

⇔ (↓M)( f̂ (ω)v̂(ω)) = α

⇔ 1
M

M−1
∑
l=0

f̂ (ω− 2πl
M

)v̂(ω− 2πl
M

) = α

⇔
M−1
∑
l=0

f̂ (ω− 2πl
M

)ĝ∗(ω− 2πl
M

) = Mα.

Using Lemma 4.3, we can equivalently rewrite (4.64) as

M−1
∑
l=0

ĉ
(
ω− 2πl

M

)
ˆ̃c∗
(
ω− 2πl

M

)
= M, (4.65a)

M−1
∑
l=0

d̂q
(
ω− 2πl

M

) ˆ̃d∗q
(
ω− 2πl

M

)
= M, (4.65b)

M−1
∑
l=0

ĉ
(
ω− 2πl

M

) ˆ̃d∗q
(
ω− 2πl

M

)
= 0, and (4.65c)

M−1
∑
l=0

d̂q
(
ω− 2πl

M

)
ˆ̃c∗
(
ω− 2πl

M

)
= 0. (4.65d)

In the case that the system is orthonormal, we have that c = c̃ and dq = d̃q, and the above equations become

M−1
∑
l=0

∣∣ĉ
(
ω− 2πl

M

)∣∣2 = M, (4.66a)

M−1
∑
l=0

∣∣d̂q
(
ω− 2πl

M

)∣∣2 = M, and (4.66b)

M−1
∑
l=0

ĉ
(
ω− 2πl

M

)
d̂∗q
(
ω− 2πl

M

)
= 0. (4.66c)

4.3.10 Properties of Scaling and Wavelet Functions

Since scaling and wavelet functions play an important role in characterizing wavelet systems, it is beneficial to exam-

ine some of the properties of such functions. Some of these properties are introduced by the theorems below.

Theorem 4.40 (Properties of scaling function). Suppose that φ is a compactly supported function with zeroth moment

µ0 6= 0 and stable integer shifts (i.e., {φ(·− k)}k∈Z is a Riesz basis), and φ satisfies an M-adic scaling equation with
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coefficient sequence c[n]. Then, we have

∑
k∈Z

φ(t− k) = µ0, (4.67)

φ̂(2πk) = 0 for all k ∈ Z\{0}, (4.68)

ĉ(0) = M1/2, and (4.69)

ĉ
(
2πk
M

)
= 0 for k ∈ {1,2, . . . ,M−1}. (4.70)

Proof. In a similar manner as in the dyadic case, we can readily show that (4.69), (4.68), and (4.67) hold.

Now, we consider (4.70). From the Fourier transform of the scaling equation, we can write

φ̂(Mω) = M−1/2ĉ(ω)φ̂(ω). (4.71)

Let N(φ) , {ω ∈ R : φ̂(ω + 2πk) = 0 for all k ∈ Z}. Since φ is compactly supported and φ ∈ L2(R), we have

that φ ∈ L1(R). Thus, by the Riemann-Lebesgue lemma, φ̂ is continuous. Since φ̂ is continuous, {φ(· − n)}n∈Z

being a Riesz basis is equivalent to N(φ) being the empty set. (Since φ̂ is continuous, the Riesz basis condition

0 < A≤∑k∈Z

∣∣φ̂(ω +2πk)
∣∣≤ B < ∞ for ω almost everywhere is violated if and only if there exists some ω such that

φ̂(ω + 2πk) = 0 for all k ∈ Z.) Let ω ∈ { 2πk
M

: k ∈ {1,2, . . . ,M− 1}}. There must exist γ of the form γ = 2πβ + ω

with β ∈ Z such that φ̂(γ) 6= 0. Since φ̂(γ) 6= 0, we can rearrange (4.71) to obtain

ĉ(γ) = M1/2φ̂(Mγ)/φ̂(γ).

Now, we consider the quantity Mγ more closely. We have

Mγ = M(2πβ +ω)

= 2πMβ +M( 2πk
M

)

= 2πMβ +2πk

= 2π(Mβ + k)

∈ 2πZ\{0}.

In other words, Mγ is a nonzero integer multiple of 2π . Consequently, from (4.68), we have that φ̂(Mγ) = 0 which

implies that ĉ(γ) = 0. So, we have

0 = ĉ(γ)

= ĉ(2πβ + 2πk
M

)

= ĉ( 2πk
M

).

Thus, (4.70) holds.

Theorem 4.41 (Zeroth moment of wavelet function). Let ψ be a wavelet function. Then, the zeroth moment of ψ is

zero (i.e.,
∫ ∞
−∞ ψ(t)dt = 0). The wavelet equation coefficient sequence d is such that d̂(0) = 0.

Proof. Consider (4.65d) for ω = 2π(M−1)/M. We have

M−1
∑
l=0

d̂
(
2πl
M

)
ˆ̃c∗
(
2πl
M

)
= 0.

From (4.70) and (4.69), we have that only the term for l = 0 in the above summation is nonzero. In particular, we

have

M1/2d̂(0) = 0.
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This implies, however, that d̂(0) = 0. Evaluating the Fourier transform of the wavelet equation at ω = 0, we obtain

ψ̂(0) = M−1/2d̂(0)φ̂(0)

= 0.

Thus, from the moment property of the Fourier transform, the zeroth moment of ψ vanishes.

Theorem 4.42 (Relationship between continuous and discrete moments). Let φ be an M-adic scaling function with

scaling equation coefficient sequence c. Let ψ be a corresponding wavelet function with wavelet equation coefficient

sequence d. Denote the kth moments of φ and ψ as µk and νk, respectively. Denote the kth moments of c and d as mk

and nk, respectively. Then, we have

µk =
1

M1/2(Mk−1)

k−1
∑
q=0

(
k

q

)
mk−qµq for k ≥ 1 and (4.72)

νk = M−k−1/2
k

∑
q=0

(
k

q

)
nk−qµq for k ≥ 0. (4.73)

4.3.11 Support of Scaling and Wavelet Functions

One might wonder if there is any simple way to characterize the support of scaling and wavelet functions. This is, in

fact, possible. As it turns out, there is a relationship between the support of scaling and wavelet functions and their

corresponding scaling and wavelet sequences. This relationship is introduced by the theorem below.

Theorem 4.43 (Support of scaling and wavelet functions). Let φ be anM-adic scaling function with scaling coefficient

sequence c. Let ψ be a corresponding wavelet function with wavelet equation coefficient sequence d. If c[n] = 0

whenever n < n0 or n > n1, then

suppφ ⊂ [ n0
M−1 ,

n1
M−1 ]

If, in addition, d[n] = 0 whenever n < w0 or n > w1, then

suppψ ⊂ [ n0+(M−1)w0

M(M−1) , n1+(M−1)w1

M(M−1) ].

Proof. The difficult part of the proof is to show that φ must have compact support. So, we simply assert this to be the

case, and proceed based on this fact. Suppose that

suppφ ⊂ [a0,a1].

Then, we have

suppφ(M ·−k)⊂ [ a0+k
M

, a1+k
M

].

From the scaling equation, we have

suppφ = supp

[
n1

∑
k=n0

c[k]φ(Mt− k)

]
.

Since φ is compactly supported, the lower support bound of the right-hand side is given by the lower support bound of

the leftmost shifted version of φ(Mt). Similarly, the upper support bound of the right-hand side is given by the upper

support bound of the rightmost shifted version of φ(Mt). Thus, we have

suppφ ⊂ [ a0+n0
M

, a1+n1
M

].
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Equating this expression for suppφ with our initial one from above, we obtain

a0 = a0+n0
M
⇒ a0 = n0

M−1 and

a1 = a1+n1
M
⇒ a1 = n1

M−1 .

Thus, the support of φ is as stated in the theorem. Using the previous result, we have

suppφ(M ·−k)⊂
[ n0

M−1+k

M
,

n1
M−1+k

M

]

=
[
n0+(M−1)k
M(M−1) , n1+(M−1)k

M(M−1)

]
.

Using an argument similar to above, we obtain the lower and upper support bounds of ψ stated in the theorem.

Below, we provide an example showing how the preceding theorem (i.e., Theorem 4.43) can be used to determine

the support of scaling and wavelet functions.

Example 4.34. Consider the Belogay-Wang wavelet system introduced earlier in Example 4.33. Let φ denote the

scaling function. Let ψ1 and ψ2 denote the two wavelet functions. Let c denote the scaling equation coefficient

sequence of φ , and let d1 and d2 denote the wavelet equation coefficient sequences of ψ1 and ψ2, respectively. Find

the support of φ , ψ1, and ψ2.

Solution. We use the result of Theorem 4.43 in what follows. Since c[n] = 0 whenever n < 0 or n > 5, we have

suppφ ⊂
[

0
3−1 ,

5
3−1
]
= [0, 5

2
].

Since d1[n] = 0 whenever n < 0 or n > 5, we have

suppψ1 ⊂
[
0+(3−1)0
3(3−1) , 5+(3−1)5

3(3−1)

]
=
[
0, 15

6

]
=
[
0, 5

2

]
.

Since d2[n] = 0 whenever n < 0 or n > 2, we have

suppψ2 ⊂
[
0+(3−1)0
3(3−1) , 5+(3−1)2

3(3−1)

]
=
[
0, 9

6

]
=
[
0, 3

2

]
.

One can see that these results are consistent with the plots of φ , ψ1, and ψ2 given earlier in Figures 4.25(a), 4.25(b),

and 4.25(c), respectively.

4.3.12 Order of Approximation

To begin, we introduce a generalization of the sum rule introduced in Theorem 4.28.

Theorem 4.44 (Sum rule). For a sequence c (defined on Z), ĉ has a η th order zero at 2πl
M

for all l ∈ {1,2, . . . ,M−1}
if and only if

∑
n∈Z

W ln
M nkc[n] = 0 for all (l,k) ∈ {1,2, . . . ,M−1}×{0,1, . . . ,η−1},

where WM = e− j2π/M . The above condition is sometimes referred to as a sum rule of order η ,

Proof. Differentiating ĉ k times, we obtain

ĉ(k)(ω) = (− j)k ∑
n∈Z

nkc[n]e− jnω .

Letting ω = 2πl
M
, we have

ĉ(k)( 2πl
M

) = (− j)k ∑
n∈Z

nkc[n]e− j2πnl/M

= (− j)k ∑
n∈Z

W ln
M nkc[n].

Thus, ĉ has a η th order zero at 2πl
M

if and only if the condition stated in the theorem holds.
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In order to characterize the approximation properties of scaling functions, we will need the important result from

approximation theory given in the theorem below.

Theorem 4.45 (Strang-Fix condition). Let φ be an M-adic scaling function with the scaling equation coefficient

sequence c. If ĉ(ω) has a pth order zero at 2πk
M

for each k ∈ {1,2, . . . ,M−1}, then φ̂(ω) must have a pth order zero

at all frequencies of the form ω = 2πk, where k ∈ Z\{0}.

Proof. Consider the quantity φ̂(2πk) for any arbitrary k ∈ Z\{0}. We can express k in the form of k = Mnl, where

n, l ∈ Z, n ≥ 0, and M 6| l. Furthermore, we can (uniquely) decompose l as l = Mα + β , where α ∈ Z and β ∈
{1,2, . . . ,M−1}. Now, we apply formula (4.12) recursively n times to obtain

φ̂(ω) = 1√
M
ĉ(ω/M)φ̂(ω/M)

=

[
n+1

∏
q=1

1√
M
ĉ(M−qω)

]
φ̂(M−(n+1)ω)

= 1√
M
ĉ(M−(n+1)ω)

[
n

∏
q=1

1√
M
ĉ(M−qω)

]
φ̂(M−n−1ω)

= 1√
M
ĉ(M−n−1ω)

[
n

∏
q=1

1√
M
ĉ(M−qω)

]
φ̂(M−n−1ω).

Now, we use the preceding equation to evaluate φ̂(ω) at ω = 2πk = 2πMn(Mα +β ). Consider the factor ĉ(M−n−1ω)
above. Using the 2π-periodicity of ĉ, we can write

ĉ(M−n−1ω) = ĉ(M−n−12πMn(Mα +β ))

= ĉ(2πM−1(Mα +β ))

= ĉ(2πα + 2πβ
M

)

= ĉ( 2πβ
M

).

So, in effect, we have

φ(2πk) = M−1/2ĉ( 2πβ
M

)

[
n

∏
q=1

√
M√
M

]
φ̂(M−n−12πk).

In other words, we are evaluating ĉ at
2πβ
M

for β ∈ {1,2, . . . ,M−1}. By assumption, however, ĉ has a pth order zero

at
2πβ
M

. Consequently, φ̂(ω) has a pth order zero at 2πk.

Now, we are in a position to consider the approximation properties of scaling functions more closely. The approx-

imation properties of scaling functions are summarized by the following theorem.

Theorem 4.46 (Order of approximation). Let φ be an M-adic scaling function with the scaling equation coefficient

sequence c. Let {ψ̃q}q∈{1,2,...,M−1} denote the corresponding dual wavelet functions with the respective wavelet equa-
tion coefficient sequences {d̃q}q∈{1,2,...,M−1}. Suppose that φ̂ and ˆ̃ψq are η−1 times differentiable. Then, the following
statements are equivalent:

1. φ has approximation order η;

2. linear combinations of {φ(·−n)}n∈Z can locally reproduce polynomials of degree less than η;

3. ĉ has a η th order zero at 2πk
M

for all k ∈ {1,2, . . . ,M−1};

4. for each q ∈ {1,2, . . . ,M−1}, ψ̃q has all of its moments of order less than η vanish (i.e., ψ̃q has η vanishing

moments);
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5. for each q ∈ {1,2, . . . ,M−1}, ˆ̃dq has a η th order zero at 0.

Using the above theorem, we can determine the approximation order of a scaling function relatively easily. This

is illustrated by the example below.

Example 4.35 (Belogay-Wang scaling function). Let φ denote the 3-adic Belogay-Wang scaling function (introduced

earlier) with the scaling equation coefficient sequence c. The nonzero coefficients of c are given by

(c[0],c[1], . . . ,c[5]) =
(
2−
√
6

4
, 1
2
, 2+
√
6

4
, 2+
√
6

4
, 1
2
, 2−
√
6

4

)
.

Determine the approximation accuracy of φ .

Solution. LetW = e− j2π/3. First, we consider a sum rule of order one. We have

5

∑
n=0

W nc[n] =W 0c[0]+W 1c[1]+W 2c[2]+W 3c[3]+W 4c[4]+W 5c[5]

= 2−
√
6

4
+ 1

2
e− j2π/3 + 2+

√
6

4
e− j4π/3 + 2+

√
6

4
+ 1

2
e− j2π/3 + 2−

√
6

4
e− j4π/3

= 1+ e− j2π/3 + e− j4π/3

= 0 and

5

∑
n=0

W 2nc[n] =W 0c[0]+W 2c[1]+W 4c[2]+W 6c[3]+W 8c[4]+W 10c[5]

= 2−
√
6

4
+ 1

2
e− j4π/3 + 2+

√
6

4
e− j2π/3 + 2+

√
6

4
+ 1

2
e− j4π/3 + 2−

√
6

4
e− j2π/3

= 1+ e− j2π/3 + e− j4π/3

= 0.

Now, we consider a sum rule of order two. We have

5

∑
n=0

W nnc[n] =W (1)c[1]+W 2(2)c[2]+W 3(3)c[3]+W 4(4)c[4]+W 5(5)c[5]

= 1
2
e− j2π/3 +2

(
2+
√
6

4

)
e− j4π/3 +3

(
2+
√
6

4

)
+4( 1

2
)e− j2π/3 +5

(
2−
√
6

4

)
e− j4π/3

= 5
2
e− j2π/3 + 14−3

√
6

4
e− j4π/3 + 6+3

√
6

4

≈ 1.2557− j0.7250

6= 0.

Therefore, φ satisfies a sum rule of order one. Thus, φ can locally reproduce constant functions.

4.3.13 Determination of Scaling and Wavelet Functions

The approaches for solving refinement equations introduced earlier in the 2-scale case can be easily extended to the

M-scale case. For example, the cascade algorithm can be easily generalized to the M-scale case by replacing the

constant 2 withM in various places in formulas.

4.4 Additional Reading

For additional information on wavelets to supplement the contents of this chapter, the reader can refer to [3, 4, 5, 6, 7,

9, 10, 13, 14, 16, 17, 18, 21, 22, 24, 25].
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4.5 Problems

4.1 For each function θ given below, determine whether {θ(·− k)}k∈Z is a Riesz basis (for its closed linear span).

If {θ(·− k)}k∈Z is a Riesz basis, indicate its Riesz bounds.

(a) θ(t) = χ[0,2)(t);
(b) θ(t) = χ[0,1/2)(t)−χ[1/2,1)(t);

(c) θ(t) =

{
1−|t| 0≤ |t|< 1

0 otherwise;

(d) θ(t) =
(
cos 3π

2
t
)
sinc π

2
t;

(e) θ(t) =

{
1− t |t| ≤ 1

0 otherwise.

4.2 Let {Vp}p∈Z be a MRA and let {Wp}p∈Z denote the corresponding sequence of wavelet spaces. Suppose that

f ∈V0 and g ∈V−1.
(a) Show that it is not necessarily true that f −g ∈W0.

(b) Determine a necessary and sufficient condition on f and g for f −g to be inW0.

4.3 Show that the wavelet spaces {Wp}p∈Z associated with a MRA satisfy the:

(a) scale invariance property (i.e., for all p ∈ Z, f (t) ∈Wp⇔ f (2t) ∈Wp−1).
(b) shift invariance property (i.e., f (t) ∈W0⇔ f (t− k) ∈W0, for all k ∈ Z).

4.4 Define the function

f (t) =

{
t2 +1 for −1≤ t < 2

0 otherwise.

Let {Vp}p∈Z be the MRA generated by the Haar scaling function φ = χ[0,1), where {φ(·−k)}k∈Z is an orthonor-

mal basis. Find the orthogonal projection of f onto V0.

4.5 Show that the Gaussian function φ(t) = e−t
2
cannot be the scaling function of a MRA. [Hint: Assume that

φ(t) satisfies a refinement equation, and then show that this leads to a contradiction by considering the Fourier

transform of both sides of the refinement equation.] [Note: Table E.1 might be helpful in determining φ̂ .]

4.6 Let φ1(t) and φ2(t) be solutions to the refinement equations with coefficient sequences c1[n] and c2[n], respec-
tively.

(a) Show that φ(t) = φ1 ∗φ2(t) satisfies a refinement equation.

(b) Show that φ(t) = (φ1φ2)(t) does not generally satisfy a refinement equation. State a condition on φ1 and φ2
that is sufficient for φ to be refinable.

(c) Show that the autocorrelation of φ1 satisfies a refinement equation. [Note: The autocorrelation r of a function

f is defined as r(t) =
∫
R f (τ) f (τ− t)dτ .]

4.7 Let φ be a scaling function satisfying the refinement relationship

φ(t) =
√
2 ∑
k∈Z

c[k]φ(2t− k).

(a) Show that φ is symmetric if and only if the coefficient sequence c is symmetric.

(b) Show that φ is antisymmetric if and only if the coefficient sequence c is antisymmetric.

[Hint: For both parts of this problem, use the Fourier domain.]

4.8 Let φ be a solution to the refinement equation

φ(t) =
√
2 ∑
n∈Z

c[n]φ(2t−n),

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



290 CHAPTER 4. UNIVARIATE WAVELET SYSTEMS

where φ ∈ L1(R) and the zeroth moment of φ does not vanish. By integrating both sides of the refinement

equation, show that

∑
n∈Z

c[n] =
√
2.

4.9 Let φ be a function in L2(R) satisfying the refinement relation

φ(t) =
√
2 ∑
k∈Z

c[k]φ(2t− k)

and also satisfying the interpolation condition given by

φ(n) = δ [n] for all n ∈ Z.

(a) Show that c[n] = 1√
2
δ [n] for even n.

(b) Show that ĉ(ω)+ ĉ(ω +π) =
√
2.

4.10 Show that if φ is an orthogonal scaling function, then

∑
k∈Z

φ(t− k) = 1.

4.11 Let φ denote the solution to the refinement equation

φ(t) = ∑
k∈Z

ckφ(2t− k),

satisfying
∫ ∞
−∞ φ(t) = 1. For each refinement mask cn given below, use the eigenvalue method to find the exact

value of φ(t) at t = 1
2
.

(a) c0 = 1, c1 = 1, and cn = 0 for n < 0∪n > 1.

(b) c−1 = 1
2
, c0 = 1, c1 = 1

2
, and cn = 0 for n <−1∪n > 1.

(c) c0 = 1+
√
3

4
, c1 = 3+

√
3

4
, c2 = 3−

√
3

4
, c3 = 1−

√
3

4
, and cn = 0 for n < 0∪n > 3.

4.12 Implement the eigenvalue method for solving refinement equations in software. Then, for each of the sequences

c[k] given below, use the resulting software to plot scaling function φ associated with the refinement equation

φ(t) = ∑
k∈Z

ckφ(2t− k).

(a) c0 = 1, c1 = 1, and cn = 0 for n < 0∪n > 1.

(b) c−1 = 1
2
, c0 = 1, c1 = 1

2
, and cn = 0 for n <−1∪n > 1.

(c) c0 = 1+
√
3

4
, c1 = 3+

√
3

4
, c2 = 3−

√
3

4
, c3 = 1−

√
3

4
, and cn = 0 for n < 0∪n > 3.

4.13 Suppose that we have a MRA with a scaling function φ and dual wavelet function ψ̃ , where ψ̃ has η vanishing

moments. Let µk denote the kth moment of φ . For each of the cases below, represent the polynomial f (t) on
the interval I using an expression of the form (with the fewest possible number of terms)

f (t) =
n1

∑
n=n0

anφ(t−n).

(a) suppφ ⊂ [−2,3], η = 3, f (t) = 1−3t+2t2, I = [0,3].
(b) suppφ ⊂ [0,3], η = 2, f (t) = 5t+2, I = [3,6].
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4.14 Let φ be a scaling function with a corresponding scaling equation coefficient sequence c[n]. Let µk denote the

kth moment of φ . Suppose that µk = 0 for 1,2, . . . ,η . Show that, for p < η ,

∑
k∈Z

kpφ(k) =
∫ ∞

−∞
t pφ(t)dt.

4.15 Let φ be a scaling function that is associated with a halfband filter. Determine an expression for φ(t) at integer
values of t.

4.16 Let φ be a scaling function with scaling coefficient sequence c. Let mk and µk denote the kth moments of c

and φ , respectively. Suppose that φ is normalized such that µ0 = 1. For each of the cases below, determine the

quantities m0, m1, m2, m3, µ1, µ2, and µ3.

(a) c0 = 1√
2
, c1 = 1

8
√
2
, c2 =− 1

8
√
2
, ck = 0 for k ≥ 3, and ck = c−1−k.

(b) c0 = 1√
2
, c1 = 1

2
√
2
, ck = 0 for k ≥ 2, and ck = c−k.

4.17 Let φ denote a scaling function with the refinement mask cn. For each of the coefficient sequences given below,

determine the approximation order of φ .
(a) c0 = 1

2
, c1 = 1

2
, cn = 0 for n 6∈ {0,1};

(b) c−1 = 1
4
, c0 = 1

2
, c1 = 1

4
, cn = 0 for n 6∈ {−1,0,1};

(c) c−3 =− 1
16
, c−2 = 0, c−1 = 9

16
, c0 = 1, c1 = 9

16
, c2 = 0, c3 =− 1

16
, cn = 0 for n 6∈ {−3,−2,−1,0,1,2,3};

(d) c0 = 1+
√
3

8
, c1 = 3+

√
3

8
, c2 = 3−

√
3

8
, c3 = 1−

√
3

8
, cn = 0 for n 6∈ {0,1,2,3}.

(e) c−3 =− 1
16
, c−1 = 9

16
, c0 = 1, c1 = 9

16
, c3 =− 1

16
, cn = 0 otherwise.

(f) (c−4,c−3,c−2,c−1,c0,c1,c2,c3,c4) =
(

1
32

,0,− 1
4
, 1
2
, 23
16

, 1
2
,− 1

4
,0, 1

32

)
, cn = 0 otherwise.

(g) (c0,c1, . . . ,c12) = 1
256

(−1,0,18,−16,−63,144,348,144,−63,−16,18,0,−1) and cn = 0 otherwise.

(h) (c−4,c−3, . . . ,c5) = 1
128

(3,−3,−22,22,128,128,22,−22,−3,3) and cn = 0 otherwise.

(i) (c−3,c−2, . . . ,c2) = 1
8
(−1,1,8,8,1,−1) and cn = 0 otherwise.

4.18 Let φ be a continuous function with fast decay that satisfies refinement equation

φ(t) = ∑
n∈Z

c[n]φ(2t−n).

Show that

∑
n∈Z

c[2n] = ∑
n∈Z

c[2n+1] = 1 ⇒ ∑
n∈Z

φ(t−n) = µ0,

where µ0 is a nonzero constant.

4.19 Let φ be a continuous and differentiable function that satisfies the refinement equation

φ(t) = ∑
k∈Z

c[k]φ(2t− k),

where ∑k∈Z c[2k] = ∑k∈Z c[2k+1] = 1. Let φ ′ denote the first derivative of φ . Show that φ ′(t) is refinable (i.e.,
satisfies a refinement equation).

4.20 Let φ and ψ denote the scaling and wavelet functions of a MRA, respectively. Let c and d denote the coefficient

sequences of the scaling and wavelet equations, respectively. Let φ̃ and ψ̃ denote the corresponding dual scaling

and wavelet functions, respectively. Let c̃ and d̃ denote the coefficient sequences of the dual scaling and wavelet

equations, respectively. For each of the cases below, find c̃ and d̃.

(a) c0 = 1√
2
, c1 = 1√

2
, cn = 0 for n 6∈ {0,1}; and d−2 = 1√

2
, d−1 =− 1√

2
, dn = 0 for n 6∈ {−2,−1};

(b) c0 =− 1

4
√
2
, c1 = 1

2
√
2
, c2 = 3

2
√
2
, c3 = 1

2
√
2
, c4 =− 1

4
√
2
, cn = 0 for n 6∈ {0,1,2,3,4}; and d0 = 1

2
√
2
, d1 =− 1√

2
,

d2 = 1

2
√
2
, dn = 0 for n 6∈ {0,1,2};
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4.21 Let φ be an M-adic refinable function with compact support and nonvanishing zeroth moment µ0, where

φ(t) =
√
M ∑

k∈Z

ckφ(Mt− k) (whereM ∈ N).

(a) Show that ĉ(0) =
√
M.

(b) One can show that ĉ(2πk/M) = 0 for k = 1,2, . . . ,M − 1. Using this fact, prove that φ must satisfy

φ̂(2πk/M) = µ0δ [k] for all k ∈ Z.

4.22 Develop a software implementation of the cascade algorithm that can be used to solve a refinement equation of

the following form:

φ(t) = ∑
n∈Z

c[n]φ(2t−n).

Then, for the case of each sequence c given below, use this software to plot the solution φ to the preceding equa-

tion having a zeroth moment of one. Use at least eight iterations of the cascade algorithm in order to ensure a

reasonably accurate result. [Note: In each plot, ensure that the horizontal and vertical axes are both correctly

labelled.]

(a) (c0,c1,c2,c3) =
(
1
3
, 2
3
, 2
3
, 1
3

)
;

(b) (c0,c1,c2) =
(
1
2
,1, 1

2

)
;

(c) (c0,c1,c2,c3) =
(
1+
√
3

4
, 3+
√
3

4
, 3−
√
3

4
, 1−
√
3

4

)
; and

(d) c0 = 1+
√
10+
√

5+2
√
10

16
, c1 = 5+

√
10+3
√

5+2
√
10

16
, c2 = 5−

√
10+
√

5+2
√
10

8
, c3 = 5−

√
10−
√

5+2
√
10

8
, c4 = 5+

√
10−3
√

5+2
√
10

16
,

and c5 = 1+
√
10−
√

5+2
√
10

16
.

4.23 Let {Vp}p∈Z be a MRA. Let V̂p denote the space of Fourier transforms of functions in Vp. Show that the scale

invariance property

f (t) ∈Vp⇔ f (2t) ∈Vp−1

can be restated as

f̂ (ω) ∈ V̂p⇔ f̂ (2ω) ∈ V̂p+1.

4.24 Let φ and ψ respectively denote the scaling and wavelet functions of a MRA. Let c and d denote the coefficient

sequences of the corresponding scaling and wavelet equations. For each of the cases given below, find suppφ
and suppψ .

(a) c0 = 1
2
, c1 = 1

2
, cn = 0 for n 6∈ {0,1},

d0 = 1
2
, d1 =− 1

2
, dn = 0 for n 6∈ {0,1};

(b) c−2 =− 1
8
, c−1 = 1

4
, c0 = 3

4
, c1 = 1

4
, c2 =− 1

8
, cn = 0 for n 6∈ {−2,−1,0,1,2},

d0 =− 1
2
, d1 = 1, d2 =− 1

2
, dn = 0 for n 6∈ {0,1,2};

(c) c0 = 1+
√
3

4
, c1 = 3−

√
3

4
, c2 = 3+

√
3

4
, c3 = 1+

√
3

4
, cn = 0 for n 6∈ {0,1,2,3},

d0 = 1+
√
3

4
, d1 =− 3−

√
3

4
, d2 = 3+

√
3

4
, d3 =− 1+

√
3

4
, dn = 0 for n 6∈ {0,1,2,3}.

(d) (c−5,c−4, . . . ,c5) = 1

128
√
2
(1,2,−7,0,70,124,70,0,−7,2,1) and cn = 0 otherwise,

(d−1,d0, . . . ,d3) =− 1

4
√
2
(1,2,−6,2,1) and dn = 0 otherwise.

(e) (c−2,c−1, . . . ,c2) =− 1

4
√
2
(1,−2,−6,−2,1) and cn = 0 otherwise,

(d−4,d−3, . . . ,d6) =− 1

128
√
2
(1,−2,−7,0,70,−124,70,0,−7,−2,1) and dn = 0 otherwise.

4.25 Let φ1 and φ2 be M-refinable functions with refinement masks c1 and c2, respectively. Show that φ = φ1 ∗φ2 is
alsoM-refinable.
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Chapter 5

Multidimensional Systems Preliminaries

5.1 Introduction

Before we can study multidimensional multirate filter banks and multivariate wavelet systems, we must first introduce

some mathematical preliminaries related to multidimensional signal processing.

5.2 Notation

To begin, we introduce some basic notation and terminology that is useful in the context of multidimensional signal

processing.

Definition 5.1 (Multi-index). Amulti-index is an ordered n-tuple of (nonnegative) integers (i.e., an element of (Z∗)n).

Let k = (k1,k2, . . . ,kn) be a multi-index. The length (or size) of the multi-index k, denoted |k|, is defined as

|k|= ∑n
l=1 kl .

For two vectors z = [ z0 z1 ··· zD−1 ]T and n = [n0 n1 ··· nD−1 ]T , we define the quantity zn as

zn =
D−1
∏
k=0

z
nk
k .

Note that the quantity zn is a scalar. Let z be a D-dimensional column vector and let M be a D×D matrix, where mk

denotes the kth column of M (i.e.,M = [m0 m1 ··· mD−1 ]). Then, we define the quantity zM as

zM = [ zm0 zm1 ··· zmD−1 ]T .

Note that the quantity zM is a D-dimensional column vector. With the above definitions, one can show that, for any

D-dimensional column vectors k, n, u, v, and w, any D×D matrices A, M, and L, and any scalar α , the following

relationships hold:

wu+v = wuwv,

(αk)n = α |n|kn,
(
zM
)n

= zMn, (5.1)

(zL)M = zLM,

unvn = (u◦ v)n, and (5.2)

uA ◦ vA = (u◦ v)A. (5.3)
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Let M be a D×D matrix, where mk denotes the kth column of M (i.e., M = [m0 m1 ··· mD−1 ]) and let ω be a

D-dimensional column vector. Then, we define the quantity eM(ω) as

eM(ω) =
[
e jω

Tm0 e jω
Tm1 · · · e jω

TmD−1
]T

.

(Note that our definition of eM(ω) differs slightly from that used in [8].) In addition, we define the quantityW k
M as

W k
M = eM(− j2πk) =

[
e− j2πkTm0 e− j2πkTm1 · · · e− j2πkTmD−1

]T
.

Define ω = [ω0 ω1 ··· ωD−1 ]T . From the above definition of eM(ω), one can show that the following relationships

hold:

eI(ω) =
[
e jω0 e jω1 · · · e jωD−1

]T
, (5.4)

eM(ω)n = e jω
TMn, (5.5)

eA(ω)B = eAB(ω), (5.6)

eA(ω) = eI(A
Tω), (5.7)

cosωT k = 1
2

(
eI(ω)k + eI(ω)−k

)
, and

sinωT k = 1
2 j

(
eI(ω)k− eI(ω)−k

)
.

Definition 5.2 (Polynomial). A (multivariate) polynomial is a function or sequence f of the form

f (λ ) = ∑
k∈(Z∗)D

a[k]λ k,

where only finitely many of the {a[k]}k∈(Z∗)D are nonzero. We call {a[k]}k∈(Z∗)D the coefficients of the polynomial.

The polynomial with all coefficients equal to zero (i.e., f ≡ 0) is called the zero polynomial. A polynomial with

exactly one nonzero coefficient is called a monomial. Similarly, a polynomial with exactly two terms is called a

binomial. For f 6≡ 0, we define the degree of f , denoted deg f , as

deg f = max{|k| : k ∈ (Z∗)D,a[k] 6= 0}
(i.e., the maximum of the coefficient index sizes of all nonzero terms). We define deg0 =−∞.

Example 5.1. Let f be the polynomial function defined on R2 given by f (t) = f ([ t0 t1 ]T ) = 3t0t1 + 4t0− t1− 5t50 t
3
1 .

Then, deg f = 8. Let f be the polynomial sequence defined on Z2 given by f [n] = f [[n0 n1 ]T ]] = 3n0n1− 4n20n1 +
2n20n

5
1. Then, deg f = 7.

Definition 5.3 (Moment). The kthmoment of a function f defined on RD is given by

µk =
∫

RD
tk f (t)dt

where k ∈ (Z∗)D (i.e., the elements of k are all nonnegative integers). The order of the moment k is given by |k| (i.e.,
the sum of the elements of k).

From the above definition, we can observe that a function has exactly one moment of order zero (namely, the one

associated with k = 0). Similarly, a function has exactly D (distinct) first order moments.

Definition 5.4 (Periodicity). A sequence f defined on ZD is said to be periodic if there exists someD×D nonsingular

integer matrixM such that

f [n] = f [n+Mk] for all k ∈ ZD.

We refer toM as a periodicity matrix. The columns ofM are referred to as periodicity vectors.

One can show that the number of samples in a single period of a M-periodic function is given by |detM|. The

periodicity matrix is not unique.
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5.3 Derivatives, Gradients, and Jacobians

Sometimes, we are interested in the derivatives of multivariate functions. Since such functions have more than one

independent variable, we need to deal with partial derivatives. For this reason, it is convenient to define a compact

notation for indicating a particular partial derivative of a multivariate function. In particular, we define

Dn
t f (t) =

∂ |n|

∂ tn00 ∂ tn11 · · ·∂ t
nD−1
D−1

.

Thus, Dn
t denotes a |n|-th order partial derivative of f with respect to t. In the degenerate (1-D) case, we simply have

that Dn
t = dn

dtn
.

The gradient of the function f , denoted as ∇ f , is defined as

∇ttt( f (ttt)) =
[

∂ f

∂ t1

∂ f

∂ t2
· · · ∂ f

∂ tn

]

where t = [ t1 t2 ··· tn ]T . Note that the gradient is defined to be a row vector (as opposed to a column vector).

The Jacobian of the vector function f , denoted as J f , is defined as

J( f (t)) =
∂ ( f1, f2, . . . , fn)

∂ (t1, t2, . . . , tn)
=




∂ f1
∂ t1

∂ f1
∂ t2

· · · ∂ f1
∂ tn

∂ f2
∂ t1

∂ f2
∂ t2

· · · ∂ f2
∂ tn

...
...

. . .
...

∂ fn
∂ t1

∂ fn
∂ t2

· · · ∂ fn
∂ tn




=




∇ f1
∇ f2
...

∇ fn




where f = [ f1 f2 ··· fn ]T and t = [ t1 t2 ··· tn ]T . The Jacobian is also sometimes denoted as
d f
dt
.

5.4 Integration

Often, it is necessary to perform a change of variable involving a variable of integration. In the 1-D case, we have

∫

R
f (x)dx =

∫

R′
f (x(u))x′(u)du

where R = [a,b], R′ = [α,β ], x(α) = a, and x(β ) = b. In the D-dimensional case, we have

∫

R
f (x)dx =

∫

R′
f (x(u)) |det[(Jx)(u)]|du.

5.5 Lattices

In the one-dimensional case, periodic sampling is easily characterized by a single scalar value, namely the sampling

period. In the multidimensional case, sampling is considerably more complicated. Sampling is characterized using

lattices. A lattice is essentially a regularly spaced array of points. More formally, we have the following definition:

Definition 5.5 (Lattice). Let {vk}Dk=1 be a set of linearly independent real vectors in RD. The set of all points

∑D
k=1 akvk, where {ak}Dk=1 are integers, is called a (point) lattice.

Figure 5.1 shows four commonly used 2-D lattices, namely the integer, quincunx, hexagonal, and rectangular

lattices.

If every point of the lattice L is also a point of the lattice M, we say that L is a sublattice of M.

Every lattice contains a set of linearly independent points {v1,v2, . . .vn} such that every other point can be ex-

pressed as a linear combination of the form ∑n
k=1 akvk. Thus, {v1,v2, . . . ,vn} form a basis for the lattice. We can place

the basis vectors in a matrix L = [ v1 v2 ··· vn ], yielding what is called a generating matrix L of the lattice L. Each

x ∈ L can be written as x = Lk for some k ∈ ZD.
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Figure 5.1: Examples of 2-D lattices. (a) Integer lattice. (b) Quincunx lattice. (c) Hexagonal lattice. (d) Rectangular

lattice.
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We sometimes also refer to a generating matrix as a sampling matrix, since a generating matrix defines a lattice

on which a function can be sampled.

Since a generating matrix uniquely specifies a lattice, it is often convenient to identify a lattice by way of a

generating matrix. We denote the lattice L generated by matrix L as either LAT(L) or simply LZD.

It is important to note that a lattice does not have a unique generating matrix. In fact, one can show that if L is a

generating matrix ofL, then for any unimodular integer matrixU , LU is also a generating matrix ofL. Postmultiplying

the original generating matrix L by U corresponds to a (unimodular) change of basis. Every generating matrix of a

lattice is of this form. While the generating matrix is not unique, the determinant of all generating matrices is the

same up to sign. This fact motivates the definition given below.

Definition 5.6 (Determinant of lattice). For a lattice L with a generating matrix L, we define the determinant of L

as

detL = |detL| .

The determinant of a lattice has an important geometric interpretation. In particular, the ratio of the density of

points in the integer lattice to the density of points in the lattice L is given by detL.

Since we are often interested in expressing the determinant of a lattice in terms of its generating matrix, we

introduce a new notational convention which allows us to do this more easily. In particular, we define J(M) as the
determinant of the lattice generated by M. That is, we have

J(M) = |detM| .

If there exists a generating matrix for a lattice L that is diagonal, then the lattice L is said to be separable.

Example 5.2 (Integer lattice). The integer lattice L = Z2, shown in Figure 5.1(a), is separable with generating matrix

L =
[
1 0
0 1

]
and detL = |detL|= 1.

Example 5.3 (Quincunx lattice). The quincunx lattice L, shown in Figure 5.1(b), is nonseparable with generating

matrix L =
[
1 1
1 −1

]
and detL = |detL|= 2.

Example 5.4 (Hexagonal lattice). The hexagonal lattice L, shown in Figure 5.1(c), is nonseparable with generating

matrix L =
[
2 1
0 2

]
and detL = |detL|= 4.

Example 5.5 (Rectangular lattice). The rectangular lattice L, shown in Figure 5.1(d), is separable with generating

matrix L =
[
2 0
0 2

]
and detL = |detL|= 4.

5.5.1 Cosets and Fundamental Domains

Definition 5.7 (Coset and coset group). Let D be either a lattice contained in Rn or Rn itself, and let L be a lattice

contained in D. With each p ∈ D, we can associate a translated version p+L of the lattice L, called a coset. The set

of all such cosets is referred to as the coset group of L with respect to D and is denoted as D/L.

Let L⊂M. Then, x,y ∈M are in the same coset of L with respect to D if and only if x− y ∈ L.

Figure 5.2 shows the coset groups of several lattices with respect to the lattice Z2 (i.e., the 2-D integer lattice).

Definition 5.8 (Fundamental domain). Let D be either a lattice contained in Rn or Rn itself, let P be an arbitrary

subset of D, and let L be a lattice contained in D. The set P is said to be a fundamental domain of the lattice L in D

if P intersects each coset of D/L in exactly one point.

A lattice L can be used to partition its embedding space into fundamental domains. Fundamental domains are

particularly important in the context of L-periodic functions, as knowing a L-periodic function on one fundamental

domain is equivalent to knowing the function over the entire domain of its definition.

Definition 5.9 (Voronoi cell). For a lattice L, the Voronoi cell of L is the set S of all points (in Rn) for which there is

no closer lattice point than the origin. That is, S is defined as

S = {x ∈ Rn : d(x,0)≤ d(x, p) for all p ∈ L}.
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Figure 5.2: Cosets of various lattices. Cosets of the (a) quincunx, (b) hexagonal, and (c) rectangular lattices.
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Figure 5.3: Voronoi cell
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One fundamental domain that is often of interest is the fundamental parallelepiped as defined below.

Definition 5.10 (Fundamental parallelepiped). For a lattice with generating matrix M, we define the fundamental

parallelepiped (FPD) as

FPD(M) = {y : y = Mx,x ∈ [0,1)D}.

For a lattice L with generating matrix M, we have that det(ML) is the volume of FPD(M). We denote the set of

all integer vectors inside FPD(M) as N(M). That is, we define

N(M) = FPD(M)∩ZD.

The number of elements in N(M) is J(M).
Sometimes we are also interested in another parallelepiped region related to the FPD called the symmetric paral-

lelepiped as defined below.

Definition 5.11 (Symmetric parallelepiped). For a lattice L with generating matrix M, we define the symmetric

parallelepiped (SPD) as

SPD(M) = {y : y = Mx,x ∈ [−1,1)D}.

Notice that the SPD is simply a shifted and scaled version of the FPD. That is, SPD(M) = FPD(2M)−M1.

The index of the sublattice L of M is the number of cosets in M with respect to L. For example, the index of the

quincunx lattice in Z2 is two.

Let L be a sublattice of lattice M. Then, the index of L in M is detL/detM. This quantity indicates how much

more densely lattice points are packed per unit volume in the original lattice M relative to the sublattice L.

Let L be a lattice in RD and let M be a D×D matrix. Then, det(AL) = |detA|detL.

5.5.2 Reciprocal Lattices

Definition 5.12 (Reciprocal lattice). Let L be a lattice with a basis {vk}D−1k=1 . Since {vk}D−1k=1 is linearly independent,

there must exist another set {uk}D−1k=1 such that {vk}D−1k=1 and {uk}D−1k=1 are biorthonormal (i.e., 〈uk,vl〉= δ [k− l]). The

lattice with basis {uk}D−1k=1 is called the reciprocal lattice of L, and is denoted as L∗. (The reciprocal lattice is also
sometimes referred to as the dual lattice or polar lattice.)

The reciprocal lattice L∗ of the lattice L is independent of the choice of basis for L. This follows from the result

of the following lemma.

Lemma 5.1. The reciprocal lattice L∗ of L consists of all vectors y such that 〈y,x〉 ∈ Z for all x ∈ L.

From the definition of the reciprocal lattice, it follows that (L∗)∗ = L.

Also, one can show that

detLdet(L∗) = 1.

Let L1 and L2 be lattices. If L1 ⊂ L2 then L∗2 ⊂ L∗1. In other words, set inclusions are reversed by reciprocation.

5.5.3 Miscellany

Example 5.6 (Quincunx sampling). One generating matrix for the quincunx lattice is given by

M =

[
1 1

1 −1

]
.
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We have

M2 = 2I,

|detM|= 2,

MT = M,

M−1 = M−T =

[
1
2

1
2

1
2
− 1

2

]
,

N(M) = N(MT ) =
{[

0 0
]T

,
[
1 0

]T}
,

2πM−T =

[
π π
π −π

]
.

The aliasing frequency is given by

[
π π

]T
.

Example 5.7 (Rectangular sampling). One generating matrix of the rectangular lattice is

M = 2I =

[
2 0

0 2

]
.

We have

|detM|= 4,

MT = M,

M−1 = M−T =

[
1
2

0

0 1
2

]
,

N(M) = N(MT ) =
{[

0 0
]T

,
[
1 0

]T
,
[
0 1

]T
,
[
1 1

]T}
,

2πM−T =

[
π 0

0 π

]
.

The aliasing frequencies are given by

{[
π 0

]T
,
[
0 π

]T
,
[
π π

]T}
.

5.6 Fourier Analysis

In the following sections, we very briefly state several definitions and theorems that are of interest in the context of

multidimensional signal processing.

Definition 5.13 (Convolution). Let f and g be sequences. The convolution of f and g, denoted f ∗g, is defined as

( f ∗g)[n] = ∑
k∈ZD

f [k]g[n− k].

Definition 5.14 (Z transform). For a sequence x defined on ZD, we define the Z transform X of x as

X(z) = ∑
n∈ZD

x[n]z−n.

One can show that

y[n] = x[−n]⇔ Y (z) = X(z−I).
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5.6.1 Continuous-Time Fourier Transform for L1(Rd)

Definition 5.15 (Continuous-time Fourier transform). For a function f ∈ L1(Rd), the (continuous-time) Fourier

transform of f , denoted f̂ or F( f ), is defined as

(F f )(ω) = f̂ (ω) =
∫

Rd
f (t)e− jωT tdt,

for ω ∈ Rd .

The Fourier transform is invertible. The inverse Fourier transform is computed as per the theorem given below.

Theorem 5.1 (Inverse continuous-time Fourier transform). If f ∈ L1(Rd) and f̂ ∈ L1(Rd), then the inverse Fourier

transform of f̂ is given by

(F−1 f )(t) = f (t) = (2π)−D
∫

RD
f̂ (ω)e jω

T tdω.

The Fourier transform has a number of important properties. Some of these properties are given below.

Theorem 5.2 (Fourier transform properties). The Fourier transform has the following properties:

1. for any nonsingular real matrix M, f̂ (M·)(ω) = 1
|detM| f̂ (M

−Tω) (dilation);

2. for any d ∈ RD, ̂f (·−d)(ω) = e− jωT d f̂ (ω) (translation).

Theorem 5.3 (Time-domain differentiation). Let f be a continuous function in L1(Rd) with a continuous, absolutely

integrable nth partial derivative for any n satisfying |n| ≤ k. Then, there exists a constant C so that
∣∣ f̂ (ω)

∣∣≤ C

(1+‖ω‖)k ,

and for each such n, we have

D̂n
(·) f (·)(ω) = ( jω)n f̂ (ω).

Theorem 5.4 (Fourier-domain differentiation). If (1+ ‖t‖)k f (t) ∈ L1(Rd) for a positive integer k, then the Fourier

transform of f has k continuous derivatives. The partial derivatives of f̂ are given by

Dn
ω f̂ (ω) = (− j)|n|t̂n f (ω).

Theorem 5.5 (Moments). Let µk denote the kth moment of f . Then, we have

µk =
∫

RD
tk f (t)dt = j|k|(Dk

(·) f̂ (·))(0).

Theorem 5.6 (Riemann-Lebesgue lemma). If f ∈ L1(Rd), then f̂ is continuous, and

lim
‖ω‖→∞

f̂ (ω) = 0.

5.6.2 Continuous-Time Fourier Transform for L2(Rd)

Definition 5.16 (Fourier transform). Let f ∈ L2(Rd). The Fourier transform of f , denoted f̂ , is defined as

f̂ (t) = lim
r→∞

∫

‖t‖<r
f (t)e− jωT tdt.

Theorem 5.7 (Fourier inversion formula). If f ∈ L2(Rd), then the inverse (continuous-time) Fourier transform of f̂

is given by

f (t) = lim
r→∞

(2π)−d
∫

‖ω‖<r
f̂ (ω)e jω

T tdω.
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5.6.3 Discrete-Time Fourier Transform

Definition 5.17 (Discrete-time Fourier transform). For a sequence f defined on ZD, the (discrete-time) Fourier

transform of f , denoted f̂ or F f , is the complex-valued function defined on RD given by

(F f )(ω) = f̂ (ω) = ∑
n∈ZD

f [n]e− jωT n.

(Note that f̂ (ω) is 2πI periodic.)

The inverse of the Fourier transform is computed as given by the theorem below.

Theorem 5.8 (Inverse discrete-time Fourier transform). The inverse Fourier transform of f̂ is given by

f [n] = (2π)−D
∫

R
f̂ (ω)e jω

T ndω,

where R is one period of f̂ (e.g., R = [−π,π)D).

5.6.4 Continuous-Time Fourier Series

Theorem 5.9 (Continuous-time Fourier series). An N-periodic function f defined on RD can be represented in the

form

f (t) = ∑
k∈ZD

c[k]e j2πkTN−1t , (5.8)

where c is given by

c[k] = |detN|−1
∫

R
f (t)e− j2πkTN−1tdt,

and R denotes a single period of f (e.g., R= FPD(N)). Such a representation is known as a (continuous-time) Fourier
series.

5.6.5 Discrete-Time Fourier Series

Theorem 5.10 (Discrete-time Fourier series). An N-periodic sequence f defined on Zd can be represented in the form

f [n] = |detN|−1 ∑
k∈S1

a[k]e j2πkTN−1n,

where S1 = N(NT ). Such a representation is known as a (discrete-time) Fourier series. The sequence a is given by

a[n] = ∑
k∈S0

f [k]e− j2πkTN−T n,

where S0 = N(N). (Note that the sequence a is NT periodic. (Also, note that S0 and S1 constitute one period of f and

a, respectively).

The discrete-time Fourier series is commonly referred to as the discrete Fourier transform (DFT), although strictly

speaking this is not an integral transform.
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5.6.6 Miscellany

Theorem 5.11 (Relationship between Z and Fourier transforms). Let x be a sequence with Z transform X. If the

region of convergence of X includes the unit hypersphere (i.e., eI(ω) for all ω ∈ Rd), then the (discrete-time) Fourier

transform x̂ of x is given by

x̂(ω) = X (eI(ω)) .

Theorem 5.12 (Poisson summation formula). We have

∑
k∈ZD

f (t− k) = ∑
k∈ZD

f̂ (2πk)e j2πkT t .

5.7 Additional Reading

Some additional references for material related to this chapter include: multidimensional Fourier analysis [5], lat-

tices [2], multidimensional signal processing [1, 4], two-dimensional signal processing [6], and symmetry in multidi-

mensional signals [3].

5.8 Problems

5.1 Show that eM(M−Tω) = eI(ω).

5.2 Show that, for any x,y ∈ ZD, x− y ∈ LAT(M) if and only if x and y belong to the same coset of LAT(M).

5.3 Let h be a symmetric/antisymmetric sequence defined on Zd . Such a sequence is of the form h[n] = sh[2c−n],
where c ∈ 1

2
Zd is the center of symmetry and s ∈ {−1,1}.

(a) Show that ĥ can be expressed as

ĥ(ω) =





e− jωT c ∑
n∈Zd

h[n]cos
(
ωT (n− c)

)
if s = 1

− je− jωT c ∑
n∈Zd

h[n]sin
(
ωT (n− c)

)
if s =−1.

(b) Let H denote the Z transform of h. Show that

H(z) = 1
2
z−c
[

∑
k∈Zd

h[k]
(
zc−k + sz−(c−k)

)]
.

5.4 Show that ∆nâ(ω) = (− j)|n|∑k∈Zd akk
ne− jkT ω .

5.5 Show that (αk)n = α |n|kn, where α ∈ C and k,n ∈ Zd .

5.6 Show that wu+v = wuwv, where u,v,w ∈ Zd .

5.7 Let ω,k ∈ Zd . Show that

(a) cosωT k = 1
2

(
eI(ω)k + eI(ω)−k

)
; and

(b) sinωT k = 1
2

(
eI(ω)k− eI(ω)−k

)
.

5.8 Let A and B denote d×d matrices. Let z denote a d-dimensional column vector. Show that (zA)B = zAB.

5.9 Let M be a d×d matrix and let z be a d-dimensional column vector. Show that (zM)n = zMn.
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Chapter 6

Multidimensional Multirate Filter Banks

6.1 Introduction

In this chapter, we consider the generalization of multirate filter banks from the one-dimensional case to the multidi-

mensional case. Multidimensional multirate filter banks play an important role in the context of multivariate wavelet

systems. The relationship between multidimensional filter banks and multivariate wavelet systems is established later

in Chapter 7.

6.2 Multirate Systems

To begin, we consider how some of the multirate systems concepts generalize from the one-dimensional case to the

multidimensional case. In multidimensional multirate systems, more than one sampling lattice is employed, with

each having its own associated sampling density. Often, in practice, the need arises to either increase or decrease the

sampling density. This is achieved through processes known as upsampling and downsampling, which we introduce

next.

6.2.1 Downsampling

One of the basic operations in multirate systems is that of decreasing the sampling density. This operation is known

as downsampling and is performed by a processing element known as a downsampler.

Definition 6.1 (Downsampling). Let M denote a D×D sampling matrix. The M-fold downsampler, shown in

Figure 6.1, takes an input sequence x and produces the output sequence y, where

y[n] = (↓M)x[n] = x[Mn].

In simple terms, the downsampling operation keeps samples on the lattice generated by M and discards all other

samples.

Frequently, it is advantageous to work with the Z-domain representation of sequences. For this reason, one might

wonder how the downsampling operation is characterized in the Z-domain. The answer to this question is given by

the theorem below.

↓M
x[n] y[n]

Figure 6.1: M-fold downsampler.
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Theorem 6.1 (Downsampling in Z domain). Suppose that y = (↓M)x. Let X and Y denote the Z transforms of x and

y, respectively. Then, Y , which we abbreviate as (↓M)X(z), is given by

Y (z) = 1
|detM| ∑

c∈N(MT )

X
(
W c

M−1 ◦ z
M−1
)

.

Proof. The Z transform of y[n] can be written as

Y (z) = ∑
n∈ZD

y[n]z−n

= ∑
n∈ZD

x[Mn]z−n.

Now, we define the sequence

v[n] =

{
x[n] n ∈MZD

0 otherwise.

Since v[Mn] = x[Mn] for all n ∈ ZD, we have

Y (z) = ∑
n∈ZD

v[Mn]z−n.

Now, we employ a change of variable. Let n′ = Mn. So, n = M−1n′. Applying the change of variable and dropping

the primes, we obtain

Y (z) = ∑
n∈MZD

v[n]z−M
−1n

Since v[n] = 0 for n 6∈MZD

Y (z) = ∑
n∈ZD

v[n]z−M
−1n

= ∑
n∈ZD

v[n]zM
−1(−n)

= ∑
n∈ZD

v[n](zM
−1

)(−n)

=V (zM
−1

).

To complete the proof, we express V (z) in terms of X(z). We observe that v[n] can be expressed as

v[n] = sM[n]x[n]

where

sM[n] =

{
1 n ∈MZD

0 otherwise.

In what follows, let m′l denote the lth column ofM−1 and let nl denote the lth element of n. Since sM isM-periodic, it
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can be expressed in terms of a Fourier series as

sM[n] = 1
|detM| ∑

k∈N(MT )

e j2πkTM−1n

= 1
|detM| ∑

k∈N(MT )

e− j2πkTM−1(−n)

= 1
|detM| ∑

k∈N(MT )

e− j2πkT (−m′0n0−m′1n1−···−m′D−1nD−1)

= 1
|detM| ∑

k∈N(MT )

e− j2πkTm′0(−n0)e− j2πkTm′1(−n1) · · ·e− j2πkTm′D−1(−nD−1)

= 1
|detM| ∑

k∈N(MT )

([
e− j2πkTm′0 e− j2πkTm′1 · · · e− j2πkTm′D−1

]T)−n

= 1
|detM| ∑

k∈N(MT )

(W k
M−1)

−n.

From the definition of v and using the identity (5.2), we have

V (z) = Z{sM[n]x[n]}

= ∑
n∈ZD


 1
|detM| ∑

k∈N(MT )

(W k
M−1)

−nx[n]


z−n

= 1
|detM| ∑

k∈N(MT )

∑
n∈ZD

(W k
M−1)

−nx[n]z−n

= 1
|detM| ∑

k∈N(MT )

∑
n∈ZD

x[n](W k
M−1 ◦ z)

−n

= 1
|detM| ∑

k∈N(MT )

X(W k
M−1 ◦ z).

Combining the preceding equation with the earlier one for Y in terms of V , we obtain

Y (z) =V (zM
−1

)

= 1
|detM| ∑

k∈N(MT )

X(W
kl
M−1 ◦ z

M−1).

The above Z-domain characterization of downsampling leads to the following characterization of downsampling

in the Fourier domain.

Theorem 6.2 (Downsampling in Fourier domain). Let y = (↓M)x. Then, we have

ŷ(ω) = 1
|detM| ∑

k∈N(MT )

x̂(M−Tω−2πM−T k) = 1
|detM| ∑

k∈N(MT )

x̂
(
M−T [ω−2πk]

)
.

Proof. Let X and Y denote the Z transforms of x and y, respectively. To obtain ŷ(ω), we evaluate Y on the unit

hypersphere and use (5.6) to obtain

ŷ(ω) = Y (eI(ω))

= 1
|detM| ∑

k∈N(MT )

X(W k
M−1 ◦ [eI(ω)]M

−1
)

= 1
|detM| ∑

k∈N(MT )

X(W k
M−1 ◦ eM−1(ω)).
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↑M
x[n] y[n]

Figure 6.2: M-fold upsampler.

Letting m′l denote the lth column of M−1, we can write

ŷ(ω) = 1
|detM| ∑

k∈N(MT )

X







e− j2πkTm′0

e− j2πkTm′1

...

e− j2πkTm′D−1



◦




e jω
Tm′0

e jω
Tm′1

...

e jω
Tm′D−1







= 1
|detM| ∑

k∈N(MT )

X







e j(ω
Tm′0−2πkTm′0)

e j(ω
Tm′1−2πkTm′1)

...

e j(ω
Tm′D−1−2πkTm′D−1)







.

Further simplification yields

ŷ(ω) = 1
|detM| ∑

k∈N(MT )

x̂







m′T0 (ω−2πk)
m′T1 (ω−2πk)

...
m′TD−1(ω−2πk)





= 1

|detM| ∑
k∈N(MT )

x̂







m′T0
m′T1
...

m′TD−1


(ω−2πk)


 .

Finally, we have

ŷ(ω) = 1
|detM| ∑

k∈N(MT )

x̂(M−T (ω−2πk)).

6.2.2 Upsampling

Another basic operation in multirate signal processing is that of increasing the sampling density. This operation is

called upsampling and is performed by a processing element known as an upsampler. In particular, upsampling is

defined as follows.

Definition 6.2 (Upsampling). LetM denote a D×D sampling matrix. TheM-fold upsampler, depicted in Figure 6.2,

takes an input sequence x and produces the output sequence y, where

y[n] = (↑M)x[n] =

{
x[M−1n] n ∈MZD

0 otherwise.

In simple terms, upsampling copies the samples of the original sequence to one coset of a higher density lattice

while setting the samples of the other cosets to zero.

Often, it is convenient to work in the Z-domain. Consequently, the Z-domain characterization of upsampling,

given by the theorem below, is of great interest.

Theorem 6.3 (Upsampling in Z domain). Let x and y be two sequences defined on ZD, where y = (↑M)x. Let X and

Y denote the Z transforms of x and y, respectively. Then Y , which we abbreviate as (↑M)X, is given by

Y (z) = (↑M)X(z) = X(zM).

Proof. Using the definition of the Z transform and the fact that y[n] = 0 for n 6∈MZD, we can write

Y (z) = ∑
n∈ZD

y[n]z−n

= ∑
n∈MZD

y[n]z−n.
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Since y[n] = x[M−1n] for n ∈MZD, we have

Y (z) = ∑
n∈MZD

x[M−1n]z−n.

Now, we employ a change of variable. Let n′ = M−1n. So, n = Mn′. Applying the change of variable and dropping

the primes yields

Y (z) = ∑
n∈ZD

x[n]z−Mn.

Straightforward simplification using (5.1) yields

Y (z) = ∑
n∈ZD

x[n]zM(−n)

= ∑
n∈ZD

x[n](zM)−n

= X(zM).

From the above result, the Fourier-domain characterization of upsampling can be deduced to be as given by the

theorem below.

Theorem 6.4 (Upsampling in Fourier domain). Let M be a D×D sampling matrix, and let x and y be sequences

defined on ZD, where y = (↑M)x. Then, we have

ŷ(ω) = x̂(MTω).

Proof. Evaluating Y (z) on the unit hypersphere (i.e., for z = eI(ω)), we have

ŷ(ω) = Y (eI(ω))

= X(eI(ω)M)

= X (eM(ω))

= X
(
eI(M

Tω)
)

= x̂(MTω).

(In the above simplification, we used (5.7) and (5.6).)

6.2.3 Cascaded Upsampling and Downsampling Identities

In multirate signal processing, we often encounter cascaded downsampling operations or cascaded upsampling oper-

ations. Thus, we would like to consider the effects of cascading such operations. In this regard, one can shown that

the theorem below holds.

Theorem 6.5 (Cascaded upsampling/downsampling). Let L and M denote D×D sampling matrices. Then, we have

(↓M)(↓ L) =↓ (LM) and (6.1)

(↑M)(↑ L) =↑ (ML). (6.2)

These relationships are illustrated in Figure 6.3.
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x[n] y[n]
≡

x[n]
↓ LM↓ L ↓M

y[n]

(a)

x[n] y[n]
≡

x[n]
↑ML↑ L ↑M

y[n]

(b)

Figure 6.3: Identities for (a) cascaded downsampling and (b) cascaded upsampling operations.

Proof. First, we consider (6.1). Define v = (↓ L)x and y = (↓M)v so that y = (↓M)(↓ L)x. Then, we have

v[n] = x[Ln].

So, we can write

y[n] = v[Mn]

= x[LMn]

= (↓ LM)x.

Thus, (6.1) holds.

Now, we consider (6.2). Define v = (↑ L)x and y = (↑M)v so that y = (↑M)(↑ L)x. We have

v̂(ω) = x̂(LTω).

So, we have

ŷ(ω) = v̂(MTω)

= x̂(LTMTω)

= x̂((ML)Tω).

Thus, y = (↑ML)x and (6.2) holds.

Since matrix multiplication does not generally commute (i.e., usually ML 6= LM), one must be careful about

the order in which cascaded downsampling or cascaded upsampling operations are applied. Also, note the subtle

difference in the order of L and M in (6.1) and (6.2).

6.2.4 Commutativity of Upsampling and Downsampling

The circumstances under which downsampling and upsampling commute are significantly more complicated in the

multidimensional case than the one-dimensional case. This additional complexity originates, in part, from the fact

that matrix multiplication does not generally commute. For more details regarding the commutativity of upsampling

and downsampling the reader is referred to [1, 4, 10, 14, 17, 18].

6.2.5 Noble Identities

Often, a downsampler or upsampler appears in cascade with a filter. Although it is not possible (except in trivial

cases) to interchange the order of upsampling/downsampling and filtering without changing system behavior, it is

sometimes possible to find an equivalent system with the order of these operations reversed, through the use of two

very important relationships called the noble identities. These identities are presented in the theorem below.
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F(z) F(zM) ↓M
y[n]x[n]

≡↓M
x[n] y[n]

(a)

F(z) ↑M F(zM)↑M≡
x[n] y[n] y[n]x[n]

(b)

Figure 6.4: The noble identities. The (a) first and (b) second noble identities.

Theorem 6.6 (Noble identities). For any two sequences with Z transforms X(z) and F(z), the following identities

hold:

F(z) [(↓M)X(z)] = (↓M)
[
F(zM)X(z)

]
and

(↑M) [F(z)X(z)] = F(zM) [(↑M)X(z)] .

These relationships are known as the first and second noble identities, respectively. These identities are illustrated in

Figure 6.4.

6.2.6 Polyphase Representations of Signals and Filters

A fundamental concept in the study of multirate systems is that of polyphase signal representations. The notion

of polyphase signal representations easily extends from the one-dimensional case to the multidimensional case. In

particular, the polyphase representation of a signal is as defined below.

Definition 6.3 (Polyphase representation). The polyphase representation of the sequence x, with respect to the

sampling matrixM and its associated coset representatives {mk}J(M)−1
k=0 , is defined as

x[n] =
J(M)−1

∑
k=0

((↑M)xk)[n+mk], (6.3)

where

xk[n] = (↓M)(x[n−mk]) = x[Mn−mk]

and the set {mk}J(M)−1
k=0 is chosen such that all members from the set are in distinct cosets of ZD/(MZD). As a matter

of terminology, x0,x1, . . . ,xJ(M)−1 are called polyphase components.

Clearly, considerable freedom exists in the choice of polyphase representations. The number of possible choices

for the sampling matrix M and its associated coset representatives {mk}J(M)−1
k=0 is infinite. Even for a fixed choice of

M, the number of possible choices for {mk}J(M)−1
k=0 is infinite. In order to fully specify a polyphase representation,

both the sampling matrixM and its associated coset vectors {mk}J(M)−1
k=0 must be specified.

The above polyphase representation can also be expressed in the Z domain. Let X(z) = Z{x[n]} and Xk(z) =
Z{xk[n]} for k = 0,1, . . . ,J(M)−1. Then, by taking the Z transform of (6.3), we obtain

X(z) =
J(M)−1

∑
k=0

zmkXk(z
M) (6.4a)

where

Xk(z) = (↓M)z−mkX(z). (6.4b)
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zm0

zm1 F1(z
M)

F0(z
M) +

+

zmJ(M)−1 FJ(M)−1(z
M)

y[n]x[n]

...
...

...
...

(a)

+

+

F0(z
M) zm0

zm1F1(z
M)

zmJ(M)−1FJ(M)−1(z
M)

y[n]x[n]

...
...

...
...

(b)

Figure 6.5: Polyphase representation of a filter.

H0(z)

H1(z)

↓M

HJ(M)−1(z)

G0(z) +

+

GJ(M)−1(z)↓M ↑M

G1(z)↓M ↑M

↑M
x[n]

...
...

...

y0[n]

...
...

...

x̂[n]

y1[n]

yJ(M)−1[n]

Figure 6.6: Canonical form of a UMD filter bank.

A polyphase representation can be used for the impulse response of a filter. This leads to the polyphase realization

of a filter. Such a realization is associated with the structures shown in Figure 6.5.

6.3 UMD Filter Banks

The general structure of a UMD filter bank is shown in Figure 6.6. This structure is essentially the same as in the

one-dimensional case, except that the filters and upsamplers/downsamplers have been replaced by their multidimen-

sional counterparts. Since the upsampling and downsampling operations use the sampling matrixM, the (maximally-

decimated) filter bank has J(M) channels.

6.3.1 Polyphase Representation of UMD Filter Banks

Consider the UMD filter banks shown in Figure 6.6. As in the one-dimensional case, we can represent each of the

analysis and synthesis filters in polyphase form. This leads to the structure shown in Figure 6.7. Then, we can use the

noble identities to further transform this system into the one shown in Figure 6.8. This is the polyphase representation

of the filter bank.

6.4 Design and Implementation of UMD Filter Banks

To date, many techniques have been proposed for the design of filter banks. Some of these techniques include:

applying a transformation to the filters of a one-dimensional filter bank to produce the filters of a multidimensional
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zm0

zm1

↓M

↓Mz
mJ(M)−1

+

+

zl0

zl1

↑M

↑M

z
lJ(M)−1↑M

↓M
HHHp(z

M) GGGp(z
M)

x[n]

...
...

...

x̂[n]

...
...

...

y0[n]

y1[n]

yJ(M)−1[n]

Figure 6.7: Polyphase representation of a UMD filter bank before simplification with the noble identities.

zm0

zm1

↓M

↓M

z
mJ(M)−1 ↓M

↑M

↑M

+

+

zl0

zl1

↑M z
lJ(M)−1

HHHp(z) GGGp(z)

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yJ(M)−1[n]

...

Figure 6.8: Polyphase representation of a UMD filter bank.

filter bank [2, 22, 24, 25, 26], lifting [6], the Cayley transform [34], Grobner bases [12], and others [8, 20, 23]. Some

of these design methods also suggest an implementation strategy as well.

6.5 Additional Reading

Some additional references related to material in this chapter include: multidimensional multirate systems and filter

banks [15, 16, 19, 29, 30], multidimensional multirate systems [3, 28, 31], and multidimensional sampling [9].

6.6 Problems

6.1 Let x[n] be periodic with periodicity matrix P. Let y[n] denote the output of a downsampler with sampling

matrixM and input x[n].
(a) Show that y[n] is periodic.
(b) Derive a necessary and sufficient condition (involving M and P) for y to be (M−1P)-periodic.

6.2 Let x[n] be a symmetric/antisymmetric sequence with center of symmetry c. Let y[n] denote the output of

a downsampler with sampling matrix M and input x[n]. Determine the constraints on M and c that must be

satisfied in order for y to be symmetric/antisymmetric.
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Chapter 7

Multivariate Wavelet Systems

7.1 Introduction

In this chapter, we consider how wavelet systems generalize to the multivariate case.

7.2 Multiresolution Approximation

As in the univariate case, in the multivariate case, the multiresolution approximation (MRA) is a fundamental com-

ponent of wavelet systems. Before we can state the definition of a MRA in the multivariate context, we first need to

introduce the notion of a dilation matrix.

Definition 7.1 (Dilation matrix). A dilation matrix is a nonsingular integer matrix such that each of its eigenvalues

has a magnitude strictly greater than one.

The constraint on the magnitude of eigenvalues in the above definition ensures a dilation in each dimension. For

example,
[
2 0
0 1

]
is not a valid dilation matrix, as it only dilates in one dimension, while

[
2 0
0 2

]
is a valid dilation matrix,

as it dilates in all (i.e., two) dimensions. Since the linear transformation associated with a dilation matrixM dilates in

every dimension, we have

for all k ∈ Rd \{0}, lim
q→∞

∥∥(MT )qk
∥∥= ∞, and

for all k ∈ Rd , lim
q→∞

∥∥(M−T )qk
∥∥= 0.

These relationships are often helpful in subsequent derivations. With the above said, we can now introduce the

definition of a MRA.

Definition 7.2 (Multiresolution approximation). Let M denote a dilation matrix. A sequence {Vp}p∈Z of closed

subspaces of L2(RD) is said to be an M-dilation multiresolution approximation (MRA) if the following properties

hold:

1. for all p ∈ Z, Vp ⊂Vp−1 (nesting);

2. lim
p→∞

Vp =
⋂

p∈Z

Vp = {0} (separation);

3. lim
p→−∞

Vp = clos

(
⋃

p∈Z

Vp

)
= L2(RD) (density);

4. for all p ∈ Z, f (t) ∈Vp⇔ f (Mt) ∈Vp−1 (scale invariance);
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Figure 7.1: Two-dimensional Haar scaling function.

5. for all k ∈ ZD, f (t) ∈V0⇔ f (t− k) ∈V0 (shift invariance); and

6. there exists φ such that {φ(·−n)}n∈ZD is a Riesz basis of V0 (shift-invariant Riesz basis).

In what follows, we consider an example of a MRA.

Example 7.1 (Piecewise constant approximations). In the multivariate case, the simplest MRA is associated with

piecewise constant approximations. In this case, the space V0 is comprised of all functions f ∈ L2(RD) such that f is

constant on regions of the form n+[0,1)D, where n ∈ ZD (i.e., D-dimensional unit hypercubes with vertices on the

D-dimensional integer lattice). More generally, Vp is comprised of all functions f ∈ L2(RD) such that f is constant on
regions of the form 2−p(n+[0,1)D), where n ∈ ZD.

One can show that an orthonormal basis of V0 is given by {φ(·− k)}k∈ZD , where

φ(t) = χ[0,1)D(t) =

{
1 for t ∈ [0,1)D

0 otherwise.

For the 2-dimensional case (i.e., D = 2), a plot of φ is given in Figure 7.1.

7.3 Existence of Riesz Basis

Recall the Riesz basis property of a MRA. Due to this property, one might wonder under what conditions the integer-

vector translates of a function constitute a Riesz basis for their closed linear span. The answer to this question is given

by the theorem below.

Theorem 7.1 (Condition for Riesz basis). A family {θ(·−n)}n∈ZD is a Riesz basis of the space V0 it generates (i.e.,

its closed linear span) if and only if there exist A > 0 and B > 0 such that

for ω ∈ [−π,π]D, A≤ ∑
k∈ZD

∣∣θ̂(ω−2πk)
∣∣2 ≤ B a.e.. (7.1)

If such A and B do exist, they are the lower and upper Riesz bounds of {θ(·−n)}n∈ZD , respectively.

7.4 Wavelet Spaces

Consider anM-dilation MRA with the approximation space sequence {Vp}p∈Z. Let m = |detM|. Since Vp is a proper

subspace of Vp−1, there must be some spaceUp which is the algebraic complement of Vp in Vp−1. In other words, we

have

Vp−1 =Vp⊕Up.
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Figure 7.2: MRA decomposition of L2(RD).

Unfortunately, if m > 2, it is not possible for the integer-vector shifts of a single function to form a basis for U0. In

fact, one can show that we need the integer-vector shifts of m−1 functions. Thus, we need to further decompose the

spaceUp into the m−1 subspaces {Wq,p}q∈{1,2,...,m−1}. That is, we have

Up =
m−1⊕

q=1

Wq,p.

This leads to the relationship

Vp−1 =Vp⊕
(

m−1⊕

q=1

Wq,p

)
.

We refer to the spaces {Wq,p} as wavelet spaces. Notice, however, that we now have m− 1 wavelet spaces at each

level in the MRA. In other words, we obtain the decomposition of L2(RD) illustrated in Figure 7.2.
One can show that the various spaces have the following properties:

Vk ∩Vl =Vl for k < l

Wq,p∩Wl,k = {0} for (q, p) 6= (l,k); and

Vk ∩Wq,p = {0} for k ≥ p.

In addition, the wavelet spaces have a number of other important properties given by the theorem below.

Theorem 7.2 (Properties of wavelet spaces). Let {Wq,p}(q,p)∈{1,2,...,m−1}×Z denote the wavelet spaces associated with

an M-dilation MRA. Then, these spaces are such that:

1. clos
(⊕

(q,p)∈{1,2,...,m−1}×ZWq,p

)
= L2(RD) (density);

2. for each q ∈ {1,2, . . . ,m−1}, f ∈Wq,p⇔ f (M·) ∈Wq,p−1 for all p ∈ Z (scale invariance);

3. for each q ∈ {1,2, . . . ,m−1}, f ∈Wq,0⇔ f (·−n) ∈Wq,0 for all n ∈ ZD (shift invariance); and

4. for each q ∈ {1,2, . . . ,m−1}, there exists ψq such that {ψq(·−n)}n∈ZD is a Riesz basis of Wq,0 (shift-invariant

Riesz basis).

The basis of each wavelet spaceWq,0 is generated by the integer-vector shifts of a single function ψq. We refer to

ψq as a wavelet function. Notice that we have m−1 wavelet functions (since there are m−1 wavelet spaces at each

level in the MRA).

7.5 Bases of Scaling and Wavelet Spaces

Consider an M-dilation MRA {Vp}p∈Z. Let m = |detM|. Let {φ(·− n)}n∈ZD denote the Riesz basis of V0. For each

q ∈ {1,2, . . . ,m− 1}, let {ψq(·− n)}n∈ZD denote the Riesz basis ofWq,0. Suppose that φ and {ψq}q∈{1,2,...,m−1} are
known. Then, just like in the univariate case, we can determine a basis for each of the other approximation and wavelet

spaces. In multivariate context, we have the result below.
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Theorem 7.3 (Bases of approximation spaces). Suppose that we have an M-dilation MRA {Vp}p∈Z and {φ(· −
n)}n∈ZD is a Riesz basis of V0 with the dual basis {φ̃(· − n)}n∈ZD . Let m = |detM|. Then, for each p ∈ Z, the set

{φp,n}n∈ZD given by

φp,n(t) = m−p/2φ(M−pt−n)

is a Riesz basis of Vp with the same Riesz bounds as {φ(·−n)}n∈ZD and the dual basis {φ̃p,n}n∈ZD given by

φ̃p,n(t) = m−p/2φ̃(M−pt−n).

Now, we consider the bases the wavelet spaces. The basis of each of these spaces can be determined using the

theorem below.

Theorem 7.4 (Bases of wavelet spaces). Suppose that we have an M-dilation MRA {Vp}p∈Z with the corresponding

wavelet spaces {Wq,p}(q,p)∈{1,2,...,m−1}×Z, where m= |detM|, and {ψq(·−n)}n∈Z is a Riesz basis ofWq,0 with the dual

basis {ψ̃q(·−n)}n∈ZD . Then, for each p ∈ Z, {ψq,p,n}n∈ZD given by

ψq,p,n(t) = m−p/2ψq(M
−pt−n)

is a Riesz basis of Wq,p with the same Riesz bounds as {ψ(·−n)}n∈ZD and dual basis {ψ̃q,p,n}n∈ZD given by

ψ̃q,p,n(t) = m−p/2ψ̃q(M
−pt−n).

7.6 Scaling and Wavelet Equations

In the multivariate context, a refinement equation is defined as specified below.

Definition 7.3 (Refinement equation). Let M denote a D×D dilation matrix. An equation of the form

φ(t) = ∑
k∈ZD

c[k]φ(Mt− k) (7.2)

is called a refinement equation. The sequence c is referred to as a refinement mask. The solution of (7.2) is called

a (refinable or) M-refinable function.

In what follows, we provide some examples of refinable functions.

Example 7.2 (Two-dimensional Haar scaling function). Consider the function

φ(t) = χ[0,1)2(t) =

{
1 for t ∈ [0,1)2

0 otherwise.

One can confirm that φ satisfies the refinement equation

φ(t) = ∑
k∈N(M)

φ(Mt− k)

where M = 2I. A plot of φ is given in Figure 7.3.

Example 7.3. Consider the refinement equation

φ(t) = ∑
k∈Z2

c[k]φ(Mt− k),

where M = 2I and the nonzero elements of c are given by


c−1,1 · · · c1,1

... . .
. ...

c−1,−1 · · · c1,−1


=



0 1 0

0 1 1

1 0 0


 .

One can show that the above refinement equation has the solution φ plotted in Figure 7.4.
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Figure 7.3: Two-dimensional Haar scaling function.
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Figure 7.4: Refinable function.
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Figure 7.5: Refinable function.

Example 7.4. Consider the refinement equation

φ(t) = ∑
k∈Z2

c[k]φ(Mt− k),

where M =
[
2 −1
1 −2

]
and c is given by

[
c0,0 c1,0
c0,−1 c1,−1

]
=

[
1 1

1 0

]

(with the other remaining elements of c being zero). One can show that this refinement equation has the solution φ
illustrated in Figure 7.5.

Just like in the univariate case, scaling functions are refinable and wavelet functions can be expressed in terms

of scaling functions. In other words, we have the scaling and wavelet equations and their Fourier transforms as

introduced below.

Theorem 7.5 (Scaling equation). Suppose that we have an M-dilation MRA {Vp}p∈Z and V0 has the Riesz basis

{φ(·−n)}n∈Zd . Then, φ satisfies a refinement equation of the form

φ(t) = |detM|1/2 ∑
k∈ZD

c[k]φ(Mt− k)

where

c[n] =
〈

φ(·), |detM|1/2 φ̃(M ·−n)
〉

.

Theorem 7.6 (Fourier transform of scaling equation). Let φ be an M-refinable scaling function with coefficient se-

quence c. Then, φ̂ is given by

φ̂(ω) = |detM|−1/2 ĉ(M−Tω)φ̂(M−Tω)

which can be equivalently expressed in terms of an infinite product as

φ̂(ω) = φ̂(0)
∞

∏
p=1

|detM|−1/2 ĉ((M−T )pω).

Proof. Taking the Fourier transform of the scaling equation, we have

φ̂(ω) = |detM|−1/2 ∑
k∈ZD

c[k]e− jωTM−1kφ̂(M−Tω)

= |detM|−1/2
(

∑
k∈ZD

c[k]e− j(M−T ω)T k

)
φ̂(M−Tω)

= |detM|−1/2 ĉ(M−Tω)φ̂(M−Tω).
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Applying the above relationship recursively, we obtain

φ̂(ω) = |detM|−1/2 ĉ(M−Tω)φ̂(M−Tω)

= |detM|−1/2 ĉ(M−Tω)
[
|detM|−1/2 ĉ((M−T )2ω)φ̂((M−T )2ω)

]

= φ̂((M−T )Nω)
N

∏
p=1

|detM|−1/2 ĉ((M−T )pω)

= φ̂(0)
∞

∏
p=1

|detM|−1/2 ĉ((M−T )pω).

(Since
∣∣detM−T

∣∣< 1 and M dilates in all dimensions, we have that, for all ω ∈ RD, limq→∞

∥∥(M−T )qω
∥∥= 0.)

Theorem 7.7 (Wavelet equation). Suppose that we have an M-dilation MRA {Vp}p∈Z with corresponding wavelet

subspaces {Wq,p}(q,p)∈{1,2,...,m−1}×Z, whereV0 has the Riesz basis {φ(·−n)}n∈ZD andWq,0 has the Riesz basis {ψq(·−
n)}n∈ZD . Then, ψq can be expressed in terms of an equation of the form

ψq(t) = |detM|1/2 ∑
k∈ZD

dq[k]φ(Mt− k)

where

dq[n] =
〈

ψq, |detM|1/2 φ̃(M ·−n)
〉

.

Theorem 7.8 (Fourier transform of wavelet equation). Let φ and {ψq}q∈{1,2,...,m−1} be the scaling and wavelet func-

tions of a MRA. Suppose that φ has the scaling equation coefficient sequence c and ψq has the wavelet equation

coefficient sequence dq. Then, ψ̂q is given by

ψ̂q(ω) = |detM|−1/2 d̂q(M−Tω)φ̂(M−Tω)

which can be equivalently expressed in terms of an infinite product as

ψ̂q(ω) = φ̂(0)
∞

∏
p=1

|detM|−1/2 d̂q((M−T )pω).

7.7 Dual MRAs

Just like in the univariate case, each MRA is associated with a dual MRA. In other words, we have the results given

in the theorems below.

Theorem 7.9 (Dual MRAs). Let {Vp}p∈Z be an M-dilation MRA with |detM| = m, scaling function φ , wavelet
spaces {Wq,p}(q,p)∈{1,2,...,m−1}×Z, and wavelet functions {ψq}q∈{1,2,...,m−1}. Suppose that the dual Riesz bases of

{φ(·− k)}k∈ZD and {ψq(·− k)}k∈ZD are given by {φ̃(·− k)}k∈ZD and {ψ̃q(·− k)}k∈ZD , respectively. Then, φ̃ is the

scaling function of an M-dilation MRA {Ṽp}p∈Z with wavelet spaces {W̃q,p}(q,p)∈{1,2,...,m−1}×Z and wavelet functions

{ψ̃q}q∈{1,2,...,m−1}.

Theorem 7.10. Suppose that {Vp}p∈Z and {Ṽp}p∈Z are dual MRAs with wavelet spaces {Wq,p}(q,p)∈{1,2,...,m−1}×Z

and {W̃q,p}(q,p)∈{1,2,...,m−1}×Z, respectively. Then, we have

for all (q, p) ∈ {1,2, . . . ,M−1}×Z, Vp ⊥ W̃q,p and Wq,p ⊥ Ṽp.
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7.8 Wavelet Systems

In what follows, we introduce several examples of wavelet systems. Some of these systems are separable (i.e., formed

from tensor-product constructions), while others are not.

Example 7.5 (Separable Haar wavelet system). Let φ (1D)(t) and ψ(1D)(t) denote the scaling and wavelet functions,

respectively, of the 1-dimensional Haar wavelet system. We can construct a 2-dimensional wavelet system via tensor

products. This yields a 2-dimensional wavelet system based on the dilation matrix M = 2I. (Note that |detM| = 4.)

The scaling function and wavelet functions are given by

φ([ t0 t1 ]T ) = φ (1D)(t0)φ
(1D)(t1),

ψ1([ t0 t1 ]T ) = φ (1D)(t0)ψ
(1D)(t1),

ψ2([ t0 t1 ]T ) = ψ(1D)(t0)φ
(1D)(t1), and

ψ3([ t0 t1 ]T ) = ψ(1D)(t0)ψ
(1D)(t1).

With this construction, φ satisfies the refinement equation

φ(t) = ∑
k∈Z2

c[k]φ(Mt− k),

where the nonzero elements of c are given by

[
c[0,1] c[1,1]
c[0,0] c[1,0]

]
=

[
1 1

1 1

]
.

Similarly, the wavelet functions {ψq}3q=1 can be expressed in terms of φ as

ψq(t) = ∑
k∈Z2

dq[k]φ(Mt− k),

where the nonzero elements of {dq}3q=1 are given by

[
d1[0,1] d1[1,1]
d1[0,0] d1[1,0]

]
=

[
−1 −1
1 1

]
,

[
d2[0,1] d2[1,1]
d2[0,0] d2[1,0]

]
=

[
1 −1
1 −1

]
, and

[
d3[0,1] d3[1,1]
d3[0,0] d3[1,0]

]
=

[
−1 1

1 −1

]
.

The scaling and wavelet functions are plotted in Figure 7.6.

Example 7.6 (Separable Le Gall 5/3 wavelet system). In a similar fashion as in the previous example, we can construct

a two-dimensional version of the Le Gall 5/3 wavelet system via tensor products. This results in a 4-adic wavelet

system. The primal scaling and wavelet functions are plotted in Figures 7.7(a) to (d). The dual scaling and wavelet

functions are plotted in Figures 7.7(e) to (h).

Example 7.7 (Separable CDF 9/7 wavelet system). We can construct a two-dimensional version of the CDF 9/7

wavelet system via tensor products. This results in a 4-adic wavelet system. The primal scaling and wavelet functions

are plotted in Figures 7.8(a) to (d). The dual scaling and wavelet functions are plotted in Figures 7.8(e) to (h).

Example 7.8 (Twin dragon wavelet system). A classic example of a 2-dimensional wavelet system is the twin dragon

wavelet system. This system is orthonormal. The dilation matrixM is given by

M =

[
1 −1
1 1

]
.
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Figure 7.6: Separable Haar wavelet system. (a) Scaling and (b), (c), (d) wavelet functions.
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Figure 7.7: Separable Le Gall 5/3 wavelet system. Primal (a) scaling and (b), (c), (d) wavelet functions. Dual (e)

scaling and (f), (g), (h) wavelet functions.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



7.8. WAVELET SYSTEMS 331

−3
−2

−1
 0

 1
 2

 3−3
−2

−1
 0

 1
 2

 3

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

(a)

−3 −2 −1  0  1  2  3  4−3
−2

−1
 0

 1
 2

 3

−1
−0.5

 0
 0.5

 1
 1.5

 2

(b)

−3
−2

−1
 0

 1
 2

 3−3
−2

−1
 0

 1
 2

 3
 4

−1
−0.5

 0
 0.5

 1
 1.5

 2

(c)

−3 −2 −1  0  1  2  3  4−3
−2

−1
 0

 1
 2

 3
 4

−1.5
−1

−0.5
 0

 0.5
 1

 1.5
 2

 2.5

(d)

−4 −3 −2 −1  0  1  2  3  4−4
−3

−2
−1

 0
 1

 2
 3

 4

−0.5

 0

 0.5

 1

 1.5

 2

(e)

−3 −2 −1  0  1  2  3  4−4
−3

−2
−1

 0
 1

 2
 3

 4

−1.5
−1

−0.5
 0

 0.5
 1

 1.5
 2

 2.5

(f)

−4 −3 −2 −1  0  1  2  3  4−3
−2

−1
 0

 1
 2

 3
 4

−1.5
−1

−0.5
 0

 0.5
 1

 1.5
 2

 2.5

(g)

−3 −2 −1  0  1  2  3  4−3
−2

−1
 0

 1
 2

 3
 4

−2
−1.5

−1
−0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3

(h)

Figure 7.8: Separable CDF 9/7 wavelet system. Primal (a) scaling and (b), (c), (d) wavelet functions. Dual (e) scaling

and (f), (g), (h) wavelet functions.
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Figure 7.9: Twin dragon set.

(a) (b)

Figure 7.10: Twin dragon wavelet system. (a) Scaling and (b) wavelet functions.

(Note that |detM|= 2.) The scaling function φ satisfies the refinement equation

φ(t) = φ(Mt)+φ(Mt− [1 0 ]T ).

The wavelet function ψ can be expressed in terms of the scaling function as

ψ(t) = φ(Mt)−φ(Mt− [1 0 ]T ).

The scaling function φ can be shown to be

φ(t) = χS(t),

where

S =

{
∑
n∈N

an

(
1− j
2

)n
: {an}n∈N ∈ {0,1}N

}
.

The set S is plotted in Figure 7.9. The boundary of the set S is a fractal curve.

The solution of a refinement equation is highly sensitive to the particular choice of dilation matrix. To illustrate

this point, we consider another wavelet system with scaling and wavelet equations that are identical to those of the

previous example, except for a different choice of dilation matrix.
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Figure 7.11: Haar-like wavelet system. (a) Scaling and (b) wavelet functions.

Example 7.9 (Haar-like wavelet system). The dilation matrixM is given by

M =

[
1 1

1 −1

]
.

(Note that |detM|= 2.) The scaling function φ satisfies the refinement equation

φ(t) = φ(Mt)+φ(Mt− [1 0 ]T ).

The wavelet function ψ can be expressed in terms of the scaling function as

ψ(t) = φ(Mt)−φ(Mt− [1 0 ]T ).

The functions φ and ψ are plotted in Figure 7.11. Observe that the scaling and wavelet equations here are identical to

those of the previous example, except for a different choice of dilation matrix. This different choice of dilation matrix,

however, clearly has a very profound impact on the form of the scaling and wavelet functions.

7.9 Relationship Between Wavelets and Filter Banks

Consider the M-dilation MRA {Vp}p∈Z with |detM| = m and the wavelet spaces {Wk,p}(k,p)∈{1,2,...,m−1}×Z. Suppose

that we have a function f ∈Vp. Since f ∈Vp, f has an expansion in terms of the basis of Vp given by

f (t) = ∑
n∈ZD

ap[n]φp,n(t). (7.3)

Furthermore, as Vp =Vp+1⊕ (⊕m−1
k=1Wk,p+1), we can also expand f in terms of the bases of Vp+1 and {Wk,p+1}m−1k=1 to

obtain

f (t) = ∑
n∈ZD

ap+1[n]φp+1,n(t)+
m−1
∑
k=1

∑
n∈ZD

bk,p+1[n]ψk,p+1,n(t) (7.4)

(i.e., f is the sum of functions from Vp+1 and each of {Wk,p+1}m−1k=1 ). Thus, we have two different representations of

f . One might wonder if there exists a simple technique for computing (7.3) from (7.4) and vice versa. In other words,

given ap, we would like to be able to determine ap+1 and {bk,p+1}m−1k=1 ; or given ap+1 and {bk,p+1}m−1k=1 , we would like

to be able to determine ap. Fortunately, there is a very elegant technique for accomplishing exactly this. Just like in

the univariate case, we use a UMD filter bank, as shown in Figure 7.12. This is the so calledMallat algorithm in the

multivariate context.
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Figure 7.12: Computational structure associated with the Mallat algorithm.

7.10 Properties of Scaling Function

Due to the importance of scaling functions, we are interested in some of the properties that they possess. Some of the

key properties are given by the theorem below.

Theorem 7.11 (Properties of scaling function). Let φ be a compactly supported M-refinable function in L2(RD) with
nonvanishing zeroth-order moment µ0. Then, we have

∑
k∈ZD

φ(t− k) = µ0,

φ̂(2πk) = 0 for all k ∈ ZD \{0},
ĉ(0) = |detM|1/2 , and

ĉ(2πM−T k) = 0 for all k ∈N(MT )\{0}.

Proof. Since φ̂ and ĉ are continuous, the Fourier transform of the scaling equation must hold at every point. Thus, we

can write

φ̂(0) = |detM|−1/2 ĉ(0)φ̂(0).

Since, by assumption, φ̂(0) 6= 0, the preceding equation implies

ĉ(0) = |detM|1/2 .

As ĉ(0) = |detM|1/2 and ĉ is 2πI-periodic, we have

ĉ(2πk) = |detM|1/2 for all k ∈ ZD.

Substituting ω = 2π(MT )Nk into the Fourier transform of the scaling equation, we obtain

φ(2π(MT )Nk) = |detM|−1/2 ĉ(M−T [2π(MT )Nk])φ̂(M−T [2π(MT )Nk])

= |detM|−1/2 ĉ(2π(MT )N−1k)φ̂(2π(MT )N−1k)

= |detM|−1/2 ĉ(0)φ̂(2π(MT )N−1k)

= φ̂(2π(MT )N−1k).

(In the above simplification, we used the fact that ĉ is 2πI-periodic and (MT )N−1k ∈ ZD.) Repeating the above

argument N−1 times, we obtain

φ(2π(MT )Nk) = φ̂(2πk).
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Now, we take the limit of both sides of the preceding equation as N→ ∞, yielding

lim
N→∞

φ̂(2π(MT )Nk) = φ̂(2πk).

Since
∣∣detMT

∣∣ > 1 and M dilates in every dimension, as N → ∞,
∥∥2π(MT )Nk

∥∥→ ∞ for k 6= 0. Moreover, from the

Riemann-Lebesgue lemma, lim‖ω‖→∞ φ̂(ω) = 0. Thus, we have

φ̂(2πk) = 0 for all k ∈ ZD \{0}.

By definition, φ̂(0) = µ0. So, we have

φ̂(2πk) = µ0δ [k].

Using the Poisson summation formula, we have

∑
k∈ZD

φ(t− k) = ∑
k∈ZD

φ̂(2πk)e j2πkT t

= ∑
k∈ZD

φ̂(0)δ [k]e j2πkT t

= φ̂(0)

= µ0.

Let N(φ) , {ω ∈Rd : φ̂(ω +2πk) = 0 for all k ∈ZD}. Since φ is compactly supported in L2(RD), {φ(·−k)}k∈ZD

is a Riesz basis if and only if N(φ) is the empty set. Let ω ∈ N(MT ) \ {0}. There must be some β ∈ ZD such that

φ̂(γ) 6= 0 for γ = 2πβ +2π(MT )−1ω . Thus, in the neighbourhood of γ , 1/φ̂(γ) is well defined, and we rearrange the

Fourier transform of the scaling equation as

φ̂(MT γ) = |detM|−1/2 ĉ(γ)φ̂(γ)⇒
ĉ(γ) = |detM|1/2 φ̂(MT γ)/φ̂(γ).

Now, we make a few key observations. First, we have

MT γ = MT (2πβ +2π(MT )−1ω) = 2πMTβ +2πω ∈ 2πZD \{0}.
Thus, φ̂(MT γ) = 0. Furthermore, since ĉ is 2πI-periodic, ĉ(γ) = ĉ(2π(MT )−1ω). From these observations, it then

follows that

ĉ(2π(MT )−1ω) = 0 for all ω ∈N(MT )\{0}.

7.11 Order of Approximation

As we saw in the univariate case, the approximation properties of scaling functions are of great practical interest. In

the multivariate case, we have the following result concerning the approximation accuracy of scaling functions.

Theorem 7.12 (Approximation accuracy). Let φ be an M-refinable scaling function with |detM|= m and the scaling

equation coefficient sequence c. Let {ψ̃q}m−1q=1 denote the corresponding dual wavelet functions with the wavelet

equation coefficient sequences {d̃q}m−1q=1 . Suppose that φ̂ and { ˆ̃ψq}m−1q=1 are η − 1 times differentiable. Then, the

following statements are equivalent:

1. φ has approximation order η;

2. linear combinations of {φ(·− k)}k∈ZD can locally reproduce polynomials of degree less than η;

3. φ̂ has a η th order zero at 2πk for all k ∈ ZD \{0};
4. ĉ has a η th order zero at 2πM−T k for all k ∈N(MT )\{0}; and
5. for q ∈ {1,2, . . . ,m−1}, ψ̃q has all of its moments of order less than η vanish.
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7.12 Additional References

Some additional references related to topics in this chapter include: [1, 2, 3, 4, 5, 6, 7, 8].

7.13 Problems

7.1 Let m ∈ Z, m ≥ 2. Let φ (1D)(t) be an m-refinable function defined on R with refinement mask c. Now, define

φ([ t0 t1 ]T ) = φ (1D)(t0)φ
(1D)(t1). (That is, φ is a function defined on R2.) Show that φ is M-refinable with

M = mI2 (where I2 denotes the 2×2 identity matrix).
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Chapter 8

Geometry Processing Preliminaries

8.1 Introduction

As digital computing devices have become more powerful, the complexity of the datasets processed with these devices

has also increased. First came digital audio, then digital imagery, and then digital video. More recently, we have seen

the rise of digital geometry, that is, digital representations of geometric objects such as polyhedra and surfaces. Digital

geometry processing deals with the representation and manipulation of geometric objects in digital form. Digital

geometry processing has applications in many diverse areas, including: multimedia, animation, gaming, biomedical

computing, computer-aided design and manufacturing, geometric modelling, finite element analysis, computational

fluid dynamics, and scientific visualization.

In the case of traditional signal processing, signals are essentially functions defined on a Euclidean domain Rn.

For example, an audio signal is a function defined on R, where the domain of the function corresponds to time. An

image signal is a function defined on R2, where the domain of the function corresponds to horizontal and vertical

position. A video signal can be viewed as a function defined on R3, where the domain of the function corresponds

to horizontal position, vertical position, and time. In the case of geometry processing, the signals are not functions.

Rather, the signals are typically what are known as manifolds (with or without boundaries). In the sections that follow,

we present some fundamentals relevant to geometry processing and introduce the formal definition of a manifold.

8.2 Linear Algebra

To begin, we first introduce some basic concepts from linear algebra.

Definition 8.1 (Cross product). The cross product of two vectors v= (v1,v2,v3) and w= (w1,w2,w3) in R3, denoted

v×w, is defined as

v×w = (v2w3− v3w2,v3w1− v1w3,v1w2− v2w1). (8.1)

The formula (8.1) for the cross product can be written in a more easily remembered form as

v×w = det




i j k

v1 v2 v3
w1 w2 w3


 ,

where i, j, and k denote unit vectors in the x, y, and z directions, respectively.

Theorem 8.1 (Properties of cross product). The cross product in R3 has the following properties:

1. v×w =−w× v; and

2. ‖v×w‖= ‖v‖‖w‖sinθv,w, where θv,w is the angle between the vectors v and w.
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For v,w in R3, v×w⊥ v and v×w⊥ w.

Example 8.1. Find a vector u ∈ R3 that is orthogonal to both v = (1,2,3) and w = (1,−2,1).

Solution. The cross product v×w is orthogonal to both v and w. We have

v×w = (1,2,3)× (1,−2,1) = det



i j k

1 2 3

1 −2 1




= i(2+6)− j(1−3)+ k(−2−2) = 8i+2 j−4k

= (8,2,−4).

Definition 8.2 (Affine combination). An affine combination of vectors v1,v2, . . . ,vn in a vector spaceV over the field

F is an expression of the form

n

∑
k=1

akvk where
n

∑
k=1

ak = 1,

and a1,a2, . . . ,an ∈ F (i.e., an affine combination is a linear combination for which the sum of the coefficients is one).

Definition 8.3 (Affine hull). The affine hull of X ⊂Rn, denoted affX , is the intersection of all hyperplanes in Rn that

contain X .

Equivalently, the affine hull of X ⊂ Rn is the set of all affine combinations of elements in X . The affine hull of a

line segment is a line. The affine hull of a planar polygon is a plane. The affine hull of four points that are not coplanar

is R3.

Definition 8.4 (Convex combination). A convex combination of vectors v1,v2, . . . ,vn in a real vector space V is an

expression of the form

n

∑
k=1

akvk where
n

∑
k=1

ak = 1 and ak ≥ 0.

(Note that ∑n
k=1 ak = 1 and ak ≥ 0 together imply that ak ∈ [0,1].)

A convex combination is simply an affine combination with nonnegative coefficients.

Definition 8.5 (Convex set). A subset X of Rn is said to be convex if, for every pair p,q of points in X , the line

segment [p,q] is completely contained in X .

An example of a convex set is shown in Figure 8.1, while an example of a nonconvex set is depicted in Figure 8.2.

Definition 8.6 (Convex hull). The convex hull of X ⊂Rn, denoted convX , is defined as the intersection of all convex

sets containing X (i.e., the smallest convex set that contains X).

Equivalently, the convex hull of X ⊂Rn is the set of all convex combinations of elements in X . The convex hull is

a subset of the affine hull. An example of the convex hull of a set of points in shown in Figure 8.3. The boundary of

convX is a convex polygon with vertices in X . The boundary of convX can be visualized in terms of an elastic band

stretched to encompass all of the points in X as shown in Figure 8.4. A point p ∈ convX that does not lie on any open

line segment joining two points in X called an extreme point (i.e., “corner”).

Consider a triangle T whose vertices v1,v2,v3 lie in the plane P in R3. The convex hull of T is the interior of the

triangle plus its boundary, while the affine hull of T is the entire plane P.
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Figure 8.1: Example of a convex set in R2.
Figure 8.2: Example of a nonconvex set in R2.

Figure 8.3: Example of the convex hull of a set

of points.

Figure 8.4: The elastic-band visualization of

the convex-hull boundary.
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Figure 8.5: Barycentric coordinate examples. (a) Barycentric coordinates with respect to points p0 and p1.

(b) Barycentric coordinates with respect to points p0, p1, and p2.

Theorem 8.2. Let v0,v1, . . . ,vm be m+1 linearly independent points in Rn (where, clearly, m≤ n). Every point in the

convex hull of v0,v1, . . . ,vm can be expressed uniquely as a convex combination of v0,v1, . . . ,vm. That is, every point
w in the convex hull of v0,v1, . . . ,vm has a unique representation of the form

w =
m

∑
k=0

akvk, where ak ∈ [0,1] and
m

∑
k=0

ak = 1. (8.2)

The {ak}k∈{0,1,...,m} in (8.2) are called the barycentric coordinates of w with respect to the points v0,v1, . . . ,vm.
Some examples of barycentric coordinates are shown in Figure 8.5.

8.3 Affine Transformations

Although linear transformations are extremely useful, a more general class of transformations, called affine transfor-

mations, is often of interest. An affine transformation is defined as follows.

Definition 8.7 (Affine transformation). A one-to-one and onto mapping T : Rn→ Rn that preserves the collinearity

of points (i.e., maps lines onto lines) is called an affine transformation.

Affine transformations include scalings, rotations, shears, and translations. Although every linear transformation

is an affine transformation, the converse is not true. For example, a translation is a transformation that is affine but not

linear.

Since affine transformations are of great importance, it is helpful to know some of their properties. Some of these

properties are given below.

Theorem 8.3. Every affine transformation T : Rn→ Rn can be described by an equation of the form

Txxx =AAAx+bbb,

where AAA is an n×n (real) matrix and bbb is an n-dimensional (real) column vector (i.e., an affine transformation can be

expressed as the composition of a linear transformation and a translation).
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Theorem 8.4. Affine transformations preserve convex sets.

A transformation T is said to preserve barycentric coordinates if, for all vk ∈ Rn and real numbers ai

T

(
m

∑
k=1

akvk

)
=

m

∑
k=1

akT (vk), whenever
m

∑
k=1

ak = 1.

Theorem 8.5. Affine maps in Rn preserve barycentric coordinates. Conversely, any one-to-one and onto transforma-

tion that preserves barycentric coordinates is an affine map.

8.4 Homogeneous Coordinates

A point in R3 can be represented in many ways (e.g., Cartesian coordinates, spherical coordinates, cylindrical co-

ordinates). Which representation is most convenient depends on the application at hand. Homogeneous coordinates

provide yet another way to represent a point. The homogeneous coordinates of a point p = (px, py, pz) in R3 is a 4-

tuple (qx,qy,qz,qw) satisfying qw 6= 0, and px = qx/qw, py = qy/qw, and pz = qz/qw. The homogeneous coordinates of

a point are not unique. If (px, py, pz, pw) is the homogeneous coordinates of a point, then so too is (kpx,kpy,kpz,kpw)
for any real k 6= 0. Two homogeneous coordinates represent same point if and only if one is a scalar multiple of other.

8.5 Homogeneous-Coordinate Transformations

When Cartesian coordinates are used along with 3×3 transformation matrices, translations and perspective projections

are problematic as they have no corresponding matrix representation. As we shall see, the situation is quite differ-

ent with homogeneous coordinates. As a matter of terminology, a transformation that operates on points expressed

in homogeneous coordinates is referred to as homogeneous-coordinate transformation. Homogeneous-coordinate

transformations are also commonly called “homogeneous transformations”, but this choice of terminology is a poor

one, since it conflicts with the standard mathematical definition of “homogeneous transformation”. Since homoge-

neous coordinates are a 4-tuple, homogeneous-coordinate transformations are associated with 4× 4 matrices. As it

turns out, every affine transformation (including translations), perspective projection, or composition thereof, can be

represented by a homogeneous-coordinate transformation matrix. The main benefit of the homogeneous representa-

tion is uniformity. All transformations of interest can be characterized by a matrix and the application/composition of

transformations is achieved by matrix multiplication.

8.6 Translation, Scaling, and Rotation

The homogeneous-coordinate transformation matrix T (d) that corresponds to a translation by d = (dx,dy,dz) is given
by

T (d) =




1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1


 .

Applying the above transformation to the point p, we obtain

T (d)




px

py

pz

1


=




1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1







px

py

pz

1


=




px +dx

py +dy

pz +dz

1


 .
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The homogeneous-coordinate transformation matrix T (s), with s = (sx,sy,sz), that corresponds to a scaling in the
x, y, and z directions by sx, sy, and sz, respectively, is given by

S(s) =




sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1


 .

Applying the above transformation to the point p = (px, py, pz), we obtain

S(s)




px

py

pz

1


=




sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1







px

py

pz

1


=




sxpx

sypy

szpz

1


 .

The homogeneous-coordinate transformation matrix Rz(θ) that corresponds to a rotation of θ about the z axis is

given by

Rz(θ) =




cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1


 .

Applying the above transformation to the point (px, py, pz), we obtain

Rz(θ)




px

py

pz

1


=




cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1







px

py

pz

1


=




px cosθ − py sinθ
px sinθ + py cosθ

pz

1


 .

The homogeneous-coordinate transformation matrix Rx(θ) that corresponds to a rotation of θ about the x axis is

given by

Rx(θ) =




1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1


 .

Applying the above transformation to the point (px, py, pz), we obtain

Rx(θ)




px

py

pz

1


=




1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1







px

py

pz

1


=




px

py cosθ − pz sinθ
py sinθ + pz cosθ

1


 .

The homogeneous-coordinate transformation matrix Ry(θ) that corresponds to a rotation of θ about the y axis is

given by

Ry(θ) =




cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1


 .

Applying the above transformation to the point (px, py, pz), we obtain

Ry(θ)




px

py

pz

1


=




cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1







px

py

pz

1


=




px cosθ + pz sinθ
py

−px sinθ + pz cosθ
1


 .
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Figure 8.6: Orthographic projection.

The composition of any number of rotations can always be represented as a single rotation about an arbitrary axis.

The homogeneous-coordinate transformation matrix R(a,θ) that corresponds to a rotation of θ about the axis in the

direction of the unit vector a = (ax,ay,az) is given by

R(a,θ) =




a2x + cθ (1−a2x) axay(1− cθ )−azsθ axaz(1− cθ )+aysθ 0

axay(1− cθ )+azsθ a2y + cθ (1−a2y) ayaz(1− cθ )−axsθ 0

axaz(1− cθ )−aysθ ayaz(1− cθ )+axsθ a2z + cθ (1−a2z) 0

0 0 0 1


 ,

where cθ = cosθ and sθ = sinθ .

8.7 Orthographic Projection

Orthographic projection is illustrated in Figure 8.6. The homogeneous-coordinate transformation matrix P that corre-

sponds to an orthographic projection onto the image plane z = 0 is given by

P =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


 .

Applying the above transformation to the point (px, py, pz), we obtain

P




px

py

pz

1


=




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1







px

py

pz

1


=




px

py

0

1


 .

More complicated orthographic projections can be constructed by combining the above transformation with scaling,

rotation, and translation to move the image plane and center of projection wherever they are desired.

8.8 Perspective Projection

Perspective projection is illustrated in Figure 8.7. The homogeneous-coordinate transformation matrix P that corre-

sponds to a perspective projection, with the origin as the center of the projection and z= 1 as the image plane, is given

by

P =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0


 .

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



346 CHAPTER 8. GEOMETRY PROCESSING PRELIMINARIES

y

z

x
Image

Near

Far

Plane
Clipping
Plane

Clipping
Plane

Eye

Figure 8.7: Perspective projection.

Figure 8.8: Mapping the viewing frustum into a cube.

Applying the above transformation to the point (px, py, pz), we obtain

P




px

py

pz

1


=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0







px

py

pz

1


=




px

py

pz

pz


∼




px/pz

py/pz

1

1


 .

More complicated perspective projections can be constructed by combining the above transformation with scaling,

rotation, and translation to move the image plane and center of projection wherever they are desired.

Perspective projection can always be decomposed into two separate transformations, namely, a warping followed

by orthographic projection (each of which has a homogeneous-coordinate transformation matrix representation). The

warping maps the viewing frustum associated with perspective projection into a cube as shown in Figure 8.8.

8.9 Transformations as a Change in Coordinate System

For a transformation matrix T and a point p expressed as a column vector, consider the product T p. The product T p

can be interpreted in two distinct but equivalent ways:

1. As the transformation of a point: The product T p is the new point produced by applying the transformation T

to the point p.

2. As the transformation of a coordinate system: The product T p is the new point obtained by applying a transfor-

mation to the coordinate-system axes and then interpreting p relative to these new coordinate-system axes.

Although the first interpretation is, perhaps, the most straightforward, the second interpretation is often very useful in

computer graphics applications. Note: In the case that T above is a composite transformation T = TnTn−1 · · ·T1, recall
that T−1 = T−11 T−12 · · ·T−1n .

8.10 Quaternions

The quaternions, denoted H, can be viewed as an extension of complex numbers, and were discovered by William

Rowan Hamilton in 1843. Quaternions are extremely useful for representing rotations in 3-D, and have application in
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areas such as computer graphics and robotics. A quaternion q is a number of the form

q = w+ xi+ y j+ zk, where w,x,y,z ∈ R and i2 = j2 = k2 = i jk =−1.

A quaternion q = w+ xi+ y j+ zk can be viewed as consisting of a scalar part, namely w, and a vector part with

components in the i, j, and k directions, namely (x,y,z). The quaternion q=w+xi+y j+zk with the scalar part s=w

and vector part v = (x,y,z) is denoted as (s,v). For quaternions, addition is defined as

(s1,v1)+(s2,v2) = (s1 + s2,v1 + v2).

Multiplication is defined as

(s1,v1)(s2,v2) = (s1s2− v1 · v2,s1v2 + s2v1 + v1× v2).

The conjugate of q = (s,v), denoted q∗, is defined as q∗ = (s,−v). The norm of q is defined as ‖q‖ =
√
qq∗. The

multiplicative inverse of q, denoted q−1, is given by q∗/‖q‖2. Addition is commutative. Multiplication is not com-

mutative.

A rotation by the angle θ about the axis v (using a right-hand rule) can be represented by the unit-norm quaternion

(
cosθ/2, 1

‖v‖vsinθ/2
)

.

Quaternion multiplication then corresponds to rotation matrix multiplication. Let q1 and q2 be quaternions associated

with rotations R1 and R2, respectively. Then, the quaternion product q2q1 corresponds to the rotation R2R1 (i.e.,

R1 followed by R2). Let v1 and v2 denote points on the unit sphere in R3. The quaternion quotient (0,v2)/(0,v1)
corresponds to a rotation along the great circle arc from v1 to v2.

8.11 Topological Spaces

In geometry processing, we typically deal with manifolds. Before we can present the definition of a manifold, however,

we must first introduce some concepts related to topological spaces.

Definition 8.8 (Topology). A topology on a set X is a set T of subsets of X satisfying:

1. Both /0 and X belong to T .

2. The union of any collection of sets from T also belongs to T .

3. The intersection of any finite collection of sets from T belongs to T .

The sets in T will be called the open sets of X .

Basically, a topology on a set X specifies which points in X are close to one another (i.e., which points are

neighbours). The notion of a topology leads to the concept of a topological space as defined below.

Definition 8.9 (Topological space). A topological space is a set X with a topology T (on X), and is denoted as (X ,T ),
or simply X when T is clear from the context.

A metric space is a topological space, since a metric induces a topology on a set. Not all topologies can be

described in terms of a metric, however. So, not all topological spaces are metric spaces.

In the case of a metric space, a metric serves as the starting point for defining a topology on a set. In the more

general topological-space setting, the topology on a set X is specified directly by identifying all open subsets of X .

Then, closed sets and neighbourhoods are defined in terms of open sets. Other concepts (such as closure, boundary,

and interior) then follow.

More formally, we define a closed set and neighbourhood as follows.

Definition 8.10 (Closed set). A subset S of a topological space X is said to be closed if X \S is open.
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Definition 8.11 (Neighbourhood). A subset S of a topological space X is said to be a neighbourhood of a point p∈ X
if there exists an open setU such that p ∈U ⊂ S (i.e., S contains an open set that contains the point p).

A type of topological space that is of particular interest is the one given in the following definition.

Definition 8.12 (Hausdorff space). A topological space X is said to be a Hausdorff space if any two distinct points

of X have disjoint neighbourhoods.

Every metric space is a Hausdorff space. Not every topological space is a Hausdorff space, however. Since

topological spaces that are not Hausdorff have very strange topologies, we are usually only interested in Hausdorff

spaces.

Just to show that topological spaces that are not Hausdorff do exist, we provide a simple example.

Example 8.2 (Trivial topology). Let X be any nonempty set, and let T be the set of subsets of X consisting of /0 and

X (i.e., T = { /0,X}). (a) Show that T is a topology on X , and hence (X ,T ) is a topological space. (Incidentally, this
particular choice of T is known as the trivial topology.) (b) Show that (X ,T ) is not a Hausdorff space.

Solution. (a) To show that T is a topology, we must show that T meets the three requirements of a topology (as

identified in Definition 8.8). Trivially, we have that /0 ∈ T and X ∈ T . Now, we consider all possible collections (with

at least two elements) of sets from T . Clearly, there is only one such collection, namely, { /0,X}. In this case, we

have /0∪X = X ∈ T . So, the union of any collection of elements in T is also in T . Next, we consider all possible

finite collections (with at least two elements) of sets from T . Again, clearly, there is only one such collection, namely,

{ /0,X}. In this case, we have /0∩X = /0 ∈ T . So, the intersection of any finite collection of elements in T is also in T .

Thus, T is a topology on X .

(b) For any p ∈ X , X ∈ T is a neighbourhood of p. Furthermore, X is the only neighbourhood of p (since the

only other element in T is /0 and /0 cannot be the neighbourhood of any point). Since p was chosen arbitrarily, this

means that each point in X has exactly one neighbourhood and this neighbourhood is X . Thus, for any p,q ∈ X , every

(i.e., the only one) neighbourhood of p has a nonempty intersection with every (i.e, the only one) neighbourhood of

q, which violates the Hausdorff condition. Therefore, (X ,T ) is not a Hausdorff space.

In the context of topological spaces, an important type of transformation is a homeomorphism, which is defined

as follows.

Definition 8.13 (Homeomorphism). A mapping T : X → Y that is one-to-one and onto, where T and T−1 are both

continuous, is called a homeomorphism.

In simple terms, a homeomorphism can be thought of as an elastic deformation (i.e., stretching/compressing,

bending/twisting, but no cutting/tearing/splitting/joining). Two spaces X and Y are said to be homeomorphic if there

exists a homeomorphism T : X → Y . Two topological spaces X and Y are equivalent, denoted X = Y , if they are

homeomorphic.

Example 8.3. LetC andD denote the surfaces of the coffee cup and donut, respectively, as shown in Figure 8.9. Since

C can be transformed into D (or vice versa) by an elastic deformation,C and D are homeomorphic. Thus,C =D. That

is, a coffee cup and donut are topologically equivalent. Of course, this leads to the joke that a mathematical topologist

cannot hold a job at the local donut shop, since he/she cannot tell the difference between a coffee cup and a donut.

8.12 Manifolds

Having introduced various concepts related to topological spaces, we can now define a manifold.

Definition 8.14 (Manifold). An n-dimensional manifold (called an n-manifold) is a Hausdorff space M such that

each point p ∈ M has a neighbourhood homeomorphic to the open n-dimensional unit disc Un = {(x1,x2, . . . ,xn) ∈
Rn : ∑n

k=1 x
2
k < 1}.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



8.13. REPRESENTATIONS OF SURFACES 349

(a) (b)

Figure 8.9: Example of homeomorphic topological spaces. (a) Coffee cup and (b) donut.

Definition 8.15 (Manifold with boundary). An n-dimensional manifold with boundary (called an n-manifold with

boundary) is a Hausdorff space M such that each point p ∈M has a neighbourhood homeomorphic to either the open

n-dimensional unit discUn or the open n-dimensional unit half-discUn
+ = {(x1,x2, . . . ,xn) : ∑n

k=1 x
2
k < 1 and x1 ≥ 0}.

A 2-manifold is called a surface. An n-manifold (with or without boundary) locally has the same properties as

Rn. For example, an infinitesimally small bug crawling along a 2-manifoldM could not distinguishM from the plane

R2 if the range of the bug’s vision were restricted to only its local neighbourhood. Examples of 1-manifolds include

a line and circle. Some examples of 2-manifolds are shown in Figure 8.10. Some examples of 3-manifolds are shown

in Figure 8.11. An example of an n-manifold is Rn. In geometry processing, manifolds play a crucial role, since many

geometric objects of practical interest are manifolds. Some examples of non-manifolds are shown in Figure 8.12.

A manifold is said to be orientable if one can consistently define a clockwise (or equivalently counterclockwise)

direction for all loops (i.e., closed paths) in the manifold. We are interested in the orientability of surfaces (i.e., 2-

manifolds). Most surfaces encountered in the physical world are orientable. Examples of orientable surfaces include:

a sphere, plane, torus, and the surface of a polyhedron. An example of a non-orientable surface is a Mobius strip. An

example of an orientable and non-orientable manifold is shown in Figure 8.13.

The signals dealt with in geometry processing are most commonly manifolds. In traditional signal processing,

a signal is a function, which is a vector in an inner-product space. In geometry processing, however, a signal is a

manifold, which is a topological space. In most practical applications, the n-manifold M (with or without boundary)

of interest is imbedded into a Euclidean space Rd , where n≤ d (i.e.,M⊂Rd). Generally speaking, 2- and 3-manifolds

(with or without boundaries) tend to be of interest most frequently. Since we are interested in subdivision surfaces,

we are not surprisingly interested in surfaces (i.e., 2-manifolds) with or without boundaries.

8.13 Representations of Surfaces

To facilitate the processing of surfaces (i.e., 2-manifolds), we need a way to define them. Numerous ways in which to

specify a surface exist, each with its own advantages and disadvantages.

A surface can be defined implicitly. That is, a surface can be defined to consist of all of the points (x,y,z) satisfying
a particular equation

f (x,y,z) = 0.

Example 8.4 (Implicit representation of a sphere). The surface of a sphere with radius ρ and center at the origin

consists of the points {(x,y,z) ∈ R3 : x2 + y2 + z2 = ρ2}.
A surface can be defined parametrically. That is, a surface can be defined to consist of the points in the range of a

vector-valued function

p(u,v) = ( fx(u,v), fy(u,v), fz(u,v)).
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(a)
(b)

(c)

(d)
(e) (f)

Figure 8.10: Examples of 2-manifolds with or without boundaries. (a) A sphere. (b) A torus. (c) The surface of a

rabbit. (d) The surface of a spacesuit. (e) The surface of a telescope dish. (f) A simple surface.
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(a)
(b)

(c)

(d)
(e)

Figure 8.11: Examples of 3-manifolds with boundaries. (a) A ball (i.e., a sphere and its interior). (b) A toroid (i.e., a

torus and its interior). (c) A rabbit and its interior. (d) A spacesuit and its interior. (e) A telescope dish and its interior.

(a) (b)
(c)

Figure 8.12: Examples of non-manifolds. (a) Three planar quadrilaterals sharing a common edge. (b) Two cubes

intersecting at a single shared vertex. (c) Two surfaces touching at a single point.
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(a)
(b)

Figure 8.13: Orientability example. (a) A torus, which is orientable. (b) A Mobius strip, which is not orientable.

Example 8.5 (Parametric representation of a sphere). The surface of a sphere with radius ρ and center at the origin

consists of the points in the range of the (vector-valued) function p(u,v) = (ρ cos(u)cos(v),ρ sin(u)cos(v),ρ sin(v)),
where u ∈ [0,2π),v ∈ [0,π].

Often, implicit and parametric representations are not the most convenient to utilize. Yet another approach is to

define a surface (or an approximation thereof) using a polygon mesh, which we will consider in detail later.

8.14 Parametric Continuity

Often, we wish to quantify the smoothness of a surface. Parametric continuity is a measure of the smoothness of a

surface. The parametric form of a surface S (imbedded in R3) is given by p(u,v) =
[
x(u,v) y(u,v) z(u,v)

]T
. The

surface S is traced out by p as the parameters u and v are varied over their domain. The surface S is said to be Cn

continuous if all partial derivatives of p of order n or less exist and are continuous. A tangent plane to S is determined

by the first-order partial derivatives

∂ p(u,v)
∂u =

[
∂x(u,v)

∂u
∂y(u,v)

∂u
∂ z(u,v)

∂u

]T
and

∂ p(u,v)
∂v =

[
∂x(u,v)

∂v
∂y(u,v)

∂v
∂ z(u,v)

∂v

]T
.

The parameterization of a surface is not unique. Different parameterizations of the same surface can have different

parametric continuity. That is, parametric continuity depends not only on the surface being parameterized, but also on

the parameterization itself.

8.15 Geometric Continuity

Geometric continuity is a measure of the smoothness of a surface that is independent of any surface parameterization.

A surface is G0 continuous if it does not have any jumps (i.e., is continuous). A surface is G1 continuous if it has a

continuously varying tangent plane. A surface isG2 continuous if it has continuously varying curvature. A polyhedral

surface isG0 continuous but (typically) notG1 continuous (since the tangent plane does not vary continuously between

faces of a polyhedron). Parametric continuity is a stronger form of continuity than geometric continuity. That is, Cn

continuity implies Gn continuity (but Gn continuity does not necessarily imply Cn continuity).

8.16 Polygon Meshes

In practice, one very useful representation scheme for surfaces is the polygon mesh, as defined below.
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(b)

Figure 8.14: Example of a polygon mesh. (a) Three-dimensional view of the mesh. (b) Topology of the mesh.

Definition 8.16 (Polygon mesh). A polygon mesh is a collection of vertices, edges, and (polygonal) faces, and an

incidence relationship amongst them. An edge connects two vertices, and a face is a closed sequence of edges.

A polygon mesh consists of two types of information:

1. geometric information: the positions of the vertices (in the Euclidean space in which the mesh is imbedded);

and

2. topologic (i.e., connectivity) information: how the vertices are connected together to form edges and faces.

In practice, the faces in a mesh are most commonly all triangles, all quadrilaterals, or a mixture of triangles and

quadrilaterals. A polygon mesh with all triangle faces is called a triangle mesh. A polygon mesh with all quadrilateral

faces is called a quadrilateral mesh (or quad mesh). A polygon mesh can be manifold or non-manifold. Also, it can

be orientable or non-orientable.

Example 8.6. An example of a triangle mesh is shown in Figure 8.14. A three-dimensional view of the mesh is shown

in Figure 8.14(a), and the topology of the mesh is shown in Figure 8.14(b). The mesh is manifold and orientable, and

consists of 7 vertices, 12 edges, and 6 (triangle) faces. The face f0, for example, consists of the vertices v0,v1,v6 and
the edges e0,e7,e6.

Example 8.7. Some more exotic examples of polygon meshes are shown in Figure 8.15.

The valence of a vertex is the number of edges incident on that vertex. The 1-ring of a vertex v is the set of all

vertices in the mesh that are directly connected by an edge to v. The 1-ring is illustrated pictorially in Figure 8.16. In

the figure, the vertices in the 1-ring of the vertex v are marked by dots. The valence of a face is the number of edges

incident on that face (or equivalently, the number of vertices incident on that face). For example, a triangle face has a

valence of three, while a quadrilateral face has a valence of four.

It is important to understand that a mesh is not determined by either its geometry or topology alone. The character

of a mesh is determined jointly by both its geometry and topology. Two meshes with identical geometry but distinct

topologies can have radically different appearances. Similarly, two meshes with identical topology but distinct geome-

tries can also be radically different in appearance. An example of two quadrilateral meshes with the same geometry

but different topologies is shown in Figure 8.17. An example of two quadrilateral meshes with the same topology but

different geometries is shown in Figure 8.18.
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Figure 8.15: Examples of polygon meshes.
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v

Figure 8.16: The 1-ring of a vertex.

v7v6

v0 v1

v2 v3

v5v4

v2

v6 v7

v0 v1

v3

v4 v5

Figure 8.17: An example of two quadrilateral meshes with the same geometry but different topologies.

v2

v6 v7

v0 v1

v3

v4 v5 v2 v6 v7 v3

v0 v4 v5 v1

Figure 8.18: An example of two quadrilateral meshes with the same topology but different geometries.
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Vertex vertices[numVertices]; // vertex array

Face faces[numFaces]; // face array

int faceValence; // number of vertices per face

struct Face {

int vertexIndexes[faceValence]; // indexes of vertices for this face

};

Figure 8.19: Definition of naive data structure.

v0 v1

= (−1,1,−1)

= (1,−1,−1)= (−1,−1,1)

v2

= (1,1,1)
v3

f2

f0

f1

(a)

Vertex Array

Array Array

Index Element

0 (-1,-1,1)

1 (1,-1,-1)

2 (-1,1,-1)

3 (1,1,1)

Face Array

Array Array

Index Element

0 0, 1, 3

1 1, 2, 3

2 0, 3, 2

(b)

Figure 8.20: Pictorial view of naive data structure. (a) A mesh and (b) the corresponding data structure.

8.17 Data Structures for Polygon Meshes

To use a polygon mesh in software, clearly some data structure is needed to represent the mesh. Over the years,

numerous data structures have been proposed for representing meshes, each having its own advantages and disadvan-

tages. In the development of data structures for meshes, an important consideration is to what degree a data structure

allows for efficient algorithms. In this regard, it is important to note that adjacency queries are one of the most fre-

quent operations in most geometric algorithms. (An adjacency query simply finds the adjacent vertices/edges/faces to

a given vertex/edge/face.) For this reason, it is usually critical that adjacency queries be fast (i.e., requiring constant

time). In the sections that follow, we consider several data structures for polygon meshes.

8.17.1 Naive Data Structure

The simplest data structure for representing a polygon mesh is what we refer to as the naive data structure. With

this data structure, a mesh is represented using two arrays, namely, a vertex array and a face array. Edges are not

explicitly represented. Each entry in the vertex array holds the coordinates of a vertex in the mesh. Each entry in the

face array holds the indices in the vertex array of the vertices associated with a single face in the mesh (in, say, CCW

order). Pseudocode for the data structure is given in Figure 8.19. For a simple mesh, this data structure is illustrated

in Figure 8.20.

The main advantage of the naive data structure is its simplicity. Also, this representation may require less memory

than other approaches. Unfortunately, with the naive data structure, adjacency information is not readily accessible.

For example, to find a neighboring face of a given face f , we must scan through the face array looking for a face with

two vertices in common with f , which takes time that is linear in the number of faces (or vertices) in the mesh. Since

adjacency information is not readily available, geometric algorithms employing this data structure will be grossly

inefficient (in terms of execution time).
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struct Edge {

Vertex* pvt; // first vertex

Vertex* nvt; // second vertex

Face* pface; // first face (defined to be to left of directed line

// segment from first to second vertex)

Face* nface; // second face (defined as other face incident on edge)

Edge* pccw; // neighboring edge on first face in CCW direction

Edge* pcw; // neighboring edge on first face in CW direction

Edge* nccw; // neighboring edge on second face in CCW direction

Edge* ncw; // neighboring edge on second face in CW direction

};

Figure 8.21: Definition of winged-edge data structure.

edge

face

vertex

pface

nface
pvt

nccw

pcw pccw

nvt

ncw

Figure 8.22: Pictorial view of winged-edge data structure.

In practice, the naive data structure is rarely ever used, due to its inability to efficiently handle adjacency queries.

Instead, data structures that allow for more efficient access to adjacency information are employed.

8.17.2 Winged-Edge Data Structure

The next data structure for polygon meshes to be considered is the winged-edge data structure, proposed in [3]. This

data structure explicitly represents vertices, edges, and faces, with edges serving as the glue that holds vertices and

faces together. Because edges are explicitly represented and play such an important role in this data structure, it is

called an edge-based representation. Pseudocode for the winged-edge data structure is given in Figure 8.21. Also, a

diagram showing the structure associated with the small part of a mesh is shown in Figure 8.22. As can be seen from

the diagram, each edge points to two incident faces, two incident vertices, and four incident edges that share the same

faces and vertices (i.e., the four “wing” edges as they are called). In terms of memory cost, the structure requires 8

pointers per edge.

Relative to the naive data structure, the winged-edge data structure allows for much more efficient adjacency

queries. For example, the faces incident on a given edge can be found in constant time by dereferencing the corre-

sponding pface and nface pointers.

In an edge-based representation (such as the winged-edge data structure), the manner in which an edge is repre-

sented is extremely important. With the winged-edge data structure, an edge is represented in a very simple direct
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struct Edge {

HalfEdge e[2]; // pair of symmetric half-edges

};

struct HalfEdge {

int index; // index of half-edge in parent edge

HalfEdge* next; // next CCW half-edge around left face

Vertex* term; // terminal vertex

Face* left; // left face

};

Figure 8.23: Definition of half-edge data structure.

vertex

edge

face

e[0]

e[1]

e[0].left

e[1].left

e[1].next

e[0].next

e[1].term

e[0].term

Figure 8.24: Pictorial view of half-edge data structure.

manner as a single atomic entity. Consequently, the way in which an edge is represented is perfectly symmetric. Al-

though such symmetry might seem desirable at first glance, it is not. In fact, this symmetry often tends to complicate

algorithms.

The winged-edge data structure improves upon the naive data structure. In practice, however, the winged-edge

data structure is still not the most frequently used. Instead, other edge-based representations to be introduced shortly

tend to be employed more often.

8.17.3 Half-Edge Data Structure

One popular data structure for polygon meshes is the half-edge data structure described in [11], known by the name

face-edge (F-E) structure therein. The half-edge data structure is also referred to as a doubly-connected edge list

(DCEL) in [5, p. 31], although the original reference for the DCEL [10] describes a different data structure. The

half-edge data structure is another edge-based representation. Unlike in the case of the winged-edge data structure,

however, an edge is not represented as an atomic entity. Instead, an (undirected) edge is represented as pair of directed

edges that are oriented in opposite directions. Each of these directed edges is called a half edge. Pseudocode for

this data structure is given in Figure 8.23. Also, a diagram showing the structure associated with the small part of a

mesh is illustrated in Figure 8.24. In terms of memory cost, the data structure requires 6 pointers plus 2 bits (i.e., 2

one-bit integers) per edge. The data structure can accommodate, in an efficient manner, navigating around: 1) all of

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



8.18. FILE FORMATS FOR POLYGON MESHES 359

the edges incident on a face in the CCW direction; and 2) all of the faces incident on a vertex in CW direction. (Note

that moving in the opposite directions cannot be done efficiently without modifications to the data structure.)

As it turns out, representing edges as pairs of directed edges has some significant practical benefits in terms of

algorithms. For example, a half edge can be used to uniquely identify a particular vertex or face in the mesh. That

is, one can employ the convention that a half edge is used to name the vertex at its terminus or the face on its left.

Edges (as opposed to half edges), however, cannot be used to uniquely identify vertices or faces in this manner. This

is due to the fact that one cannot speak meaningfully of the vertex at the terminus of an edge or the face to the left of

an edge, as an edge is perfectly symmetric and has no left/right side or origin/terminus. Also, because a half edge has

an orientation, this orientation can be used to simplify algorithms that must navigate around the mesh. For example,

instead of needing to convey an edge and a direction in which to move, one can simply indicate a half edge, since a

direction is implicit in the half edge itself.

Due to its numerous advantages, the half-edge data structure is used quite heavily in practice. Many soft-

ware applications and libraries utilize this data structure, including the Computational Geometry Algorithms Library

(CGAL) [4].

8.17.4 Quad-Edge Data Structure

Another popular data structure for polygon meshes is the quad-edge data structure, proposed in [8]. This data structure

is another example of an edge-based representation. Instead of representing each edge as an atomic entity, an edge is

represented as a set of two pairs of directed edges. One pair corresponds to edges in the mesh and one pair corresponds

to edges in the dual mesh. This allows the quad-edge data structure to represent the mesh and its dual simultaneously.

In effect, each edge belongs to four circular singly-linked lists, one for each of the two vertices and two faces incident

on the edge. Pseudocode for the data structure is given in Figure 8.25. Also, a diagram showing the structure for a

small part of a mesh is illustrated in Figure 8.26. In terms of memory cost, the data structure requires 8 pointers and

4 two-bit integers per edge. The data structure can accommodate, in an efficient manner, navigating around: 1) all of

the edges incident on a face in both the CCW and CW directions; and 2) all of the edges incident on a vertex in both

the CCW and CW directions.

Compared to the half-edge data structure, the quad-edge data structure has a higher memory cost, but allows for

more flexible navigation around elements in the mesh and simultaneous representation of the dual mesh. Conse-

quently, the half-edge data structure is probably preferable unless on one these additional functionalities is desired.

The quad-edge data structure is quite commonly used in practice. Some examples of software using this data struc-

ture include the Scape terrain-simplification software [6] and Dani Lischinski’s constrained Delaunay-triangulation

software [9].

8.18 File Formats for Polygon Meshes

Many different file formats are employed for the interchange of polygon mesh data. One commonly-used format is

the object-file format (OFF), which is discussed in the section that follows.

8.18.1 Object File Format (OFF)

The object-file format (OFF) is commonly used to interchange polygon mesh data. The format employs a very simple

scheme for encoding the geometry and topology of a polygon mesh, and also has provisions for including color and

normal information. In what follows, we provide an example illustrating the basics of the format.

Example 8.8 (Triangle mesh). The OFF format encoding of the triangle mesh shown in Figure 8.27(a) is given in

Figure 8.27(b).

Example 8.9 (Quadrilateral mesh). The OFF format encoding of the quadrilateral mesh shown in Figure 8.28(a) is

given in Figure 8.28(b).

Example 8.10 (Quadrilateral mesh). The OFF format encoding of the quadrilateral mesh shown in Figure 8.29(a) is

given in Figure 8.29(b).
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struct Edge {

QuadEdge* e[4]; // four quad-edges of edge

};

struct QuadEdge {

int index; // index of quad-edge in parent edge

QuadEdge* next; // next CCW quad-edge with same origin

void* data; // face or vertex

}

Figure 8.25: Definition of quad-edge data structure.

e[1]

e[3]

e[2]

e[0]

e[3].next

e[0].next

e[2].next

e[0].data

e[3].data

e[1].next

e[1].data

e[2].data

edge

vertex

face

Figure 8.26: Pictorial view of quad-edge data structure.
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= (−1,1,0)
v3

v4
= (0,0,1)

v0
= (−1,−1,0)

v1
= (1,−1,0)

= (1,1,0)
v2

(a)

OFF

5 4 0

-1 -1 0

1 -1 0

1 1 0

-1 1 0

0 0 1

3 0 1 4

3 1 2 4

3 2 3 4

3 0 4 3

(b)

Figure 8.27: Triangle mesh example. (a) The mesh and (b) its corresponding OFF file.

v1
= (0,−1,0)

v5
= (0,1,0)

v6
= (−1,1,−1)

v4
= (1,1,−1)

v2
= (1,−1,−1)= (−1,−1,−1)

v0

v7
= (−1,0,0)

v3
= (1,0,0)

= (0,0,1)
v8

(a)

OFF

9 4 0

-1 -1 -1

0 -1 0

1 -1 -1

1 0 0

1 1 -1

0 1 0

-1 1 -1

-1 0 0

0 0 1

4 0 1 8 7

4 1 2 3 8

4 8 3 4 5

4 7 8 5 6

(b)

Figure 8.28: Quadrilateral mesh example. (a) The mesh and (b) its corresponding OFF file.

v0 v2

= (−2,−1,−2)

= (−1,−2,−2)= (−2,−2,−1)
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v1
= (0,−1,0)
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v5
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v3
= (0,0,−1)

(a)

OFF

7 3 0

-2 -2 -1

0 -1 0

-1 -2 -2

0 0 -1

-2 -1 -2

-1 0 0

1 1 1

4 0 1 6 5

4 1 2 3 6

4 6 3 4 5

(b)

Figure 8.29: Quadrilateral mesh example. (a) The mesh and (b) its corresponding OFF file.
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8.19 Additional Reading

For a much more detailed and comprehensive treatment of many topics related geometry processing, the reader is

referred to the excellent books [2] and [1].
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8.20 Problems

8.1 For each of the following cases, determine whether the set S is convex:

(a) the points S belonging to a triangle and its interior;

(b) the points S belonging to the quadrilateral Q and its interior, where the vertices of Q in counterclockwise

(CCW) order are (0,0), (−1,1), (0,−1), (1,1);
(c) S = {(x,y,z) ∈ R3 : x2 + y2 + z2 = 1}; and
(d) S = {(x,y) ∈ R2 : x2 + y2 ≤ 1}.

8.2 Find a unit vector n that is perpendicular to the vectors v = (1,2,−1) and w = (−1,2,1).

8.3 Consider the product T of homogeneous-coordinate-transformation matrices given by

T =




π 0 0 0

0 π 0 0

0 0 π 0

0 0 0 1







1√
2

0 1√
2

0

0 1 0 0

− 1√
2

0 1√
2

0

0 0 0 1







1 0 0 π
0 1 0 −π
0 0 1 0

0 0 0 1


 .

(a) When T is viewed as a transformation applied to a point, determine the sequence of transformations (e.g.,

translations, rotations, scalings) to which T directly corresponds.

(b) When T is viewed as transformation applied to the coordinate system axes, determine the sequence of

transformations to which T directly corresponds.

(c) When T−1 is viewed as a transformation applied to a point, determine the sequence of transformations (e.g.,

translations, rotations, scalings) to which T−1 directly corresponds.

(d) When T−1 is viewed as transformation applied to the coordinate system axes, determine the sequence of

transformations to which T−1 directly corresponds.
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Chapter 9

Subdivision Surfaces and Subdivision

Wavelets

9.1 Introduction

As it turns out, the mathematical structure associated with wavelets, as discussed in earlier chapters, can be generalized

to handle geometric objects. This chapter examines topics related to this generalization.

9.2 Subdivision Surfaces

In many applications, polygon meshes are used to model surfaces. Modelling smooth surfaces with polygon meshes

is problematic, however. To obtain a reasonably good approximation of a smooth surface with a polygon mesh,

a very fine mesh with an extremely large number of faces is typically required. Subdivision solves this problem by

representing smooth surfaces in terms of a coarse mesh. Subdivision provides a set of well-defined rules for producing

successively refined versions of a mesh. Typically, these rules are chosen so that repeating the refinement process ad

infinitum produces, in the limit, a smooth (or mostly smooth) surface. A subdivision example is shown in Figure 9.1.

Subdivision is a general method for constructing a finer mesh from a coarser one, through the introduction of new

vertices as well as edges and faces. Or put another way, subdivision is essentially an approximation/interpolation

technique. The coarser mesh that serves as the starting point for subdivision is called a control mesh. The addition

of new vertices to a mesh requires modifications to both the topology (i.e., connectivity) and geometry (i.e., vertex

positions) of the mesh. For this reason, each subdivision scheme requires the specification of two rules:

1. a topologic refinement rule that describes how the connectivity of the mesh is to be modified in order to

incorporate the new vertices being added to the mesh; and

2. a geometric refinement rule that describes how the geometry of the mesh is to be changed in order to accom-

modate the new vertices being added (where these modifications may affect the position of previously-existing

vertices).

In practice, the refinement rules are applied repeatedly until a mesh of the desired fineness is obtained. Provided that

a subdivision scheme is well behaved, if the refinement rules are applied repeatedly ad infinitum, the vertices in the

mesh will converge, in the limit, to a surface. Such a surface is called a limit surface.

If the same topologic and geometric rules are used in each level of a subdivision scheme, the scheme is said to be

stationary. If the same geometric rule is used to determine all of the vertices within a single level of a subdivision

scheme, the scheme is said to be uniform.

A subdivision scheme is said to be interpolating if it always produces refined meshes that pass through all of the

vertices of the original control mesh. Otherwise, the scheme is said to be approximating.
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(a) (b) (c)

(d) (e) (f)

Figure 9.1: Subdivision example. (a) Control mesh (a tetrahedron). The refined mesh after (b) one, (c) two, (d) three,

and (e) four levels of subdivision. (f) The limit surface.
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→

(a)

→

(b)

Figure 9.2: Examples of topologic refinement rules. (a) Primal triangle quadrisection and (b) primal quadrilateral

quadrisection.

The (topologic and geometric) refinement rules employed in subdivision are chosen in order to obtain refined

meshes with certain desirable properties. Perhaps, most importantly, the refinement rules are chosen to ensure that

subdivision will always converge to a limit surface. Without a guarantee of convergence, the subdivision process

would likely produce very poorly-behaved meshes. Furthermore, in many applications, smooth meshes are highly

desirable. Consequently, the refinement rules are usually chosen to ensure that the limit surface be as smooth as

possible. For example, in many computer-graphics applications, at least C2 continuity is desirable.

9.2.1 Topologic Refinement Rules

The topologic refinement rule specifies how the connectivity of the mesh is to be modified in order to incorporate new

vertices into the mesh. Such a rule, however, does not say anything about the coordinates of vertices, as this constitutes

geometric information. Generally, there are two types of topologic rules: primal and dual. A primal scheme splits

faces. A dual scheme splits vertices.

Since a topologic rule in subdivision introduces new vertices such that they are connected in a regular (i.e., highly

structured) fashion, new vertices will always have particular valences. New vertices introduced in the interior of the

mesh will all have the same valence. In the case of a triangle mesh, new vertices introduced in the interior have a

valence of six. In the case of a quadrilateral mesh, new vertices introduced in the interior have a valence of four. A

vertex with this special valence value is said to be regular. A vertex that is not regular is said to be extraordinary.

Some examples of topologic refinement rules are illustrated in Figure 9.2.

9.2.2 Geometric Refinement Rules

The geometric refinement rule specifies how the geometry of the mesh (i.e., the position of vertices) is to be changed

in order to accommodate the new vertices being added. Clearly, the rule must specify how to determine the position

of any new vertices introduced by the topologic refinement rule. In addition, the rule must also specify how to handle

the old (i.e., previously existing) vertices, which may be either modified or left unchanged. If the rule leaves the old

vertex positions unchanged, this leads to an interpolating scheme. The geometric refinement rule can be viewed as a

filtering operation for meshes. The rule is specified in terms of masks, which are often expressed pictorially. Some

examples of geometric refinement masks are illustrated in Figure 9.3.

In a geometric refinement rule, the mask coefficients normally sum to one in order to correspond to affine combi-

nations of points. By taking affine combinations of points, we ensure that the subdivision process is affine invariant

(i.e., independent of the coordinate system employed). Due to affine invariance, applying a translation/rotation/scal-

ing to a control mesh will result in an identical translation/rotation/scaling of the refined meshes and limit surface

produced by subdivision. In other words, subdivision and affine transformations commute.

Normally, in the case of meshes with a boundary, the masks used to determine the positions of vertices on the

boundary only depend on boundary vertices. This ensures that the boundary vertices of a refined mesh depend only

on the vertices on the boundary of the control mesh (and not vertices in the interior of the control mesh). As a

consequence of this, two control meshes that align on their boundaries will also produce refined meshes that align

along their corresponding boundaries.
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Figure 9.3: Examples of geometric refinement rules.

(a) (b) (c) (d)

Figure 9.4: Primal triangle quadrisection. (a) The topology of the original mesh. (b) The topology of the mesh after

edge splitting and new vertex insertion. (c) The topology of the mesh after the addition of new edges. (d) The topology

of the refined mesh.

9.2.3 Primal Triangle Quadrisection

For triangle meshes, one of the most common topologic refinement rules is primal triangle quadrisection. To update

the topology of a mesh, primal triangle quadrisection works as follows. Each edge in the original mesh is split in two,

with a new vertex being inserted at the location of the split. Each of these newly added vertices is referred to as an

edge vertex. Each new vertex is then connected by an edge to each of the other new vertices that originated from the

same face (before edge splitting). The above process is illustrated in Figure 9.4.

With this topologic refinement rule, each triangle from the original mesh is replaced by four new triangles. Observe

that all new vertices added in the interior of the mesh have valence six, while all new vertices added on the boundary

have valence four. Note that no mention is made as to what the coordinates of the new vertices are. They are essentially

undefined. A geometric refinement rule is needed to specify how to assign coordinates to the new vertices.

9.2.4
√

3 Topologic Refinement

For triangle meshes, a more exotic topologic refinement rule is
√
3 refinement. This topologic refinement scheme

employs two slightly different rules, where one is used in even iterations and one in odd iterations. These two cases

only differ in how they handle boundaries. So, in the case of a mesh without a boundary, there is no difference in the

processing of even and odd iterations.

First, we consider even iterations (where iterations are numbered starting from zero). In the interior of each face, a

new vertex is added. Then, each new vertex is connected by edges to each of its three surrounding old vertices. Lastly,

every original edge that connects two old vertices is flipped, except for boundary edges (which cannot be flipped).

This process is illustrated pictorially in Figure 9.5.
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(a) (b) (c) (d)

Figure 9.5:
√
3 topologic refinement rule (even iteration). (a) The initial mesh. (b) The mesh after adding a new vertex

to each face. (c) The mesh prior to edge flipping. (d) The mesh after topologic refinement.

(a) (b) (c) (d)

Figure 9.6:
√
3 topologic refinement rule (odd iteration). (a) The initial mesh. (b) The mesh after adding new vertices.

(c) The mesh prior to edge flipping. (d) The mesh after topologic refinement.

In the case of odd iterations, the process is identical to above, except for how boundary edges are handled at the

beginning of the refinement step. Due to the manner in which even iterations are handled, in an odd iteration, a triangle

can have at most one edge on the boundary. In odd iterations, for each triangle with an edge on the boundary, the

boundary edge is split twice inserting two new vertices along the edge. Then, the two new vertices are connected to

the old vertex on the side of the triangle opposite the edge on which the two new vertices were inserted. The remainder

of the refinement process is carried out identically to the even iteration case. This process is illustrated pictorially in

Figure 9.6.

Every two iterations of the topologic refinement process results in each original triangle being replaced by nine

new triangles. All new vertices in the interior that are not incident on a boundary face have valence six. Applying

topologic refinement twice results in a uniform refinement with trisection of every original edge. A single iteration

can be viewed as the “square root” of a three-fold split of each edge, hence the name
√
3.

9.2.5 Subdivision Schemes

Many subdivision schemes have been proposed to date. Such schemes can be classified using a variety of criteria:

1. the type of mesh that can be handled by the scheme (e.g., triangle, quadrilateral, triangle/quadrilateral, hexago-

nal);

2. whether the scheme is approximating or interpolating;

3. whether the scheme is primal (i.e., based on face splitting) or dual (i.e., based on vertex splitting);

4. the smoothness of the limit surface produced by the scheme (e.g., C0,C1, or C2 continuity).

Several subdivision schemes and their attributes are listed in Table 9.1.
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Table 9.1: Several subdivision schemes

Scheme Attributes

Linear [14] triangle; interpolating; C0

Bilinear [14] quadrilateral; interpolating; C0

Midedge [5, 11] quadrilateral; approximating; dual; C1

Doo-Sabin [3] quadrilateral; approximating; dual; C1

Catmull-Clark [1] polygon/quadrilateral; approximating; primal; C2 everywhere except at

extraordinary points where C1

Loop [8] triangle; approximating; primal; C2 everywhere except at extraordinary

points where C1

Butterfly [4] triangle; interpolating; primal; C1 continuous everywhere except at ex-

traordinary points

Modified butterfly [15] triangle; interpolating; primal;C1 continuous everywhere

Kobbelt
√
3 [7] triangle; approximating; primal; C2 everywhere except at extraordinary

points where C1

Stam-Loop [12] quadrilateral/triangle; approximating; primal

9.2.6 Linear Subdivision

One of the simplest subdivision schemes is linear subdivision. Linear subdivision is defined for triangle meshes.

It is primal and interpolating. With this scheme, the limit surface is always identical to the original control mesh.

Therefore, this surface is only guaranteed to be C0 continuous.

The topologic refinement rule employed is primal triangle quadrisection, described earlier in Section 9.2.3. The

geometric rule places each new edge vertex at the midpoint of the edge (in the unrefined mesh) from which the new

vertex was generated. Let v denote a new edge vertex associated with an edge in the unrefined mesh with vertices v1
and v2. Then, we choose v = 1

2
(v1 + v2).

This scheme is not particularly interesting, as the limit surface is simply equal to the original control mesh.

Consequently, this subdivision scheme is of somewhat limited practical value. Nevertheless, the scheme is useful for

illustrating the basics of subdivision.

Example 9.1. Consider the control mesh shown in Figure 9.7(a). This mesh corresponds to the surface (with bound-

ary) formed by removing the bottom face of a tetrahedron. Applying one level of linear subdivision to the control

mesh, we obtain the refined mesh in Figure 9.7(b).

Example 9.2. Consider the control mesh, shown in Figure 9.8(a), which corresponds to the surface of a tetrahedron.

Applying linear subdivision to this control mesh, we obtain the limit surface shown in Figure 9.8(b).

9.2.7 Loop Subdivision

One quite popular subdivision scheme is Loop subdivision, originally proposed in [8]. This scheme is defined for tri-

angle meshes. It is approximating and primal. This scheme produces limit surfaces that areC2 continuous everywhere,

except at extraordinary vertices where C1 continuity is achieved.

In Loop subdivision, the topologic refinement rule employed is primal triangle quadrisection, described earlier in

Section 9.2.3. After topologic refinement, there are two types of vertices in the mesh: non-edge (i.e., old) and edge

(i.e., new) vertices. To fully specify the geometric refinement rule, we must consider how to handle both non-edge

and edge vertices. Furthermore, since vertices are treated differently depending on whether they fall on the mesh

boundary, we have the following cases to consider: 1) an interior edge vertex, 2) an interior non-edge vertex, 3) a

boundary edge vertex, and 4) a boundary non-edge vertex. In what follows, we consider each of these cases in turn.

INTERIOR EDGE VERTEX. First, let us consider an edge vertex v that is not on the boundary of the mesh. Suppose

that v was produced by splitting the edge e connecting vertices v1 and v2 in the unrefined mesh. The edge e (in the

unrefined mesh) has two incident faces whose union forms a quadrilateral. Let v3 and v4 denote the two vertices of
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Figure 9.7: Linear subdivision example. (a) Control mesh (a surface with boundary). (b) Refined mesh obtained after

one round of subdivision.
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(a) (b)

Figure 9.8: Linear subdivision example. (a) Control mesh (a tetrahedron). (b) Limit surface.

this quadrilateral other than v1 and v2. Then, v is chosen as

v = 3
8
(v1 + v2)+ 1

8
(v3 + v4).

This corresponds to the mask shown in Figure 9.9(a).

INTERIOR NON-EDGE VERTEX. Next, let us consider a non-edge vertex v that is not on the boundary of the mesh.

Let {vk}nk=1 denote the n 1-ring neighbours of v in the unrefined mesh. Then, the updated value v′ for the vertex v is

given by

v′ = (1−nβn)v+βn

n

∑
k=1

vk,

where

βn = 1
n

[
5
8
−
(
3
8
+ 1

4
cos 2π

n

)2]
. (9.1)

This corresponds to the mask shown in Figure 9.9(b).

BOUNDARY EDGE VERTEX. Next, let us consider an edge vertex v that is on the boundary of the mesh. Suppose

that v was produced by splitting the edge connecting vertices v1 and v2 in the unrefined mesh. Then, v is chosen as

v = 1
2
(v1 + v2).

In other words, v is the midpoint of the edge joining v1 and v2. This calculation corresponds to the mask shown in

Figure 9.9(c).

BOUNDARY NON-EDGE VERTEX. Next, let us consider a non-edge vertex that is on the boundary of the mesh. Let

v1 and v2 denote the two neighbours of v along the boundary of the mesh prior to topologic refinement. The updated

value v′ for v is given by

v′ = 3
4
v+ 1

8
(v1 + v2).

This computation corresponds to the mask shown in Figure 9.9(d).

Example 9.3 (Loop subdivision). Consider the control mesh given in Figure 9.10(a). Applying one level of Loop

subdivision to this mesh, we obtain the refined mesh shown in Figure 9.10(b).
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Figure 9.9: Geometric refinement masks for Loop subdivision. The masks for (a) interior edge vertices (regu-

lar), (b) interior non-edge vertices of valence n (regular and extraordinary), (c) boundary/crease edge vertices, and

(d) boundary/crease non-edge vertices.

Table 9.2: Comparison of weights employed in the Loop and modified Loop schemes

n βn β ′n
3 3

16
= 0.1875 3

16
= 0.1875

4 31
256

= 0.12109375 3
32

= 0.09375
5 ≈ 0.0840932189257829 3

40
= 0.075

6 1
16

= 0.0625 1
16

= 0.0625
7 ≈ 0.0490249201910889 3

56
≈ 0.0535714285714286

8 ≈ 0.0400678098159403 3
64

= 0.046875
9 ≈ 0.0337850179292333 1

24
= 0.0416666666666667

10 ≈ 0.0291777532480480 3
80

= 0.0375

Example 9.4. Consider a control mesh that corresponds to the boundary of a tetrahedron as shown in Figure 9.11(a).

Applying Loop subdivision to this mesh, we obtain the refined meshes shown in Figures 9.11(b) to (e) and the limit

surface shown in Figure 9.11(f).

It is worthwhile to note that numerous variations on Loop subdivision have been proposed. For example, some-

times we may want to introduce creases in the limit surface resulting from subdivision. In this case, we treat the

location of a crease as a boundary and apply the appropriate boundary rule.

A modified version of Loop subdivision proposed by Warren and Weimer [14, p. 230] chooses βn in (9.1) as

βn = β ′n, where

β ′n =

{
3
8n

n > 3
3
16

n = 3.

The resulting coefficients have “nicer” values than those in the original Loop scheme (which has potential computa-

tional advantages). A comparison of the weights employed in the Loop and modified Loop schemes is provided in

Table 9.2.

9.2.8 Butterfly Subdivision

Another popular subdivision scheme is butterfly subdivision, originally proposed by Dyn et al. [4]. This subdivision

scheme is defined for triangle meshes. It is interpolating and primal. The limit surfaces produced by this scheme are

C1 continuous everywhere, except at extraordinary vertices of valence k where k = 3 or k > 7. At these points, the

surface is only C0 continuous.
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Figure 9.10: Loop subdivision example. (a) Control mesh (a surface with boundary). (b) Refined mesh obtained after

one round of subdivision.
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(a) (b) (c)

(d) (e) (f)

Figure 9.11: Loop subdivision example. (a) Control mesh (a tetrahedron). The refined mesh after (b) one, (c) two,

(d) three, and (e) four levels of subdivision. (f) The limit surface.
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Figure 9.12: Geometric refinement mask for butterfly subdivision (for regular edge vertices).

The topologic refinement rule employed is primal triangle quadrisection, described earlier in Section 9.2.3. A

tension parameter allows for local control over smoothness. For example, it can be used to form creases in the limit

surface. The geometric refinement mask is shown in Figure 9.12 (for regular edge vertices). The boundary cases are

somewhat more complicated and ignored here. The tension parameter w is nominally chosen as w = 1
16
.

Example 9.5. Consider a control mesh that corresponds to the surface of a tetrahedron as shown in Figure 9.13(a).

Applying butterfly subdivision to this mesh, we obtain the refined meshes shown in Figures 9.13(b) to (e) and the limit

surface shown in Figure 9.13(f).

A variant of the butterfly subdivision scheme called the modified butterfly scheme has been proposed in [15]. The

limit surfaces produced are C1 continuous everywhere (including all extraordinary points).

9.2.9 Kobbelt
√

3 Subdivision

Yet another subdivision scheme is the Kobbelt
√
3 scheme, originally proposed in [7]. The scheme is defined for

triangle meshes. It is primal and approximating. The limit surfaces produced by this method are C2 continuous

everywhere, except at extraordinary points where C1 continuity is achieved.

The topologic refinement rule employed is the
√
3 rule, described earlier in Section 9.2.4. After topologic refine-

ment, there are two types of vertices in the mesh: new and old vertices. To fully specify the geometric refinement

rule, we must consider how to handle both new and old vertices. Furthermore, since vertices are treated differently

depending on whether they fall on the mesh boundary, we have the following cases to consider: 1) a new interior ver-

tex, 2) an old interior vertex, 3) a new boundary vertex, and 4) an old boundary vertex. In what follows, we consider

each of these cases in turn.

NEW INTERIOR VERTEX. First, let us consider the case of a new interior vertex. Let p be the new vertex inserted

into the face of the unrefined mesh having vertices p1, p2, p3. Then, we choose

p = 1
3
(p1 + p2 + p3)

(i.e., p is inserted at the barycenter of its associated face). The geometric refinement rule for this case is illustrated in

Figure 9.14(a).

OLD INTERIOR VERTEX. Next, let us consider the case of an old interior vertex. Let p be the old vertex to be

updated, and let p1, p2, . . . , pn be the 1-ring neighbours of p in the unrefined mesh. Then, we choose the updated value

p′ of the vertex p as given by

p′ = (1−nβn)p+βn

n

∑
k=1

pk,

where

βn = 1
9n

[
4−2cos

(
2π
n

)]
.
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(a) (b) (c)

(d) (e) (f)

Figure 9.13: Butterfly subdivision example. (a) Control mesh (a tetrahedron). The refined mesh obtained after (b) one,

(c) two, (d) three, and (e) four levels of subdivision. (f) The limit surface.
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Table 9.3: The quantity βn (in Kobbelt
√
3 subdivision) for several values of n

n βn

3 5
27
≈ 0.185185185185185

4 1
9
≈ 0.111111111111111

5 ≈ 0.0751548002500023
6 3

54
≈ 0.0555555555555556

7 ≈ 0.0436987364489291

8 4−
√
2

72
≈ 0.0359137005225959

9 ≈ 0.0304680384415067
10 ≈ 0.0264662890138901

The values for βn for several values of n are listed in Table 9.3. The geometric refinement rule for this case is illustrated

in Figure 9.14(b).

NEW BOUNDARY VERTEX. Next, let us consider the case of a new boundary vertex (in odd iterations). Let p be

the new boundary vertex whose position is to be determined. Let e be the edge in the unrefined mesh into which p has

been inserted. Let p1 denote the old vertex that is a neighbour of p along the boundary in the refined mesh. Let p2
and p3 denote the neighbours of p1 in the unrefined mesh, with p2 being the neighbour that is an endpoint of e. Then,

we choose p as given by

p = 16
27
p1 + 10

27
p2 + 1

27
p3.

This geometric refinement rule corresponds to the masks shown in Figures 9.14(d) and (e). The two masks shown in

these figures are essentially the same, as one is simply the reflection (i.e., mirror image) of the other.

OLD BOUNDARY VERTEX. Lastly, let us consider the case of an old boundary vertex (in odd iterations). Let p

denote the old boundary vertex whose position is to be updated. Let p1 and p2 denote the two neighbours of p along

the boundary in the unrefined mesh. Then, we choose the updated value p′ of the vertex p as given by

p′ = 19
27
p+ 4

27
p1 + 4

27
p2.

This geometric refinement rule is shown in Figure 9.14(c).

Example 9.6. Consider the control mesh shown in Figure 9.15(a). This mesh corresponds to the surface (with

boundary) formed by removing the bottom face of a tetrahedron. In this example, we apply two iterations of Kobbelt√
3 subdivision to this control mesh.

The topologic refinement process for the first iteration of subdivision (i.e., iteration 0) is illustrated in Fig-

ures 9.15(b) and 9.15(c). In going from Figure 9.15(a) (which shows the initial control mesh) to Figure 9.15(b),

a vertex is added to each (interior and boundary) face and each new vertex is connected to the three vertices of the

face in which the new vertex was inserted. (In this particular circumstance, there are no interior faces since all three

faces are boundary faces. So, only boundary faces need be considered here.) In Figure 9.15(b), the edges that still

remain to be flipped, in order to complete the topologic refinement process, are shown as dashed lines. In going from

Figure 9.15(b) to 9.15(c) each of the dashed-line edges has been flipped. Thus, Figure 9.15(c) shows the connectiv-

ity of the mesh after the topologic refinement process completes in the first subdivision iteration (i.e., iteration 0).

Figure 9.15(d) then shows the results of the geometric refinement process (i.e., the initialization of the new vertex

positions and updating of the old vertex positions). Thus, the result of the first full iteration of subdivision is the mesh

shown in Figure 9.15(d).

At the start of the second iteration of subdivision (i.e., iteration 1), we have the mesh shown in Figure 9.16(a),

which is the same mesh as shown in Figure 9.15(d) but with the vertices relabelled for convenience so as to avoid an

overly messy diagram (e.g., p′2 = p2, p
′
5 = 1

3
(p0+ p2+ p3), and so on). The topologic refinement process in the second

iteration of subdivision (i.e., iteration 1) is depicted in Figures 9.16(b) and 9.16(c). In going from Figure 9.16(a)

to 9.16(b), two things happen. First, we insert a new vertex into each interior face, and then connect each new vertex

to the three vertices of the face into which the new vertex was inserted. Second, for each boundary face, we split the
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Figure 9.14: The geometric refinement mask for Kobbelt
√
3 subdivision. The case of a (a) new interior vertex and

(b) old interior vertex. (c) The mask for updating an old boundary vertex in odd iterations. (d) and (e) The masks for

a new boundary vertex in the odd iterations.

boundary edge of the face twice, inserting a new vertex at each splitting point (resulting in two new vertices being

added to the edge) and then the two new vertices are connected to the opposing vertex within the face. This results

in the trisection of each boundary triangle. In Figure 9.16(b), the old edges that will need to be flipped in order to

complete the topologic refinement process are shown as dashed lines. In going from Figure 9.16(b) to 9.16(c), each

dashed-line edge is flipped. Thus, Figure 9.16(c) shows the connectivity of the mesh after the topologic refinement

process completes in the second iteration of subdivision (i.e., iteration 1). Notice that each face from the original

control mesh from Figure 9.15(a) has been replaced by nine new triangles in the new mesh in Figure 9.16(c). Finally,

Figure 9.16(d) shows the results of the geometric refinement process (i.e., the initialization of the new vertex positions

and updating of the old positions). Thus, the result of the second full subdivision iteration is the mesh shown in

Figure 9.16(d).

Example 9.7. Consider the control mesh corresponding to the surface of a tetrahedron, shown in Figure 9.17(a).

Applying Kobbelt
√
3 subdivision to this mesh, we obtain the refined meshes shown in Figures 9.17(b) to (e) and the

limit surface shown in Figure 9.17(f).

Kobbelt
√
3 subdivision has some potential advantages in relation to other schemes, with these benefits coming

largely from its use of
√
3 topologic refinement. Recall that

√
3 refinement increases the number of faces in the mesh

by a smaller factor than primal triangle quadrisection. In particular, every two iterations of
√
3 refinement increase

the number of faces by factor of nine, whereas in the case of primal triangle quadrisection this factor is sixteen. Thus,

the number of faces increases more slowly with Kobbelt
√
3 subdivision than with schemes employing primal triangle

quadrisection (such as Loop and butterfly subdivision). Having finer control over the growth in face count can be

beneficial in many situations. Lastly, Kobbelt
√
3 subdivision is better suited to adaptive refinement strategies, since

it more easily allows for local refinement without cracks.

9.2.10 Catmull-Clark Subdivision

Perhaps, one of the best known subdivision schemes is Catmull-Clark subdivision, originally proposed in [1]. Al-

though Catmull-Clark subdivision was historically one of the first subdivision methods proposed, it is still used fre-

quently in practice today, especially in computer animation. This method is a generalization of bicubic B-splines

to arbitrary meshes. That is, in the case of a regular quadrilateral mesh, Catmull-Clark subdivision yields a bicubic

B-spline surface. This scheme can be applied to polygon meshes with any type of faces (e.g., triangle, quadrilateral,
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Figure 9.15:
√
3 subdivision example. (a) Control mesh (a surface with boundary). (b) Intermediate mesh after

inserting new vertices and establishing their initial connectivity (i.e., before edge flipping). (c) Mesh after completion

of topological refinement (i.e., after edge flipping). (d) Refined mesh after the first round of subdivision.
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Figure 9.16:
√
3 subdivision example (continued). (a) Initial mesh for the second round of subdivision. (b) Interme-

diate mesh after inserting new vertices and establishing their initial connectivity (i.e., before edge flipping). (c) Mesh

after completion of topological refinement (i.e., after edge flipping). (d) Final refined mesh after the second round of

subdivision.
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(a) (b) (c)

(d) (e) (f)

Figure 9.17: Kobbelt
√
3 subdivision example. (a) Control mesh (a tetrahedron). The refined mesh obtained after

(b) one, (c) two, (d) three, and (e) four levels of subdivision. (f) The limit surface.
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triangle/quadrilateral, hexagonal). The scheme is primal (i.e., face splitting) and approximating. The limit surfaces

produced have C2 continuity everywhere, except at extraordinary points where only C1 continuity is achieved. The

subdivision process always produces quadrilateral faces, regardless of the types of polygons in the control mesh.

The topologic refinement rule is defined as follows. A new vertex is inserted in each face. Such a vertex is

called a face point. Each edge is split in two by inserting a new vertex on the edge. Such a vertex is called an

edge point. Then, each face point is connected by an edge to each of the edge points associated with the same

face. This topologic refinement process is illustrated for three different meshes in Figures 9.18, 9.19, and 9.20.

This topologic refinement rule effectively splits an n-gon into n quadrilaterals. For this reason, subdivision always

produces quadrilateral meshes. For a quadrilateral input mesh, this topologic refinement rule is simply equivalent to

primal quadrilateral quadrisection. The first iteration of subdivision may introduce new extraordinary vertices. All

subsequent iterations, however, introduce only regular (i.e., valence four) vertices in the interior of the mesh.

As we have just seen above, topologic refinement introduces two types of new vertices, namely, face points and

edge points. To fully specify the geometric refinement rule, we must consider how to handle both types of new vertices

(i.e., face points and edge points) as well as old vertices. Since vertices are treated differently depending on whether

they fall on the mesh boundary, we have the following cases to consider: 1) a face point (which, by definition, cannot

be on the boundary), 2) an interior edge point, 3) a boundary edge point, 4) an old interior vertex, and 5) an old

boundary vertex. In what follows, we consider each of these cases in turn.

FACE POINT. First, let us consider a face point. A face point v is chosen as the average of the vertices defining its

associated face. That is, a face point v associated with the old face having vertices v0,v1, . . . ,vn−1 is given by

v = 1
n

n−1
∑
k=0

vk.

INTERIOR EDGE POINT. Next, let us consider an interior edge point. An interior edge point v is chosen as the

average of the midpoint of the old edge and the average of the two new face points of the faces sharing the edge.

Suppose that an edge point v originated from splitting an old edge that has vertices v0,v1 and is incident on the old

faces associated with face points f0, f1. Then,

v = 1
2

[
1
2
(v0 + v1)+ 1

2
( f0 + f1)

]
= 1

4
(v0 + v1 + f0 + f1).

BOUNDARY EDGE POINT. Next, we consider a boundary edge point. A boundary edge point is chosen as the

midpoint of its corresponding old edge. That is, for an edge point v originating from splitting an old edge with

vertices v0,v1, we choose

v = 1
2
(v0 + v1).

OLD INTERIOR VERTEX. Next, let us consider an old interior vertex. Consider an old interior vertex v with

valence n in the old mesh. Let v0,v1, . . . ,vn−1 be the old vertices that are 1-ring neighbours of v (before refinement).

Let f0, f1, . . . , fn−1 be the face points of all faces incident on v. Then, the new value v′ for the old vertex is given by

v′ = n−3
n
v+ 1

n
q+ 2

n
r,

where q = 1
n ∑n−1

k=0 fk, and r = 1
n ∑n−1

k=0
1
2
(v+vk) (i.e., q is the average of the new face points of all faces incident on the

old vertex point, and r is the average of the midpoints of all old edges incident on the old vertex point). Alternatively,

one can show that

v′ = n−2
n
v+ 1

n2

(
n−1
∑
k=0

vk +
n−1
∑
k=0

fk

)
.

OLD BOUNDARY VERTEX. Lastly, we consider an old boundary vertex. The old boundary vertex v with the

neighbouring boundary vertices v0,v1 has its new value v′ chosen as

v′ = 3
4
v+ 1

8
(v0 + v1).
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(a) (b) (c) (d)

Figure 9.18: Example of topologic refinement for Catmull-Clark subdivision. (a) The topology of the initial mesh.

(b) The topology after introducing new face and edge points. (c) The topology after connecting the new points in the

mesh. (d) The topology of the refined mesh.

(a) (b) (c) (d)

Figure 9.19: Example of topologic refinement for Catmull-Clark subdivision. (a) The topology of the initial mesh.

(b) The topology after introducing new face and edge points. (c) The topology after connecting the new points in the

mesh. (d) The topology of the refined mesh.

(a) (b) (c) (d)

Figure 9.20: Example of topologic refinement for Catmull-Clark subdivision. (a) The topology of the initial mesh.

(b) The topology after introducing new face and edge points. (c) The topology after connecting the new points in the

mesh. (d) The topology of the refined mesh.
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Figure 9.21: Geometric refinement masks for Catmull-Clark subdivision in the case of quadrilateral faces. The

geometric mask for (a) a face point, (b) an interior edge point, (c) an interior old vertex, (d) a boundary edge point,

and (e) a boundary old vertex.

Since the control mesh can be a polygon mesh with any types of faces (i.e., triangles, quadrilaterals, and so on), it

is not practical to enumerate all possible cases of geometric masks in pictorial form. In the case that the mesh to be

refined is a quadrilateral mesh, however, the masks have the form shown in Figure 9.21. In particular, Figures 9.21(a),

(b), (c), (d), and (e), show the masks used for a face point, an edge point, an old interior vertex, a boundary edge point,

and an old boundary vertex. Since, after the first iteration of subdivision, we always have a quadrilateral mesh, the

preceding special case almost always applies in practice.

Although all new faces introduced by subdivision are quadrilaterals, these faces are not necessarily planar. In

many situations, nonplanar faces are undesirable. For example, many rendering engines will not properly handle

nonplanar faces, which can lead to undesirable artifacts appearing in the rendered image. In practice, we can work

around this problem by splitting quadrilateral faces into pairs of triangular faces, which yields a triangle mesh with all

planar faces.

Example 9.8. Consider the control mesh shown in Figure 9.22(a). This mesh corresponds to the surface (with

boundary) formed by removing the bottom face of a pyramid. Applying one level of Catmull-Clark subdivision to the

control mesh, we obtain the refined mesh in Figure 9.22(b).

Example 9.9. Consider the control mesh shown in Figure 9.23(a). Applying one level of Catmull-Clark subdivision

to the control mesh, we obtain the refined mesh in Figure 9.23(b).

Example 9.10. Consider a mesh that corresponds to the surface of a tetrahedron as shown in Figure 9.24(a). Applying

Catmull-Clark subdivision to this mesh, we obtain the refined meshes shown in Figures 9.24(b) to (e) and the limit

surface shown in Figure 9.24(f).

9.2.11 Comparison of Subdivision Schemes

Let us consider a control mesh corresponding to the boundary of a tetrahedron as shown in Figure 9.25(a). The limit

surfaces produced from this control mesh using several subdivision schemes are shown in Figures 9.25(b) to (e).

Note that interpolating methods, such as linear and butterfly subdivision, produce limit surfaces that more closely

resemble the original control mesh (as compared to approximating methods like Loop, Kobbelt
√
3, and Catmull-Clark
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Figure 9.22: Catmull-Clark subdivision example (for non-quadrilateral mesh). (a) Control mesh (a surface with

boundary). (b) Refined mesh obtained after one round of subdivision.
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Figure 9.23: Catmull-Clark subdivision example (for quadrilateral mesh). (a) Control mesh (a surface with boundary).

(b) Refined mesh obtained after one round of subdivision.
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(a) (b) (c)

(d) (e) (f)

Figure 9.24: Catmull-Clark subdivision example. (a) Control mesh (a tetrahedron). The refined mesh obtained after

(b) one, (c) two, (d) three, and (e) four levels of subdivision. (f) The limit surface.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



9.2. SUBDIVISION SURFACES 389

(a) (b) (c)

(d) (e) (f)

Figure 9.25: Comparison of the limit surfaces produced by various subdivision schemes. (a) Control mesh (a tetra-

hedron). The limit surface produced by the (b) linear, (c) Loop, (d) Kobbelt
√
3, (e) butterfly, and (f) Catmull-Clark

subdivision schemes.

subdivision). On the other hand, the approximating methods produce much smoother limit surfaces (as compared to

the interpolating methods).

9.2.12 Position and Tangent Masks

In the case of an approximating scheme, each iteration of subdivision results in a repositioning of old vertices. For

a particular vertex in the mesh, we might want to determine where the vertex will be positioned in the limit (i.e.,

after an infinite number of iterations of subdivision are applied). As it turns out, the limit position of a vertex can

be easily found by taking an appropriate linear combination of nearby mesh vertices. This linear combination can be

represented pictorially as a position mask.

Similarly, we might want to determine a tangent vector to the limit surface at the limit position of a vertex. A

tangent vector can also be computed using an appropriate linear combination of nearby mesh vertices. This linear

combination can be represented pictorially as a tangent mask. Using two tangent masks, we can determine two

tangent vectors, which can then be used to calculate a surface normal (via a vector cross product).

9.2.12.1 Loop Subdivision

Suppose that we want to calculate the limit position of a vertex for Loop subdivision. There are two cases to consider,

corresponding to the vertex in question being: 1) an interior vertex or 2) a boundary vertex. We consider each of these

cases in turn.

INTERIOR VERTEX. First, we consider the case of an interior vertex [10, Fig. 5], [6, p. 68, Fig. 4.8]. Let p denote

the interior vertex whose limit position is to be determined. Let {pi}ni=1 denote the 1-ring neighbours of p. Then, the
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Figure 9.26: Position masks for Loop subdivision. The position masks for (a) an interior vertex and (b) a boundary

vertex.

Table 9.4: The quantity αn used in the position mask of Loop subdivision (for several small values of n)

n αn

3 1
5

= 0.2
4 31

220
≈ 0.140909090909091

5 ≈ 0.105715654625119
6 1

12
≈ 0.0833333333333333

7 ≈ 0.0682632482712396
8 ≈ 0.0576065604228295
9 ≈ 0.0497522474300052
10 ≈ 0.0437593527476905

limit position p′ of p is given by

p′ = (1−nαn)p+
n

∑
i=1

αnpn,

where

αn =
(

3
8βn

+n
)−1

,

and βn is as given by (9.1). The corresponding position mask is shown in Figure 9.26(a). The quantity αn is given for

several values of n in Table 9.4.

BOUNDARY VERTEX. Next, let us consider the case of a boundary vertex. Let p denote the boundary vertex

whose limit position is to be determined. Let p1 and p2 denote the two neighbours of p along the mesh boundary.

Then, the limit position p′ of p is given by

p′ = 2
3
p+ 1

6
(p1 + p2).

The corresponding position mask is shown in Figure 9.26(b).

For Loop subdivision, a vector t tangent to the limit surface at the limit position of the vertex p can be computed

as follows. Let {pi}ni=1 denote the 1-ring neighbours of p. Then, t is given by

t =
n

∑
i=1

τn,i−1pi,
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Figure 9.27: Two tangent masks for Loop subdivision. (a) First and (b) second mask.

Table 9.5: The quantity τn,k used in the tangent masks of Loop subdivision (for some small values of n)

n {τn,0,τn,1, . . . ,τn,n−1}
3 1, − 1

2
, − 1

2

4 1, 0, -1, 0

5 1, cos( 2π
5

) ≈ 0.309016994374947, cos( 4π
5

) ≈ −0.809016994374947,
cos( 6π

5
)≈−0.809016994374948, cos( 8π

5
)≈ 0.309016994374947

6 1, 1
2
, − 1

2
, -1, − 1

2
, 1
2

where

τn,k = cos
(
2πk
n

)
.

A corresponding tangent mask is shown in Figure 9.27(a) [6, p. 68, Fig. 4.8]. Additional tangent masks can be gen-

erated by circularly shifting the coefficients in the first mask. For example, a second mask is given in Figure 9.27(b).

The coefficients {τn,k} are provided for several values of n in Table 9.5.

Example 9.11. Consider the application of Loop subdivision to the control mesh shown in Figure 9.28. Find the limit

position of each vertex in the control mesh. Also, for each interior vertex in the control mesh, find a normal to the

limit surface at the corresponding vertex limit position.

Solution. For k ∈ {0,1,2,3}, let v′k denote the limit position of the vertex vk in the control mesh. To find the limit

position of a vertex, we apply the appropriate position mask. Using the appropriate position masks, we have

v′3 = (1−3α3)v3 +α3(v0 + v1 + v2)

= 2
5
v3 + 1

5
(v0 + v1 + v2) = ( 2

5
, 2
5
, 2
5
)+(− 1

5
,− 1

5
, 1
5
)+( 1

5
,− 1

5
,− 1

5
)+(− 1

5
, 1
5
,− 1

5
)

= ( 1
5
, 1
5
, 1
5
),

v′0 = 2
3
v0 + 1

6
(v1 + v2)

= 2
3
(−1,−1,1)+ 1

6
(0,0,−2) = (− 2

3
,− 2

3
, 2
3
)+(0,0,− 1

3
)

= (− 2
3
,− 2

3
, 1
3
),

v′1 = 2
3
v1 + 1

6
(v0 + v2)

= 2
3
(1,−1,−1)+ 1

6
(−2,0,0) = ( 2

3
,− 2

3
,− 2

3
)+(− 1

3
,0,0)

= ( 1
3
,− 2

3
,− 2

3
), and
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Figure 9.28: Control mesh.

v′2 = 2
3
v2 + 1

6
(v0 + v1)

= 2
3
(−1,1,−1)+ 1

6
(0,−2,0) = (− 2

3
, 2
3
,− 2

3
)+(0,− 1

3
,0)

= (− 2
3
, 1
3
,− 2

3
).

Only one of the vertices in the control mesh is in the interior. So, we only need to find a surface normal at one point

on the limit surface, namely at v′3. So, we proceed to find two tangent vectors t0, t1 to the limit surface at the point v′3.
To do this, we use the tangent masks. We have

t0 = v0− 1
2
v1− 1

2
v2

= (−1,−1,1)− ( 1
2
,− 1

2
,− 1

2
)− (− 1

2
, 1
2
,− 1

2
) = (−1,−1,1)+(− 1

2
, 1
2
, 1
2
)+( 1

2
,− 1

2
, 1
2
)

= (−1,−1,2), and

t1 = v1− 1
2
v2− 1

2
v0

= (1,−1,−1)+( 1
2
,− 1

2
, 1
2
)+( 1

2
, 1
2
,− 1

2
)

= (2,−1,−1).

By computing the vector cross product of the two tangent vectors, we obtain the surface normal n. We have

n = t0× t1 = det




i j k

−1 −1 2

2 −1 −1


= i(3)− j(−3)+ k(3) = (3,3,3).

Normalizing the length of n to one, we obtain the unit vector n̂ given by

n̂ = 1
‖n‖n = 1√

32+32+32
(3,3,3) = 1√

27
(3,3,3) = 1

3
√
3
(3,3,3) = ( 1√

3
, 1√

3
, 1√

3
).

9.2.13 Surfaces with Creases

In many practical applications, we need to be able to represent surfaces that are mostly smooth but have some creases.

A simple approach to representing creases is to treat edges associated with creases as boundary edges, during sub-

division. Since geometric refinement masks for boundary vertices do not usually depend on non-boundary vertices,

positional continuity is maintained by such an approach. The surface, however, need not be smooth across the crease

edges. In this way, creases in a surface can be produced.
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· · ·

S0(x)S0(x) = x S1(x) S(x)

M̂1M0 M1

Figure 9.29: Tracking the movement of a point during subdivision.

9.2.14 Applications of Subdivision

Many applications require modelling of surfaces. Since subdivision provides a powerful tool for modelling surfaces,

subdivision has potential application in many areas. Some of these application areas include: multimedia, animation,

gaming, biomedical computing, computer-aided design and manufacturing, geometric modelling, finite element anal-

ysis, computational fluid dynamics, and scientific visualization. Some applications of subdivision are considered in

Chapter/Appendix 11.

9.3 Subdivision Wavelets

Although not immediately obvious, subdivision surfaces have an implicit mathematical structure very similar to

wavelets discussed in earlier chapters. We explore this relationship in more detail in the sections that follow.

9.3.1 Primal Subdivision as Splitting and Averaging

Subdivision iteratively refines a control polyhedron M0 to produce increasingly faceted polyhedra M1,M2, . . . that
converge to the limit surface M∞. In each subdivision step, the vertices of Mℓ+1 are computed as affine combinations

of the vertices of Mℓ. The refinement process that transforms Mℓ to Mℓ+1 can be viewed as consisting of two steps:

1) splitting and 2) averaging. In the splitting step, each face of Mℓ is split into k new faces, yielding the intermediate

mesh M̂ℓ+1. In the case of primal triangle quadrisection, a face is split into k = 3 new faces by introducing a new

vertex at the midpoint of each edge. The splitting step changes the topology of the mesh (by inserting new vertices)

and establishes positions for the new vertices (which may be subsequently changed by averaging). The positions of

the old vertices are not affected by splitting. In the averaging step, the vertex positions ofMℓ+1 are computed as affine

combinations of the vertices of M̂ℓ+1. The averaging step does not affect the topology of the mesh. Only the geometry

of the mesh is affected. The old and new vertices may both be affected. Using this splitting and averaging view of

subdivision, we can show that M∞ can be expressed parametrically usingM0 as the domain of the parameterization.

9.3.2 Subdivision-Surface Parameterization

Since it will prove useful later, we seek a parametric representation of the limit surface produced by subdivision. To

do this, we first establish a correspondence between the points on Mℓ and Mℓ+1. Then, we use this correspondence to

track the movement of an arbitrary point originating on M0 from one subdivision level to the next, as subdivision is

applied repeatedly. As the number of iterations approaches infinity, the point converges to a point on the limit surface.

This process is illustrated in Figure 9.29. The above process establishes a correspondence between points on M0 and

points on the limit surface M∞. The parametric representation of M∞ immediately follows from this correspondence

(which is nothing more than mapping from M0 toM∞).

Now, we describe the parameterization of the subdivision surface in more detail. Let Iℓ denote the index set of

the vertices in Mℓ, and let {vℓ,n}n∈Iℓ denote the corresponding vertices. The correspondence between points in Mℓ

and Mℓ+1 is illustrated in Figure 9.30. The vertex vℓ+1,βk in Mℓ+1 is generated from the vertex v̂ℓ+1,βk in M̂ℓ+1 by

averaging.
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Sℓ(x)
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v̂ℓ+1,β0 v̂ℓ+1,β1 vℓ+1,β0 vℓ+1,β1
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Figure 9.30: Correspondence between points onMℓ, M̂ℓ+1, and Mℓ+1.

To begin, we consider an arbitrary point Sℓ(x) on an arbitrary face ofMℓ (as shown on the left side of Figure 9.30).

Since splitting a face in Mℓ produces a new set of faces whose union is the original (i.e., unsplit) face, Sℓ(x) must lie

on one of these new faces (which belong to M̂ℓ+1). Suppose that Sℓ(x) lies in the new triangle (v̂ℓ+1,β0 , v̂ℓ+1,β1 , v̂ℓ+1,β2)

of M̂ℓ+1 with the barycentric coordinates (α0,α1,α2). That is,

Sℓ(x) =
2

∑
k=0

αkv̂ℓ+1,βk .

Since M̂ℓ+1 and Mℓ+1 have identical topologies, we have a trivial correspondence between faces on M̂ℓ+1 and Mℓ+1.

Suppose that the triangle (v̂ℓ+1,β0 , v̂ℓ+1,β1 , v̂ℓ+1,β2) in M̂ℓ+1 has the corresponding triangle (vℓ+1,β0 ,vℓ+1,β1 ,vℓ+1,β2) in

Mℓ+1. Then, a point Sℓ+1(x) inMℓ+1 corresponding to Sℓ(x) in M̂ℓ+1 can be chosen as

Sℓ+1(x) =
2

∑
k=0

αkvℓ+1,βk .

That is, we choose the point having the same barycentric coordinates with respect to the geometrically repositioned

face resulting from averaging. Note that {v̂ℓ+1,βk}2k=0 and {vℓ+1,βk}2k=0 are not generally the same except for linear

subdivision. We have tried to emphasize this fact in the figure, by having the vertex positions appear noticeably

different before and after averaging. The above establishes a correspondence between points on Mℓ and Mℓ+1.

Now, we select

S0(x) = x for x ∈M0.

Then, using the relationship between Sℓ(x) and Sℓ+1(x) from above, we can map S0(x) to S1(x), and then S1(x) to

S2(x), and so on, until we obtain Sℓ(x). At this point, we have generated a mapping from a point x on M0 to a point

Sℓ(x) on Mℓ. This is nothing more than a parametric representation of Mℓ. Continuing this mapping process ad

infinitum (i.e., by letting ℓ→ ∞), we obtain the parametric representation for M∞ given by

S(x) = lim
ℓ→∞

Sℓ(x).

Observe that the domain of the above parameterization is M0. As we shall see, the above subdivision-surface param-

eterization leads to a wavelet representation for meshes.

9.3.3 Approximation Spaces and Scaling Functions

Now, we explore some of the properties of the parameterization just developed in more detail. First, we consider the

parametric representation Sℓ(x) for Mℓ (i.e., the polyhedral surface obtained after ℓ levels of subdivision).

Lemma 9.1. Let In denote the index set of the vertices of Mn and let {vn,k}k∈In denote the corresponding vertices. For
all n≥ 0 and all ℓ≥ n, there exist functions φℓ←n,k :M0→ R such that

Sℓ(x) = ∑
k∈In

vn,kφℓ←n,k(x). (9.2)
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Furthermore, each element of {φℓ←n,k}k∈In can be expressed in terms of {φℓ←n+1,m}m∈In+1
as

φℓ←n,k = ∑
m∈In+1

amφℓ←n+1,m, (9.3)

for some choice of {am}m∈In+1
.

Proof. Let Φℓ←n(x) denote the row vector whose kth element is φℓ←n,k(x). Let Vn denote the matrix whose kth row is

the x, y, and z coordinates of the kth vertex of Mn. To begin, we rewrite (9.2) and (9.3) in vector form as

Sℓ(x) = Φℓ←n(x)Vn and (9.4)

Φℓ←n(x) = Φℓ←n+1(x)A. (9.5)

Thus, we need to show that relationships (9.4) and (9.5) hold. From the parametric representation ofMℓ, we have that

Sℓ(x) = ∑2
k=0 αkvℓ,βk , which can be rewritten in vector form as

Sℓ(x) = bℓ(x)Vℓ, (9.6)

where bℓ(x) is the row vector given by

(bℓ(x))n =

{
αn n ∈ {β0,β1,β2}
0 otherwise

(i.e., the vector bℓ(x) has all of its elements equal to zero except for the elements with indices β0, β1, and β2, which

have the respective values α0, α1, and α2). Because the vertices ofMℓ are affine combinations of the vertices ofMℓ−1,
we have that, for some (nonsquare) matrix Pℓ−1,

Vℓ = Pℓ−1Vℓ−1.

Applying the preceding relationship recursively ℓ−n times, we obtain

Vℓ = Pℓ−1Pℓ−2 · · ·PnVn.

Substituting the preceding equation into (9.6) yields

Sℓ(x) = bℓ(x)Pℓ−1Pℓ−2 · · ·PnVn.

Defining

Φℓ←n(x) = bℓ(x)Pℓ−1Pℓ−2 · · ·Pn, (9.7)

we obtain (9.4). Thus, (9.2) holds. From (9.7), we observe that

Φℓ←n(x) = bℓ(x)Pℓ−1Pℓ−2 · · ·Pn+1Pn.

= [bℓ(x)Pℓ−1Pℓ−2 · · ·Pn+1]Pn.

= φℓ←n+1(x)Pn.

Thus, a relationship of the form of (9.5) holds. Therefore, (9.3) holds.

Now, we consider some of the properties of the parameterization S(x) of the limit surfaceM∞.

Theorem 9.1. For any subdivision scheme, and for any ℓ≥ 0, given the vertices {vℓ,k}k∈Iℓ of the mesh Mℓ, there exist

scalar-valued functions {φℓ,k} defined on M0 such that

S(x) = ∑
k∈Iℓ

vℓ,kφℓ,k(x). (9.8)
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Proof. From Lemma 9.1, we have that

Sℓ(x) = ∑
k∈Iℓ

vn,kφℓ←n,k(x).

Taking the limit of both sides of the preceding equation as ℓ→ ∞ (and using the fact that S(x) = limℓ→∞ Sℓ(x)), we
obtain

S(x) = lim
ℓ→∞

∑
k∈In

vn,kφℓ←n,k(x).

Assuming that we can interchange the summation and limit (which turns out to be valid provided that the subdivision

scheme is sufficiently well behaved), we obtain

S(x) = ∑
k∈In

vn,k lim
ℓ→∞

φℓ←n,k(x).

Defining

φn,k(x) = lim
ℓ→∞

φℓ←n,k(x), (9.9)

we can rewrite the preceding equation as

S(x) = ∑
k∈In

vn,kφn,k(x).

Thus, (9.8) holds.

As a matter of terminology, the {φℓ,k} (from the above theorem) are called scaling functions. As it turns out,

these scaling functions are refinable in the sense considered by the theorem below.

Theorem 9.2. The scaling functions {φℓ,k}k∈Iℓ are refinable, in the sense that each element of {φℓ,k}k∈Iℓ can be

expressed in terms of {φℓ+1,k}k∈Iℓ+1
as

φℓ,k = ∑
m∈Iℓ+1

amφℓ+1,m, (9.10)

where {am}m∈Iℓ+1
is a scalar sequence.

Proof. In Lemma 9.1, we showed that

φℓ←n,k = ∑
m∈In+1

amφℓ←n+1,m.

Taking the limit of both sides of the preceding equation as ℓ→ ∞, we obtain

lim
ℓ→∞

φℓ←n,k = lim
ℓ→∞

∑
m∈In+1

amφℓ←n+1,m. ⇒

lim
ℓ→∞

φℓ←n,k = ∑
m∈In+1

am lim
ℓ→∞

φℓ←n+1,m.

Using (9.9), the preceding equation reduces to

φn,k = ∑
m∈In+1

amφn+1,m.

Thus, the scaling functions can be expressed in the form stated above.
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V∞ −→ ·· · V4 −→V3 −→V2 −→V1 −→V0ց ց ց ց
W3 W2 W1 W0

Figure 9.31: MRA decomposition of V∞.

The relationship (9.10) is analogous to the scaling equation (i.e., a refinement equation) from classical wavelet

systems, discussed earlier in Chapters 4 and 7.

Assuming that the subdivision scheme is sufficiently well behaved, it can be shown that, for each ℓ∈Z∗, {φℓ,k}k∈Iℓ
is independent (i.e., these functions form a basis for their span). From the scaling functions, we can define a sequence

{Vℓ}ℓ∈Z∗ of spaces, called approximation spaces, as

Vℓ = span {φℓ,k}k∈Iℓ .

Provided that the subdivision scheme is sufficiently well behaved so that {φℓ,k}k∈Iℓ is independent, a basis for Vℓ is

given by {φℓ,k}k∈Iℓ . Using the refinability of the scaling functions, we can show that the {Vℓ}ℓ∈Z∗ are nested as

V0 ⊂V1 ⊂V2 ⊂ . . . .

The approximation spaces {Vℓ}ℓ∈Z∗ are analogous to the spaces of a MRA in classical wavelet systems.

9.3.4 Wavelets Spaces and Wavelet Functions

Since Vℓ ⊂ Vℓ+1, there must exist some subspace Wℓ of Vℓ+1 such that Vℓ+1 = Vℓ ⊕Wℓ (i.e., Wℓ is the algebraic

complement ofVℓ inVℓ+1). Thus, we can associate with {Vℓ}ℓ∈Z∗ another sequence {Wℓ}ℓ∈Z∗ of spaces. The {Wℓ}ℓ∈Z∗

are called wavelet spaces. The wavelet spaces {Wℓ}ℓ∈Z∗ can be shown to be mutually disjoint. For each wavelet space

Wℓ, we can find a basis {ψℓ,k}k∈Iℓ . The {ψℓ,k} are called wavelet functions. Since ψℓ,k ∈Vℓ+1 (as ψℓ,k ∈Wℓ ⊂Vℓ+1)

for all k ∈ Iℓ, ψℓ,k can be expressed in terms of {φℓ+1,k}k∈Iℓ+1
(which is a basis of Vℓ+1) as

ψℓ,k = ∑
k∈Iℓ+1

akφℓ+1,k.

This is analogous to a wavelet equation from classical wavelet systems.

9.3.5 Wavelet Systems

Let V∞ = limℓ→∞Vℓ. The wavelet and approximation spaces decompose the space V∞ as given by

V∞ =V0⊕
(
⊕

k∈Z∗
Wk

)
.

This decomposition is shown in pictorial form in Figure 9.31. Notice that the index set for the approximation and

wavelet spaces is not Z but rather Z∗. Also, observe that the elements of the approximation and wavelet spaces are

functions defined on a manifold M0, not functions defined on a Euclidean domain such as R. Since the domain of

the scaling/wavelet functions is M0, which is a manifold, the type of variation on wavelets that we are considering

here is sometimes referred to as wavelets on manifolds. (Classical wavelets are sometimes referred to as wavelets on

Euclidean domains.)

Before proceeding further, it is instructive to examine a couple of expressions more carefully, to ensure a clear

understanding of what they represent. Suppose that we have a sequence {ϕk}k∈I of functions, where ϕk : M0 → R.

The scaling and wavelet functions are examples of functions of this form.

First, consider a function f of the form

f (x) = ∑
k∈I

akϕk(x), (9.11)
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where {ak}k∈I is a real sequence and x ∈M0. Clearly, the function f mapsM0 to R. So, f is not a surface. (A surface

would need to map M0 to R3.) The elements of the approximation and wavelet spaces have the form of (9.11). In the

case of the approximation spaceVℓ, ϕk = φℓ,k, whereas in the case of the wavelet spaceWℓ, ϕk = ψℓ,k. So, the elements

of the approximation spaces {Vℓ}ℓ∈Z∗ and wavelet spaces {Wℓ}ℓ∈Z∗ are not surfaces.

Now, consider a function s of the form

s(x) = ∑
k∈I

vkϕk(x), (9.12)

where {vk}k∈I is a sequence of vectors in R3 and x ∈M0. Let the x, y, and z components of the vector-valued function

s be denoted as sx, sy, and sz, respectively. Let the x, y, and z coordinates of the vector vk be denoted as vk,x, vk,y, and

vk,z, respectively. Then, we can equivalently write (9.12) as



sx(x)
sy(x)
sz(x)


= ∑

k∈I





vk,x
vk,y
vk,z


ϕk(x)


= ∑

k∈I



vk,xϕk(x)
vk,yϕk(x)
vk,zϕk(x)


=




∑k∈I vk,xϕk(x)

∑k∈I vk,yϕk(x)

∑k∈I vk,zϕk(x)


 .

From this, it is clear that the function s maps M0 to R3. In other words, s is of the form of a surface. Furthermore,

suppose that we define U = span{ϕk}k∈I . Then, s ∈U3 (since sx,sy,sz ∈U). Thus, the elements of V 3
ℓ , which have

the form of (9.12) with ϕk = φℓ,k, are surfaces. Similarly, the elements of W 3
ℓ , which have the form of (9.12) with

ϕk = ψℓ,k, are surfaces.

Recalling (9.8), we have that

S(x) = ∑
k∈Iℓ

vℓ,kφℓ,k(x).

Let the x, y, and z components of the vector-valued function S be denoted as Sx, Sy, Sz, respectively. Since, from

the above equation, Sx,Sy,Sz ∈ span{φℓ,k}k∈Iℓ , we can conclude that, for all ℓ ∈ Z∗, Sx,Sy,Sz ∈ Vℓ, or equivalently,

S ∈ V 3
ℓ . So, strictly speaking, the multiresolution representation of surfaces is associated with the spaces {V 3

ℓ }ℓ∈Z∗

and {W 3
ℓ }ℓ∈Z∗ . Of course, if one views surfaces in terms of their x, y, and z components separately, then the spaces of

interest simply become {Vℓ}ℓ∈Z∗ and {Wℓ}ℓ∈Z∗ .

9.3.6 Wavelet Analysis and Synthesis Operators

A surface s ∈ V 3
ℓ can be represented in two different ways. Since s ∈ V 3

ℓ , s has an expansion in terms of the basis of

Vℓ given by

s = ∑
k∈Iℓ

vℓ,kφℓ,k. (9.13)

Furthermore, as Vℓ =Vℓ−1⊕Wℓ−1, we can also expand s in terms of the bases for Vℓ−1 andWℓ−1 to obtain

s = ∑
k∈Iℓ−1

vℓ−1,kφℓ−1,k + ∑
k∈Iℓ−1

wℓ−1,kψℓ−1,k. (9.14)

In (9.14), the first summation corresponds to a coarse approximation of s that lies inV 3
ℓ−1, while the second summation

is associated with fine detail (missing from the coarse approximation) that lies inW 3
ℓ−1. The {wℓ,k} are called wavelet

coefficients. Note that the {vℓ,k} and {wℓ,k} are vectors. The transformation from (9.13) to (9.14) is a wavelet analysis

operator. The transformation from (9.14) to (9.13) is a wavelet synthesis operator. By construction, the limit surface

M∞ is in V 3
ℓ for all ℓ ∈ Z∗. Therefore, the wavelet coefficients in an expansion of M∞ are always all zero. Thus,

subdivision is essentially equivalent to a wavelet synthesis operator with all wavelet coefficients set to the zero vector.

9.3.7 Mallat Algorithm

The preceding mathematics implies that wavelet analysis and synthesis operators are associated with the geometric

and topologic refinement processes of subdivision. Given {vℓ−1,k}k∈Iℓ−1 and {wℓ−1,k}k∈Iℓ−1 , we can compute the
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corresponding {vℓ,k}k∈Iℓ by a filtering operation (i.e., the application of geometric masks) and topologic refinement.

This transformation is a wavelet synthesis operator. Given {vℓ,k}k∈Iℓ , we can compute the corresponding {vℓ−1,k}k∈Iℓ−1
and {wℓ−1,k}k∈Iℓ−1 by filtering operations (i.e., the application of geometric masks) and topologic refinement (i.e., the

inverse of the topologic refinement rule used in the associated subdivision process). This transformation is a wavelet

analysis operator.

9.3.8 Applications of Subdivision Wavelets

Some applications of subdivision wavelets include: polygon mesh compression, continuous level-of-detail control,

compression of functions defined on surfaces, multiresolution editing of surfaces, surface optimization, and numerical

solution of integral and differential equations (involving functions defined on a surface of arbitrary topological type).

9.4 Additional Information

A few additional good references on subdivision include the following: subdivision and wavelets for computer graph-

ics [13], subdivision for geometric modelling [14], and subdivision wavelets [2, 9].

9.5 Problems

9.1 Compute exactly (i.e., do not use decimal approximations) the refined mesh obtained after applying one level

of subdivision to the control mesh shown in the figure below, for each of the following subdivision schemes:

(a) linear;

(b) Loop;

(c) Kobbelt
√
3.

= (0,1,1)
v3

= (1,1,0)
v2

v0
= (0,0,0)

v1
= (1,0,1)

9.2 Compute exactly (i.e., do not use decimal approximations) the refined mesh obtained after applying one level

of subdivision to the control mesh shown in the figure below, for each of the following subdivision schemes:

(a) linear;

(b) Loop;

(c) Kobbelt
√
3.

= (−1,1,0)
v3

v4
= (0,0,1)

v0
= (−1,−1,0)

v1
= (1,−1,0)

= (1,1,0)
v2
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9.3 Compute exactly (i.e., do not use decimal approximations) the refined mesh obtained after applying one level

of Catmull-Clark subdivision to the control mesh in each of the figures below.

v0 v1

= (−1,1,−1)

= (1,−1,−1)= (−1,−1,1)

v2

= (1,1,1)
v3

(a)

v0 v2

= (−2,−1,−2)

= (−1,−2,−2)= (−2,−2,−1)

v4

v1
= (0,−1,0)

v6
= (1,1,1)

v5
= (−1,0,0)

v3
= (0,0,−1)

(b)

v4
= (−1,1,0)

v2
= (1,1,0)

v3
= (0,2,1)

v0
= (−1,−1,1)

v1
= (1,−1,1)

(c)

9.4 Show that the new vertices introduced by primal triangle quadrisection always have valence six in the inte-

rior of the mesh and valence four on the boundary of a mesh. [Hint: Draw diagrams for all of the possible

interior/boundary cases that can occur.]

9.5 Consider the application of Loop subdivision to the control mesh shown in the figure below. Let v′k denote the
limit position of the vertex vk.

(a) Compute exactly (i.e., do not use decimal approximations) v′7, v
′
11, v

′
0, and v′1.

(b) Compute exactly (i.e., do not use decimal approximations) a unit vector that is normal to the limit surface at

v′0 and v′1.
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v0

= (0,0,4)

= (−1,2,0)
v2

= (1,2,0)

v1

= (4,0,0)

v7

= (−2,4,0)
v9 v8

= (2,4,0)

v10

= (−4,0,0)

= (−2,−4,0)
v11 v12

= (2,−4,0)

v6

= (0,−3,2)

v5

= (0,3,2)

= (−1,−2,−1)
v3

= (1,−2,−1)
v4
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Chapter 10

Applications in Signal Processing

10.1 Introduction

Filter banks, wavelets, and other multirate systems (such as transmultiplexers) have many applications in signal pro-

cessing. In this chapter, we consider a few of these applications, including signal coding, denoising, multiplexing, and

adaptive filtering.

10.2 Signal Coding

The discipline of signal coding studies alternative representations of signals, usually with some specific purpose in

mind. The goal may be to find a representation with less redundancy so that fewer bits are required to encode the

signal, or to add redundancy in order to facilitate error detection/correction for information transmitted over noisy

channels. The former type of coding is referred to as signal compression. Herein, we focus our attention exclusively

on signal compression.

There are two general approaches to signal compression. In the first approach, the sample values of the orig-

inal signal are encoded directly to generate the coded bitstream. Such an approach is often referred to as a time-

domain/spatial-domain approach. In the second approach, a transformation is first applied to the samples of the

original signal and then the transformed data are encoded to produce the compressed bitstream. A system employing

this philosophy is said to be transform based. For lossy compression, transform-based coders are frequently em-

ployed as they tend to have much better performance for fixed complexity. On the other hand, in the case of lossless

compression, time-domain/spatial-domain coders have traditionally been employed in the past. In recent years, how-

ever, coders employing reversible integer-to-integer transforms have been growing in popularity for lossless coding.

10.2.1 Transform/Subband Coding

The general structure of a transform-based signal compression system is shown in Figure 10.1. In this diagram, x

represents the original signal, y denotes the compressed signal, and x̃ represents the reconstructed signal obtained

from decompression. The goal, of course, is to design a system so that the coded signal y can be represented with

fewer bits than the original signal x. The compressed bitstream may be stored or transmitted. In the case of storage,

compression has the benefit of reducing disk or memory requirements, and in transmission scenarios, compression

reduces the bandwidth (or time) required to send the data.

Rather than attempt to code the sample values of the original signal directly, a transform-based coder first applies a

transform to the signal and then codes the resulting transform coefficients instead. The transform is used in an attempt

to obtain coefficients that are easier to code.

Many signals of practical interest are characterized by a spectrum that decreases rapidly with increasing frequency.

Image and audio data are good examples of classes of signals with this property. By employing transforms that

decompose a signal into its various frequency components, one obtains many small or zero-valued coefficients which
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Transform
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Encoded

x̃

Reconstructed

Signal

(b)

Figure 10.1: General structure of a transform-based signal compression system. The (a) encoder and (b) decoder.

correspond to the high-frequency components of the original signal. Due to the large number of small coefficients, the

transformed signal is often easier to code than the original signal itself. As a practical matter, in order for a transform

to be useful, it must be effective for a reasonably large class of signals and efficient to compute.

Consider now the compression process embodied by the encoder shown in Figure 10.1(a). First, the transform

of the original signal to be coded is calculated. The particular transform employed is chosen so as to pack the

energy from the original signal into a small number of coefficients that can be more efficiently coded. Next, the

transform coefficients are quantized. Quantization is used to discard transform-coefficient information that is deemed

to be insignificant. In the case of lossless compression, no quantization is performed since all transform coefficient

information is essential, in which case, the quantized coefficient data is simply identical to the original coefficients.

Finally, the quantized coefficients are entropy coded to produce the compressed bitstream. Normally, the entropy

coding process is lossless (i.e., does not introduce any information loss). Moreover, the coding process typically

exploits a statistical model in order to code symbols with a higher probability of occurrence using fewer bits. In

so doing, the size of the compressed bitstream is reduced. Provided that the transform employed is truly invertible,

the only potential for information loss is due to coefficient quantization, as the quantized coefficients are coded in a

lossless manner.

Now, consider the decompression process embodied by the decoder shown in Figure 10.1(b). The decompres-

sion process simply mirrors the process used for compression. First, the compressed bitstream is decoded to obtain

the quantized transform-coefficient information. Then, from the quantized data, the dequantization process produces

transform coefficients that approximate those obtained during encoding. In the case of lossless coding, the approxi-

mation is exact (i.e., has no error). Finally, the inverse of the transform used in the encoder is employed to obtain the

reconstructed signal x̃.

In the subband-coding context, the forward and inverse transforms correspond to the analysis and synthesis sides

of a PR maximally-decimated filter bank. The forward transform splits the original signal into subbands. The inverse

transform combines subband signals to produce a reconstructed signal. Subband coding is used for many types of

signals including speech, audio, image, video, and ECG data. The basic idea behind subband coding is that the energy

(or information) in the original signal is typically not distributed uniformly with frequency. So, some subband signals

have more energy than others. By exploiting the nonuniform distribution of energy across subbands, it is possible

to achieve higher coding efficiency. For example, for a transform derived from a one-dimensional M-channel UMD

filter bank (with ideal frequency-selective filters), if the original signal were bandlimited to baseband frequencies in

the range [− π
M

, π
M

], only the first subband signal would be nonzero. Thus, only 1
M

of the samples would need to be

coded. In practice, however, all subbands usually have some energy, but this energy is not evenly distributed, with

the lower frequency bands typically having more than other bands. The number of bits allocated for for each subband

is then based on this information content. For speech, audio, image, and video data, the number of subbands, filter

bandwidths, and bit allocation is chosen to exploit the perceptual properties of the human auditory and visual systems.
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10.2.2 Coding Performance Measures

Obviously, in order to evaluate the performance of signal compression systems, we need a way to measure compres-

sion. For this purpose, the compression ratio metric is often employed and is defined as the ratio of the size of the

original signal (in bits) to the size of the compressed signal (in bits). Often, compression is quantified by stating the

bit rate achieved by compression in bits per sample (i.e., the size of the compressed signal in bits). In some cases,

the normalized bit rate is more convenient to use, and is defined as the reciprocal of compression ratio. The author

prefers to use the normalized bit rate and compression ratio metrics, since in order for the bit rate metric to be mean-

ingful one must also state the initial bit rate. The normalized bit rate and compression ratio metrics, however, are

meaningful if stated in isolation.

In the case of lossy compression, the reconstructed signal is only an approximation to the original. The difference

between the original and reconstructed signal is referred to as approximation error or distortion. Although many

metrics exist for quantifying distortion, the mean-squared error (MSE) is frequently used. For a signal x and its

reconstruction x̃ sampled at the points in Λ, the MSE is simply

MSE = |Λ|−1 ∑
k∈Λ

(x̃(k)− x(k))2 .

Frequently, the MSE is expressed in terms of the peak-signal-to-noise ratio (PSNR), which is defined as

PSNR = 20log10

(
2P−1√

MSE

)
,

where P is the number of bits/sample. Note that, as MSE increases, PSNR decreases.

Generally speaking, distortion varies with the amount of compression. In other words, distortion is implicitly a

function of rate (i.e., compression ratio). For this reason, plots (or tables) of distortion versus rate are often used to

analyze lossy compression performance. Obviously, for any given rate, the lowest possible distortion is desired.

In the case of lossless compression, the reconstructed signal is an exact replica of the original signal. In other

words, the distortion is always zero. Since the distortion is zero, we only need to consider the rate achieved when

analyzing lossless compression performance. Obviously, the lower the rate, the better is the compression performance.

10.2.3 Coding Gain

In the context of signal coding applications, we are often interested in the energy compacting ability of a filter bank.

This ability is often quantified using a measure known as the coding gain. More specifically, the coding gain is

defined as the ratio between the reconstruction error variance obtained by quantizing a signal directly to that obtained

by quantizing the corresponding subband coefficients using an optimal bit allocation strategy. In what follows, we

will derive a formula for the coding gain of a filter bank. More information concerning coding gain can also be found

in [19].

Suppose that we have a coder based on an m-channel shift-free PR (possibly non-uniform) maximally-decimated

filter bank. Recall that the tree-structured filter bank associated with a wavelet system can always be converted from

a tree structure to a flat structure via the noble identities. Thus, we consider a subband coder of the form shown in

Figure 10.2. Here, Qk denotes a quantizer with the corresponding bit rate rk. Let ξ denote the reconstruction error of

the filter bank and qk denote the error introduced by the kth quantizer. In other words, we have

ξ [n] = y[n]− x[n] and

qk[n] = q′k[n]− vk[n].

We now proceed to derive an expression for the coding gain of the filter bank. To begin, we first make some

assumptions about the input signal x and the quantization process embodied by the quantizers {Qk}. First, we assume

that the input x is a wide-sense stationary (WSS) process with zero mean. Second, we assume that the {Qk} are
uniform scalar quantizers and are employed at a high bit rate. This implies that each quantization error qk is white

with zero mean (and WSS) and the {qk} are uncorrelated.
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+

+

↓M1 Q1H1(z)
v1[n]

↑M1

q′1[n]
G1(z)

...
...

H0(z) ↓M0 Q0 ↑M0 G0(z)

Hm−1(z) ↓Mm−1 Qm−1 ↑Mm−1 Gm−1(z)
vm−1[n] q′m−1[n]

v0[n] q′0[n]

w′m−1[n]

w′1[n]

w′0[n]

...
...

...
...

...

x[n] y[n]

Figure 10.2: Model of subband coder.

VARIANCE OF SUBBAND SIGNALS. We begin by calculating the variance σ2
vk

of each subband signal vk. From

the system block diagram, we have

vk[n] = (↓Mk)(x∗hk)[n]
= ∑

l∈Zd

x[Mkn− l]hk[l].

Since the WSS property is preserved by downsampling and/or convolution, vk is WSS. In what follows, let µvk denote

the mean of vk (which is zero by assumption). Also, let Rxx denote the autocorrelation of x and let ρxx denote the

normalized autocorrelation (i.e., ρxx = σ−2x Rxx). Computing the variance σ2
vk
of vk, we obtain

σ2
vk

= E{(vk[n]−µvk)
2}

= E{v2k [n]}

= E

{(
∑
l∈Zd

x[Mkn− l]hk[l]

)(
∑
p∈Zd

x[Mkn− p]hk[p]

)}

= E

{
∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]x[Mkn− l]x[Mkn− p]

}

= ∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]E {x[Mkn− l]x[Mkn− p]} .

Since x is WSS, the preceding equation can be written as

σ2
vk

= ∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]E {x[0]x[p− l]}

= ∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]Rxx[p− l]

= ∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]ρxx[p− l]σ2
x .

Thus, σ2
vk
and σ2

x are related as

σ2
vk

= Akσ
2
x (10.1a)

where

Ak = ∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]ρxx[p− l]. (10.1b)
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In passing, we note that the above expression can be rewritten in the frequency domain as

Ak = ∑
p∈Zd

hk[p] ∑
l∈Zd

hk[l]ρxx[p− l]

= ∑
p∈Zd

hk[p](hk ∗ρxx)[p]

= ∑
p∈Zd

h̃k[−p] (hk ∗ρxx[p])

= (hk ∗ h̃k ∗ρxx)[0]

= (2π)−d
∫

[−π,π)d
ĥk(ω) ˆ̃hk(ω)ρ̂xx(ω)dω

= (2π)−d
∫

[−π,π)d
ĥk(ω)ĥ∗k(ω)ρ̂xx(ω)dω

= (2π)−d
∫

[−π,π)d
ρ̂xx(ω)

∣∣ĥk(ω)
∣∣2 dω,

where h̃k[n] = h∗k [−n]. (Note that hk is real due to earlier assumptions.)

VARIANCE OF ERROR IN SYNTHESIS FILTER OUTPUTS. In each channel of the filter bank, the subband signal

vk is quantized to produce q′k. Thus, q
′
k effectively consists of two additive components, namely the original subband

signal vk and an error component qk. That is, q′k = vk + qk. Since the synthesis side of the filter bank is linear, the

reconstruction error ξ depends only on the error components {qk}. Therefore, the reconstruction error variance σ2
ξ

(which we would eventually like to compute) is determined solely by the {qk}. Consequently, in what follows, we

need only consider what happens to the {qk} as they pass through the synthesis side of the filter bank.

Let wk denote the response of the kth upsampler and synthesis filter to the error component input qk. Now, we

compute the variance σ2
wk

of the error (due to quantization) in each of the synthesis filter outputs. Let αk = |detMk|−1.
The system being maximally decimated is equivalent to

m−1
∑
k=0

αk = 1. (10.2)

From the system block diagram, we have

wk[n] = (((↑Mk)qk)∗gk)[n]
= ∑

l∈Zd

qk[l]gk[n−Mkl].

Since qk is WSS and downsampling byMk is LPTV with periodMk, wk is cyclo-WSS with periodMk. So, we calculate

the variance of wk over a single coset (of Zd/(MkZd)). Let β ∈ Zd and γ ∈N(Mk). For fixed γ , we have

E
{
w2
k [Mkβ + γ]

}
= E

{(
∑
l∈Zd

qk[l]gk[Mkβ + γ−Mkl]

)(
∑
p∈Zd

qk[p]gk[Mkβ + γ−Mkp]

)}

= E

{
∑
l∈Zd

∑
p∈Zd

qk[l]qk[p]gk[Mk(β − l)+ γ]gk[Mk(β − p)+ γ]

}

= ∑
l∈Zd

∑
p∈Zd

gk[Mk(β − l)+ γ]gk[Mk(β − p)+ γ]E {qk[l]qk[p]} .

Now, we employ a change of variable. Let l′ = β − l and p′ = β − p so that l = β − l′ and p = β − p′. Applying the

change of variable and dropping the primes, we obtain

E
{
w2
k [Mkβ + γ]

}
= ∑

l∈Zd

∑
p∈Zd

gk[Mkl+ γ]gk[Mkp+ γ]E {qk[β − l]qk[β − p]} .
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Since qk is WSS, we can write

E
{
w2
k [Mkβ + γ]

}
= ∑

l∈Zd

∑
p∈Zd

gk[Mkl+ γ]gk[Mkp+ γ]Rqkqk [p− l].

Now, we compute the average variance σ2
wk

over a single period of the cyclo-WSS process associated with wk. We

have

σ2
wk

= αk ∑
γ∈N(Mk)

∑
l∈Zd

∑
p∈Zd

gk[Mkl+ γ]gk[Mkp+ γ]Rqkqk [l− p].

Since qk is a white-noise process with variance σ2
qk
, we have that Rqkqk [n] = σ2

qk
δ [n], and we can write

σ2
wk

= αk ∑
γ∈N(Mk)

∑
l∈Zd

∑
p∈Zd

gk[Mkl+ γ]gk[Mkp+ γ]σ2
qk

δ [l− p]

= αk ∑
γ∈N(Mk)

∑
l∈Zd

gk[Mkl+ γ]gk[Mkl+ γ]σ2
qk

= αk ∑
γ∈N(Mk)

∑
l∈Zd

g2k [Mkl+ γ]σ2
qk

= αk ∑
l∈Zd

g2k [l]σ
2
qk

.

Thus, σ2
wk

and σ2
qk
are related as

σ2
wk

= Bkσ
2
qk

(10.3a)

where

Bk = αk ∑
l∈Zd

g2k [l]. (10.3b)

(Note that Bk = αk ‖gk‖2l2 .) In passing, we observe that the {wk} are uncorrelated, since the {qk} are uncorrelated.
VARIANCE OF RECONSTRUCTION ERROR. Now, we proceed to calculate the variance σ2

ξ of the reconstruction

error ξ . Since, by assumption, we are using uniform scalar quantizers and a high bit rate, we have [17]

σ2
qk

= ε2k 2
−2rkσ2

vk
. (10.4)

The reconstruction error ξ is given by

ξ [n] =
m−1
∑
k=0

wk[n].

Since the {wk} are uncorrelated, the variance of their sum equals the sum of their variances. So, from (10.3b), (10.4),

and (10.1b), we can write

σ2
ξ =

m−1
∑
k=0

σ2
wk

=
m−1
∑
k=0

Bkσ
2
qk

=
m−1
∑
k=0

Bkε
2
k 2
−2rkσ2

vk

=
m−1
∑
k=0

AkBkε
2
k σ2

x 2
−2rk . (10.5)
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OPTIMAL RECONSTRUCTION ERROR VARIANCE. Now, we must minimize the reconstruction error variance σ2
ξ

subject to the rate constraint

m−1
∑
k=0

αkrk = r, (10.6)

where r is the desired rate. To do this, we use the method of Lagrange multipliers. We define the Lagrangian function

C = σ2
ξ +λ

(
m−1
∑
k=0

αkrk− r

)

=
m−1
∑
k=0

AkBkε
2
k σ2

x 2
−2rk +λ

(
m−1
∑
k=0

αkrk− r

)
,

where λ is a Lagrange multiplier. Differentiating the Lagrangian with respect to rk, we obtain

∂C
∂ rk

= AkBkε
2
k σ2

x (−2)(ln2)2−2rk +αkλ

=−2(ln2)AkBkε
2
k σ2

x 2
−2rk +αkλ .

(Note that ∂
∂x2

ax = a(ln2)2ax.) Letting ∂C
∂ rk

= 0, we have

αkλ = 2(ln2)AkBkε
2
k σ2

x 2
−2rk

⇒ αkλ

2(ln2)AkBkε
2
k σ2

x

= 2−2rk

⇒ −2rk = log2
αkλ

2(ln2)AkBkε
2
k σ2

x

.

Solving for rk in the preceding equation, we obtain

rk =− 1
2
log2

αkλ

2(ln2)AkBkε
2
k σ2

x

=− 1
2
log2

λ

2ln2
− 1

2
log2

αk

AkBkε
2
k σ2

x

. (10.7)

Substituting (10.7) into (10.6), we obtain

r =
m−1
∑
k=0

αk

(
− 1

2
log2

λ

2ln2
− 1

2
log2

αk

AkBkε
2
k σ2

x

)

=− 1
2

(
log2

λ

2ln2

)
m−1
∑
k=0

αk− 1
2

m−1
∑
k=0

αk log2
αk

AkBkε
2
k σ2

x

.

Since the system is maximally decimated (i.e., (10.2) holds), the preceding equation becomes

r =− 1
2
log2

λ

2ln2
− 1

2

m−1
∑
k=0

log2

((
αk

AkBkε
2
k σ2

x

)αk
)

.

Rewriting the sum of logarithms as a logarithm of a product, we obtain

r =− 1
2
log2

λ

2ln2
− 1

2
log2

(
m−1
∏
k=0

(
αk

AkBkε
2
k σ2

x

)αk

)

=− 1
2
log2

λ

2ln2
− 1

2
log2

(
1

σ2
x

m−1
∏
k=0

(
αk

AkBkε
2
k

)αk

)
.

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



412 CHAPTER 10. APPLICATIONS IN SIGNAL PROCESSING

Rearranging, we have

1
2
log2

λ

2ln2
=−r− 1

2
log2

(
1

σ2
x

m−1
∏
k=0

(
αk

AkBkε
2
k

)αk

)
.

Substituting the preceding equation into (10.7) and writing the difference of logarithms as the logarithm of a quotient,

we obtain

rk = r+ 1
2
log2

(
1

σ2
x

m−1
∏
l=0

(
αl

AlBlε
2
l

)αl

)
− 1

2
log2

αk

AkBkε
2
k σ2

x

= r+ 1
2
log2

(
AkBkε

2
k

αk

m−1
∏
l=0

(
αl

AlBlε
2
l

)αl

)
.

Substituting the preceding equation into (10.5), we have

σ2
ξ =

m−1
∑
k=0

AkBkε
2
k σ2

x (2rk)−2

=
m−1
∑
k=0

AkBkε
2
k σ2

x (2r)−2
(
AkBkε

2
k

αk

m−1
∏
l=0

(
αl

AlBlε
2
l

)αl

)−1

= 2−2r
m−1
∑
k=0

αkσ
2
x

m−1
∏
l=0

(
AlBlε

2
l

αl

)αl

= σ2
x 2
−2r

m−1
∏
l=0

(
AlBlε

2
l

αl

)αl

.

For the PCM case, one can show [17] that the error variance is given by ε2−2rσ2
x . Suppose that, in the subband case,

εk = ε . Then, the subband coding gain is calculated as

GSBC =
ε22−2rσ2

x

σ2
x 2
−2r ∏m−1

l=0

(
AlBlε

2
l

αl

)αl

=
1

∏m−1
l=0

(
AlBl
αl

)αl
.

Therefore, the subband coding gain GSBC is given by

GSBC =
m−1
∏
k=0

(
αk

AkBk

)αk

, (10.8)

where Ak and Bk are given by (10.1b) and (10.3b), respectively.

10.2.4 Additional Reading

For a more detailed treatment of signal coding and data compression beyond that presented herein, the reader is

referred to the following: data compression [31], image coding [3, 6, 25, 26], signal coding [17], and JPEG 2000 [8,

27, 29, 36, 37, 41].

10.3 Image Coding

Wavelet transforms have proven extremely effective for transform-based image compression. Since many of the

wavelet transform coefficients for a typical image tend to be very small or zero, these coefficients can be easily coded.

Thus, wavelet transforms are a useful tool for image compression.
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The main advantage of wavelet transforms over other more traditional decomposition methods (like the DFT

and DCT) is that the basis functions associated with a wavelet decomposition typically have both long and short

support. The basis functions with long support are effective for representing slow variations in an image while the

basis functions with short support can efficiently represent sharp transitions (i.e., edges). This makes wavelets ideal for

representing signals having mostly low-frequency content mixed with a relatively small number of sharp transitions.

With more traditional transforms techniques like the DFT and DCT, the basis functions have support over the entire

signal domain, making it difficult to represent both slow variations and edges efficiently.

The wavelet transform decomposes a signal into frequency bands that are equally spaced on a logarithmic scale.

The low-frequency bands have small bandwidths, while the high-frequency bands have large bandwidths. This loga-

rithmic behavior of wavelet transforms can also be advantageous. Since human visual perception behaves logarithmi-

cally in many respects, the use of wavelet decompositions can sometimes make it easier to exploit characteristics of

the human visual system in order to obtain improved subjective lossy compression results.

The wavelet transform is used in many image coding systems. For example, the wavelet transform is employed

in the JPEG-2000 image compression standard [16] and the FBI fingerprint compression standard [11]. It is also

used in the following coders: embedded block coding with optimal truncation (EBCOT) [35], set partitioning in hier-

archical trees (SPIHT) [28], compression with reversible embedded wavelets (CREW) [40], and embedded zerotree

wavelet (EZW) [32]. For a detailed overview of the JPEG-2000 image compression standard, the reader is referred to

Appendix A.

10.3.1 Coding Performance Measures

Although MSE (or equivalently, PSNR) is frequently employed to measure distortion, it is important to note that MSE

does not always correlate well with image quality as perceived by the human visual system. This is particularly true

at high compression ratios (i.e., low bit rates). For this reason, one should ideally supplement any objective lossy

compression performance measurements with subjective tests to ensure that the objective results are not misleading.

10.3.2 Coding Gain

Earlier, we presented the subband coding gain of a filter bank. The particular formula for the coding gain was given

by (10.8). Since a wavelet transform is associated with a filter bank, a wavelet transform also has an associated coding

gain. The coding gain formula requires the assumption of a statistical model for the signal being processed by the

filter bank. In practice, for the case of images, we typically assume a first-order autoregressive (AR) model. Two

variants of this model are commonly used, separable and isotropic. In these cases, ρxx in (10.8) is given by

ρxx[n] =

{
ρ‖n‖l1 for separable model

ρ‖n‖l2 for isotropic model,

where the correlation coefficient ρ satisfies |ρ| ≤ 1. Typically, ρ is chosen to satisfy ρ ∈ [0.90,0.95].

10.3.3 Choice of Wavelet System

Although wavelet transforms with many different characteristics are possible, orthogonal transforms with symmetric

finitely-supported basis functions are ideally most desirable for image compression. Separable transforms are pre-

ferred for reasons of computational efficiency. Orthogonality is beneficial as it ensures that transform coefficients

do not become unreasonably large and also because it easily facilitates the selection of the most important transform

coefficients in the sense of minimizing MSE. Symmetric basis functions are desirable in order to avoid phase distor-

tion as a result of compression. If phase is not preserved, edges and lines can become severely distorted, resulting

in poor subjective image quality. Moreover, the symmetric extension method for handling finite-length signals can

only be applied to transforms with symmetric basis functions. This is yet another incentive for using transforms with

symmetric basis functions. Unfortunately, in the case of two-band wavelet transforms, orthogonality, symmetry, and

finite support can only be achieved in the trivial case of the Haar and other Haar-like transforms. For this reason, we

usually choose to sacrifice orthogonality, and use biorthogonal transforms instead. In practice, this concession does
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not pose any serious problems. The choice of the wavelet transform also effects coding gain. Therefore, wavelet

transforms with high coding gain are desirable.

Another important consideration in the choice of wavelet transform is the shape of the primal scaling and wavelet

functions. The nature of the artifacts introduced by compression are closely related to the shapes of these functions.

In a transform-based coding system, we are representing the signal x to be coded as

x = ∑
k∈I

ak fk,

where the { fk}k∈I are the primal basis functions and the {ak}k∈I are the transform coefficients. Suppose now that we

quantize the transform coefficients. We replace the {ak}k∈I with their quantized versions {ãk}k∈I , where ãk = ak +qk
and qk corresponds to quantization error. In so doing, we obtain the quantized signal x̃, where

x̃ = ∑
k∈I

ãk fk = ∑
k∈I

(ak +qk) fk.

Thus, the error q introduced by quantization is given by

q = ∑
k∈I

qk fk.

In other words, the quantization error is a weighted sum of the primal basis functions { fk}k∈I . For a wavelet transform,

the { fk}k∈I are essentially sampled versions of approximations of the primal scaling and wavelet functions. Thus, the

basis functions have a shape resembling the primal scaling and wavelet functions. For this reason, the shape of the

primal scaling and wavelet functions determine the nature of the artifacts introduced by compression.

To better illustrate the importance of the shape of the primal scaling and wavelet functions, we consider the image

coding example shown in Figure 10.3. The image shown in Figure 10.3(a) was compressed in a lossy manner at the

same bit rate with three different wavelet transforms (namely, the Haar, twin dragon, and CDF 9/7 transforms) and

then decoded to form a reconstructed image. The reconstructed images are shown in Figures 10.3(b) to (d). To allow

differences between these images to be more clearly seen, a small region of interest is shown under magnification in

Figure 10.4. Clearly, the nature of the artifacts obtained for each transform are quite different. The primal scaling and

wavelet functions for the Haar, twin dragon, and CDF 9/7 transforms can be found in Figures 7.6 (on page 329), 7.10

(on page 332), and 7.8 (on page 331), respectively. In the cases of the Haar and twin dragon transforms, the shape of

the basis functions is visually apparent in the reconstructed images. Thus, the shape of the primal scaling and wavelet

functions are quite important when selecting a wavelet transform to be used in an image coding system.

10.4 Signal Denoising

Another common application of wavelets is in signal denoising [9, 10]. In this application, we have a signal that has

been corrupted by noise, and we need to make a best estimate of the original signal (without noise).

For simplicity, let us consider a simple noise model. A signal x is corrupted by additive noise v to produce a new

signal y. This corresponds to the noise model shown in Figure 10.5. Now, by observing only y, we wish to make the

best possible estimate of x. In what follows, let us further assume that v is white Gaussian noise with zero mean and

variance σ2.

One way to accomplish the above goal is through the use of a wavelet transform. Suppose that we have the signal

x represented in terms of an orthonormal wavelet series expansion. We can apply a wavelet transform, threshold the

resulting coefficients, and then perform the inverse wavelet transform. In other words, we have a system with the

general structure shown in Figure 10.6. As it turns out, such a system can be quite effective for noise reduction.

10.4.1 Thresholding Operators

In order to perform thresholding, we need to choose a thresholding operator. Three commonly used thresholding

operators are the hard, soft, and hyperbolic thresholding operators, respectively, given by

Tε(x) =

{
x if |x| ≥ ε

0 otherwise,
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(a) (b)

(c) (d)

Figure 10.3: Lossy compression example. (a) Original image. Lossy reconstructions obtained at a compression ratio

of 64 with the (b) Haar (26.55 dB), (c) twin dragon (24.83 dB), and (d) 9/7 wavelet (27.68 dB) transforms.
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(a) (b)

(c) (d)

Figure 10.4: Lossy compression example (continued). Magnified region from (a) original image. Magnified region

from lossy reconstructions obtained at a compression ratio of 64 with the (b) Haar, (c) twin dragon, and (d) 9/7 wavelet

transforms.
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+
x(t) y(t)
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Figure 10.5: Noise model.

Forward

Wavelet

Transform

Thresholding Wavelet

Inverse

Transform

Figure 10.6: Noise reduction system.

Tε(x) =

{
(sgnx)(|x|− ε) if |x| ≥ ε

0 otherwise, and

Tε(x) =

{
(sgnx)

√
x2− ε2 if |x| ≥ ε

0 otherwise,

where ε denotes the threshold value.

10.4.2 Choice of Threshold

A number of different schemes have been proposed for selecting an appropriate threshold value. Here, we consider

what is sometimes referred to as the universal threshold scheme. In this case, the threshold is computed as

ε = σ
√
2lnN,

where σ2 is an estimate of the noise variance and N is the number of samples. An estimate of the noise variance can

be calculated using the variance of the highpass wavelet coefficients.

10.4.3 Examples

To demonstrate the effectiveness of wavelet-based denoising, we now provide an example. We consider the signal

shown in Figure 10.7(a). This signal is corrupted with additive white Gaussian noise having variance 0.25 yielding

the signal in Figure 10.7(b). Then, for each of the three thresholding methods, the wavelet-based denoising algorithm

is applied using a five-level Daubechies-4 decomposition (i.e., “db4” from MATLAB). This process yields the three

signals in Figures 10.7(c), (d), and (e). From these results, we can see that hyperbolic and soft thresholding perform

best. In general, hard thresholding tends not to perform as well as soft or hyperbolic thresholding.

10.5 Multiplexing in Communication Systems

Earlier, in Section 3.11, we introduced a multirate structure called a transmultiplexer. Transmultiplexers have many

applications in communications. Often, we have two or more signals that must be transmitted over a single communi-

cation channel. Thus, we need to be able to combine multiple signals into a single multiplexed signal for transmission,

and then later split them apart. Transmultiplexers allow us to perform such a multiplexing operation. The need for

multiplexing can arise in both single-user and multi-user communication systems. In a multi-user system, the sig-

nals from several users may need to be multiplexed on a single physical communication channel. For example, in a
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Figure 10.7: Denoising example. (a) Original signal. (b) Signal corrupted by additive Gaussian white noise with

variance 0.25 (PSNR 20.50 dB). Denoised signal obtained using (c) soft thresholding (PSNR 29.42 dB), (d) hard

thresholding (PSNR 27.97 dB), and (e) hyperbolic thresholding (PSNR 30.40 dB).
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Figure 10.8: AnM-channel transmultiplexer.

digital telephone network, multiple voice signals must often be sent over the same physical channel. In a single-user

system, multiple data streams from the same user may need to be multiplexed over a single channel. Consequently,

multiplexing techniques are of fundamental importance in communications. In the sections that follow, we explore

multiplexing in more detail in the context of multirate systems.

10.5.1 Multichannel Communication Systems

One way in which to perform multiplexing is with a transmultiplexer. Consider theM-channel transmultiplexer shown

in Figure 10.8, with synthesis filters {gk}M−1k=0 and analysis filters {hk}M−1k=0 . The synthesis side of the transmultiplexer

(on the left side of the diagram) multiplexes the M signals {xk}M−1k=0 onto the single signal y. The analysis side of

the transmultiplexer (on the right side of the diagram) demultiplexes y to produce the M signals {x̃k}M−1k=0 . If the

transmultiplexer has the PR property, then, for each k ∈ {0,1, . . . ,M−1}, x̃k is simply a shifted version of xk. In other

words, if the PR property holds, we have a system that can be used to multiplex/demultiplex M signals. This is ideal

for many communication applications.

Transmultiplexers are commonly used for frequency division multiple access (FDMA), orthogonal frequency

division multiplexing (OFDM), code division multiple access (CDMA), and time division multiple access (TDMA).

For FDMA, the synthesis/analysis filters are chosen to be frequency selective. For TDMA, the filters are chosen to

have simple one-tap impulses responses. For CDMA, the filters are spread in both time and frequency.

Example 10.1 (FDMA with two-channel transmultiplexer). Suppose that we have two signals x0 and x1 that we

need multiplex on a single physical communication channel. This can be accomplished by using the two-channel

transmultiplexer shown in Figure 10.9, where the frequency responses of the synthesis and analysis filters, for ω ∈
(−π,π], are given by

ĝ0(ω) = 2χ[−π/2,π/2](ω), ĝ1(ω) = 2− ĝ0(ω), ĥ0(ω) = χ[−π/2,π/2](ω), and ĥ1(ω) = 1− ĥ0(ω).

These frequency responses are shown in Figure 10.10. This system can be shown to have the shift-free PR property.

Suppose that the signals x0 and x1 to be transmitted over the communication channel have the frequency spectra

shown in Figures 10.11(a) and (b), respectively. Consider the synthesis side of the transmultiplexer, which performs

multiplexing. The upsampler outputs u0 and u1 have the spectra shown in Figures 10.11(c) and (d), respectively; and

the synthesis filter outputs v0 and v1 have the spectra shown in Figures 10.11(e) and (f), respectively. Thus, the mu-

tiplexed signal y has the spectrum shown in Figure 10.11(g). Now, consider the analysis side of the transmultiplexer,

which performs demultiplexing. The analysis filter outputs w0 and w1 have the spectra shown in Figures 10.11(h)

and (i), respectively; and the outputs x̃0 and x̃1 have the spectra shown in Figures 10.11(j) and (k), respectively.

Clearly, x̃0 = x0 and x̃1 = x1. So, shift-free PR is achieved.

10.5.2 Multicarrier Modulation

Transmultiplexers can also be used in an approach called multicarrier modulation (MCM). With MCM, the data to

be transmitted is split into several streams and then used to modulate several carriers. Thus, instead of transmitting a

single wideband signal over one channel, we transmit a set of narrowband signals. In effect, MCM provides a means

for partitioning a single physical channel into multiple logical subchannels.
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Figure 10.9: A two-channel transmultiplexer.
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Figure 10.10: Synthesis and analysis filter frequency responses. Frequency response of the (a) synthesis lowpass filter,

(b) synthesis highpass filter, (c) analysis lowpass filter, and (d) analysis highpass filter.
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û1(ω)

2

−π
2

π
2

1

(d)

π−π

1

ω

v̂0(ω)

2

−π
2

π
2

(e)

π−π

1

ω

v̂1(ω)

2

−π
2

π
2

(f)

π−π

1

ω
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Figure 10.11: Two-channel transmultiplexer FDMA example. Frequency spectra of the (a) first and (b) second inputs,

(c) first and (d) second upsampler outputs, (e) first and (f) second synthesis filter outputs, (g) multiplexed signal,

(h) first and (i) second analysis filter outputs, and (j) first and (k) second downsampler outputs.
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Figure 10.12: Multicarrier modulation system.

The general structure of a MCM system is shown in Figure 10.12. The system works as follows. First, the input

signal x to be transmitted is split into M distinct data streams {xk}M−1k=0 . Then, all of the data streams are multiplexed

together into a single signal y that is sent over the communication channel. Next, the received signal y undergoes

demultiplexing to produce the data streams {x̃k}M−1k=0 , and the data streams are combined together to form the output

signal x̃. Provided that the system is designed properly (e.g., with a PR transmultiplexer), the signal x̃ will equal x up

to a time shift.

MCM is used in many applications. It was first employed for military HF radios in the late 1950s and early 1960s.

Since the 1990s, the use of MCM has become widespread. It is employed for digital TV broadcasting in Europe [30],

numerous wireless LAN/MAN standards such as 802.11a [13], 802.11g [14], and 802.16a [15]. Also, it is used for

high-speed data transmission over the twisted-pair channel of digital subscriber lines (e.g., ADSL) [7].

MCM has several advantages over the classical single-carrier approach. First, MCM can adapt the data rates

of the subchannels to the channel-noise characteristics (which is beneficial since channel noise is usually colored).

For example, more important data can be transmitted in subchannels with less noise, and transmitting in extremely

noisy subchannels can be avoided altogether. Second, MCM facilitates more effective coding schemes, improving

robustness to transmission errors. Third, with MCM, channel effects can be more easily modelled. For example, since

each subchannel has a much smaller bandwidth than the single wideband channel, it may be possible to model the

transfer function of single (narrowband) subchannel simply as a constant.

Some additional references on MCM include: [18], and [5].

10.5.3 Additional Reading

A large body of literature exists on the use of transmultiplexers for communications. A few additional references

include: [1], [38], [2, Section 7.3], and [34, pp. 391–392].

10.6 Adaptive Systems

Filter banks and multirate systems are often used in adaptive filtering applications, such as inverse filtering, room

acoustics modelling, echo cancellation, and equalization. In such schemes, adaptive filtering is performed in the sub-

bands, at a lower sampling rate. This use of a lower sampling rate has obvious advantages. Also, some subbands may

be ignored if they contain little information. The advantages of using multirate structures for adaptive filtering often

include: smaller filter lengths, lower implementation complexity, and faster convergence. A good tutorial on multi-

rate adaptive filtering is provided in [33]. Some other additional references include: acoustic echo cancellation [12],

adaptive filtering [20], channel estimation and equalization [24], and NLMS algorithm [22].
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Chapter 11

Applications in Geometry Processing

11.1 Introduction

Subdivision surfaces and wavelets have many applications in geometry processing. In this chapter, we briefly explore

the how subdivision surfaces are employed in the rendering of geometric objects.

11.2 Practical Use of Subdivision: Rendering

In addition to the vertices of a mesh and their connectivity, to render a mesh, we need surface normals. In practice,

given a control mesh, we would typically render the corresponding surface using a process like the following:

1. Apply several iterations of subdivision to the control mesh in order to produce a refined mesh.

2. Push the vertices in the refined mesh to their limit positions using position masks.

3. Using tangent masks, compute two tangent vectors at each point on the limit surface corresponding to the limit

position of a vertex.

4. From the two tangent vectors, compute a corresponding surface normal (via a vector cross product).

5. Equipped with the vertex positions and normals from above, we then proceed to render the surface. We might,

for example, use a rendering engine such as OpenGL in conjunction with a Phong lighting model.

As for the specific details as to how the above process can be accomplished in a real software application, the reader

is referred to the material on the CGAL [1, 3] and OpenGL [2, 4] libraries in Appendices C and D, respectively.
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Appendix A

The JPEG-2000 Image Compression

Standard

Overview

JPEG 2000, a new international standard for still image compression, is discussed at length. A high-level introduction

to the JPEG-2000 standard is given, followed by a detailed technical description of the JPEG-2000 Part-1 codec.

A.1 Introduction

Digital imagery is pervasive in our world today. Consequently, standards for the efficient representation and inter-

change of digital images are essential. To date, some of the most successful still image compression standards have

resulted from the ongoing work of the Joint Photographic Experts Group (JPEG). This group operates under the aus-

pices of Joint Technical Committee 1, Subcommittee 29, Working Group 1 (JTC 1/SC 29/WG 1), a collaborative

effort between the International Organization for Standardization (ISO) and International Telecommunication Union

Standardization Sector (ITU-T). Both the JPEG [22, 35, 46] and JPEG-LS [13, 24, 47] standards were born from the

work of the JPEG committee. More recently, the JPEG committee has developed a new standard known as JPEG 2000

(i.e., ISO/IEC 15444).

In this appendix, we provide a detailed technical description of the JPEG-2000 Part-1 codec, in addition to a brief

overview of the JPEG-2000 standard. This exposition is intended to serve as a reader-friendly starting point for those

interested in learning about JPEG 2000. Although many details are included in our presentation, some details are

necessarily omitted. The reader should, therefore, refer to the standard [25] before attempting an implementation.

The JPEG-2000 codec realization in the JasPer software [2, 4, 5] (developed by the author of this book) may also

serve as a practical guide for implementors. (See Section A.5 for more information about JasPer.) The reader may

also find [16, 36, 45] to be useful sources of information on the JPEG-2000 standard.

The remainder of this appendix is structured as follows. Section A.2 begins with a overview of the JPEG-2000

standard. This is followed, in Section A.3, by a detailed description of the JPEG-2000 Part-1 codec. Finally, we

conclude with some closing remarks in Section A.4. Throughout our presentation, a basic understanding of image

coding is assumed.

A.2 JPEG 2000

The JPEG-2000 standard supports lossy and lossless compression of single-component (e.g., grayscale) and multi-

component (e.g., color) imagery. In addition to this basic compression functionality, however, numerous other features

are provided, including: 1) progressive recovery of an image by fidelity or resolution; 2) region of interest coding,

whereby different parts of an image can be coded with differing fidelity; 3) random access to particular regions of an
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image without needing to decode the entire code stream; 4) a flexible file format with provisions for specifying opacity

information and image sequences; and 5) good error resilience. Due to its excellent coding performance and many

attractive features, JPEG 2000 has a very large potential application base. Some possible application areas include:

image archiving, Internet, web browsing, document imaging, digital photography, medical imaging, remote sensing,

and desktop publishing.

A.2.1 Why JPEG 2000?

Work on the JPEG-2000 standard commenced with an initial call for contributions [21] in March 1997. The purpose

of having a new standard was twofold. First, it would address a number of weaknesses in the original JPEG standard.

Second, it would provide a number of new features not available in the original JPEG standard. The preceding points

led to several key objectives for the new standard, namely that it should: 1) allow efficient lossy and lossless compres-

sion within a single unified coding framework, 2) provide superior image quality, both objectively and subjectively,

at low bit rates, 3) support additional features such as rate and resolution scalability, region of interest coding, and a

more flexible file format, and 4) avoid excessive computational and memory complexity. Undoubtedly, much of the

success of the original JPEG standard can be attributed to its royalty-free nature. Consequently, considerable effort

has been made to ensure that a minimally-compliant JPEG-2000 codec can be implemented free of royalties.

A.2.2 Structure of the Standard

The JPEG-2000 standard is comprised of numerous parts, with the parts listed in Table A.1 being defined at the

time of this writing. For convenience, we will refer to the codec defined in Part 1 (i.e., [25]) of the standard as the

baseline codec. The baseline codec is simply the core (or minimal functionality) JPEG-2000 coding system. Part 2

(i.e., [27]) describes extensions to the baseline codec that are useful for certain “niche” applications, while Part 3 (i.e.,

[28]) defines extensions for intraframe-style video compression. Part 5 (i.e., [30]) provides two reference software

implementations of the Part-1 codec, and Part 4 (i.e., [29]) provides a methodology for testing implementations for

compliance with the standard. In this appendix, we will, for the most part, limit our discussion to the baseline codec.

Some of the extensions included in Part 2 will also be discussed briefly. Unless otherwise indicated, our exposition

considers only the baseline system.

For the most part, the JPEG-2000 standard is written from the point of view of the decoder. That is, the decoder

is defined quite precisely with many details being normative in nature (i.e., required for compliance), while many

parts of the encoder are less rigidly specified. Obviously, implementors must make a very clear distinction between

normative and informative clauses in the standard. For the purposes of our discussion, however, we will only make

such distinctions when absolutely necessary.

A.3 JPEG-2000 Codec

Having briefly introduced the JPEG-2000 standard, we are now in a position to begin examining the JPEG-2000

codec in detail. The codec is based on wavelet/subband coding techniques [8, 33]. It handles both lossy and lossless

compression using the same transform-based framework, and borrows heavily on ideas from the embedded block

coding with optimized truncation (EBCOT) scheme [42, 43, 44]. In order to facilitate both lossy and lossless coding

in an efficient manner, reversible integer-to-integer [3, 12, 19] and nonreversible real-to-real transforms are employed.

To code transform data, the codec makes use of bit-plane coding techniques. For entropy coding, a context-based

adaptive binary arithmetic coder [48] is used—more specifically, the MQ coder from the JBIG2 standard [23]. Two

levels of syntax are employed to represent the coded image: a code stream and file format syntax. The code stream

syntax is similar in spirit to that used in the original JPEG standard.

The remainder of Section A.3 is structured as follows. First, Sections A.3.1 to A.3.3, discuss the source image

model and how an image is internally represented by the codec. Next, Section A.3.4 examines the basic structure

of the codec. This is followed, in Sections A.3.5 to A.3.13 by a detailed explanation of the coding engine itself.

Next, Sections A.3.14 and A.3.15 explain the syntax used to represent a coded image. Finally, Section A.3.16 briefly

describes some of the extensions included in Part 2 of the standard.
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Table A.1: Parts of the standard

Part Title Purpose Document

1 Core coding system Specifies the core (or minimal functionality) JPEG-2000 codec. [25]

2 Extensions Specifies additional functionalities that are useful in some applications

but need not be supported by all codecs.

[27]

3 Motion JPEG 2000 Specifies extensions to JPEG-2000 for intraframe-style video compres-

sion.

[28]

4 Conformance testing Specifies the procedure to be employed for compliance testing. [29]

5 Reference software Provides sample software implementations of the standard to serve as

a guide for implementors.

[30]

6 Compound image file

format

Defines a file format for compound documents. [31]

8 Secure JPEG 2000 Defines mechanisms for conditional access, integrity/authentication,

and intellectual property rights protection.

9 Interactivity tools,

APIs and protocols

Specifies a client-server protocol for efficiently communicating JPEG-

2000 image data over networks.

10 3D and floating-point

data

Provides extensions for handling 3D (e.g., volumetric) and floating-

point data.

11 Wireless Provides channel coding and error protection tools for wireless appli-

cations.

12 ISO base media file for-

mat

Defines a common media file format used by Motion JPEG 2000 and

MPEG 4.

[26]

13 Entry-level JPEG 2000

encoder

Specifies an entry-level JPEG-2000 encoder.
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Figure A.1: Source image model. (a) An image with N components. (b) Individual component.

A.3.1 Source Image Model

Before examining the internals of the codec, it is important to understand the image model that it employs. From

the codec’s point of view, an image is comprised of one or more components (up to a limit of 214), as shown in

Figure A.1(a). As illustrated in Figure A.1(b), each component consists of a rectangular array of samples. The sample

values for each component are integer valued, and can be either signed or unsigned with a precision from 1 to 38

bits/sample. The signedness and precision of the sample data are specified on a per-component basis.

All of the components are associated with the same spatial extent in the source image, but represent different

spectral or auxiliary information. For example, a RGB color image has three components with one component rep-

resenting each of the red, green, and blue color planes. In the simple case of a grayscale image, there is only one

component, corresponding to the luminance plane. The various components of an image need not be sampled at the

same resolution. Consequently, the components themselves can have different sizes. For example, when color images

are represented in a luminance-chrominance color space, the luminance information is often more finely sampled than

the chrominance data.

A.3.2 Reference Grid

Given an image, the codec describes the geometry of the various components in terms of a rectangular grid called the

reference grid. The reference grid has the general form shown in Figure A.2. The grid is of size Xsiz×Ysiz with

the origin located at its top-left corner. The region with its top-left corner at (XOsiz,YOsiz) and bottom-right corner

at (Xsiz−1,Ysiz−1) is called the image area, and corresponds to the picture data to be represented. The width and

height of the reference grid cannot exceed 232−1 units, imposing an upper bound on the size of an image that can be

handled by the codec.

All of the components are mapped onto the image area of the reference grid. Since components need not be sam-

pled at the full resolution of the reference grid, additional information is required in order to establish this mapping.

For each component, we indicate the horizontal and vertical sampling period in units of the reference grid, denoted

as XRsiz and YRsiz, respectively. These two parameters uniquely specify a (rectangular) sampling grid consisting

of all points whose horizontal and vertical positions are integer multiples of XRsiz and YRsiz, respectively. All such

points that fall within the image area, constitute samples of the component in question. Thus, in terms of its own

coordinate system, a component will have the size
(⌈

Xsiz
XRsiz

⌉
−
⌈
XOsiz
XRsiz

⌉)
×
(⌈

Ysiz
YRsiz

⌉
−
⌈
YOsiz
YRsiz

⌉)
and its top-left sample

will correspond to the point
(⌈

XOsiz
XRsiz

⌉
,
⌈
YOsiz
YRsiz

⌉)
. Note that the reference grid also imposes a particular alignment of

samples from the various components relative to one another.

From the diagram, the size of the image area is (Xsiz−XOsiz)× (Ysiz−YOsiz). For a given image, many

combinations of the Xsiz, Ysiz, XOsiz, and YOsiz parameters can be chosen to obtain an image area with the same

size. Thus, one might wonder why the XOsiz and YOsiz parameters are not fixed at zero while the Xsiz and Ysiz

parameters are set to the size of the image. As it turns out, there are subtle implications to changing the XOsiz and

YOsiz parameters (while keeping the size of the image area constant). Such changes affect codec behavior in several
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Figure A.2: Reference grid.

important ways, as will be described later. This behavior allows a number of basic operations to be performed more

efficiently on coded images, such as cropping, horizontal/vertical flipping, and rotation by an integer multiple of 90

degrees.

A.3.3 Tiling

In some situations, an image may be quite large in comparison to the amount of memory available to the codec.

Consequently, it is not always feasible to code the entire image as a single atomic unit. To solve this problem, the

codec allows an image to be broken into smaller pieces, each of which is independently coded. More specifically, an

image is partitioned into one or more disjoint rectangular regions called tiles. As shown in Figure A.3, this partitioning

is performed with respect to the reference grid by overlaying the reference grid with a rectangular tiling grid having

horizontal and vertical spacings of XTsiz and YTsiz, respectively. The origin of the tiling grid is aligned with the

point (XTOsiz,YTOsiz). Tiles have a nominal size of XTsiz×YTsiz, but those bordering on the edges of the image

area may have a size which differs from the nominal size. The tiles are numbered in raster scan order (starting at

zero).

By mapping the position of each tile from the reference grid to the coordinate systems of the individual compo-

nents, a partitioning of the components themselves is obtained. For example, suppose that a tile has an upper left

corner and lower right corner with coordinates (tx0, ty0) and (tx1− 1, ty1− 1), respectively. Then, in the coordinate

space of a particular component, the tile would have an upper left corner and lower right corner with coordinates

(tcx0, tcy0) and (tcx1−1, tcy1−1), respectively, where

(tcx0, tcy0) = (⌈tx0/XRsiz⌉ ,⌈ty0/YRsiz⌉) and (A.1a)

(tcx1, tcy1) = (⌈tx1/XRsiz⌉ ,⌈ty1/YRsiz⌉) . (A.1b)

These equations correspond to the illustration in Figure A.4. The portion of a component that corresponds to a

single tile is referred to as a tile-component. Although the tiling grid is regular with respect to the reference grid, it is

important to note that the grid may not necessarily be regular with respect to the coordinate systems of the components.

A.3.4 Codec Structure

The general structure of the codec is shown in Figure A.5 with the form of the encoder given by Figure A.5(a) and the

decoder given by Figure A.5(b). From these diagrams, the key processes associated with the codec can be identified:
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Figure A.5: Codec structure. The structure of the (a) encoder and (b) decoder.

1) preprocessing/postprocessing, 2) intercomponent transform, 3) intracomponent transform, 4) quantization/dequan-

tization, 5) tier-1 coding, 6) tier-2 coding, and 7) rate control. The decoder structure essentially mirrors that of the

encoder. That is, with the exception of rate control, there is a one-to-one correspondence between functional blocks

in the encoder and decoder. Each functional block in the decoder either exactly or approximately inverts the effects

of its corresponding block in the encoder. Since tiles are coded independently of one another, the input image is (con-

ceptually, at least) processed one tile at a time. In the sections that follow, each of the above processes is examined in

more detail.

A.3.5 Preprocessing/Postprocessing

The codec expects its input sample data to have a nominal dynamic range that is approximately centered about zero.

The preprocessing stage of the encoder simply ensures that this expectation is met. Suppose that a particular com-

ponent has P bits/sample. The samples may be either signed or unsigned, leading to a nominal dynamic range of

[−2P−1,2P−1−1] or [0,2P−1], respectively. If the sample values are unsigned, the nominal dynamic range is clearly

not centered about zero. Thus, the nominal dynamic range of the samples is adjusted by subtracting a bias of 2P−1

from each of the sample values. If the sample values for a component are signed, the nominal dynamic range is already

centered about zero, and no processing is required. By ensuring that the nominal dynamic range is centered about

zero, a number of simplifying assumptions could be made in the design of the codec (e.g., with respect to context

modeling, numerical overflow, etc.).

The postprocessing stage of the decoder essentially undoes the effects of preprocessing in the encoder. If the

sample values for a component are unsigned, the original nominal dynamic range is restored. Lastly, in the case of

lossy coding, clipping is performed to ensure that the sample values do not exceed the allowable range.

A.3.6 Intercomponent Transform

In the encoder, the preprocessing stage is followed by the forward intercomponent transform stage. Here, an inter-

component transform can be applied to the tile-component data. Such a transform operates on all of the components

together, and serves to reduce the correlation between components, leading to improved coding efficiency.

Only two intercomponent transforms are defined in the baseline JPEG-2000 codec: the irreversible color transform

(ICT) and reversible color transform (RCT). The ICT is nonreversible and real-to-real in nature, while the RCT is

reversible and integer-to-integer. Both of these transforms essentially map image data from the RGB to YCrCb color

space. The transforms are defined to operate on the first three components of an image, with the assumption that

components 0, 1, and 2 correspond to the red, green, and blue color planes. Due to the nature of these transforms, the

components on which they operate must be sampled at the same resolution (i.e., have the same size). As a consequence
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of the above facts, the ICT and RCT can only be employed when the image being coded has at least three components,

and the first three components are sampled at the same resolution. The ICT may only be used in the case of lossy

coding, while the RCT can be used in either the lossy or lossless case. Even if a transform can be legally employed,

it is not necessary to do so. That is, the decision to use a multicomponent transform is left at the discretion of the

encoder. After the intercomponent transform stage in the encoder, data from each component is treated independently.

The ICT is nothing more than the classic RGB to YCrCb color space transform. The forward transform is defined

as 

V0(x,y)
V1(x,y)
V2(x,y)


=




0.299 0.587 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131





U0(x,y)
U1(x,y)
U2(x,y)


 , (A.2)

whereU0(x,y),U1(x,y), andU2(x,y) are the input components corresponding to the red, green, and blue color planes,

respectively, and V0(x,y), V1(x,y), and V2(x,y) are the output components corresponding to the Y, Cr, and Cb planes,

respectively. The inverse transform can be shown to be



U0(x,y)
U1(x,y)
U2(x,y)


=



1 0 1.402
1 −0.34413 −0.71414
1 −1.772 0





V0(x,y)
V1(x,y)
V2(x,y)


 . (A.3)

The RCT is simply a reversible integer-to-integer approximation to the ICT (similar to that proposed in [19]). The

forward transform is given by

V0(x,y) =
⌊
1
4
(U0(x,y)+2U1(x,y)+U2(x,y))

⌋
, (A.4a)

V1(x,y) =U2(x,y)−U1(x,y), and (A.4b)

V2(x,y) =U0(x,y)−U1(x,y), (A.4c)

where U0(x,y), U1(x,y), U2(x,y), V0(x,y), V1(x,y), and V2(x,y) are defined as above. The inverse transform can be

shown to be

U1(x,y) =V0(x,y)−
⌊
1
4
(V1(x,y)+V2(x,y))

⌋
, (A.5a)

U0(x,y) =V2(x,y)+U1(x,y), and (A.5b)

U2(x,y) =V1(x,y)+U1(x,y). (A.5c)

The inverse intercomponent transform stage in the decoder essentially undoes the effects of the forward intercom-

ponent transform stage in the encoder. If a multicomponent transform was applied during encoding, its inverse is

applied here. Unless the transform is reversible, however, the inversion may only be approximate due to the effects of

finite-precision arithmetic.

A.3.7 Intracomponent Transform

Following the intercomponent transform stage in the encoder is the intracomponent transform stage. In this stage,

transforms that operate on individual components can be applied. The particular type of operator employed for this

purpose is the wavelet transform. Through the application of the wavelet transform, a component is split into numerous

frequency bands (i.e., subbands). Due to the statistical properties of these subband signals, the transformed data can

usually be coded more efficiently than the original untransformed data.

Both reversible integer-to-integer [1, 3, 6, 12, 14] and nonreversible real-to-real wavelet transforms are employed

by the baseline codec. The basic building block for such transforms is the 1-D 2-channel perfect-reconstruction (PR)

uniformly-maximally-decimated (UMD) filter bank (FB) which has the general form shown in Figure A.6. Here,

we focus on the lifting realization of the UMDFB [40, 41], as it can be used to implement the reversible integer-to-

integer and nonreversible real-to-real wavelet transforms employed by the baseline codec. In fact, for this reason,

it is likely that this realization strategy will be employed by many codec implementations. The analysis side of the

UMDFB, depicted in Figure A.6(a), is associated with the forward transform, while the synthesis side, depicted in

Figure A.6(b), is associated with the inverse transform. In the diagram, the {Ai(z)}λ−1
i=0 , {Qi(x)}λ−1

i=0 , and {si}1i=0
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Figure A.6: Lifting realization of a 1-D 2-channel PR UMDFB. (a) Analysis side. (b) Synthesis side.

denote filter transfer functions, quantization operators, and (scalar) gains, respectively. To obtain integer-to-integer

mappings, the {Qi(x)}λ−1
i=0 are selected such that they always yield integer values, and the {si}1i=0 are chosen as

integers. For real-to-real mappings, the {Qi(x)}λ−1
i=0 are simply chosen as the identity, and the {si}1i=0 are selected

from the real numbers. To facilitate filtering at signal boundaries, symmetric extension [7, 10, 11] is employed. Since

an image is a 2-D signal, clearly we need a 2-D UMDFB. By applying the 1-D UMDFB in both the horizontal and

vertical directions, a 2-D UMDFB is effectively obtained. The wavelet transform is then calculated by recursively

applying the 2-D UMDFB to the lowpass subband signal obtained at each level in the decomposition.

Suppose that a (R− 1)-level wavelet transform is to be employed. To compute the forward transform, we apply

the analysis side of the 2-D UMDFB to the tile-component data in an iterative manner, resulting in a number of

subband signals being produced. Each application of the analysis side of the 2-D UMDFB yields four subbands:

1) horizontally and vertically lowpass (LL), 2) horizontally lowpass and vertically highpass (LH), 3) horizontally

highpass and vertically lowpass (HL), and 4) horizontally and vertically highpass (HH). A (R− 1)-level wavelet
decomposition is associated with R resolution levels, numbered from 0 to R− 1, with 0 and R− 1 corresponding to

the coarsest and finest resolutions, respectively. Each subband of the decomposition is identified by its orientation

(e.g., LL, LH, HL, HH) and its corresponding resolution level (e.g., 0,1, . . . ,R−1). The input tile-component signal

is considered to be the LLR−1 band. At each resolution level (except the lowest) the LL band is further decomposed.

For example, the LLR−1 band is decomposed to yield the LLR−2, LHR−2, HLR−2, and HHR−2 bands. Then, at the next
level, the LLR−2 band is decomposed, and so on. This process repeats until the LL0 band is obtained, and results in

the subband structure illustrated in Figure A.7. In the degenerate case where no transform is applied, R = 1, and we

effectively have only one subband (i.e., the LL0 band).

As described above, the wavelet decomposition can be associated with data at R different resolutions. Suppose

that the top-left and bottom-right samples of a tile-component have coordinates (tcx0, tcy0) and (tcx1− 1, tcy1− 1),
respectively. This being the case, the top-left and bottom-right samples of the tile-component at resolution r have

coordinates (trx0, try0) and (trx1−1, try1−1), respectively, given by

(trx0, try0) =
(⌈
tcx0/2

R−r−1⌉ ,
⌈
tcy0/2

R−r−1⌉) and (A.6a)

(trx1, try1) =
(⌈
tcx1/2

R−r−1⌉ ,
⌈
tcy1/2

R−r−1⌉) , (A.6b)

where r is the particular resolution of interest. Thus, the tile-component signal at a particular resolution has the size

(trx1− trx0)× (try1− try0).
Not only are the coordinate systems of the resolution levels important, but so too are the coordinate systems for

the various subbands. Suppose that we denote the coordinates of the upper left and lower right samples in a subband
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Figure A.7: Subband structure.

as (tbx0, tby0) and (tbx1−1, tby1−1), respectively. These quantities are computed as

(tbx0, tby0) =





(⌈
tcx0

2R−r−1

⌉
,
⌈

tcy0
2R−r−1

⌉)
for LL band(⌈

tcx0
2R−r−1 −

1
2

⌉
,
⌈

tcy0
2R−r−1

⌉)
for HL band(⌈

tcx0
2R−r−1

⌉
,
⌈

tcy0
2R−r−1 −

1
2

⌉)
for LH band(⌈

tcx0
2R−r−1 −

1
2

⌉
,
⌈

tcy0
2R−r−1 −

1
2

⌉)
for HH band and

(A.7a)

(tbx1, tby1) =





(⌈
tcx1

2R−r−1

⌉
,
⌈

tcy1
2R−r−1

⌉)
for LL band(⌈

tcx1
2R−r−1 −

1
2

⌉
,
⌈

tcy1
2R−r−1

⌉)
for HL band(⌈

tcx1
2R−r−1

⌉
,
⌈

tcy1
2R−r−1 −

1
2

⌉)
for LH band(⌈

tcx1
2R−r−1 −

1
2

⌉
,
⌈

tcy1
2R−r−1 −

1
2

⌉)
for HH band,

(A.7b)

where r is the resolution level to which the band belongs, R is the number of resolution levels, and tcx0, tcy0, tcx1,

and tcy1 are as defined in (A.1). Thus, a particular band has the size (tbx1− tbx0)× (tby1− tby0). From the above

equations, we can also see that (tbx0, tby0) = (trx0, try0) and (tbx1, tby1) = (trx1, try1) for the LLr band, as one would
expect. (This should be the case since the LLr band is equivalent to a reduced resolution version of the original data.)

As will be seen, the coordinate systems for the various resolutions and subbands of a tile-component play an important

role in codec behavior.

By examining (A.1), (A.6), and (A.7), we observe that the coordinates of the top-left sample for a particular

subband, denoted (tbx0, tby0), are partially determined by the XOsiz and YOsiz parameters of the reference grid.

At each level of the decomposition, the parity (i.e., oddness/evenness) of tbx0 and tby0 affects the outcome of the

downsampling process (since downsampling is shift variant). In this way, the XOsiz and YOsiz parameters have a

subtle, yet important, effect on the transform calculation.

Having described the general transform framework, we now describe the two specific wavelet transforms sup-

ported by the baseline codec: the 5/3 and 9/7 transforms. The 5/3 transform is reversible, integer-to-integer, and

nonlinear. This transform was proposed in [12], and is simply an approximation to a linear wavelet transform pro-

posed in [18]. The 5/3 transform has an underlying 1-D UMDFB with the parameters:

λ = 2, A0(z) =− 1
2
(z+1), A1(z) = 1

4
(1+ z−1), (A.8)

Q0(x) =−⌊−x⌋ , Q1(x) =
⌊
x+ 1

2

⌋
, and s0 = s1 = 1.
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The 9/7 transform is nonreversible and real-to-real. This transform, proposed in [8], is also employed in the FBI

fingerprint compression standard [17] (although the normalizations differ). The 9/7 transform has an underlying 1-D

UMDFB with the parameters:

λ = 4, A0(z) = α0(z+1), A1(z) = α1(1+ z−1), (A.9)

A2(z) = α2(z+1), A3(z) = α3(1+ z−1),

Qi(x) = x for i = 0,1,2,3,

α0 ≈−1.586134, α1 ≈−0.052980, α2 ≈ 0.882911,

α3 ≈ 0.443506, s0 ≈ 1/1.230174, and s1 =−1/s0.
Since the 5/3 transform is reversible, it can be employed for either lossy or lossless coding. The 9/7 transform,

lacking the reversible property, can only be used for lossy coding. The number of resolution levels is a parameter of

each transform. A typical value for this parameter is six (for a sufficiently large image). The encoder may transform

all, none, or a subset of the components. This choice is at the encoder’s discretion.

The inverse intracomponent transform stage in the decoder essentially undoes the effects of the forward intracom-

ponent transform stage in the encoder. If a transform was applied to a particular component during encoding, the

corresponding inverse transform is applied here. Due to the effects of finite-precision arithmetic, the inversion process

is not guaranteed to be exact unless reversible transforms are employed.

A.3.8 Quantization/Dequantization

In the encoder, after the tile-component data has been transformed (by intercomponent and/or intracomponent trans-

forms), the resulting coefficients are quantized. Quantization allows greater compression to be achieved, by repre-

senting transform coefficients with only the minimal precision required to obtain the desired level of image quality.

Quantization of transform coefficients is one of the two primary sources of information loss in the coding path (the

other source being the discarding of coding pass data as will be described later).

Transform coefficients are quantized using scalar quantization with a deadzone. A different quantizer is employed

for the coefficients of each subband, and each quantizer has only one parameter, its step size. Mathematically, the

quantization process is defined as

V (x,y) = ⌊|U(x,y)|/∆⌋sgnU(x,y), (A.10)

where ∆ is the quantizer step size,U(x,y) is the input subband signal, andV (x,y) denotes the output quantizer indices
for the subband. Since this equation is specified in an informative clause of the standard, encoders need not use this

precise formula. This said, however, it is likely that many encoders will, in fact, use the above equation.

The baseline codec has two distinct modes of operation, referred to herein as integer mode and real mode. In

integer mode, all transforms employed are integer-to-integer in nature (e.g., RCT, 5/3 WT). In real mode, real-to-

real transforms are employed (e.g., ICT, 9/7 WT). In integer mode, the quantizer step sizes are always fixed at one,

effectively bypassing quantization and forcing the quantizer indices and transform coefficients to be one and the same.

In this case, lossy coding is still possible, but rate control is achieved by another mechanism (to be discussed later).

In the case of real mode (which implies lossy coding), the quantizer step sizes are chosen in conjunction with rate

control. Numerous strategies are possible for the selection of the quantizer step sizes, as will be discussed later in

Section A.3.12.

As one might expect, the quantizer step sizes used by the encoder are conveyed to the decoder via the code stream.

In passing, we note that the step sizes specified in the code stream are relative and not absolute quantities. That is, the

quantizer step size for each band is specified relative to the nominal dynamic range of the subband signal.

In the decoder, the dequantization stage tries to undo the effects of quantization. This process, however, is not

usually invertible, and therefore results in some information loss. The quantized transform coefficient values are

obtained from the quantizer indices. Mathematically, the dequantization process is defined as

U(x,y) = (V (x,y)+ r sgnV (x,y))∆, (A.11)

where ∆ is the quantizer step size, r is a bias parameter, V (x,y) are the input quantizer indices for the subband, and
U(x,y) is the reconstructed subband signal. Although the value of r is not normatively specified in the standard, it is

likely that many decoders will use the value of one half.
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Figure A.8: Partitioning of a subband into code blocks.

A.3.9 Tier-1 Coding

After quantization is performed in the encoder, tier-1 coding takes place. This is the first of two coding stages. The

quantizer indices for each subband are partitioned into code blocks. Code blocks are rectangular in shape, and their

nominal size is a free parameter of the coding process, subject to certain constraints, most notably: 1) the nominal

width and height of a code block must be an integer power of two, and 2) the product of the nominal width and height

cannot exceed 4096.

Suppose that the nominal code block size is tentatively chosen to be 2xcb × 2ycb. In tier-2 coding, yet to be

discussed, code blocks are grouped into what are called precincts. Since code blocks are not permitted to cross

precinct boundaries, a reduction in the nominal code block size may be required if the precinct size is sufficiently

small. Suppose that the nominal code block size after any such adjustment is 2xcb’× 2ycb’ where xcb’ ≤ xcb and

ycb’ ≤ ycb. The subband is partitioned into code blocks by overlaying the subband with a rectangular grid having

horizontal and vertical spacings of 2xcb’ and 2ycb’, respectively, as shown in Figure A.8. The origin of this grid is

anchored at (0,0) in the coordinate system of the subband. A typical choice for the nominal code block size is 64×64

(i.e., xcb = 6 and ycb = 6).

Let us, again, denote the coordinates of the top-left sample in a subband as (tbx0, tby0). As explained in Sec-

tion A.3.7, the quantity (tbx0, tby0) is partially determined by the reference grid parameters XOsiz and YOsiz. In

turn, the quantity (tbx0, tby0) affects the position of code block boundaries within a subband. In this way, the XOsiz

and YOsiz parameters have an important effect on the behavior of the tier-1 coding process (i.e., they affect the

location of code block boundaries).

After a subband has been partitioned into code blocks, each of the code blocks is independently coded. The coding

is performed using the bit-plane coder described later in Section A.3.10. For each code block, an embedded code is

produced, comprised of numerous coding passes. The output of the tier-1 encoding process is, therefore, a collection

of coding passes for the various code blocks.

On the decoder side, the bit-plane coding passes for the various code blocks are input to the tier-1 decoder, these

passes are decoded, and the resulting data is assembled into subbands. In this way, we obtain the reconstructed

quantizer indices for each subband. In the case of lossy coding, the reconstructed quantizer indices may only be

approximations to the quantizer indices originally available at the encoder. This is attributable to the fact that the code
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stream may only include a subset of the coding passes generated by the tier-1 encoding process. In the lossless case,

the reconstructed quantizer indices must be same as the original indices on the encoder side, since all coding passes

must be included for lossless coding.

A.3.10 Bit-Plane Coding

The tier-1 coding process is essentially one of bit-plane coding. After all of the subbands have been partitioned

into code blocks, each of the resulting code blocks is independently coded using a bit-plane coder. Although the

bit-plane coding technique employed is similar to those used in the embedded zerotree wavelet (EZW) [39] and set

partitioning in hierarchical trees (SPIHT) [37] codecs, there are two notable differences: 1) no interband dependencies

are exploited, and 2) there are three coding passes per bit plane instead of two. The first difference follows from the

fact that each code block is completely contained within a single subband, and code blocks are coded independently

of one another. By not exploiting interband dependencies, improved error resilience can be achieved. The second

difference is arguably less fundamental. Using three passes per bit plane instead of two reduces the amount of data

associated with each coding pass, facilitating finer control over rate. Also, using an additional pass per bit plane allows

better prioritization of important data, leading to improved coding efficiency.

As noted above, there are three coding passes per bit plane. In order, these passes are as follows: 1) significance,

2) refinement, and 3) cleanup. All three types of coding passes scan the samples of a code block in the same fixed

order shown in Figure A.10. The code block is partitioned into horizontal stripes, each having a nominal height of

four samples. If the code block height is not a multiple of four, the height of the bottom stripe will be less than this

nominal value. As shown in the diagram, the stripes are scanned from top to bottom. Within a stripe, columns are

scanned from left to right. Within a column, samples are scanned from top to bottom.

The bit-plane encoding process generates a sequence of symbols for each coding pass. Some or all of these

symbols may be entropy coded. For the purposes of entropy coding, a context-based adaptive binary arithmetic coder

is used—more specifically, the MQ coder from the JBIG2 standard [23]. For each pass, all of the symbols are either

arithmetically coded or raw coded (i.e., the binary symbols are emitted as raw bits with simple bit stuffing). The

arithmetic and raw coding processes both ensure that certain bit patterns never occur in the output, allowing such

patterns to be used for error resilience purposes.

Cleanup passes always employ arithmetic coding. In the case of the significance and refinement passes, two

possibilities exist, depending on whether the so called arithmetic-coding bypass mode (also known as lazy mode) is

enabled. If lazy mode is enabled, only the significance and refinement passes for the four most significant bit planes

use arithmetic coding, while the remaining such passes are raw coded. Otherwise, all significance and refinement

passes are arithmetically coded. The lazy mode allows the computational complexity of bit-plane coding to be signif-

icantly reduced, by decreasing the number of symbols that must be arithmetically coded. This comes, of course, at

the cost of reduced coding efficiency.

As indicated above, coding pass data can be encoded using one of two schemes (i.e., arithmetic or raw coding).

Consecutive coding passes that employ the same encoding scheme constitute what is known as a segment. All of the

coding passes in a segment can collectively form a single codeword or each coding pass can form a separate codeword.

Which of these is the case is determined by the termination mode in effect. Two termination modes are supported:

per-pass termination and per-segment termination. In the first case, all coding passes are terminated. In the second

case, only the last coding pass of a segment is terminated. Terminating all coding passes facilitates improved error

resilience at the expense of decreased coding efficiency.

Since context-based arithmetic coding is employed, a means for context selection is necessary. Generally speaking,

context selection is performed by examining state information for the 4-connected or 8-connected neighbors of a

sample as shown in Figure A.9.

In our explanation of the coding passes that follows, we focus on the encoder side as this facilitates easier under-

standing. The decoder algorithms follow directly from those employed on the encoder side.

A.3.10.1 Significance Pass

The first coding pass for each bit plane is the significance pass. This pass is used to convey significance and (as

necessary) sign information for samples that have not yet been found to be significant and are predicted to become
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Figure A.9: Templates for context selection. The (a) 4-connected and (b) 8-connected neighbors.

significant during the processing of the current bit plane. The samples in the code block are scanned in the order

shown previously in Figure A.10. If a sample has not yet been found to be significant, and is predicted to become

significant, the significance of the sample is coded with a single binary symbol. If the sample also happens to be

significant, its sign is coded using a single binary symbol. In pseudocode form, the significance pass is described by

Algorithm 1.

Algorithm 1 Significance pass algorithm.

1: for each sample in code block do

2: if sample previously insignificant and predicted to become significant during current bit plane then

3: code significance of sample /* 1 binary symbol */

4: if sample significant then

5: code sign of sample /* 1 binary symbol */

6: endif

7: endif

8: endfor

If the most significant bit plane is being processed, all samples are predicted to remain insignificant. Otherwise,

a sample is predicted to become significant if any 8-connected neighbor has already been found to be significant. As

a consequence of this prediction policy, the significance and refinement passes for the most significant bit plane are

always empty and not explicitly coded.

The symbols generated during the significance pass may or may not be arithmetically coded. If arithmetic coding

is employed, the binary symbol conveying significance information is coded using one of nine contexts. The particular

context used is selected based on the significance of the sample’s 8-connected neighbors and the orientation of the

subband with which the sample is associated (e.g., LL, LH, HL, HH). In the case that arithmetic coding is used, the

sign of a sample is coded as the difference between the actual and predicted sign. Otherwise, the sign is coded directly.

Sign prediction is performed using the significance and sign information for 4-connected neighbors.

A.3.10.2 Refinement Pass

The second coding pass for each bit plane is the refinement pass. This pass signals subsequent bits after the most sig-

nificant bit for each sample. The samples of the code block are scanned using the order shown earlier in Figure A.10.

If a sample was found to be significant in a previous bit plane, the next most significant bit of that sample is conveyed

using a single binary symbol. This process is described in pseudocode form by Algorithm 2.

Algorithm 2 Refinement pass algorithm.

1: for each sample in code block do

2: if sample found significant in previous bit plane then

3: code next most significant bit in sample /* 1 binary symbol */

4: endif

5: endfor
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Figure A.10: Sample scan order within a code block.

Like the significance pass, the symbols of the refinement pass may or may not be arithmetically coded. If arith-

metic coding is employed, each refinement symbol is coded using one of three contexts. The particular context

employed is selected based on if the second MSB position is being refined and the significance of 8-connected neigh-

bors.

A.3.10.3 Cleanup Pass

The third (and final) coding pass for each bit plane is the cleanup pass. This pass is used to convey significance and

(as necessary) sign information for those samples that have not yet been found to be significant and are predicted to

remain insignificant during the processing of the current bit plane.

Conceptually, the cleanup pass is not much different from the significance pass. The key difference is that the

cleanup pass conveys information about samples that are predicted to remain insignificant, rather than those that are

predicted to become significant. Algorithmically, however, there is one important difference between the cleanup

and significance passes. In the case of the cleanup pass, samples are sometimes processed in groups, rather than

individually as with the significance pass.

Recall the scan pattern for samples in a code block, shown earlier in Figure A.10. A code block is partitioned into

stripes with a nominal height of four samples. Then, stripes are scanned from top to bottom, and the columns within

a stripe are scanned from left to right. For convenience, we will refer to each column within a stripe as a vertical scan.

That is, each vertical arrow in the diagram corresponds to a so called vertical scan. As will soon become evident, the

cleanup pass is best explained as operating on vertical scans (and not simply individual samples).

The cleanup pass simply processes each of the vertical scans in order, with each vertical scan being processed as

follows. If the vertical scan contains four samples (i.e., is a full scan), significance information is needed for all of

these samples, and all of the samples are predicted to remain insignificant, a special mode, called aggregation mode,

is entered. In this mode, the number of leading insignificant samples in the vertical scan is coded. Then, the samples

whose significance information is conveyed by aggregation are skipped, and processing continues with the remaining

samples of the vertical scan exactly as is done in the significance pass. In pseudocode form, this process is described

by Algorithm 3.

When aggregation mode is entered, the four samples of the vertical scan are examined. If all four samples are

insignificant, an all-insignificant aggregation symbol is coded, and processing of the vertical scan is complete. Oth-

erwise, a some-significant aggregation symbol is coded, and two binary symbols are then used to code the number of

leading insignificant samples in the vertical scan.

The symbols generated during the cleanup pass are always arithmetically coded. In the aggregation mode, the

aggregation symbol is coded using a single context, and the two symbol run length is coded using a single context

with a fixed uniform probability distribution. When aggregation mode is not employed, significance and sign coding

function just as in the case of the significance pass.

A.3.11 Tier-2 Coding

In the encoder, tier-1 encoding is followed by tier-2 encoding. The input to the tier-2 encoding process is the set of

bit-plane coding passes generated during tier-1 encoding. In tier-2 encoding, the coding pass information is packaged

into data units called packets, in a process referred to as packetization. The resulting packets are then output to the
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Algorithm 3 Cleanup pass algorithm.

1: for each vertical scan in code block do

2: if four samples in vertical scan and all previously insignificant and unvisited and none have significant 8-

connected neighbor then

3: code number of leading insignificant samples via aggregation

4: skip over any samples indicated as insignificant by aggregation

5: endif

6: while more samples to process in vertical scan do

7: if sample previously insignificant and unvisited then

8: code significance of sample if not already implied by run /* 1 binary symbol */

9: if sample significant then

10: code sign of sample /* 1 binary symbol */

11: endif

12: endif

13: endwhile

14: endfor

final code stream. The packetization process imposes a particular organization on coding pass data in the output code

stream. This organization facilitates many of the desired codec features including rate scalability and progressive

recovery by fidelity or resolution.

A packet is nothing more than a collection of coding pass data. Each packet is comprised of two parts: a header

and body. The header indicates which coding passes are included in the packet, while the body contains the actual

coding pass data itself. In the code stream, the header and body may appear together or separately, depending on the

coding options in effect.

Rate scalability is achieved through (quality) layers. The coded data for each tile is organized into L layers,

numbered from 0 to L− 1, where L ≥ 1. Each coding pass is either assigned to one of the L layers or discarded.

The coding passes containing the most important data are included in the lower layers, while the coding passes

associated with finer details are included in higher layers. During decoding, the reconstructed image quality improves

incrementally with each successive layer processed. In the case of lossy compression, some coding passes may be

discarded (i.e., not included in any layer) in which case rate control must decide which passes to include in the final

code stream. In the lossless case, all coding passes must be included. If multiple layers are employed (i.e., L> 1), rate

control must decide in which layer each coding pass is to be included. Since some coding passes may be discarded,

tier-2 coding is the second primary source of information loss in the coding path.

Recall, from Section A.3.9, that each coding pass is associated with a particular component, resolution level,

subband, and code block. In tier-2 coding, one packet is generated for each component, resolution level, layer, and

precinct 4-tuple. A packet need not contain any coding pass data at all. That is, a packet can be empty. Empty packets

are sometimes necessary since a packet must be generated for every component-resolution-layer-precinct combination

even if the resulting packet conveys no new information.

As mentioned briefly in Section A.3.7, a precinct is essentially a grouping of code blocks within a subband. The

precinct partitioning for a particular subband is derived from a partitioning of its parent LL band (i.e., the LL band

at the next higher resolution level). Each resolution level has a nominal precinct size. The nominal width and height

of a precinct must be a power of two, subject to certain constraints (e.g., the maximum width and height are both

215). The LL band associated with each resolution level is divided into precincts. This is accomplished by overlaying

the LL band with a regular grid having horizontal and vertical spacings of 2PPx and 2PPy, respectively, as shown in

Figure A.11, where the grid is aligned with the origin of the LL band’s coordinate system. The precincts bordering on

the edge of the subband may have dimensions smaller than the nominal size. Each of the resulting precinct regions

is then mapped into its child subbands (if any) at the next lower resolution level. This is accomplished by using

the coordinate transformation (u,v) = (⌈x/2⌉ ,⌈y/2⌉) where (x,y) and (u,v) are the coordinates of a point in the LL

band and child subband, respectively. Due to the manner in which the precinct partitioning is performed, precinct

boundaries always align with code block boundaries. Some precincts may also be empty. Suppose the nominal code
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Figure A.11: Partitioning of a resolution into precincts.

block size is 2xcb’×2ycb’. This results nominally in 2PPx’−xcb’×2PPy’−ycb’ groups of code blocks in a precinct, where

PPx’ =

{
PPx for r = 0

PPx−1 for r > 0,
(A.12)

PPy’ =

{
PPy for r = 0

PPy−1 for r > 0,
(A.13)

and r is the resolution level.

Since coding pass data from different precincts are coded in separate packets, using smaller precincts reduces

the amount of data contained in each packet. If less data is contained in a packet, a bit error is likely to result in

less information loss (since, to some extent, bit errors in one packet do not affect the decoding of other packets).

Thus, using a smaller precinct size leads to improved error resilience, while coding efficiency is degraded due to the

increased overhead of having a larger number of packets.

More than one ordering of packets in the code stream is supported. Such orderings are called progressions.

There are five built-in progressions defined: 1) layer-resolution-component-position ordering, 2) resolution-layer-

component-position ordering, 3) resolution-position-component-layer ordering, 4) position-component-resolution-

layer ordering, and 5) component-position-resolution-layer ordering. The sort order for the packets is given by the

name of the ordering, where position refers to precinct number, and the sorting keys are listed from most significant to

least significant. For example, in the case of the first ordering given above, packets are ordered first by layer, second by

resolution, third by component, and last by precinct. This corresponds to a progressive recovery by fidelity scenario.

The second ordering above is associated with progressive recovery by resolution. The three remaining orderings are

somewhat more esoteric. It is also possible to specify additional user-defined progressions at the expense of increased

coding overhead.

In the simplest scenario, all of the packets from a particular tile appear together in the code stream. Provisions

exist, however, for interleaving packets from different tiles, allowing further flexibility on the ordering of data. If, for

example, progressive recovery of a tiled image was desired, one would probably include all of the packets associated

with the first layer of the various tiles, followed by those packets associated with the second layer, and so on.
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Figure A.12: Code block scan order within a precinct.

In the decoder, the tier-2 decoding process extracts the various coding passes from the code stream (i.e., depack-

etization) and associates each coding pass with its corresponding code block. In the lossy case, not all of the coding

passes are guaranteed to be present since some may have been discarded by the encoder. In the lossless case, all of

the coding passes must be present in the code stream.

In the sections that follow, we describe the packet coding process in more detail. For ease of understanding, we

choose to explain this process from the point of view of the encoder. The decoder algorithms, however, can be trivially

deduced from those of the encoder.

A.3.11.1 Packet Header Coding

The packet header corresponding to a particular component, resolution level, layer, and precinct, is encoded as follows.

First, a single binary symbol is encoded to indicate if any coding pass data is included in the packet (i.e., if the packet

is non-empty). If the packet is empty, no further processing is required and the algorithm terminates. Otherwise, we

proceed to examine each subband in the resolution level in a fixed order. For each subband, we visit the code blocks

belonging to the precinct of interest in raster scan order as shown in Figure A.12. To process a single code block, we

begin by determining if any new coding pass data is to be included. If no coding pass data has yet been included for

this code block, the inclusion information is conveyed via a quadtree-based coding procedure. Otherwise, a binary

symbol is emitted indicating the presence or absence of new coding pass data for the code block. If no new coding

passes are included, we proceed to the processing of the next code block in the precinct. Assuming that new coding

pass data are to be included, we continue with our processing of the current code block. If this is the first time coding

pass data have been included for the code block, we encode the number of leading insignificant bit planes for the

code block using a quadtree-based coding algorithm. Then, the number of new coding passes, and the length of the

data associated with these passes is encoded. A bit stuffing algorithm is applied to all packet header data to ensure

that certain bit patterns never occur in the output, allowing such patterns to be used for error resilience purposes. The

entire packet header coding process is summarized by Algorithm 4.

A.3.11.2 Packet Body Coding

The algorithm used to encode the packet body is relatively simple. The code blocks are examined in the same order

as in the case of the packet header. If any new passes were specified in the corresponding packet header, the data for

these coding passes are concatenated to the packet body. This process is summarized by Algorithm 5.

A.3.12 Rate Control

In the encoder, rate control can be achieved through two distinct mechanisms: 1) the choice of quantizer step sizes,

and 2) the selection of the subset of coding passes to include in the code stream. When the integer coding mode is

used (i.e., when only integer-to-integer transforms are employed) only the second mechanism may be used, since the

quantizer step sizes must be fixed at one. When the real coding mode is used, then either or both of these rate control

mechanisms may be employed.

When the first mechanism is employed, quantizer step sizes are adjusted in order to control rate. As the step

sizes are increased, the rate decreases, at the cost of greater distortion. Although this rate control mechanism is

conceptually simple, it does have one potential drawback. Every time the quantizer step sizes are changed, the

quantizer indices change, and tier-1 encoding must be performed again. Since tier-1 coding requires a considerable

amount of computation, this approach to rate control may not be practical in computationally-constrained encoders.
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Algorithm 4 Packet header coding algorithm.

1: if packet not empty then

2: code non-empty packet indicator /* 1 binary symbol */

3: for each subband in resolution level do

4: for each code block in subband precinct do

5: code inclusion information /* 1 binary symbol or tag tree */

6: if no new coding passes included then

7: skip to next code block

8: endif

9: if first inclusion of code block then

10: code number of leading insignificant bit planes /* tag tree */

11: endif

12: code number of new coding passes

13: code length increment indicator

14: code length of coding pass data

15: endfor

16: endfor

17: else

18: code empty packet indicator /* 1 binary symbol */

19: endif

20: pad to byte boundary

Algorithm 5 Packet body coding algorithm.

1: for each subband in resolution level do

2: for each code block in subband precinct do

3: if new coding passes included for code block then

4: output coding pass data

5: endif

6: endfor

7: endfor
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When the second mechanism is used, the encoder can elect to discard coding passes in order to control the rate.

The encoder knows the contribution that each coding pass makes to rate, and can also calculate the distortion reduction

associated with each coding pass. Using this information, the encoder can then include the coding passes in order of

decreasing distortion reduction per unit rate until the bit budget has been exhausted. This approach is very flexible

in that different distortion metrics can be easily accommodated (e.g., mean squared error, visually weighted mean

squared error, etc.).

For a more detailed treatment of rate control, the reader is referred to [25] and [42].

A.3.13 Region of Interest Coding

The codec allows different regions of an image to be coded with differing fidelity. This feature is known as region-of-

interest (ROI) coding. In order to support ROI coding, a very simple yet flexible technique is employed as described

below.

When an image is synthesized from its transform coefficients, each coefficient contributes only to a specific region

in the reconstruction. Thus, one way to code a ROI with greater fidelity than the rest of the image would be to identify

the coefficients contributing to the ROI, and then to encode some or all of these coefficients with greater precision than

the others. This is, in fact, the basic premise behind the ROI coding technique employed in the JPEG-2000 codec.

When an image is to be coded with a ROI, some of the transform coefficients are identified as being more important

than the others. The coefficients of greater importance are referred to as ROI coefficients, while the remaining coef-

ficients are known as background coefficients. Noting that there is a one-to-one correspondence between transform

coefficients and quantizer indices, we further define the quantizer indices for the ROI and background coefficients as

the ROI and background quantizer indices, respectively. With this terminology introduced, we are now in a position

to describe how ROI coding fits into the rest of the coding framework.

The ROI coding functionality affects the tier-1 coding process. In the encoder, before the quantizer indices for

the various subbands are bit-plane coded, the ROI quantizer indices are scaled upwards by a power of two (i.e., by

a left bit shift). This scaling is performed in such a way as to ensure that all bits of the ROI quantizer indices lie in

more significant bit planes than the potentially nonzero bits of the background quantizer indices. As a consequence,

all information about ROI quantizer indices will be signalled before information about background ROI indices. In

this way, the ROI can be reconstructed at a higher fidelity than the background.

Before the quantizer indices are bit-plane coded, the encoder examines the background quantizer indices for all of

the subbands looking for the index with the largest magnitude. Suppose that this index has its most significant bit in

bit position N− 1. All of the ROI indices are then shifted N bits to the left, and bit-plane coding proceeds as in the

non-ROI case. The ROI shift value N is included in the code stream.

During decoding, any quantizer index with nonzero bits lying in bit plane N or above can be deduced to belong to

the ROI set. After the reconstructed quantizer indices are obtained from the bit-plane decoding process, all indices in

the ROI set are then scaled down by a right shift of N bits. This undoes the effect of the scaling on the encoder side.

The ROI set can be chosen to correspond to transform coefficients affecting a particular region in an image or

subset of those affecting the region. This ROI coding technique has a number of desirable properties. First, the ROI

can have any arbitrary shape and can consist of multiple disjoint regions. Second, there is no need to explicitly signal

the ROI set, since it can be deduced by the decoder from the ROI shift value and the magnitude of the quantizer

indices.

For more information on ROI coding, the reader is referred to [9, 15].

A.3.14 Code Stream

In order to specify the coded representation of an image, two different levels of syntax are employed by the codec.

The lowest level syntax is associated with what is referred to as the code stream. The code stream is essentially a

sequence of tagged records and their accompanying data.

The basic building block of the code stream is the marker segment. As shown in Figure A.13, a marker segment

is comprised of three fields: the type, length, and parameters fields. The type (or marker) field identifies the particular

kind of marker segment. The length field specifies the number of bytes in the marker segment. The parameters

field provides additional information specific to the marker type. Not all types of marker segments have length and
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Type Length
(if required)

Parameters
(if required)

16 bits 16 bits variable length

Figure A.13: Marker segment structure.

Main Header

Other Marker Segments

Other Marker Segments
(e.g., COD, COC, QCD, QCC, RGN, etc.)

Tile−Part Header

(e.g., COD, COC, QCD, QCC, RGN, etc.)

SOC Marker Segment

SIZ Marker Segment

SOT Marker Segment

SOD Marker Segment

Tile−Part Body

Packet Data

..
.

Main Trailer

EOC Marker Segment

Figure A.14: Code stream structure.

parameters fields. The presence (or absence) of these fields is determined by the marker segment type. Each type of

marker segment signals its own particular class of information.

A code stream is simply a sequence of marker segments and auxiliary data (i.e., packet data) organized as shown

in Figure A.14. The code stream consists of a main header, followed by tile-part header and body pairs, followed by

a main trailer. A list of some of the more important marker segments is given in Table A.2. Parameters specified in

marker segments in the main header serve as defaults for the entire code stream. These default settings, however, may

be overridden for a particular tile by specifying new values in a marker segment in the tile’s header.

All marker segments, packet headers, and packet bodies are a multiple of 8 bits in length. As a consequence, all

markers are byte-aligned, and the code stream itself is always an integral number of bytes.

A.3.15 File Format

A code stream provides only the most basic information required to decode an image (i.e., sufficient information to

deduce the sample values of the decoded image). While in some simple applications this information is sufficient, in

other applications additional data is required. To display a decoded image, for example, it is often necessary to know

additional characteristics of an image, such as the color space of the image data and opacity attributes. Also, in some

situations, it is beneficial to know other information about an image (e.g., ownership, origin, etc.) In order to allow

the above types of data to be specified, an additional level of syntax is employed by the codec. This level of syntax

is referred to as the file format. The file format is used to convey both coded image data and auxiliary information
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Table A.2: Types of marker segments

Type Description

Start of codestream (SOC) Signals the start of a code stream. Always the first marker segment in the

code stream (i.e., the first marker segment in the main header).

End of codestream (EOC) Signals the end of the code stream. Always the last marker segment in the

code stream.

Start of tile-part (SOT) Indicates the start of a tile-part header. Always the first marker segment in a

tile-part header.

Start of data (SOD) Signal the end of the tile-part header. Always the last marker segment in

the tile-part header. The tile body follows immediately after this marker

segment.

Image and tile size (SIZ) Conveys basic image characteristics (e.g., image size, number of compo-

nents, precision of sample values), and tiling parameters. Always the second

marker segment in the code stream.

Coding style default (COD) Specifies coding parameters (e.g., multicomponent transform, wavelet/sub-

band transform, tier-1/tier-2 coding parameters, etc.).

Coding style component (COC) Specifies a subset of coding parameters for a single component.

Quantization default (QCD) Specifies quantization parameters (i.e., quantizer type, quantizer parame-

ters).

Quantization component (QCC) Specifies quantization parameters for a single component.

Region of interest (RGN) Specifies region-of-interest coding parameters.

LBox TBox XLBox
(if required)

DBox

32 bits 32 bits 64 bits variable

Figure A.15: Box structure.

about the image. Although this file format is optional, it undoubtedly will be used extensively by many applications,

particularly computer-based software applications.

The basic building block of the file format is referred to as a box. As shown in Figure A.15, a box is nominally

comprised of four fields: the LBox, TBox, XLBox, and DBox fields. The LBox field specifies the length of the box in

bytes. The TBox field indicates the type of box (i.e., the nature of the information contained in the box). The XLBox

field is an extended length indicator which provides a mechanism for specifying the length of a box whose size is

too large to be encoded in the length field alone. If the LBox field is 1, then the XLBox field is present and contains

the true length of the box. Otherwise, the XLBox field is not present. The DBox field contains data specific to the

particular box type. Some types of boxes may contain other boxes as data. As a matter of terminology, a box that

contains other boxes in its DBox field is referred to as a superbox. Several of the more important types of boxes are

listed in Table A.3.

A file is a sequence of boxes. Since certain types of boxes are defined to contain others, there is a natural hierarchi-

cal structure to a file. The general structure of a file is shown in Figure A.16. The JPEG-2000 signature box is always

first, providing an indication that the byte stream is, in fact, correctly formatted. The file type box is always second,

indicating the version of the file format to which the byte stream conforms. Although some constraints exist on the

ordering of the remaining boxes, some flexibility is also permitted. The header box simply contains a number of other

boxes. The image header box specifies several basic characteristics of the image (including image size, number of

components, etc.). The bits per component box indicates the precision and signedness of the component samples. The

color specification box identifies the color space of image data (for display purposes) and indicates which components

map to which type of spectral information (i.e., the correspondence between components and color/opacity planes).

Every file must contain at least one contiguous code stream box. (Multiple contiguous code stream boxes are permit-

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



A.3. JPEG-2000 CODEC 451

File Type Box

Image Header Box

Color Specification Box

JP2 Header Box

..
.

Contiguous Code Stream Box

JPEG−2000 Signature Box

..
.

Figure A.16: File format structure.

Table A.3: Box types

Type Description

JPEG-2000 Signature Identifies the file as being in the JP2 format. Always the first box in a

JP2 file.

File Type Specifies the version of the format to which the file conforms. Always

the second box in a JP2 file.

JP2 Header Specifies information about the image aside from the coded image data

itself. (A superbox.)

Image Header Specifies the size and other basic characteristics of the image.

Color Specification Specifies the colorspace to which the image sample data belongs.

Contiguous Code Stream Contains a code stream.

ted in order to facilitate the specification of image sequences to support trivial animation effects.) Each contiguous

code stream box contains a code stream as data. In this way, coded image data is embedded into a file. In addition to

the types of boxes discussed so far, there are also box types for specifying the capture and display resolution for an

image, palette information, intellectual property information, and vendor/application-specific data.

Although some of the information stored at the file format level is redundant (i.e., it is also specified at the code

stream level), this redundancy allows trivial manipulation of files without any knowledge of the code stream syntax.

The file name extension “jp2” is to be used to identify files containing data in the JP2 file format. For more information

on the file format, the reader is referred to [20].

A.3.16 Extensions

Although the baseline codec is quite versatile, there may be some applications that could benefit from additional fea-

tures not present in the baseline system. To this end, Part 2 of the standard [27] defines numerous extensions to the

baseline codec. Some of these extensions include the following: 1) additional intercomponent transforms (e.g., mul-

tidimensional wavelet/subband transforms); 2) additional intracomponent transforms (e.g., subband transforms based

on arbitrary filters and decomposition trees, different filters in the horizontal and vertical directions); 3) overlapped

wavelet transforms; 4) additional quantization methods such as trellis coded quantization [32, 34]; 5) enhanced ROI

support (e.g., a mechanism for explicitly signalling the shape of the ROI and an arbitrary shift value); and 6) extensions

to the file format including support for additional color spaces and compound documents.
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A.4 Conclusions

In this appendix, we commenced with a high-level introduction to the JPEG-2000 standard, and proceeded to study

the JPEG-2000 codec in detail. With its excellent coding performance and many attractive features, the JPEG-2000

codec will no doubt prove to be extremely useful in many application areas.

A.5 JasPer

JasPer is a collection of software (i.e., a library and application programs) for the coding and manipulation of images.

This software is written in the C programming language. Of particular interest here, the JasPer software provides an

implementation of the JPEG-2000 Part-1 codec. The JasPer software was developed with the objective of providing

a free JPEG-2000 codec implementation for anyone wishing to use the JPEG-2000 standard. This software has also

been published in the JPEG-2000 Part-5 standard, as an official reference implementation of the JPEG-2000 Part-1

codec.

The JasPer software is available for download from the JasPer Project web site [4] and the JPEG web site (i.e.,

http://www.jpeg.org/software). For more information about JasPer, the reader is referred to [2, 4, 5].
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Appendix B

Signal Processing Library (SPL)

Overview

Some of the code examples associated with this book employ the Signal Processing Library (SPL). This appendix

provides a brief introduction to this library.

B.1 Signal Processing Library (SPL)

The Signal Processing Library (SPL) is an open-source C++ library, developed by the author of this book, that provides

various functionalities related to signal and geometry processing. The library was originally developed in order to

provide various multirate signal-processing capabilities. Over time, some geometry-processing and other functionality

has also found its way into the library. The SPL library provides support for such things as:

• one- and two-dimensional arrays;

• one- and two-dimensional sequences; downsampling, upsampling, convolution; polyphase decomposition/re-

composition;

• lowpass, highpass, bandpass filter design;

• reading and writing audio data;

• reading and writing image data;

• measuring execution time and memory usage; and

• binary and multisymbol arithmetic coding.

The library also has various other miscellaneous functionality (e.g., arcball, math utilities, and CGAL utilities). To

provide some of its functionality, the SPL library utilizes the libsndfile [3], CGAL [2], and OpenGL [5] libraries.

Each release of the library is accompanied by a detailed reference manual (e.g., [1]). Since the library is still evolving

significantly from one release to the next, many technical details of the library (such as interfaces) remain subject to

change. Consequently, rather the present detailed information about the library here, which would inevitably become

out of date rather quickly, we refer the reader to the reference manual for the most recent version of the library for

more details.

B.2 SPL Example Programs

To give the reader a flavor for some of the functionality in the SPL library, it is worthwhile to consider some sample

code. In the sections that follow, we provide a few examples of programs that utilize the SPL library:
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1. The makeAudio program, which produces an audio file and demonstrates some of the one-dimensional signal-

processing capabilities of the SPL library.

2. The mandelbrot program, which produces an image corresponding to the Mandelbrot set and demonstrates

some of the two-dimensional signal-processing capabilities of the SPL library.

B.2.1 makeAudio Program

The makeAudio program generates an audio signal and encodes the signal in an output file in the WAV format. This

program illustrates the use of some of the one-dimensional signal-processing capabilities of the SPL library. The

program consists of the single source file shown in Listing B.1.

Listing B.1: makeAudio.cpp

1 // Copyright (c) 2011, 2012, 2013 Michael D. Adams

2 // All rights reserved.

3

4 // __START_OF_LICENSE__

5 //

6 // Copyright (c) 2011, 2012, 2013 Michael D. Adams

7 // All rights reserved.

8 //

9 // This file is part of the Signal Processing Library (SPL).

10 //

11 // This program is free software; you can redistribute it and/or

12 // modify it under the terms of the GNU General Public License as

13 // published by the Free Software Foundation; either version 3,

14 // or (at your option) any later version.

15 //

16 // This program is distributed in the hope that it will be useful,

17 // but WITHOUT ANY WARRANTY; without even the implied warranty of

18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 // GNU General Public License for more details.

20 //

21 // You should have received a copy of the GNU General Public

22 // License along with this program; see the file LICENSE. If not,

23 // see <http://www.gnu.org/licenses/>.

24 //

25 // __END_OF_LICENSE__

26

27 // This program makes an audio file.

28

29 ////////////////////////////////////////////////////////////////////////////////

30 // Header files

31 ////////////////////////////////////////////////////////////////////////////////

32

33 #include <iostream >

34 #include <string >

35 #include <SPL/Sequence1.hpp >

36 #include <SPL/audioFile.hpp >

37

38 ////////////////////////////////////////////////////////////////////////////////

39 // Types

40 ////////////////////////////////////////////////////////////////////////////////

41

42 typedef SPL::Sequence1 <double> RealSequence1;

43
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44 ////////////////////////////////////////////////////////////////////////////////

45 // Sequence generation

46 ////////////////////////////////////////////////////////////////////////////////

47

48 // A 1-periodic square wave function.

49 double squareWave(double t)

50 {

51 int i = 2.0 * t;

52 return (!(i % 2)) ? 1.0 : 0.0;

53 }

54

55 // A 1-periodic sinusoidal function.

56 double sinusoid(double t)

57 {

58 return cos(2.0 * M_PI * t);

59 }

60

61 double signal(int id, double t)

62 {

63 double x;

64 switch (id) {

65 default:

66 case 0:

67 x = sinusoid (440.0 * t);

68 break;

69 case 1:

70 x = squareWave (440.0 * t);

71 break;

72 case 2:

73 x = 0.5 * squareWave (220.0 * t) + sinusoid (440.0 * t);

74 break;

75 }

76 return x;

77 }

78

79 // Construct a sequence corresponding the the specified function

80 // sampled at the given rate for a particular number of samples.

81 void makeSequence(int id, int sampRate , int numSamps , RealSequence1& seq)

82 {

83 seq = RealSequence1(0, numSamps);

84 for (RealSequence1::Iterator i = seq.begin(); i != seq.end(); ++i) {

85 *i = signal(id, static_cast<double>(i - seq.begin()) / sampRate);

86 }

87 }

88

89 ////////////////////////////////////////////////////////////////////////////////

90 // Main program

91 ////////////////////////////////////////////////////////////////////////////////

92

93 int main(int argc , char** argv)

94 {

95 RealSequence1 seq;

96

97 // Process the command line.

98 if (argc < 5) {

99 std::cerr << "usage: makeAudio signalId sampRate duration outputFile\n";

100 exit(2);
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101 }

102 int id = atoi(argv[1]);

103 int sampRate = atoi(argv[2]);

104 double duration = atof(argv[3]);

105 std::string outFile(argv[4]);

106

107 // Generate the sequence.

108 makeSequence(id, sampRate , duration * sampRate , seq);

109

110 // Scale the range of the sequence to fit the allowable dynamic range.

111 if (seq.getSize() > 0) {

112 double minVal = *std::min_element(seq.begin(), seq.end());

113 double maxVal = *std::max_element(seq.begin(), seq.end());

114 double maxMag = std::max(SPL::absVal(minVal), SPL::absVal(maxVal));

115 double alpha = 0.95;

116 double beta = alpha * 1.0 / maxMag;

117 for (RealSequence1::Iterator i = seq.begin(); i != seq.end(); ++i) {

118 *i *= beta;

119 }

120 }

121

122 // Save the sequence in an audio file.

123 if (SPL::saveAudioFile(outFile , sampRate , seq.getArray())) {

124 std::cerr << "cannot write audio file\n";

125 }

126

127 return 0;

128 }

B.2.2 mandelbrot Program

The mandelbrot program generates an image corresponding to the Mandelbrot set [4] and writes the image in the

PNM format to standard output. This program illustrates the use of some of the two-dimensional signal-processing

capabilities of the SPL library. The program consists of the single source file shown in Listing B.2. An example of an

image generated by the program is given in Figure B.1.

Listing B.2: mandelbrot.cpp

1 // Copyright (c) 2013 Michael D. Adams

2 // All rights reserved.

3

4 // __START_OF_LICENSE__

5 //

6 // Copyright (c) 2011, 2012, 2013 Michael D. Adams

7 // All rights reserved.

8 //

9 // This file is part of the Signal Processing Library (SPL).

10 //

11 // This program is free software; you can redistribute it and/or

12 // modify it under the terms of the GNU General Public License as

13 // published by the Free Software Foundation; either version 3,

14 // or (at your option) any later version.

15 //

16 // This program is distributed in the hope that it will be useful,

17 // but WITHOUT ANY WARRANTY; without even the implied warranty of

18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 // GNU General Public License for more details.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



B.2. SPL EXAMPLE PROGRAMS 459

20 //

21 // You should have received a copy of the GNU General Public

22 // License along with this program; see the file LICENSE. If not,

23 // see <http://www.gnu.org/licenses/>.

24 //

25 // __END_OF_LICENSE__

26

27 // Generate a Mandelbrot dataset in PNM format.

28

29 ////////////////////////////////////////////////////////////////////////////////

30 // Header files

31 ////////////////////////////////////////////////////////////////////////////////

32

33 #include <iostream >

34 #include <complex >

35 #include <algorithm >

36 #include <cassert >

37 #include <cstdlib >

38 #include <SPL/Array2.hpp>

39 #include <SPL/Sequence2.hpp >

40 #include <SPL/Timer.hpp >

41

42 ////////////////////////////////////////////////////////////////////////////////

43 // Types

44 ////////////////////////////////////////////////////////////////////////////////

45

46 typedef SPL::Array2 <double> RealArray2;

47 typedef SPL::Array2 <int> IntArray2;

48 typedef std::complex <double> Complex;

49

50 ////////////////////////////////////////////////////////////////////////////////

51 // Mandelbrot dataset generation

52 ////////////////////////////////////////////////////////////////////////////////

53

54 // Compute function representing Mandelbrot dataset.

55 RealArray2 mandelbrot(int width , int height , const Complex& botLeft ,

56 const Complex& topRight)

57 {

58 const int maxIters = 128;

59

60 RealArray2 result(width , height);

61 result.fill(0);

62

63 double stepX = (topRight.real() - botLeft.real()) / (width - 1);

64 double stepY = (topRight.imag() - botLeft.imag()) / (height - 1);

65

66 for (int y = 0; y < height; ++y) {

67 for (RealArray2::XIterator i = result.rowBegin(y);

68 i != result.rowEnd(y); ++i) {

69 Complex c = botLeft + Complex((i - result.rowBegin(y)) *

70 stepX , y * stepY);

71 int n = 0;

72 Complex z(0.0);

73 while (std::abs(z) < 2.0 && n < maxIters) {

74 z = z * z + c;

75 ++n;

76 }
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77 *i = static_cast<double>(n) / maxIters;

78 }

79 }

80 return result;

81 }

82

83 // Randomly permute the gray levels in an image.

84 void permuteGrayLevels(IntArray2& image , int numGrayLevels)

85 {

86 // Create a lookup table for randomly permuting sample values.

87 std::vector <int> lookupTable(numGrayLevels);

88 for (std::vector <int>::iterator i = lookupTable.begin();

89 i != lookupTable.end(); ++i) {

90 *i = i - lookupTable.begin();

91 }

92 std::random_shuffle(lookupTable.begin(), lookupTable.end());

93

94 // Remap the gray levels in the image.

95 for (IntArray2::Iterator i = image.begin();

96 i != image.end(); ++i) {

97 assert(*i >= 0 && *i < numGrayLevels);

98 *i = lookupTable[*i];

99 }

100 }

101

102 ////////////////////////////////////////////////////////////////////////////////

103 // Main program.

104 ////////////////////////////////////////////////////////////////////////////////

105

106 int main(int argc , char **argv)

107 {

108 Complex botLeft(-2.05, -1.2);

109 Complex topRight(0.55, 1.2);

110 int width = 1024;

111 int height = 1024;

112 int maxValue = 255;

113

114 // Process the command line.

115 if (argc > 1) {

116 if (argc != 5) {

117 std::cerr << "usage: mandelbrot [xmin ymin xmax ymax]\n";

118 exit(2);

119 }

120 botLeft = Complex(atof(argv[1]), atof(argv[2]));

121 topRight = Complex(atof(argv[3]), atof(argv[4]));

122 }

123

124 // Compute the function representing the mandelbrot dataset.

125 SPL::Timer timer;

126 timer.start();

127 RealArray2 func = mandelbrot(width , height , botLeft , topRight);

128 timer.stop();

129

130 // Convert the real data to integer data.

131 func *= static_cast<double>(maxValue);

132 IntArray2 image(func);

133
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Figure B.1: An output image produced by the mandelbrot program.

134 // Permute the gray levels (for aesthetic reasons).

135 permuteGrayLevels(image , maxValue + 1);

136

137 // Output image in PNM format.

138 if (SPL::encodePgm(std::cout , image , maxValue , false)) {

139 std::cerr << "cannot write output image\n";

140 exit(1);

141 }

142

143 std::cerr << "Mandelbrot computation time (seconds): " << timer.get() << "\n";

144

145 exit(0);

146 }
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Appendix C

Computational Geometry Algorithms

Library (CGAL)

Overview

Some of the code examples associated with this book make use of the Computational Geometry Algorithms Library

(CGAL). This appendix provides a brief introduction to this library.

C.1 Computational Geometry Algorithms Library (CGAL)

The Computational Geometry Algorithms Library (CGAL) [1, 2] is a very powerful open-source C++ library for

geometric computation. The library provides a very extensive collection of data types and algorithms for use in

geometry processing. Due to its heavy use of templates, the library is also quite flexible. Although the library is quite

large and offers a great wealth of functionality, we will only focus on a relatively small subset of the library herein. In

particular, we will consider the subset that is most relevant to the topics covered in this book. Of particular interest,

the CGAL library provides:

• data types for representing various geometric objects (e.g., points, line segments, rays, lines, planes, and

spheres) and algorithms for manipulating these data types;

• data types for representing polygon meshes (e.g., triangle/quadrilateral meshes) and algorithms for manipulating

these data types;

• support for several subdivision schemes (e.g., Catmull-Clark, Loop, Kobbelt
√
3, and Doo-Sabin); and

• the ability to read and write polygon mesh data in various common formats (such as the OFF format).

By using CGAL, we can greatly reduce the amount of effort required to implement geometry-processing methods

such as those associated with subdivision surfaces or subdivision wavelets.

The CGAL software supports a wide variety of platforms, including those based on UNIX/Linux and Microsoft

Windows. Some Linux distributions already have packages defined for CGAL. For example, Fedora 17 has the yum

packages: CGAL, CGAL-devel, and CGAL-demos-source. CGAL has a very large user base, and is used by many open-

source projects as well as commercial products. Some examples of companies using CGAL include: British Telecom,

Boeing, France Telecom, GE Health Care, and The MathWorks.

The CGAL software is very well documented, with an extensive manual [3] that is over 4000 pages in length.

Since the manual is very detailed, we only provide a brief introduction to CGAL here. For additional information, the

reader is referred to the CGAL manual. The material in the manual that is likely to be of most interest to the reader

includes the following sections (in version 4.2 of the manual):

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



464 APPENDIX C. COMPUTATIONAL GEOMETRY ALGORITHMS LIBRARY (CGAL)

• Part IV “Geometry Kernels” Chapter 11 “2D and 3D Geometry Kernels”, which introduces the concept of a

geometry kernel along with examples of several geometry kernels provided by the library;

• Part VII “Cell Complexes and Polyhedra” Chapter 25 “3D Polyhedral Surfaces”, which introduces the class

used for representing polygon meshes;

• Part XII “Geometry Processing” Chapter 52 “3D Surface Subdivision Methods”, which introduces the subdivi-

sion methods provided by the library; and

• Part XVII “Support Library” Chapter 76 “Handles, Ranges, and Circulators”, which discusses some basic

concepts such as circulators.

The part and chapter numbering in the manual tends to vary somewhat from one version of CGAL to another. The

part and chapter titles, however, tend to change less frequently. Consequently, the part and chapter titles given above

may be more helpful than the part and chapter numbers for locating the relevant material in the manual. Since the

CGAL manual assumes some level of familiarity with concepts from computational geometry, the reader may also

find the following references on computational geometry to be helpful: [4], [5], and [6].

The CGAL library consists of three major parts:

1. geometry kernels, which provide primitive geometric objects (e.g., points, lines, and planes) and operations on

these objects;

2. geometric data structures (e.g., polygon meshes) and algorithms (e.g., subdivision schemes); and

3. non-geometric support facilities (e.g., support for debugging and interfacing CGAL to various visualization

tools).

C.2 Handles and Circulators

Two important concepts in the CGAL library are handles and circulators. These two concepts are introduced below.

A handle is an object that can be used to reference another object (i.e., provides a dereferencing operator). Handles

are frequently employed in order to provide access to objects stored inside a data structure. For example, for a data

structure storing elements of type T, examples of handles include a simple pointer of type T* and an iterator with value

type T. In the CGAL library, handle types are often used to refer to objects stored in data structures. For example,

handles are used to refer to the constituent components of a polygon mesh (i.e., the vertices, facets, and halfedges).

Many libraries (including the C++ standard library) utilize iterators. While iterators are extremely useful, they

are intended for use with linear sequences of elements (i.e., sequences with a well-defined first and last element).

Iterators, however, are not well suited to circular sequences of elements. As it turns out, in geometry processing,

circular sequences arise frequently. For this reason, CGAL introduces the notion of a circulator. A circulator is a

type that allows iteration over elements in circular sequence of elements. For example, a circulator could be used to

allow iteration over all 1-ring neighbours of vertex in polygon mesh. Just like iterators, circulators come in const (i.e.,

nonmutable) and non-const (i.e., mutable) versions. A non-const circulator can be used to modify the object that the

circulator references, while a const circulator cannot.

C.3 Geometry Kernels

A fundamental building block in the CGAL library is what is known as a geometry kernel (which is sometimes simply

referred to as a kernel). A geometry kernel provides data types for primitive geometric objects (such as points, lines,

and planes) and operations on these objects. For example, a kernel specifies how a point is represented (e.g., Cartesian

coordinates or homogeneous coordinates). This, in turn, effects how other primitive geometric objects are represented

or specified. In addition to representing primitive geometric objects, kernels also provide various operations in relation

to these objects. Two types of operations of particular interest are what are referred to as constructions and predicates.

A construction (as the name suggests) is an operation that creates a new geometric object. For example, a construction

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



C.4. POINTS AND VECTORS 465

might be used to create a line from two points, where the line is such that it passes through both points. A predicate

is an operation that is used to test a particular condition and returns either a boolean or an enumerated type, where the

possible values of the return type correspond to the different potential outcomes of the test. For example, a predicate

might be used to test if three points are collinear. In this case, a boolean return value could be used with true and false

corresponding to the points being or not being collinear, respectively.

Arithmetic with floating-point types is not exact, due to roundoff error. Unfortunately, this can lead to many

complications when implementing geometric algorithms. For some types of calculations in geometric algorithms, any

arbitrarily-small roundoff error could cause the algorithm to make an incorrect decision and fail to behave correctly.

For example, due to roundoff error, an algorithm may incorrectly decide that three points are collinear when, in reality,

they are not. In situations such as these, special techniques (e.g., arbitrary-precision arithmetic) must be employed in

order to ensure correct code behavior. In effect, the calculation must be done as if no roundoff error occurred. In this

regard, the geometry kernels provided by CGAL can be classified into one of three categories:

1. constructions and predicates are both inexact;

2. constructions are inexact but predicates are exact; and

3. constructions and predicates are both exact.

For our purposes, we are only interested in the first two categories. In situations where we need to be able guarantee

that the results produced by predicates (such as a collinearity test) are correct in spite of roundoff error, we must use a

kernel with exact predicates. Of course, the disadvantage of using exact predicates (relative to inexact ones) is greater

computational cost. Therefore, exact predicates (or constructions) should only be used when required.

Although many geometric kernels are provided in the CGAL library, the only two that we consider are

CGAL::Cartesian<double> and CGAL::Filtered_kernel<Cartesian<double>>.

Both of these kernels represent points using Cartesian coordinates with the coordinates being of type double. The first

of these kernels has inexact constructions and inexact predicates. The second of these kernels has inexact constructions

and exact predicates. Which of these kernels should be selected depends on whether we need predicates to be exact.

C.4 Points and Vectors

Often, we tend to think of vectors and points as being essentially the same type of entity. The CGAL library, however,

makes a clear distinction between vectors and points, treating them as distinct entities. As a consequence, in some

contexts, CGAL may require a vector, while in other contexts, a point may be required. One can easily convert from

a vector to a point and vice versa. The difference between two points is a vector. The origin plus a vector is point. So,

one can convert between a vector and a point by either adding or subtracting ORIGIN, as shown in the following code

fragment:

// Note: Kernel is some geometry kernel type

CGAL::Point_3 <Kernel > p(1.0, 2.0, 3.0);

CGAL::Point_3 <Kernel > q;

CGAL::Vector_3 <Kernel > v;

v = p - CGAL::ORIGIN; // convert Point_3 to Vector_3

q = CGAL::ORIGIN + v; // convert Vector_3 to Point_3

C.5 Polyhedron_3 Class

With the CGAL library, a polyhedral surface (i.e., polygon mesh), which consists of vertices, edges, and facets, and

incidence relationship amongst them, is represented using the Polyhedron_3 template class. This class is based on the

half-edge data structure, described in detail in Section 8.17.3 (on page 358).

The Polyhedron_3 class is declared as follows:
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vertex

halfedge

facet

Incident Vertex

Incident Facet

Figure C.1: A halfedge and its incident vertex and incident facet.

template <

class Kernel ,

class PolyhedronItems = CGAL::Polyhedron_items_3 ,

template <class T, class I> class HalfedgeDS = CGAL::HalfedgeDS_default ,

class Alloc = CGAL_ALLOCATOR(int)

> class Polyhedron_3;

The parameter Kernel specifies the geometric kernel to be used (such as CGAL::Cartesian<double>). The parameter

PolyhedronItems identifies the data types to be used for representing vertices and facets. In many cases, the default

value for this parameter will suffice. The parameter HalfedgeDS specifies the particular halfedge data structure used to

represent the mesh. The default value for this parameter should always suffice for our purposes. The parameter Alloc

is used to control how memory allocation is performed. The default value for this parameter should always suffice for

our purposes.

Each halfedge is associated with one vertex and nominally one facet, referred to as the incident vertex and incident

facet, respectively. The incident vertex of a halfedge is the vertex at the terminal end of the halfedge. The incident

facet of a halfedge is the facet to the left of the halfedge. The relationship between a halfedge and its incident vertex

and incident facet is illustrated in Figure C.1. If a halfedge belongs to an edge on the boundary of the mesh, the

halfedge may not have an incident facet, as the halfedge may have no facet to its left. A halfedge that has no left facet

is called a boundary halfedge. For a given edge on the boundary of a mesh, only one of the edge’s two halfedges

will be a boundary halfedge.

The Polyhedron_3 class provides a number of type members, which are listed in Table C.1. The function members

provided by the class are listed in Table C.2. The input and output operators (i.e., operator<< and operator>>) are

overloaded for Polyhedron_3 objects so that meshes can be easily read from and written to streams (e.g., in the OFF

format).

C.5.1 Polyhedron_3::Facet Class

The Facet class is used to represent a facet (i.e., face) in the polygon mesh. This class may optionally store a plane

equation (for the facet) and a reference to a halfedge incident to the facet. The class provides a circulator that can be

used to visit all halfedges incident on the facet. The circulator can be either of the forward or bidirectional variety.

The function members for the class are listed in Table C.3.

C.5.2 Polyhedron_3::Vertex Class

The Vertex class is used to represent a vertex in a polygon mesh. The vertex may optionally include a point (corre-

sponding to the vertex position in space) and a reference to a halfedge that is incident on the vertex. The class provides

a circulator that can be used to visit all of the halfedges incident on the vertex. The circulator can be either of the

forward or bidirectional variety. The function members for the class are listed in Table C.4.
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Table C.1: Type members for the Polyhedron_3 class. (a) Basic types, (b) handle types, (c) iterator types, and

(d) circulator types.

(a)

Name Description

Vertex vertex type

Halfedge halfedge type

Facet facet type

Point_3 point type (for vertices)

(b)

Name Description

Vertex_const_handle const handle to vertex

Vertex_handle handle to vertex

Halfedge_const_handle const handle to halfedge

Halfedge_handle handle to halfedge

Facet_const_handle const handle to facet

Facet_handle handle to facet

(c)

Name Description

Vertex_const_iterator const iterator over all vertices

Vertex_iterator iterator over all vertices

Halfedge_const_iterator const iterator over all halfedges

Halfedge_iterator iterator over all halfedges

Facet_const_iterator const iterator over all facets

Facet_iterator iterator over all facets

Edge_const_iterator const iterator over all edges (every other halfedge)

Edge_iterator iterator over all edges (every other halfedge)

(d)

Name Description

Halfedge_around_vertex_const_circulator const circulator of halfedges around vertex (CW)

Halfedge_around_vertex_circulator circulator of halfedges around vertex (CW)

Halfedge_around_facet_const_circulator const circulator of halfedges around facet (CCW)

Halfedge_around_facet_circulator circulator of halfedges around facet (CCW)
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Table C.2: Function members for the Polyhedron_3 class. Function members related to (a) size, (b) iterators, (c) com-

binatorial predicates, and (d) border halfedges.

(a)

Name Description

size_of_vertices get number of vertices

size_of_halfedges get number of halfedges

size_of_facets get number of facets

(b)

Name Description

vertices_begin iterator over all vertices

vertices_end past-the-end iterator

halfedges_begin iterator over all halfedges

halfedges_end past-the-end iterator

facets_begin iterator over all facets

facets_end past-the-end iterator

edges_begin iterator over all edges

edges_end past-the-end iterator

(c)

Name Description

is_closed true if no border edges (no boundary)

is_pure_triangle true if all facets are triangles

is_pure_quad true if all facets are quadrilaterals

(d)

Name Description

normalized_border_is_valid true if border is normalized

normalize_border sort halfedges such that non-border edges precede

border edges (i.e., normalize border)

size_of_border_halfedges get number of border halfedges (border must be

normalized)

size_of_border_edges get number of border edges (border must be nor-

malized)

border_halfedges_begin halfedge iterator starting with border edges (bor-

der must be normalized)

border_edges_begin edge iterator starting with border edges (border

must be normalized)

Table C.3: Function members for Facet class.

Name Description

halfedge get incident halfedge that points to facet

facet_begin get circulator of halfedges around facet (CCW)

facet_degree get degree of facet (i.e., number of edges on boundary

of facet)

is_triangle true if facet is triangle

is_quad true if facet is quadrilateral
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Table C.4: Function members for the Vertex class. (a) Required and (b) optional.

(a)

Name Description

vertex_begin circulator of halfedges around vertex (CW)

vertex_degree get valence of vertex

is_bivalent true if vertex has valence two

is_trivalent true if vertex has valence three

(b)

Name Description

point get point associated with vertex

halfedge get incident halfedge that points to vertex

C.5.3 Polyhedron_3::Halfedge Class

The Halfedge class is used to represent a halfedge in a polygon mesh. At the implementation level, a halfedge contains

a handle for the next halfedge around its left facet in the CCW direction and a handle for its opposite halfedge. This

allows for efficient iteration around the halfedges of a facet in the CCW direction and around the halfedges of a vertex

in the CW direction. Additional information may optionally be stored in halfedges in order to permit efficient iteration

in the opposite direction. The function members for the Halfedge class are listed in Table C.5.

Example C.1 (Adjacency example). Figure C.2 shows a simple triangle mesh. In the figure, one halfedge is labelled

as “h”. In addition, various other parts of the mesh have been labelled with expressions showing how the various

halfedge member functions can be used to navigate around the mesh.

C.6 Support for Subdivision Methods

The CGAL library provides support for several subdivision methods. The code for subdivision is contained in the

namespace Subdivision_method_3 (in the CGAL namespace). Several subdivision methods are available through the

functions listed in Table C.6. Some generic subdivision methods (for which arbitrary geometric refinement rules can

be defined) are associated with the functions listed in Table C.7.

C.7 Other Functionality

A few other data types, constants, and functions in CGAL that may be useful are listed in Tables C.8, C.9, and C.10,

respectively.

C.8 Common Problems

Below, we identify a few problems commonly encountered by new CGAL users. In so doing, we hope to help new

users to avoid such problems.

When using CGAL, it is quite important that code be const correct. A common source of problems is using a han-

dle, iterator, or circulator type that has the wrong constness properties. For example, if one is looping over all of the

vertices in the mesh using a Vertex_const_iterator, then one cannot try to obtain a Halfedge_around_vertex_circulator

from the vertex obtained by dereferencing the iterator (as this would provide a means by which to change a const ob-

ject). That is, code like the following is incorrect:

typedef CGAL::Cartesian <double> Kernel;

typedef CGAL::Polyhedron_3 <Kernel > Polyhedron;

Polyhedron mesh;
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Table C.5: Function members for the Halfedge class. Function members related to (a) adjacency queries, (b) circula-

tors, (c) valence/degree/border queries, and (d) the incident vertex/facet.

(a)

Name Description

opposite get opposite halfedge

next next halfedge around facet (CCW)

prev previous halfedge around facet (CCW)

next_on_vertex next halfedge around vertex (CW)

prev_on_vertex previous halfedge around vertex (CW)

(b)

Name Description

vertex_begin circulator of halfedges around vertex (CW)

facet_begin circulator of halfedges around facet (CCW)

(c)

Name Description

is_border true if border halfedge

vertex_degree get valence of incident vertex

is_bivalent true if incident vertex has valence two

is_trivalent true if incident vertex has valence three

facet_degree get degree of incident facet

is_triangle true if incident facet is triangle

is_quad true if incident facet is quadrilateral

(d)

Name Description

vertex get handle for incident vertex of halfedge

facet get handle for incident facet of halfedge

Table C.6: Functions for various subdivision methods

Name Description

CatmullClark_subdivision perform Catmull-Clark subdivision

Loop_subdivision perform Loop subdivision

DooSabin_subdivision perform Doo-Sabin subdivision

Sqrt3_subdivision perform Kobbelt
√
3 subdivision

Table C.7: Functions for generic subdivision methods

Name Description

PQQ primal quadrilateral quadrisection with user-defined geometric

refinement rule

PTQ primal triangle quadrisection with user-defined geometric re-

finement rule

DQQ dual quadrilateral quadrisection with user-defined geometric re-

finement rule

Sqrt3
√
3 topologic refinement with user-defined geometric refine-

ment rule
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Figure C.2: Mesh for adjacency example.

Table C.8: Miscellaneous types

Name Description

Aff_transformation_3 three-dimensional affine transformation

Bbox_3 bounding box in three-dimensional space

Direction_3 direction in three-dimensional space

Line_3 directed straight line in three-dimensional space

Point_3 point in three-dimensional space

Plane_3 oriented plane in three-dimensional space

Ray_3 directed straight ray in three-dimensional space

Segment_3 directed straight line segment in three-dimensional space

Sphere_3 oriented sphere in three-dimensional space

Triangle_3 triangle (excluding interior) in three-dimensional space

Vector_3 vector in three-dimensional space

Table C.9: Miscellaneous constants

Name Description

ORIGIN point at origin

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



472 APPENDIX C. COMPUTATIONAL GEOMETRY ALGORITHMS LIBRARY (CGAL)

Table C.10: Miscellaneous functions

Name Description

collinear test if three points are collinear

coplanar test if four points are coplanar

cross_product compute cross product of two vectors

left_turn test if three points form left turn (i.e., form a CCW loop)

parallel test if segments/rays/lines/planes are parallel

right_turn test if three points form right turn (i.e., form a CW loop)

// ...

for (Polyhedron::Vertex_const_iterator i = mesh.vertices_begin();

i != mesh.vertices_end(); ++i) {

Polyhedron::Halfedge_around_vertex_circulator circ =

i->vertex_begin(); // ERROR: violates const correctness

// should use Halfedge_around_vertex_const_circulator

// ...

}

Be careful to take into account which operations on Polyhedron_3 objects can invalidate handles, iterators, or

circulators. For example, when one adds new vertices/facets to a mesh, this has the potential to invalidate references

(through handles, iterators, and circulators) to elements in the mesh. Not taking issues like this into consideration can

lead to some very painful times debugging code.

Some functions for the Polyhedron_3 class will only work correctly if the border is normalized. For example, the

following member functions are only guaranteed to have the correct behavior if the border is normalized:

• size_of_border_halfedges,

• size_of_border_edges,

• border_halfedges_begin, and

• border_edges_begin.

The member function normalized_border_is_valid can be used to determine if the border is normalized. To normal-

ize the border, the member function normalize_border should be used.

In the Polyhedron_3 class, some circulators move in the CCW direction while others move in the CW direction.

Depending on how a circulator is being used, this order may be important.

In the Polyhedron_3 class, each edge is associated with two halfedges. If an edge is on the border of the mesh,

only one of the edge’s two halfedges will be a border halfedge. Note the emphasis on the word “one” in the previous

sentence. The common mistake here is to assume that because a halfedge belongs to a border edge that the halfedge

must be a border halfedge. This assumption is incorrect, however.

C.9 CGAL Example Programs

Now, we consider a few examples of programs that utilize the CGAL library. In particular, the source code listings

for the following programs can be found in the sections that follow:

1. The meshMake program, which creates a polygon mesh.

2. The meshInfo program, which prints some information about a mesh.

3. The meshSubdivide program, which applies subdivision to a mesh.
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C.9.1 meshMake Program

The meshMake program creates a polygon mesh corresponding to a tetrahedron and then outputs the resulting mesh in

OFF format to standard output. The program consists of the single source code file shown in Listing C.1.

Listing C.1: meshMake.cpp

1 // Construct a simple mesh and write the result to standard output

2 // in OFF format.

3 //

4 // Copyright (c) 2013 Michael D. Adams

5

6 #include <iostream >

7 #include <CGAL/Simple_cartesian.h>

8 #include <CGAL/Polyhedron_3.h>

9 #include <CGAL/IO/Polyhedron_iostream.h>

10 #include <CGAL/Polyhedron_incremental_builder_3.h>

11

12 typedef double Real;

13 typedef CGAL::Simple_cartesian <Real > Kernel;

14 typedef CGAL::Polyhedron_3 <Kernel > Polyhedron;

15 typedef Polyhedron::HalfedgeDS HalfedgeDS;

16

17 // A modifier class that creates a tetrahedron with the polyhedron

18 // incremental builder class.

19 template <class HDS>

20 class MeshBuilder : public CGAL::Modifier_base <HDS> {

21 public:

22

23 MeshBuilder() {}

24

25 void operator()(HDS& hds)

26 {

27 typedef typename HDS::Vertex Vertex;

28 typedef typename Vertex::Point Point;

29

30 // Start with an empty mesh.

31 hds.clear();

32

33 CGAL::Polyhedron_incremental_builder_3 <HDS> b(hds , true);

34

35 // Start the construction of a new surface with the specified

36 // number of vertices and faces.

37 b.begin_surface(4, 4);

38

39 // Add four vertices to mesh.

40 b.add_vertex(Point( 1.0, 1.0, 1.0)); // Add vertex 0

41 b.add_vertex(Point(-1.0, 1.0, 1.0)); // Add vertex 1

42 b.add_vertex(Point(-1.0, -1.0, 1.0)); // Add vertex 2

43 b.add_vertex(Point( 1.0, -1.0, -1.0)); // Add vertex 3

44

45 // Add facet with vertices 0,1,2 (in CCW order).

46 b.begin_facet();

47 b.add_vertex_to_facet (0);

48 b.add_vertex_to_facet (1);

49 b.add_vertex_to_facet (2);

50 b.end_facet();

51
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52 // Add facet with vertices 0,2,3 (in CCW order).

53 b.begin_facet();

54 b.add_vertex_to_facet (0);

55 b.add_vertex_to_facet (2);

56 b.add_vertex_to_facet (3);

57 b.end_facet();

58

59 // Add facet with vertices 0,3,1 (in CCW order).

60 b.begin_facet();

61 b.add_vertex_to_facet (0);

62 b.add_vertex_to_facet (3);

63 b.add_vertex_to_facet (1);

64 b.end_facet();

65

66 // Add facet with vertices 3,2,1 (in CCW order).

67 b.begin_facet();

68 b.add_vertex_to_facet (3);

69 b.add_vertex_to_facet (2);

70 b.add_vertex_to_facet (1);

71 b.end_facet();

72

73 // End the construction of a surface.

74 b.end_surface();

75 }

76

77 };

78

79 int main()

80 {

81 Polyhedron mesh;

82

83 // Create a mesh builder object.

84 MeshBuilder <HalfedgeDS > meshBuilder;

85

86 // Replace the existing mesh with a new mesh produced by the

87 // mesh builder object.

88 mesh.delegate(meshBuilder);

89

90 // Output the mesh to standard output (in OFF format).

91 std::cout << mesh;

92 if (!std::cout) {

93 return 1;

94 }

95

96 return 0;

97 }

C.9.2 meshInfo Program

The meshInfo program reads a polygon mesh in OFF format from standard input and then calculates and prints some

information about the mesh (e.g., triangle or quad mesh; the number of vertices, edges, facets, and halfedges; and

the minimum, maximum, and average vertex valence). The program consists of the single source code file shown in

Listing C.2.

Listing C.2: meshInfo.cpp

1 // Read a mesh from standard input in OFF format and print various information
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2 // about the mesh to standard output.

3 //

4 // Copyright (c) 2013 Michael D. Adams

5

6 #include <iostream >

7 #include <string >

8 #include <CGAL/Cartesian.h>

9 #include <CGAL/Filtered_kernel.h>

10 #include <CGAL/Polyhedron_3.h>

11 #include <CGAL/IO/Polyhedron_iostream.h>

12

13 typedef double Real;

14 typedef CGAL::Cartesian <Real > Kernel0;

15 // Use a filtered kernel so that all predicates are exact.

16 typedef CGAL::Filtered_kernel <Kernel0 > Kernel;

17 typedef CGAL::Polyhedron_3 <Kernel > Polyhedron;

18 typedef Kernel::Point_3 Point;

19

20 int main(int argc , char **argv)

21 {

22 Polyhedron mesh;

23

24 // Read the input mesh from standard input in OFF format.

25 if (!(std::cin >> mesh)) {

26 std::cerr << "Cannot read input mesh\n";

27 return 1;

28 }

29

30 // Determine the mesh type.

31 std::string meshType;

32 if (mesh.is_pure_triangle ()) {

33 meshType = std::string("triangle");

34 } else if (mesh.is_pure_quad()) {

35 meshType = std::string("quad");

36 } else {

37 meshType = std::string("general");

38 }

39

40 // Loop over all of the vertices in the mesh.

41 // In the process of doing so, compute the minimum, maximum, and average

42 // valences of the vertices in the mesh.

43 Real valenceSum = 0;

44 int minValence = -1;

45 int maxValence = -1;

46 // For each vertex in the mesh...

47 for (Polyhedron::Vertex_const_iterator vertexIter = mesh.vertices_begin();

48 vertexIter != mesh.vertices_end(); ++vertexIter) {

49

50 // Get the valence of the current vertex.

51 int valence = vertexIter ->degree();

52

53 // Update the minimum valence value.

54 if (minValence < 0 || valence < minValence) {

55 minValence = valence;

56 }

57

58 // Update the maximum valence value.
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59 if (maxValence < 0 || valence > maxValence) {

60 maxValence = valence;

61 }

62

63 valenceSum += valence;

64

65 }

66 Real meanValence = valenceSum / mesh.size_of_vertices ();

67

68 // Check for nonplanar faces.

69 int numNonplanarFaces = 0;

70 Real degreeSum = 0;

71 int minDegree = -1;

72 int maxDegree = -1;

73 // For each face in the mesh...

74 for (Polyhedron::Facet_const_iterator faceIter = mesh.facets_begin();

75 faceIter != mesh.facets_end(); ++faceIter) {

76

77 // Get the degree of the face.

78 int degree = faceIter ->facet_degree();

79 // The face can only be nonplanar if its degree exceeds three.

80 if (degree >= 4) {

81

82 // Get a circulator that can be used to visit all of the

83 // halfedges around the face in CCW order (where the halfedge

84 // has the face on its left side).

85 Polyhedron::Facet::Halfedge_around_facet_const_circulator

86 halfEdgeCirc = faceIter ->facet_begin ();

87

88 // Get the first vertex of the face.

89 const Point& v0 = halfEdgeCirc ->vertex()->point();

90 ++halfEdgeCirc;

91

92 // Get the second vertex of the face.

93 const Point& v1 = halfEdgeCirc ->vertex()->point();

94 ++halfEdgeCirc;

95

96 // Get the third vertex of the face.

97 const Point& v2 = halfEdgeCirc ->vertex()->point();

98 ++halfEdgeCirc;

99

100 // Check that each remaining vertex is coplanar with the first

101 // three vertices.

102 for (int i = 3; i < degree; ++i) {

103

104 // Get the next vertex of the face.

105 const Point& v = halfEdgeCirc ->vertex()->point();

106 ++halfEdgeCirc;

107

108 // Check if the vertex is coplanar with the first three.

109 if (!CGAL::coplanar(v0, v1, v2, v)) {

110 ++numNonplanarFaces;

111 std::cout << "nonplanar face detected: "

112 << "(" << v0.x() << "," << v0.y() << "," << v0.z() << ") "

113 << "(" << v1.x() << "," << v1.y() << "," << v1.z() << ") "

114 << "(" << v2.x() << "," << v2.y() << "," << v2.z() << ") "

115 << "(" << v.x() << "," << v.y() << "," << v.z() << ")\n";
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116 }

117 }

118 }

119

120 // Update the minimum degree.

121 if (minDegree < 0 || degree < minDegree) {

122 minDegree = degree;

123 }

124

125 // Update the maximum degree.

126 if (maxDegree < 0 || degree > maxDegree) {

127 maxDegree = degree;

128 }

129

130 degreeSum += degree;

131

132 }

133 Real meanDegree = degreeSum / mesh.size_of_facets();

134

135 // Normalize the halfedges of the mesh.

136 // That is, sort the halfedges so that the non-border edges precede the

137 // border edges.

138 // This is necessary since the member function size_of_border_edges

139 // (which is called below) requires that the halfedges be normalized.

140 mesh.normalize_border ();

141

142 // Output the mesh information.

143 std::cout

144 << "mesh type: " << meshType << "\n"

145 << "number of vertices: " << mesh.size_of_vertices() << "\n"

146 << "number of edges: " << mesh.size_of_halfedges() / 2 << "\n"

147 << "number of border edges: " << mesh.size_of_border_edges () << "\n"

148 << "number of faces: " << mesh.size_of_facets() << "\n"

149 << "number of halfedges: " << mesh.size_of_halfedges() << "\n"

150 << "mean vertex valence: " << meanValence << "\n"

151 << "minimum vertex valence: " << minValence << "\n"

152 << "maximum vertex valence: " << maxValence << "\n"

153 << "mean face degree: " << meanDegree << "\n"

154 << "minimum face degree: " << minDegree << "\n"

155 << "maximum face degree: " << maxDegree << "\n"

156 << "number of nonplanar faces: " << numNonplanarFaces << "\n"

157 ;

158

159 return 0;

160 }

C.9.3 meshSubdivide Program

The meshSubdivide program reads a polygon mesh from standard input, applies subdivision to the mesh, and then

writes the refined mesh to standard output. Mesh data is read and written in the OFF format. The program allows the

subdivision method and number of levels of subdivision to be specified. Several subdivision methods are supported,

including the Catmull-Clark, Loop, and Kobbelt
√
3 schemes. The program consists of the single source code file

shown in Listing C.3.

Listing C.3: meshSubdivide.cpp

1 // Read a mesh from standard input in OFF format, subdivide the mesh,
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2 // and write the subdivided mesh to standard output in OFF format.

3 //

4 // Copyright (c) 2013 Michael D. Adams

5

6 #include <iostream >

7 #include <string >

8 #include <CGAL/Cartesian.h>

9 #include <CGAL/Subdivision_method_3.h>

10 #include <CGAL/Polyhedron_3.h>

11 #include <CGAL/IO/Polyhedron_iostream.h>

12

13 typedef double Real;

14 typedef CGAL::Cartesian <Real > Kernel;

15 typedef CGAL::Polyhedron_3 <Kernel > Polyhedron;

16

17 int main(int argc , char **argv)

18 {

19 // If the number of command line arguments provided is incorrect,

20 // print usage information and exit.

21 if (argc != 3) {

22 std::cout

23 << "Usage:\n"

24 << argv[0] << " method numLevels\n"

25 << "method ...... The subdivision method.\n"

26 << "numLevels ... The number of levels of subdivision.\n"

27 << "Valid subdivision methods include:\n"

28 << " loop , sqrt3 , catmull_clark , doo_sabin\n";

29 std::cout

30 << "The mesh is read from standard input in OFF format.\n"

31 << "The refined mesh is written to standard output in OFF format.\n";

32 return 2;

33 }

34

35 // Extract the input parameters from the command line.

36 std::string method = argv[1];

37 int numLevels = atoi(argv[2]);

38

39 Polyhedron mesh;

40

41 // Read the input mesh from standard input in OFF format.

42 if (!(std::cin >> mesh)) {

43 std::cerr << "Cannot read input mesh\n";

44 return 1;

45 }

46

47 // Apply the specified subdivision method to the mesh.

48 if (method == "loop") {

49 if (!mesh.is_pure_triangle ()) {

50 std::cerr << "Loop subdivision requires a triangle mesh.\n";

51 return 1;

52 }

53 CGAL::Subdivision_method_3 ::Loop_subdivision(mesh , numLevels);

54 } else if (method == "sqrt3") {

55 if (!mesh.is_pure_triangle ()) {

56 std::cerr <<

57 "Kobbelt sqrt(3) subdivision requires a triangle mesh.\n";

58 return 1;
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59 }

60 CGAL::Subdivision_method_3 ::Sqrt3_subdivision(mesh , numLevels);

61 } else if (method == "catmull_clark") {

62 CGAL::Subdivision_method_3 ::CatmullClark_subdivision(mesh , numLevels);

63 } else if (method == "doo_sabin") {

64 if (!mesh.is_pure_quad()) {

65 std::cerr << "Doo-Sabin subdivision requires a quad mesh.\n";

66 return 1;

67 }

68 CGAL::Subdivision_method_3 ::DooSabin_subdivision(mesh , numLevels);

69 } else {

70 std::cerr << "The specified subdivision scheme is invalid.\n";

71 return 1;

72 }

73

74 // Write the refined mesh to standard output in OFF format.

75 std::cout << mesh;

76 if (!std::cout) {

77 return 1;

78 }

79

80 return 0;

81 }
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Appendix D

Open Graphics Library (OpenGL)

Overview

Some of the code examples associated with this book employ the Open Graphics Library (OpenGL). This appendix

provides a brief introduction to this library.

D.1 Open Graphics Library (OpenGL)

The Open Graphics Library (OpenGL) [1, 6] is an application programming interface (API) for high-performance

high-quality 2-D and 3-D graphics. This API has been widely adopted by industry and has become the de-facto

standard for 2-D and 3-D graphics. OpenGL has bindings for numerous programming languages, including C, Java,

and Fortran. Herein, however, we will consider only the binding for C. The OpenGL API is both operating-system

and windowing-system independent, and implementations of the library are available for all mainstream computing

platforms, including UNIX, Linux, Mac OS X, and Microsoft Windows. OpenGL is vendor neutral, controlled by

an independent consortium with many organizations as members, including (not surprisingly) companies like Intel,

NVIDIA, and AMD. (As an aside, we note that there is another specification of an API for graphics called OpenGL

ES that is intended for use in embedded systems, such as mobile phones, game consoles, personal navigation devices,

personal media players, automotive systems, and set-top boxes. This is a separate API specification from OpenGL,

however, and is not discussed here.)

The OpenGL API is comprised of several hundred functions. OpenGL provides a number of geometric primitives

such as points, lines, polygons, images, and bitmaps. Using the library, one can render a scene composed of the

arrangement of geometric primitives in 3-D space, viewed from a particular vantage point. The rendering process is

quite complicated. Fortunately, many of the complexities and technical details are hidden inside the library so that the

application programmer need not worry about them. For example, the library assumes responsibility for calculating

the colors of objects (e.g., by explicit assignment, lighting, texture mapping, or a combination thereof); converting the

mathematical description of the objects to pixels on the screen (i.e., rasterization); eliminating hidden parts of objects

(via depth buffering), performing antialiasing, and so on. It is important to note, however, that OpenGL only concerns

itself with rendering. For example, OpenGL does not provide any capabilities for window management (e.g., creation

and destruction of windows) or device management (e.g., for obtaining user input via a keyboard or mouse). Another

auxiliary library must be used in conjunction with OpenGL in order to manage windows, handle user input, and so

on.

D.2 OpenGL Utility Toolkit (GLUT)

As mentioned above, since OpenGL only concerns itself with rendering, another auxiliary library must be used along

with OpenGL to provide other key functionalities required by graphics applications, such as window management.
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Although a number of such auxiliary libraries are available, we will consider only one herein, namely, the OpenGL

Utility Toolkit (GLUT).

The OpenGL Utility Toolkit (GLUT) [5] is a C library that provides a simple windowing API for use with

OpenGL. Since GLUT is fairly basic in its capabilities, it is mainly intended for use with small to medium sized

OpenGL programs. The GLUT library is operating-system and windowing-system independent, and supports most

mainstream operating systems (e.g., UNIX, Linux, and Microsoft Windows). Some of the functionality provided by

the library includes:

• window management: creating and destroying windows, displaying and resizing windows, and setting and

querying window attributes;

• event management: provides an event-processing engine with a dispatcher for callback functions to handle

various types of events (e.g., display, reshape, keyboard, and mouse events);

• device management: allows for interfacing to input devices such as keyboards and mice;

• graphics support to supplement OpenGL functionality: routines for drawing common wireframe/solid 3-D

objects such as a sphere, torus, and the well-known teapot model.

An open-source implementation of GLUT called Freeglut is available from

http://sourceforge.net/projects/freeglut

All of the header files for GLUT (as well as OpenGL) are located in the directory GL. To use GLUT, one need only

include the single header file glut.h, with a directive like:

#include <GL/glut.h>

The header file glut.h also includes all of the necessary OpenGL header files (e.g., gl.h, glu.h, and glext.h). So,

when writing OpenGL applications with GLUT, the only header file from the OpenGL and GLUT libraries that need

be included is glut.h.

D.2.1 Structure of GLUT Applications

Although programs can be structured in many different ways, one way in which a program can be structured is to use

what is called an event-driven model. With an event-driven model, the flow of the program is completely determined

by events (such as key presses or mouse clicks). A program that makes use of an event-driven model typically

performs some initialization and then enters an event-processing loop for the duration of execution. Each iteration

of the event-processing loop simply does the following: 1) wait for an event; and 2) process the event. An event

might, for example, correspond to a key press or mouse button press/release. Many libraries for building graphical

user interfaces (GUIs) employ an event-driven model.

Not surprisingly, the GLUT library uses an event-driven model. The types of events supported by the library

include those listed in Table D.1. From this table, one can see that many of the event types are either directly or

indirectly related to interactions between the user and the windowing system (e.g., pressing a mouse button, pressing

a key on the keyboard, or resizing a window). A list of some of the functions provided by the library is provided in

Table D.2. Generally, a GLUT program consists of the following steps:

1. Initialize the GLUT library by calling the glutInit function.

2. Set the display mode using the glutInitDisplay function.

3. Perform any additional initialization such as:

• creating windows via the glutCreateWindow function;

• registering callback functions for handling various types of events (e.g., via glutDisplayFunc, glutReshapeFunc,

and glutKeyboardFunc);
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Table D.1: GLUT event types

Event Type Description

display window contents needs to be displayed

overlay display overlay plane contents needs to be displayed

reshape window has been resized

keyboard key has been pressed

mouse mouse button has been pressed or released

motion mouse moved within window while one or more but-

tons pressed

passive motion mouse moved within window while no buttons pressed

visibility visibility of window has changed (covered versus un-

covered)

entry mouse has left or entered window

special keyboard special key has been pressed (e.g., arrow keys, func-

tion keys)

spaceball motion spaceball translation has occurred

spaceball rotate spaceball rotation has occurred

button box button box activity has occurred

dials dial activity has occurred

tablet motion tablet motion has occurred

tablet button table button has been pressed or released

menu status menu status change

idle no event activity has occurred

timer timer has expired

• set the initial OpenGL state (e.g., depth buffering, shading, lighting, and clear color).

4. Enter the main event-processing loop by calling the glutMainLoop function. Note that the glutMainLoop function

never returns.

The above steps typically constitute only a very small part of a GLUT application. This is because most of the work

is performed in the callback functions of the application. For each event type of interest to an application, a callback

function must be registered. As an absolute minimum, an application must register a display callback function (via

glutDisplayFunc). This is because the display event is the event that requests an application to draw its graphics

output. Therefore, if no display callback is registered, there is no way for an application to produce any graphics

output. Since windows are often resized (and applications usually want to know when their window size changes), it

is almost always the case that a reshape callback function will be registered. Whether other types of callback functions

are registered depends on the particular application.

D.2.2 Example of a Minimalist GLUT Application

In this section, we provide an example of a minimalist GLUT application. The program simply has the effect of

clearing the graphics output window to a particular color. Although this program does not do anything particularly

exciting, it nevertheless well illustrates the basic structure of a GLUT application. The program consists of the single

source code file shown in Listing D.1. The output produced by the program is shown in Figure D.1. In the program, the

only callback function registered is for the handling of display events. Recall that, as a minimum, a GLUT application

must register a display callback function; otherwise, the application cannot produce any graphics output.

The functions glClearColor and glClear are part of the OpenGL library (not GLUT) and have not yet been

introduced. As we will see later, the glClearColor function sets the current clear color and the glClear function is

used to clear the window to the current clear color.
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Table D.2: GLUT functions relating to (a) initialization, (b) starting event processing, (c) window management,

(d) callback registration, (e) state retrieval, and (f) geometric object rendering.

(a)

Function Description

glutInit initialize GLUT library

glutInitWindowSize set initial window size for glutCreateWindow

glutInitWindowPosition set initial window position for glutCreateWindow

glutInitDisplayMode set initial display mode

(b)

Function Description

glutMainLoop enter GLUT event-processing loop

(c)

Function Description

glutCreateWindow create top-level window

glutPostRedisplay mark current window as needing to be redisplayed

glutSwapBuffers swaps buffers of current window if double buffered

(flushes graphics output via glFlush)

(d)

Function Description

glutDisplayFunc sets display callback for current window

glutReshapeFunc sets reshape callback for current window

glutKeyboardFunc sets keyboard callback for current window

glutSpecialFunc sets special keyboard callback for current window

glutTimerFunc registers timer callback to be triggered in specified

number of milliseconds

(e)

Function Description

glutGet retrieves simple GLUT state (e.g., size or position of

current window)

glutGetModifiers retrieve modifier key state when certain callbacks gen-

erated (i.e., state of shift, control, and alt keys)

(f)

Function Description

glutSolidSphere render solid sphere

glutWireSphere render wireframe sphere

glutSolidCube render solid cube

glutWireCube render wireframe cube

glutSolidCone render solid cone

glutWireCone render wireframe cone

glutSolidTorus render solid torus

glutWireTorus render wireframe torus
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Listing D.1: trivial.cpp

1 // A minimalist OpenGL/GLUT application.

2 //

3 // Draw a light green square.

4 //

5 // Copyright (c) 2013 Michael D. Adams

6

7 #include <GL/glut.h>

8

9 // The window display callback function.

10 void display()

11 {

12 // Set the clear color to RGB value (0.0, 1.0, 1.0) (i.e., cyan).

13 glClearColor(0.0, 1.0, 1.0, 0.0);

14

15 // Clear the window.

16 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

17

18 // Flush the graphics output to the framebuffer.

19 glutSwapBuffers ();

20 }

21

22 int main(int argc , char** argv)

23 {

24 // Initialize the GLUT library.

25 // The function glutInit must be called before any other use of the

26 // GLUT library is made.

27 glutInit(&argc , argv);

28

29 // Specify the type of display mode to be used for new windows.

30 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

31

32 // Set the nominal size for new windows.

33 /// Note that this value does not have to be respected.

34 glutInitWindowSize(512, 512);

35

36 // Create a new window with the same name as the command name.

37 // On many systems, the window name customarily appears in the

38 // title bar window decoration added by the window manager.

39 glutCreateWindow(argv[0]);

40

41 // Register a display callback function.

42 glutDisplayFunc(display);

43

44 // Enter the GLUT event processing loop.

45 // Note: The function glutMainLoop never returns.

46 glutMainLoop();

47

48 return 0;

49 }

D.3 Function Naming Conventions

In OpenGL, all function names begin with the prefix gl and all constant names begin with the prefix GL. This helps

to reduce the likelihood of naming collisions with other code. OpenGL specifies several basic types as listed in
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Figure D.1: Output of trivial program.

Table D.3: Basic types

Type Name Typical Corresponding C Type

GLbyte signed char

GLshort short

GLint, GLsizei int or long

GLfloat, GLclampf float

GLdouble, GLclampd double

GLubyte, GLboolean unsigned char

GLushort unsigned short

GLuint, GLenum, GLbitfield unsigned int or unsigned long

Table D.3.

Some OpenGL commands allow their parameters to be specified in a number of different formats. Since C does

not support function overloading, this means that each command is associated with a number of different functions,

with each function taking its parameters using a different format. In this regard, the functions for a particular command

are named according to the following pattern:

generic name N T V

where generic name is the generic name of the command, N is a digit (i.e., 2, 3, 4) indicating the number of com-

ponents, T is one or two letters indicating the data type of the components, and V is either nothing or the letter v to

indicate the component data is specified as individual values or as a vector (i.e., a pointer to an array), respectively.

The component data could correspond to coordinates or color values. In the case that the components correspond to

coordinates, the interpretation of N is as shown in Table D.4(a). The meaning of T is as indicated in Table D.4(b).

For example, consider the process of specifying a vertex. This is performed via the glVertex command. The generic

version of this function is denoted glVertex*. The specific version of glVertex* that takes three GLfloat parameters is

named glVertex3f. In the name glVertex3f, the 3 indicates that the function takes three parameters and the f specifies

that the parameters are of type GLfloat. Next, consider the process of specifying a color. This is accomplished via the

glColor command. The generic version of this function is denoted glColor*. The specific version of glColor* that

takes a single pointer to an array containing three GLfloat values is named glColor3fv. In the name glColor3fv, the

v indicates that the function takes a pointer to an array containing the component data, the 3 indicates the presence of

three components, and the f specifies that the components are of type GLfloat.
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Table D.4: Function naming conventions. (a) The interpretation of N in the case of coordinate data. (b) The type of

the components.

(a)

N Coordinate Specifier

2 (x,y)
3 (x,y,z)
4 (x,y,z,w)

(b)

T Data Type

b GLbyte

s GLshort

i GLint, GLsizei

f GLfloat, GLclampf

d GLdouble, GLclampd

ub GLubyte, GLboolean

us GLushort

ui GLuint, GLenum, GLbitfield

D.4 Drawing Geometric Primitives

In OpenGL, vertices are the basic building block for geometric primitives, such as line segments, triangles, and

quadrilaterals. A vertex is specified with the glVertex* command. The most basic property of a vertex is its position

in space. The most general way in which to specify a vertex position is using homogeneous coordinates (e.g., using

glVertex4f). Some functions allow the specification of a vertex position using fewer than four coordinates (e.g.,

glVertex2f and glVertex3f). When a position is specified with two coordinates x and y (e.g., via glVertex2f), this

is deemed equivalent to the homogeneous coordinates (x,y,0,1). Similarly, when a position is specified with three

coordinates x, y, and z (e.g., via glVertex3f), this is deemed equivalent to the homogeneous coordinates (x,y,z,1).
So, each of following function calls specifies the same point, namely (1,2,0):

glVertex2f(1.0, 2.0);

glVertex3f(1.0, 2.0, 0.0);

glVertex4f(2.0, 4.0, 0.0, 2.0);

As explained above, all geometric primitives are specified by vertices, and each vertex is specified using glVertex*.

When vertices are provided, the library must be told the type of geometric primitive to which the vertices belong. This

is accomplished with the glBegin and glEnd functions. These function affect how vertices are interpreted. For exam-

ple, vertices might be interpreted as individual points, pairs of vertices specifying line segments, triples of vertices

specifying triangles, and so on. Supported geometric primitives include those listed in Table D.5.

To illustrate how glBegin and glEnd are used to assemble vertices into geometric primitives, we now provide a

few examples. A single point could be specified by code like:

glBegin(GL_POINTS);

glVertex3f(1.0, 2.0, 3.0);

glEnd();

A single triangle could be specified using code like:

glBegin(GL_TRIANGLES);

glVertex3f(0.0, 0.0, 0.0); // first vertex

glVertex3f(1.0, 0.0, 0.0); // second vertex

glVertex3f(1.0, 1.0, 0.0); // third vertex

glEnd();

Two triangles could be specified by code like:

glBegin(GL_TRIANGLES);

glVertex3f(0.0, 0.0, 0.0); // first triangle, first vertex

glVertex3f(1.0, 0.0, 0.0); // first triangle, second vertex

glVertex3f(1.0, 1.0, 0.0); // first triangle, third vertex

glVertex3f(0.0, 0.0, 0.0); // second triangle, first vertex

glVertex3f(1.0, 1.0, 0.0); // second triangle, second vertex
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Table D.5: Geometric primitives supported by glBegin

Value Meaning

GL_POINTS individual points

GL_LINES pair of vertices interpreted as line segments

GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP series of connected line segments with segment added

between last and first vertices

GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS quadruples of vertices interpreted as quadrilaterals

GL_QUAD_STRIP linked strip of quadrilaterals

GL_POLYGON boundary of simple convex polygon

glVertex3f(0.0, 1.0, 0.0); // second triangle, third vertex

glEnd();

A single quadrilateral could be specified using code like:

glBegin(GL_QUADS);

glVertex3f(0.0, 0.0, 0.0); // first vertex

glVertex3f(1.0, 0.0, 0.0); // second vertex

glVertex3f(1.0, 1.0, 0.0); // third vertex

glVertex3f(0.0, 1.0, 0.0); // fourth vertex

glEnd();

Each vertex has several properties in addition to a position, including: a color, normal vector, texture coordinates,

and material properties. To specify the color for a vertex, the glColor* function is used. To specify a normal vector

for a vertex, the glNormal* function is employed. Calls to functions other than glColor* and glNormal* should not be

placed inside a glBegin/glEnd block. Now, let us consider an example of specifying a triangle with specific colors and

normals for its vertices. This can be done with code like the following:

glBegin(GL_TRIANGLES);

glNormal3f(0.0, 0.0, 1.0); // set current normal to (0,0,1)

glColor3f(1.0, 0.0, 0.0); // set current color to red

glVertex3f(0.0, 0.0, 0.0);

glColor3f(0.0, 1.0, 0.0); // set current color to green

glVertex3f(1.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0); // set current color to blue

glVertex3f(1.0, 1.0, 0.0);

glEnd();

For a point, one can specify the point size (in pixels) with the glPointSize function. For example, code like the

following will draw two points, each with a size of 10 pixels.:

glPointSize (10);

glBegin(GL_POINTS);

glVertex3f(0.0, 0.0, 0.0);

glVertex3f(1.0, 0.0, 0.0);

glEnd();

For a line segment, one can specify the line width (in pixels) with the glLineWidth function. For example, code like

the following will draw a line segment with a thickness of 10 pixels:

glLineWidth (10);

glBegin(GL_LINES);
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glVertex3f(0.0, 0.0, 0.0);

glVertex3f(1.0, 0.0, 0.0);

glEnd();

D.5 Coordinate Systems and Transformations

A computer-graphics system employs several coordinate systems, which are typically as follows:

• The object coordinate system, which is the coordinate system used to define a particular geometric object.

• The world coordinate system, which is the coordinate system for the scene in which various geometric objects

are placed.

• The camera coordinate system (also known as the eye coordinate system), which is the coordinate system

relative to which the scene is viewed (by the camera/eye).

• The clip coordinate system, which is used for clipping (i.e., eliminating parts of objects that fall outside the

viewing volume).

• The normalized device coordinate system, which provides a coordinate system that is independent of the

graphics-window size.

• The window coordinate system, which is the coordinate system used to address pixels in the graphics window.

Most operations require that points be specified with respect to the object coordinate system. Then, as each point

passes through the various stages of the graphics pipeline, a sequence of transformations is applied to the point, as

shown in Figure D.2. The modelling transformation is used to convert from object coordinates to world coordi-

nates; the viewing transformation is used to convert from world coordinates to camera coordinates; the projection

transformation is used to convert from camera coordinates to clip coordinates; and so on. Each coordinate system

transformation is represented by a homogeneous-coordinate-transformation matrix. Although one can simply choose

the modelling transformation as the identity matrix (in which case the object coordinate system and world coordinate

system would be the same), it is frequently more convenient to make other choices.

In the interest of efficiency, in OpenGL, the world coordinate system is eliminated, and the modelling and viewing

transformations are combined to form what is called amodelview transformation. In other words, with OpenGL, the

sequence of transformations shown in Figure D.2 becomes the slightly simpler sequence shown in Figure D.3. The

eye is always positioned at the origin and oriented in such a way as to be looking in the direction of the negative z axis

with the positive y axis pointing upwards.

In OpenGL, the three key coordinate system transformations are the:

1. modelview transformation,

2. projection transformation, and

3. viewport transformation.

Points (i.e., vertices) are specified in object coordinates. First, the object coordinates are converted to eye coordinates

using the equation

peye = Mmviewpobj.

Next, the eye coordinates are mapped to clip coordinates as given by

pclip = Mprojpeye.

Finally, the clip coordinates are converted internally to normalized device coordinates and then the viewport transfor-

mation is used to convert the normalized device coordinates to window coordinates.
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Figure D.2: Transformations in the graphics pipeline.
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Figure D.3: Transformations in the OpenGL graphics pipeline.
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Figure D.5: Perspective projection.

Figure D.6: Mapping the viewing frustum into a cube.

D.6 Projection Transformations

Recall that orthographic and perspective projections are associated with the diagrams shown in Figures D.4 and D.5.

Although we speak of a projection transformation, in a practical computer-graphics systems (such as OpenGL), this

transformation does not actually perform a projection. This is because a projection would discard depth information,

which is needed for clipping and hidden object removal. The projection matrix used in practice simply consists of

transformation to position and orient the viewing plane appropriately along with, in the case of perspective projection,

a warping (as shown in Figure D.6). The actual projection itself, which would “flatten” the 3-D viewing volume onto

the viewing plane is omitted.

A commonly used orthographic projection that maps the viewing volume [l,r]× [b, t]× [n, f ] to the cube [−1,1]×
[−1,1]× [−1,1] is given by the (homogeneous-coordinate-transformation) matrix

P(l,r, t,b,n, f ) =




2
r−l 0 0 r+l

l−r
0 2

t−b 0 t+b
b−t

0 0 2
n− f

f+n
n− f

0 0 0 1


 .

The preceding matrix is the one used by the glOrtho function in OpenGL.

Suppose that the eye is positioned at the origin and is oriented in such a way as to be looking in the negative

z direction with the positive y axis pointing upwards. In this case, we can specify a perspective projection by the
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parameters:

• θ , the field of view in the y direction;

• a, the aspect ratio (which determines the field of view in the x direction);

• n, the z coordinate of the near clipping plane; and

• f , the z coordinate of the far clipping plane.

The matrix associated with the above transformation is given by

P =




c
a

0 0 0

0 c 0 0

0 0
f+n
n− f

2 f n
n− f

0 0 −1 0


 ,

where c = cotθ/2. The preceding matrix is the one used by the gluPerspective function in OpenGL.

D.7 Controlling Transformations in OpenGL

In order to function properly, an application must correctly set the modelview, projection, and viewport transforma-

tions. The modelview and projection transformations are controlled using similar mechanisms. So, we will consider

them first.

The functions used for controlling the modelview and projection transformations include those listed in Table D.6.

In OpenGL, there is a notion of a current transformation, which is either the modelview or projection transformation.

Any operations related to transformations are performed on the current transformation. The current transformation

is selected with the glMatrixMode function. Often, when working with the modelview and projection matrices, it is

convenient to set the matrix to a particular value, use the new value, and then restore its old value. In OpenGL, a

separate stack is maintained for each of the modelview and projection matrices. One can then push the current matrix

onto the stack to save its value and then later pop the value from the stack in order to restore the old value. The push

and pop operations are performed by the glPushMatrix and glPopMatrix functions. Since stack size is limited, one

must be careful not to overflow the stack.

To initialize a transformation matrix, its value can be loaded with the identity matrix via the glLoadIdentity

function. Once a matrix has been initialized, its value can be manipulated by multiplying it by other matrices. Various

functions are provided that postmultiply the current transformation matrix by another matrix. As mentioned earlier,

the eye position and orientation is always fixed in OpenGL. Sometimes, this fixed position is not what is desired.

In this case, one can use the gluLookAt function to postmultiply the current matrix by a matrix that simulates a

given eye position and orientation. One can also apply translation, rotation, and scaling transformations using the

glTranslatef, glRotatef, and glScalef functions, respectively. The gluPerspective and gluOrtho functions can

be used to more easily establish perspective and orthographic projections, respectively. (The gluOrtho2D function is

helpful for establishing an orthographic projection for 2-D graphics applications.)

Now, let us consider the viewport transformation. The viewport transformation is much simpler to manipulate than

the modelview and projection transformation. The functions associated with the viewport transformation are listed in

Table D.7. In particular, the glViewport function is used to set the viewport transformation.

Example D.1 (Modelview matrix). Suppose that we want to initialize the modelview matrix to the transformation

T = S(2,2,2)Rz(45)T (1,2,3).

The transformation T corresponds to the following translations/rotations/scalings in order:

1. a translation by (1,2,3),
2. a rotation about the z axis by 45◦; and
3. a scaling by (2,2,2).
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Table D.6: Functions related to modelview and projection transformations

Function Description

glMatrixMode set current matrix

glLoadIdentity load current matrix with identity matrix

gluPerspective multiply current matrix by perspective projection ma-

trix

gluOrtho multiply current matrix by orthographic projection

matrix

gluOrtho2D multiply current matrix by 2-D orthographic projec-

tion matrix

gluLookAt multiply current matrix by viewing transformation ma-

trix

glRotatef multiply current matrix by rotation matrix

glScalef multiply current matrix by scaling matrix

glTranslatef multiply current matrix by translation matrix

glPushMatrix push current matrix on current matrix stack

glPopMatrix pop current matrix from current matrix stack

Table D.7: Functions related to viewport transformation

Function Description

glViewport set viewport (i.e., drawable part of window)

To initialize the modelview matrix with the value T , we could use the following code:

glMatrixMode(GL_MODELVIEW); // set current matrix to modelview

glLoadIdentity(); // set to identity matrix

glScalef(2.0, 2.0, 2.0); // postmultiply by scaling matrix

glRotatef(45.0, 0.0, 0.0, 1.0); // postmultiply by rotation matrix

glTranslatef(1.0, 2.0, 3.0); // postmultiply by translation matrix

Note that the calls to glScalef, glRotatef, and glTranslatef are made in the exact reverse order from the order in

which the transformations are applied to a point. This is due to that fact that functions like glScalef, glRotatef, and

glTranslatef, postmultiply (i.e., multiply on the right) the current transformation matrix. As the above code executes,

the modelview matrixM undergoes the following changes:

M = I −→ M = IS(2,2,2) = S(2,2,2) −→ M = S(2,2,2)Rz(45) −→ M = S(2,2,2)Rz(45)T (1,2,3).

Let pobj and peye denote points in object and eye coordinates, respectively. So, we have

peye = S(2,2,2)Rz(45)T (1,2,3)pobj.

Thus, peye is obtained by applying the following sequence of transformations to pobj:

1. a translation by (1,2,3);
2. a rotation about the z axis by 45◦; and
3. a scaling by (2,2,2).

D.8 State Management

OpenGL has a considerable amount of state, and part of this state involves which capabilities within the library are

enabled. In OpenGL, the glEnable and glDisable functions can be used to enable and disable certain functionality.

Some capabilities that can be enabled or disabled include those listed in Table D.8. Some features may incur a

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



494 APPENDIX D. OPEN GRAPHICS LIBRARY (OPENGL)

Table D.8: Capabilities controlled via glEnable and glDisable

Value Meaning

GL_CULL_FACE if enabled, cull polygons based on their winding in

window coordinates

GL_DEPTH_TEST if enabled, do depth comparisons and update depth

buffer

GL_LIGHT_i include light i in evaluation of lighting equation

GL_LIGHTING if enabled, use current lighting parameters to compute

vertex color

GL_LINE_SMOOTH if enabled, draw lines with antialiasing

GL_NORMALIZE if enabled, normal vectors specified with glNormal

scaled to unit length after transformation

GL_POINT_SMOOTH if enabled, draw points with antialiasing

GL_RESCALE_NORMAL if enabled, normal vectors specified with glNormal (as-

sumed to be of unit length) scaled to unit length after

transformation

Table D.9: Other functions

Function Description

glClear clear buffer to preset values

glClearColor specify clear values for color buffers

glShadeModel select flat or smooth shading

glFrontFace define front- and back-facing polygons

glLight* set light source parameters

glLightModel* set lighting model parameters

glColorMaterial specify how material color should track current color

significant computational cost when enabled. Therefore, it is advantageous to enable such features only if they are

truly needed.

D.9 Miscellany

Several other OpenGL functions that may be useful are listed in Table D.9.

D.10 OpenGL/GLUT Example Programs

Now, we consider a few examples of programs that utilize the OpenGL and GLUT libraries. In particular, in the

sections that follow, the source code listing for each of the following programs can be found:

1. The simple_2d program, which draws several geometric primitives in 2-D.

2. The simple_3d program, which draws and animates several simple polyhedra.

3. The cube program, which draws a cube with lighting.

D.10.1 simple_2d Program

The simple_2d program is a 2-D graphics application that draws a point, line, triangle, and square. The program

terminates when the letter “q” is typed. A reshape callback function is used to track changes to the window size so
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that the proper aspect ratio can be maintained (e.g., the square remains square in spite of changes to the shape of

the window). The program consists of the single source code file given in Listing D.2. The output generated by the

program is shown in Figure D.7.

Listing D.2: simple_2d.cpp

1 // A simple 2-D graphics program.

2 //

3 // Create a window and draw some geometric primitives in it; and then

4 // wait until a "q" is typed before exiting.

5 //

6 // Copyright (c) 2013 Michael D. Adams

7

8 #include <iostream >

9 #include <cstdlib >

10 #include <GL/glut.h>

11

12 // The window display callback function.

13 // This function is responsible for drawing the contents of a window.

14 // One can safely assume that the reshape callback for a window has

15 // been called at least once before the display callback is invoked.

16 void display()

17 {

18 // Clear the window.

19 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

20

21 // Draw a point.

22 glPointSize (5.0);

23 glBegin(GL_POINTS);

24 glColor3f(1.0, 1.0, 1.0);

25 glVertex2f(0.25, 0.75);

26 glEnd();

27

28 // Draw a line.

29 glLineWidth (2.0);

30 glBegin(GL_LINES);

31 glColor3f(0.0, 1.0, 0.0);

32 glVertex2f(0.6, 0.25);

33 glVertex2f(0.9, 0.25);

34 glEnd();

35

36 // Draw a triangle.

37 glBegin(GL_TRIANGLES);

38 glColor3f(1.0, 0.0, 1.0);

39 glVertex2f(0.6, 0.6);

40 glVertex2f(0.9, 0.6);

41 glVertex2f(0.9, 0.9);

42 glEnd();

43

44 // Draw a quad.

45 glBegin(GL_QUADS);

46 glColor3f(0.0, 1.0, 1.0);

47 glVertex2f(0.1, 0.1);

48 glVertex2f(0.4, 0.1);

49 glVertex2f(0.4, 0.4);

50 glVertex2f(0.1, 0.4);

51 glEnd();
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52

53 // Flush the graphics output to the framebuffer.

54 glutSwapBuffers ();

55 }

56

57 // The window reshape callback function.

58 // This function is responsible for handling the resizing of a window.

59 // The reshape callback is always invoked immediately before the first

60 // call of the display callback (after a window is created).

61 void reshape(GLint width , GLint height)

62 {

63 // Compute the aspect ratio, avoiding the possibility of division by zero.

64 GLfloat aspectRatio = static_cast<GLfloat >(width) /

65 ((height) ? height : 1.0);

66

67 // Set the viewport to the entire window.

68 glViewport(0, 0, width , height);

69

70 // Initialize the projection matrix.

71 // This is done in such a way to maintain the aspect ratio in case

72 // the window shape is not square.

73 glMatrixMode(GL_PROJECTION);

74 glLoadIdentity();

75 if (width >= height) {

76 gluOrtho2D(0.0, 1.0 * aspectRatio , 0.0, 1.0);

77 } else {

78 gluOrtho2D(0.0, 1.0, 0.0, 1.0 / aspectRatio);

79 }

80

81 // Initialize the modelview matrix.

82 glMatrixMode(GL_MODELVIEW);

83 glLoadIdentity();

84 }

85

86 // The keyboard callback function.

87 // This function is responsible for processing keyboard input.

88 void keyboard(unsigned char key , int x, int y)

89 {

90 switch (key) {

91 case ’q’:

92 // Terminate the program, indicating success.

93 exit(0);

94 break;

95 }

96 }

97

98 // The main program.

99 int main(int argc , char **argv)

100 {

101 const int winWidth = 1024; // The nominal window width.

102 const int winHeight = 1024; // The nominal window height.

103

104 // Initialize the GLUT library.

105 // The function glutInit must be called before any other use of the

106 // GLUT library is made.

107 glutInit(&argc , argv);

108
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109 // Specify the type of display mode to be used for new windows.

110 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

111

112 // Set the nominal size for new windows.

113 // Note that this value does not have to be respected.

114 glutInitWindowSize(winWidth , winHeight);

115

116 // Create a new window with the same name as the command name.

117 // On many systems, the window name customarily appears in the

118 // title bar window decoration added by the window manager.

119 glutCreateWindow(argv[0]);

120

121 // Register a display callback function.

122 glutDisplayFunc(display);

123

124 // Register a reshape callback function.

125 glutReshapeFunc(reshape);

126

127 // Register a keyboard callback function.

128 glutKeyboardFunc(keyboard);

129

130 // Set the color to be used for clear operations.

131 glClearColor(0.0, 0.0, 0.0, 0.0);

132

133 // Enter the GLUT event processing loop.

134 // Note: The function glutMainLoop never returns.

135 glutMainLoop();

136

137 // This line is never reached.

138 return 0;

139 }

D.10.2 simple_3d Program

The simple_3d program draws several animated polyhedra. The program terminates when the letter “q” is typed. By

typing “F” or “f”, the frame rate for the animation can be decreased or increased, respectively. The arrow keys can be

used to change the vantage point of the camera. A reshape callback function is used to track changes to the window

size so that the proper aspect ratio can be maintained in spite of changes to the window shape. A timer callback

is used in order to precisely control that rate at which frames are drawn in the animation sequence. The program

consists of the single source code file given in Listing D.3. The output generated by the program resembles that

shown in Figure D.8.

Listing D.3: simple_3d.cpp

1 // A simple 3-D graphics program.

2 //

3 // Create a window and draw some animated polyhedra in it.

4 //

5 // Copyright (c) 2013 Michael D. Adams

6

7 #include <iostream >

8 #include <cmath >

9 #include <cstdlib >

10 #include <GL/glut.h>

11

12 // The frame update period (in milliseconds).
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Figure D.7: Output of simple_2d program.

13 int framePeriod = 33;

14

15 // The parameters used to animate the polyhedra.

16 float theta = 0.0;

17

18 // The parameters used to specify the eye position.

19 GLfloat eye0 = 5.0;

20 GLfloat eye1 = 45.0;

21 GLfloat eye2 = 5.0;

22

23 // Convert from degrees to radians.

24 inline double degToRad(double x)

25 {

26 return x * M_PI / 180.0;

27 }

28

29 // Draw the x, y, and z axes.

30 void drawAxes()

31 {

32 const GLfloat length = 100.0;

33

34 glLineWidth (2.0);

35 glBegin(GL_LINES);

36

37 // Draw the positive x axis (in bright red).

38 glColor3f(1.0, 0.0, 0.0);

39 glVertex3f(0.0, 0.0, 0.0);

40 glVertex3f(length , 0.0, 0.0);

41
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42 // Draw the negative x axis (in dark red).

43 glColor3f(0.5, 0.0, 0.0);

44 glVertex3f(0.0, 0.0, 0.0);

45 glVertex3f(-length , 0.0, 0.0);

46

47 // Draw the positive y axis (in bright green).

48 glColor3f(0.0, 1.0, 0.0);

49 glVertex3f(0.0, 0.0, 0.0);

50 glVertex3f(0.0, length , 0.0);

51

52 // Draw the negative y axis (in dark green).

53 glColor3f(0.0, 0.5, 0.0);

54 glVertex3f(0.0, 0.0, 0.0);

55 glVertex3f(0.0, -length , 0.0);

56

57 // Draw the positive z axis (in bright blue).

58 glColor3f(0.0, 0.0, 1.0);

59 glVertex3f(0.0, 0.0, 0.0);

60 glVertex3f(0.0, 0.0, length);

61

62 // Draw the negative z axis (in dark blue).

63 glColor3f(0.0, 0.0, 0.5);

64 glVertex3f(0.0, 0.0, 0.0);

65 glVertex3f(0.0, 0.0, -length);

66

67 glEnd();

68 }

69

70 void drawTetrahedron()

71 {

72 // The vertices of the tetrahedron.

73 static const GLfloat vertices [][3] =

74 {

75 { 1.0, 1.0, 1.0},

76 {-1.0, 1.0, -1.0},

77 {-1.0, -1.0, 1.0},

78 { 1.0, -1.0, -1.0}

79 };

80

81 // The faces of the tetrahedron.

82 // Each triplet is a set of vertex indices for a face (specified

83 // in CCW order).

84 static const int faces[][3] =

85 {

86 {0, 1, 2},

87 {0, 2, 3},

88 {0, 3, 1},

89 {3, 2, 1}

90 };

91

92 // The color for each vertex of the tetrahedron.

93 static const GLfloat colors[][3] =

94 {

95 {1.0, 1.0, 1.0},

96 {0.0, 0.0, 1.0},

97 {0.0, 1.0, 0.0},

98 {1.0, 0.0, 0.0},
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99 };

100

101 // Draw the tetrahedron.

102 glBegin(GL_TRIANGLES);

103 // For each face...

104 for (int i = 0; i < 4; ++i) {

105 // For each vertex of the face...

106 for (int j = 0; j < 3; ++j) {

107 int v = faces[i][j];

108 // Specify the color of the vertex.

109 glColor3f(colors[v][0], colors[v][1], colors[v][2]);

110 // Specify the position of the vertex.

111 glVertex3f(vertices[v][0], vertices[v][1], vertices[v][2]);

112 }

113 }

114 glEnd();

115 }

116

117 // Draw a star-shaped polyhedron via two overlapping tetrahedra.

118 // The polyhedron is drawn with its center at the origin.

119 void drawStar()

120 {

121 glMatrixMode(GL_MODELVIEW);

122

123 // Save the modelview matrix.

124 glPushMatrix();

125

126 // Draw the first tetrahedron.

127 drawTetrahedron ();

128

129 // Draw the second tetrahedron rotated with respect to the first.

130 glRotatef(90.0, 1.0, 0.0, 0.0);

131 drawTetrahedron ();

132

133 // Restore the modelview matrix.

134 glPopMatrix ();

135 }

136

137 // The window display callback function.

138 // This function is responsible for drawing the contents of a window.

139 // One can safely assume that the reshape callback for a window has

140 // been called at least once before the display callback is invoked.

141 void display()

142 {

143 // Clear the window.

144 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

145

146 // Set the current matrix to the modelview matrix.

147 glMatrixMode(GL_MODELVIEW);

148

149 // Save the current modelview matrix.

150 glPushMatrix();

151

152 // Set the eye position.

153 // The eye is always oriented to look towards the origin.

154 GLfloat eyeX = eye0 * cos(degToRad(eye1));

155 GLfloat eyeY = eye0 * sin(degToRad(eye1));
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156 GLfloat eyeZ = eye2;

157 gluLookAt(eyeX , eyeY , eyeZ , 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

158

159 // Draw the coordinate axes.

160 drawAxes();

161

162 // Draw a star-shaped polyhedron at the origin.

163 glPushMatrix();

164 glScalef(0.5, 0.5, 0.5);

165 glRotatef(theta , 1.0, 0.0, 0.0);

166 glRotatef(2.0 * theta , 0.0, 1.0, 0.0);

167 drawStar();

168 glPopMatrix ();

169

170 // Draw a tetrahedron on the negative x axis.

171 glPushMatrix();

172 glTranslatef(-1.5, 0.0, 0.0);

173 glScalef(0.5, 0.5, 0.5);

174 glRotatef(0.0 - theta , 1.0, 0.0, 0.0);

175 drawTetrahedron ();

176 glPopMatrix ();

177

178 // Draw a tetrahedron on the positive x axis.

179 glPushMatrix();

180 glTranslatef(1.5, 0.0, 0.0);

181 glScalef(0.5, 0.5, 0.5);

182 glRotatef(0.0 + theta , 1.0, 0.0, 0.0);

183 drawTetrahedron ();

184 glPopMatrix ();

185

186 // Draw a tetrahedron on the negative y axis.

187 glPushMatrix();

188 glTranslatef(0.0, -1.5, 0.0);

189 glScalef(0.5, 0.5, 0.5);

190 glRotatef (90.0 - theta , 0.0, 1.0, 0.0);

191 drawTetrahedron ();

192 glPopMatrix ();

193

194 // Draw a tetrahedron on the positive y axis.

195 glPushMatrix();

196 glTranslatef(0.0, 1.5, 0.0);

197 glScalef(0.5, 0.5, 0.5);

198 glRotatef (90.0 + theta , 0.0, 1.0, 0.0);

199 drawTetrahedron ();

200 glPopMatrix ();

201

202 // Restore the old modelview matrix.

203 glPopMatrix ();

204

205 // Flush the graphics output to the framebuffer.

206 glutSwapBuffers ();

207 }

208

209 // The window reshape callback function.

210 // This function is responsible for handling the resizing of a window.

211 // The reshape callback is always invoked immediately before the first

212 // call of the display callback (after a window is created).

Version: 2013-09-26 Copyright c© 2013 Michael D. Adams



502 APPENDIX D. OPEN GRAPHICS LIBRARY (OPENGL)

213 void reshape(GLint width , GLint height)

214 {

215 // Compute the aspect ratio, avoiding the possibility of division by zero.

216 GLfloat aspectRatio = static_cast<GLfloat >(width) /

217 ((height) ? height : 1.0);

218

219 // Set the viewport to the entire window.

220 glViewport(0, 0, width , height);

221

222 // Initialize the projection matrix.

223 // This is done in such a way to maintain the aspect ratio in case

224 // the window size is not square.

225 glMatrixMode(GL_PROJECTION);

226 glLoadIdentity();

227 // Setup a perspective projection.

228 gluPerspective(45.0, aspectRatio , 1.0, 1000.0);

229

230 // Initialize the modelview matrix.

231 glMatrixMode(GL_MODELVIEW);

232 glLoadIdentity();

233 }

234

235 // The keyboard callback function.

236 // This function is responsible for processing keyboard input.

237 void keyboard(unsigned char key , int x, int y)

238 {

239 switch (key) {

240 case ’F’:

241 // Decrease the frame rate.

242 ++framePeriod;

243 // Force the window to be redisplayed.

244 glutPostRedisplay();

245 break;

246 case ’f’:

247 // Increase the frame rate.

248 framePeriod = std::max(framePeriod - 1, 1);

249 // Force the window to be redisplayed.

250 glutPostRedisplay();

251 break;

252 case ’q’:

253 // Terminate the program, indicating success.

254 exit(0);

255 break;;

256 }

257 }

258

259 // The timer callback function.

260 // This function is responsible for handling timer timeout events.

261 void timer(int value)

262 {

263 // Update the parameter used to animate the polyhedra.

264 theta += 3.0;

265

266 // Force the window to be redisplayed.

267 glutPostRedisplay();

268

269 // Restart the timer.
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270 glutTimerFunc(framePeriod , timer , 0);

271 }

272

273 // The special keyboard callback function.

274 // This function is responsible for processing special keyboard keys

275 // (e.g., arrow keys, page up/down).

276 void special(int key, int x, int y)

277 {

278 switch (key) {

279 case GLUT_KEY_LEFT:

280 eye1 -= 1.0;

281 // Force the window to be redisplayed.

282 glutPostRedisplay();

283 break;

284 case GLUT_KEY_RIGHT:

285 eye1 += 1.0;

286 // Force the window to be redisplayed.

287 glutPostRedisplay();

288 break;

289 case GLUT_KEY_DOWN:

290 eye0 -= 0.05;

291 // Force the window to be redisplayed.

292 glutPostRedisplay();

293 break;

294 case GLUT_KEY_UP:

295 eye0 += 0.05;

296 // Force the window to be redisplayed.

297 glutPostRedisplay();

298 break;

299 case GLUT_KEY_PAGE_DOWN:

300 eye2 -= 0.1;

301 // Force the window to be redisplayed.

302 glutPostRedisplay();

303 break;

304 case GLUT_KEY_PAGE_UP:

305 eye2 += 0.1;

306 // Force the window to be redisplayed.

307 glutPostRedisplay();

308 break;

309 }

310 }

311

312 // The main program.

313 int main(int argc , char **argv)

314 {

315 const int winWidth = 1024; // The nominal window width.

316 const int winHeight = 1024; // The nominal window height.

317

318 // Initialize the GLUT library.

319 // The function glutInit must be called before any other use of the

320 // GLUT library is made.

321 glutInit(&argc , argv);

322

323 // Specify the type of display mode to be used for new windows.

324 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

325

326 // Set the nominal size for new windows.
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327 // Note that this value does not have to be respected.

328 glutInitWindowSize(winWidth , winHeight);

329

330 // Create a new window with the same name as the command name.

331 // On many systems, the window name customarily appears in the

332 // title bar window decoration added by the window manager.

333 glutCreateWindow(argv[0]);

334

335 // Register a display callback function.

336 glutDisplayFunc(display);

337

338 // Register a reshape callback function.

339 glutReshapeFunc(reshape);

340

341 // Register a keyboard callback function.

342 glutKeyboardFunc(keyboard);

343

344 // Register a special keyboard callback function.

345 glutSpecialFunc(special);

346

347 // Set the clear color.

348 glClearColor(0.0, 0.0, 0.0, 0.0);

349

350 // Enable hidden object removal.

351 glEnable(GL_DEPTH_TEST);

352

353 // Do not render faces that are not visible.

354 // For example, the back side of faces will not be rendered.

355 glEnable(GL_CULL_FACE);

356

357 // Interpolate color/normal values across faces.

358 glShadeModel(GL_SMOOTH);

359

360 // Specify the orientation of front-facing faces.

361 glFrontFace(GL_CCW);

362

363 // Register a timer callback function.

364 glutTimerFunc(framePeriod , timer , 0);

365

366 // Enter the GLUT event processing loop.

367 // Note: The function glutMainLoop never returns.

368 glutMainLoop();

369

370 // This line is never reached.

371 return 0;

372 }

D.10.3 cube Program

The cube program draws a cube with lighting, with the light source shown as a small sphere. The cube can be rotated

using the arrow keys. The program terminates when the letter “q” is typed. A reshape callback function is used to

track changes to the window size so that the proper aspect ratio can be maintained. The program consists of the single

source code file given in Listing D.4. The output generated by the program resembles that shown in Figure D.9.

Listing D.4: cube.cpp

1 // A simple 2-D graphics program.
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Figure D.8: Output of simple_3d program.

2 //

3 // Create a window and draw a cube in it.

4 //

5 // Copyright (c) 2013 Michael D. Adams

6

7 #include <iostream >

8 #include <cmath >

9 #include <cstdlib >

10 #include <GL/glut.h>

11

12 // The RGBA color of ambient light.

13 const GLfloat ambientLight[] = {

14 0.25, 0.25, 0.25, 1.0 // whitish

15 };

16

17 // The RGBA color of diffuse light.

18 const GLfloat diffuseLight[] = {

19 0.9, 0.9, 0.9, 1.0 // whitish

20 };

21

22 // The position of the light source (in homogeneous coordinates).

23 const GLfloat lightPosition[] = {

24 0.0, 1.0, 1.0, 1.0

25 };

26

27 // The parameters used to animate the cube.

28 GLfloat thetaX = 0.0;

29 GLfloat thetaY = 0.0;

30
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31 // Use a perspective projection (if true).

32 bool perspective = true;

33

34 // Draw the positive x, y, and z coordinate axes.

35 void drawAxes()

36 {

37 glBegin(GL_LINES);

38 glColor3f(1.0, 1.0, 1.0);

39

40 // Draw the positive x axis.

41 glColor3f(1.0, 0.0, 0.0); // red

42 glVertex3f(0.0, 0.0, 0.0);

43 glVertex3f(2.0, 0.0, 0.0);

44

45 // Draw the positive y axis.

46 glColor3f(0.0, 1.0, 0.0); // green

47 glVertex3f(0.0, 0.0, 0.0);

48 glVertex3f(0.0, 2.0, 0.0);

49

50 // Draw the positive z axis.

51 glColor3f(0.0, 0.0, 1.0); // blue

52 glVertex3f(0.0, 0.0, 0.0);

53 glVertex3f(0.0, 0.0, 2.0);

54

55 glEnd();

56 }

57

58 void drawCube()

59 {

60 // The vertices of the cube.

61 static const GLfloat vertices [][3] =

62 {

63 { 0.5, 0.5, 0.5},

64 { 0.5, 0.5, -0.5},

65 { 0.5, -0.5, 0.5},

66 { 0.5, -0.5, -0.5},

67 {-0.5, 0.5, 0.5},

68 {-0.5, 0.5, -0.5},

69 {-0.5, -0.5, 0.5},

70 {-0.5, -0.5, -0.5}

71 };

72

73 // The faces of the cube.

74 // Each 4-tuple is a set of vertex indices for a face (specified

75 // in CCW order).

76 static const int faces[][4] =

77 {

78 {3, 1, 0, 2},

79 {6, 4, 5, 7},

80 {1, 5, 4, 0},

81 {7, 3, 2, 6},

82 {2, 0, 4, 6},

83 {3, 7, 5, 1}

84 };

85

86 // The normals for the faces of the cube.

87 static const GLfloat normals [][3] =
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88 {

89 { 1.0, 0.0, 0.0},

90 {-1.0, 0.0, 0.0},

91 { 0.0, 1.0, 0.0},

92 { 0.0, -1.0, 0.0},

93 { 0.0, 0.0, 1.0},

94 { 0.0, 0.0, -1.0},

95 };

96

97 // The colors for the faces of the cube.

98 static const GLfloat colors[][3] =

99 {

100 {0.75, 0.55, 0.55}, // reddish

101 {0.75, 0.55, 0.55}, // reddish

102 {0.55, 0.75, 0.55}, // greenish

103 {0.55, 0.75, 0.55}, // greenish

104 {0.55, 0.55, 0.75}, // blueish

105 {0.55, 0.55, 0.75} // blueish

106 };

107

108 // Draw the quad faces of the cube.

109 glBegin(GL_QUADS);

110 // For each face...

111 for (int i = 0; i < 6; ++i) {

112

113 // Specify the normal for all vertices of the face.

114 glNormal3f(normals[i][0], normals[i][1], normals[i][2]);

115

116 // Specify the color for all vertices of the face.

117 glColor3f(colors[i][0], colors[i][1], colors[i][2]);

118

119 // Specify the vertices of the face.

120 // For each vertex of face...

121 for (int j = 0; j < 4; ++j) {

122 glVertex3f(vertices[faces[i][j]][0],

123 vertices[faces[i][j]][1],

124 vertices[faces[i][j]][2]);

125 }

126

127 }

128 glEnd();

129 }

130

131 // The window display callback function.

132 // This function is responsible for drawing the contents of a window.

133 // One can safely assume that the reshape callback for a window has

134 // been called at least once before the display callback is invoked.

135 void display()

136 {

137 // Clear the window.

138 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

139

140 // Set the position of light 0.

141 glLightfv(GL_LIGHT0 , GL_POSITION , lightPosition);

142

143 // Set the current matrix to the modelview matrix.

144 glMatrixMode(GL_MODELVIEW);
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145

146 // Draw the coordinate axes (with lighting disabled).

147 glDisable(GL_LIGHTING);

148 drawAxes();

149 glEnable(GL_LIGHTING);

150

151 ////////////////////////////////////////////////////////////

152 // Draw a sphere to indicate the light source (with lighting disabled).

153 ////////////////////////////////////////////////////////////

154

155 // Save the modelview matrix.

156 glPushMatrix();

157 // Establish a new coordinate system with the position of light 0

158 // as the origin.

159 glTranslatef(lightPosition[0], lightPosition[1], lightPosition [2]);

160 // Disable lighting.

161 glDisable(GL_LIGHTING);

162 glColor3f(1.0, 1.0, 1.0); // white

163 // Draw a sphere at origin of the coordinate system.

164 glutSolidSphere (0.01, 15, 15);

165 // Enable lighting.

166 glEnable(GL_LIGHTING);

167 // Restore the modelview matrix.

168 glPopMatrix ();

169

170 ////////////////////////////////////////////////////////////

171 // Draw a cube (with lighting enabled).

172 ////////////////////////////////////////////////////////////

173

174 // Save the modelview matrix.

175 glPushMatrix();

176 // Establish a new coordinate system that is rotated with respect

177 // to the original coordinate system.

178 glRotatef(thetaX , 1.0, 0.0, 0.0);

179 glRotatef(thetaY , 0.0, 1.0, 0.0);

180 GLfloat thetaZ = thetaX + thetaY;

181 glRotatef(thetaZ , 0.0, 1.0, 1.0);

182 // Draw a cube at the origin.

183 drawCube();

184 // Restore the modelview matrix.

185 glPopMatrix ();

186

187 // Flush the graphics output to the framebuffer.

188 glutSwapBuffers ();

189 }

190

191 // The window reshape callback function.

192 // This function is responsible for handling the resizing of a window.

193 // The reshape callback is always invoked immediately before the first

194 // call of the display callback (after a window is created).

195 void reshape(GLint width , GLint height)

196 {

197 // Compute the aspect ratio, avoiding the possibility of division by zero.

198 GLfloat aspectRatio = static_cast<GLfloat >(width) /

199 ((height) ? height : 1.0);

200

201 // Set the viewport to the entire window.
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202 glViewport(0, 0, width , height);

203

204 // Initialize the projection matrix.

205 // This is done in such a way to maintain the aspect ratio in case

206 // the window size is not square.

207 // We allow for either a perspective or orthographic projection

208 // to be used.

209 glMatrixMode(GL_PROJECTION);

210 glLoadIdentity();

211 if (perspective) {

212 // Establish a perspective projection.

213 gluPerspective(45.0, aspectRatio , 1.0, 1000.0);

214 } else {

215 // Establish an orthographic projection.

216 GLfloat left = -1.5;

217 GLfloat right = 1.5;

218 GLfloat bottom = -1.5;

219 GLfloat top = 1.5;

220 GLfloat zNear = 1;

221 GLfloat zFar = 4;

222 if (aspectRatio >= 0) {

223 glOrtho(left * aspectRatio , right * aspectRatio , bottom , top,

224 zNear , zFar);

225 } else {

226 glOrtho(left , right , bottom / aspectRatio , top / aspectRatio ,

227 zNear , zFar);

228 }

229 }

230

231 // Initialize the modelview matrix.

232 glMatrixMode(GL_MODELVIEW);

233 glLoadIdentity();

234 gluLookAt(2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0);

235 }

236

237 // The keyboard callback function.

238 // This function is responsible for processing keyboard input.

239 void keyboard(unsigned char key , int x, int y)

240 {

241 switch (key) {

242 case ’q’:

243 // Terminate the program, indicating success.

244 exit(0);

245 break;;

246 }

247 }

248

249 // The special keyboard callback function.

250 // This function is responsible for processing special keyboard keys

251 // (e.g., arrow keys, page up/down).

252 void special(int key, int x, int y)

253 {

254 switch (key) {

255 case GLUT_KEY_LEFT:

256 thetaX -= 5.0;

257 // Force the window to be redisplayed.

258 glutPostRedisplay();
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259 break;

260 case GLUT_KEY_RIGHT:

261 thetaX += 5.0;

262 // Force the window to be redisplayed.

263 glutPostRedisplay();

264 break;

265 case GLUT_KEY_DOWN:

266 thetaY -= 5.0;

267 // Force the window to be redisplayed.

268 glutPostRedisplay();

269 break;

270 case GLUT_KEY_UP:

271 thetaY += 5.0;

272 // Force the window to be redisplayed.

273 glutPostRedisplay();

274 break;

275 }

276 }

277

278 // The main program.

279 int main(int argc , char **argv)

280 {

281 const int winWidth = 1024; // The nominal window width.

282 const int winHeight = 1024; // The nominal window height.

283

284 // Initialize the GLUT library.

285 // The function glutInit must be called before any other use of the

286 // GLUT library is made.

287 glutInit(&argc , argv);

288

289 // If any non-GLUT command line arguments were specified, disable

290 // perspective viewing.

291 if (argc > 1) {

292 perspective = false;

293 }

294

295 // Specify the type of display mode to be used for new windows.

296 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

297

298 // Set the nominal size for new windows.

299 // Note that this value does not have to be respected.

300 glutInitWindowSize(winWidth , winHeight);

301

302 // Create a new window with the same name as the command name.

303 // On many systems, the window name customarily appears in the

304 // title bar window decoration added by the window manager.

305 glutCreateWindow(argv[0]);

306

307 // Register a display callback function.

308 glutDisplayFunc(display);

309

310 // Register a reshape callback function.

311 glutReshapeFunc(reshape);

312

313 // Register a keyboard callback function.

314 glutKeyboardFunc(keyboard);

315
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316 // Register a special keyboard callback function.

317 glutSpecialFunc(special);

318

319 // Set the clear color.

320 glClearColor(0.0, 0.0, 0.0, 0.0);

321

322 // Set the color of the ambient light.

323 glLightModelfv(GL_LIGHT_MODEL_AMBIENT , ambientLight);

324

325 // Set the color of diffuse light for light 0.

326 glLightfv(GL_LIGHT0 , GL_DIFFUSE , diffuseLight);

327

328 // Enable light 0.

329 glEnable(GL_LIGHT0);

330

331 // Enable lighting calculations.

332 glEnable(GL_LIGHTING);

333

334 // Have front material parameters track the current color.

335 glColorMaterial(GL_FRONT , GL_AMBIENT_AND_DIFFUSE);

336 glEnable(GL_COLOR_MATERIAL);

337

338 // Enable hidden object removal.

339 glEnable(GL_DEPTH_TEST);

340

341 // Do not render faces that are not visible.

342 // For example, the back side of faces will not be rendered.

343 glEnable(GL_CULL_FACE);

344

345 // Specify the orientation of front-facing faces.

346 glFrontFace(GL_CCW);

347

348 // Automatically adjust normals to have unit norm.

349 glEnable(GL_NORMALIZE);

350

351 // Enter the GLUT event processing loop.

352 // Note: The function glutMainLoop never returns.

353 glutMainLoop();

354

355 // This line is never reached.

356 return 0;

357 }

D.11 OpenGL and CGAL Example Programs

Now, we consider an example of a program that utilizes both OpenGL and CGAL. In particular, in the section that

follows, the source code listing for the following program can be found:

1. The wireframe program, which is a basic polygon mesh viewer.

D.11.1 wireframe Program

The wireframe program is a basic polygon mesh viewer, which draws the specified mesh as a wireframe model. If no

command line parameters are given, a built-in mesh will be used; otherwise, the mesh to be used is read from standard

input in OFF format. The mouse can be used to rotate, scale, and translate the mesh. The program terminates when
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Figure D.9: Output of cube program.

the letter “q” is typed. The program consists of the single source code file given in Listing D.5. An example of the

output produced by the program is shown in Figure D.10.

Listing D.5: wireframe.cpp

1 // Copyright (c) 2011, 2012, 2013 Michael D. Adams

2 // All rights reserved.

3

4 // __START_OF_LICENSE__

5 //

6 // Copyright (c) 2011, 2012, 2013 Michael D. Adams

7 // All rights reserved.

8 //

9 // This file is part of the Signal Processing Library (SPL).

10 //

11 // This program is free software; you can redistribute it and/or

12 // modify it under the terms of the GNU General Public License as

13 // published by the Free Software Foundation; either version 3,

14 // or (at your option) any later version.

15 //

16 // This program is distributed in the hope that it will be useful,

17 // but WITHOUT ANY WARRANTY; without even the implied warranty of

18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 // GNU General Public License for more details.

20 //

21 // You should have received a copy of the GNU General Public

22 // License along with this program; see the file LICENSE. If not,

23 // see <http://www.gnu.org/licenses/>.

24 //

25 // __END_OF_LICENSE__
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26

27 // A simple 3-D wireframe mesh viewer that uses both OpenGL and CGAL.

28

29 ////////////////////////////////////////////////////////////////////////////////

30 // Header files

31 ////////////////////////////////////////////////////////////////////////////////

32

33 #include <iostream >

34 #include <string >

35 #include <GL/glut.h>

36 #include <CGAL/Cartesian.h>

37 #include <CGAL/Polyhedron_3.h>

38 #include <CGAL/IO/Polyhedron_iostream.h>

39 #include <CGAL/Bbox_3.h>

40 #include <SPL/cgalUtil.hpp>

41 #include <SPL/math.hpp >

42 #include <SPL/Arcball.hpp>

43

44 using SPL::norm;

45 using SPL::radToDeg;

46 using SPL::degToRad;

47 using SPL::normalize;

48 using SPL::angleBetweenVectors;

49

50 ////////////////////////////////////////////////////////////////////////////////

51 // Types

52 ////////////////////////////////////////////////////////////////////////////////

53

54 // Basic types.

55 typedef double Real;

56 typedef CGAL::Cartesian <Real > Kernel;

57 typedef Kernel::Point_3 Point3;

58 typedef Kernel::Point_2 Point2;

59 typedef Kernel::Vector_3 Vector3;

60 typedef CGAL::Polyhedron_3 <Kernel > Polyhedron;

61 typedef CGAL::Bbox_3 Bbox_3;

62 typedef SPL::Arcball <Kernel > ArcBall;

63 typedef SPL::Rotation_3 <Kernel > Rotation3;

64

65 // The global state information for the program.

66 // In order to avoid a proliferation of global variables, all global

67 // state information for the program is kept in this structure.

68 struct Info

69 {

70 static const Real sphereScale = 0.1;

71 Info() : eyePos(0, 0, 10), sceneCenter(0, 0, 0), eyeUpDir(0, 1, 0),

72 mode(0), trans(0, 0, 0), scale(1.0), rot(Vector3(0, 0, 1), 0),

73 rotateMethod(0), arcBallRadius (1.0), displayAxes(false),

74 displayArcBall(true) {}

75 Polyhedron mesh; // The polyhedral mesh.

76 Bbox_3 boundBox; // The bounding box for the mesh.

77 Real smallEdge; // The length of the shortest edge in the mesh.

78 int viewportWidth; // The viewport width.

79 int viewportHeight; // The viewport height.

80 Point3 eyePos; // The eye position.

81 Point3 sceneCenter; // The center of the scene.

82 Vector3 eyeUpDir; // The eye’s up direction.
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83 Real scale; // The scaling used in drawing the mesh object.

84 Rotation3 rot; // The rotation used in drawing the mesh object.

85 Vector3 trans; // The translation used in drawing the mesh object.

86 int mode; // The mode for mouse-based operations.

87 // The following modes are valid:

88 static const int rotateMode = 1;

89 static const int translateMode = 2;

90 static const int scaleMode = 4;

91 int rotateMethod; // The rotation method.

92 Real arcBallRadius; // The arcball radius (for rotation).

93 Point2 mousePos; // The window coordinates of the last mouse event.

94 bool displayArcBall; // Display the arcball?

95 bool displayAxes; // Display the axes for the world frame of reference?

96 ArcBall arcBall; // The arcball used for rotation.

97 };

98

99 ////////////////////////////////////////////////////////////////////////////////

100 // OpenGL utility functions

101 ////////////////////////////////////////////////////////////////////////////////

102

103 // Convert from window coordinates to world coordinates.

104 // If no viewing matrix is provided, the current modelview matrix is

105 // assumed to be the viewing matrix.

106 // Optionally, the depth buffer information may be used to add a

107 // z dimension to the window coordinates before conversion.

108 Point3 winToWorld(const Point2& p, bool useDepth = false,

109 const GLdouble* viewMatrix = 0)

110 {

111 GLint viewport[4];

112 GLdouble projMatrix[16];

113 GLdouble modelviewMatrix [16];

114

115 // Get the current viewport matrix.

116 glGetIntegerv(GL_VIEWPORT , viewport);

117

118 // Get the current projection matrix.

119 glGetDoublev(GL_PROJECTION_MATRIX , projMatrix);

120

121 // Get the current modelview matrix (if needed).

122 if (!viewMatrix) {

123 glGetDoublev(GL_MODELVIEW_MATRIX , modelviewMatrix);

124 }

125

126 GLdouble worldX;

127 GLdouble worldY;

128 GLdouble worldZ;

129 GLdouble z;

130

131 // Initialize the z component of the window coordinates.

132 if (useDepth) {

133 // Use the depth buffer information for the z value.

134 glReadPixels(p.x(), p.y(), 1, 1, GL_DEPTH_COMPONENT , GL_DOUBLE , &z);

135 } else {

136 z = 0;

137 }

138

139 // Convert from window coordinates to object/world coordinates.
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140 gluUnProject(p.x(), p.y(), z, viewMatrix ? viewMatrix : modelviewMatrix ,

141 projMatrix , viewport , &worldX , &worldY , &worldZ);

142

143 return Point3(worldX , worldY , worldZ);

144 }

145

146 // Draw a circle in the xy-plane centered at the origin and with unit radius.

147 void drawCircle()

148 {

149 glBegin(GL_LINE_LOOP);

150 const Real twoPi = 2.0 * M_PI;

151 const Real angleInc = degToRad (1.0);

152 for (Real angle = 0.0; angle < twoPi; angle += angleInc) {

153 glVertex3f(cos(angle), sin(angle), 0.0);

154 }

155 glEnd();

156 }

157

158 // Draw the x, y, and z axes.

159 void drawAxes()

160 {

161 glLineWidth (4.0);

162 glBegin(GL_LINES);

163

164 // Draw the positive x axis (in bright red).

165 glColor3f(1.0, 0.0, 0.0);

166 glVertex3f(0.0, 0.0, 0.0);

167 glVertex3f(1.0, 0.0, 0.0);

168

169 // Draw the negative x axis (in dark red).

170 glColor3f(0.5, 0.0, 0.0);

171 glVertex3f(0.0, 0.0, 0.0);

172 glVertex3f(-1.0, 0.0, 0.0);

173

174 // Draw the positive y axis (in bright green).

175 glColor3f(0.0, 1.0, 0.0);

176 glVertex3f(0.0, 0.0, 0.0);

177 glVertex3f(0.0, 1.0, 0.0);

178

179 // Draw the negative y axis (in dark green).

180 glColor3f(0.0, 0.5, 0.0);

181 glVertex3f(0.0, 0.0, 0.0);

182 glVertex3f(0.0, -1.0, 0.0);

183

184 // Draw the positive z axis (in bright blue).

185 glColor3f(0.0, 0.0, 1.0);

186 glVertex3f(0.0, 0.0, 0.0);

187 glVertex3f(0.0, 0.0, 1.0);

188

189 // Draw the negative z axis (in dark blue).

190 glColor3f(0.0, 0.0, 0.5);

191 glVertex3f(0.0, 0.0, 0.0);

192 glVertex3f(0.0, 0.0, -1.0);

193

194 glEnd();

195 }

196
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197 // Draw the arc ball.

198 void drawArcBall()

199 {

200 glLineWidth (1.0);

201

202 // Draw a circle in the yz-plane.

203 glPushMatrix();

204 glRotatef(90.0, 1.0, 0.0, 0.0);

205 glColor3f(1.0, 0.0, 0.0);

206 drawCircle();

207 glPopMatrix ();

208

209 // Draw a circle in the xz-plane.

210 glPushMatrix();

211 glRotatef(90.0, 0.0, 1.0, 0.0);

212 glColor3f(0.0, 1.0, 0.0);

213 drawCircle();

214 glPopMatrix ();

215

216 // Draw a circle in the xy-plane.

217 glPushMatrix();

218 glRotatef(90.0, 0.0, 0.0, 1.0);

219 glColor3f(0.0, 0.0, 1.0);

220 drawCircle();

221 glPopMatrix ();

222 }

223

224 // Draw a sphere.

225 void drawSphere()

226 {

227 glutSolidSphere(1.0, 32, 32);

228 }

229

230 // Draw a rectangular prism with the specified center of gravity, axis,

231 // axis length, and "radius".

232 void drawRectPrism(const Point3& center , Real length , Real radius ,

233 const Vector3& axis)

234 {

235 glMatrixMode(GL_MODELVIEW);

236 glPushMatrix();

237

238 Vector3 dir = axis / norm(axis);

239 Real theta = angleBetweenVectors(dir, Vector3(0.0, 0.0, 1.0));

240 glTranslatef(center.x(), center.y(), center.z());

241 if (fabs(theta) > 1e-6) {

242 Vector3 rotAxis = CGAL::cross_product(Vector3(0.0, 0.0, 1.0), dir);

243 glRotatef(radToDeg(theta), rotAxis.x(), rotAxis.y(), rotAxis.z());

244 }

245 glScalef(radius , radius , length);

246 glutSolidCube (1.0);

247

248 glPopMatrix ();

249 }

250

251 ////////////////////////////////////////////////////////////////////////////////

252 // Global data

253 ////////////////////////////////////////////////////////////////////////////////
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254

255 // The default builtin mesh (in OFF format).

256 const std::string defaultMesh(

257 "OFF\n"

258 "5 4 0\n"

259 "-1 -1 0\n"

260 " 1 -1 0\n"

261 " 1 1 0\n"

262 "-1 1 0\n"

263 " 0 0 1.5\n"

264 "3 0 1 4\n"

265 "3 1 2 4\n"

266 "3 2 3 4\n"

267 "3 0 4 3\n"

268 );

269

270 // The global state information for the program.

271 Info info;

272

273 ////////////////////////////////////////////////////////////////////////////////

274 // Transformation functions

275 ////////////////////////////////////////////////////////////////////////////////

276

277 // Perform scaling.

278 void scale(const Point2& pos)

279 {

280 const Real minScale = 1e-6;

281

282 // Calculate the amount by which to scale.

283 Real refDist = (1.0 / sqrt(2.0)) * norm(winToWorld(Point2(

284 info.viewportWidth - 1, info.viewportHeight - 1)) -

285 winToWorld(Point2(0, 0)));

286 Vector3 upDir = normalize(info.eyeUpDir);

287 Vector3 delta = winToWorld(pos) - winToWorld(info.mousePos);

288 Real dist = norm((upDir * delta) * upDir);

289 Real scale;

290 if (upDir * delta > 0) {

291 scale = 1.0 + 2.0 * dist / refDist;

292 } else if (upDir * delta < 0) {

293 scale = 1.0 / (1.0 + 2.0 * dist / refDist);

294 } else {

295 scale = 1.0;

296 }

297 scale = std::max(scale , minScale / info.scale);

298

299 // Apply the scaling.

300 info.scale *= scale;

301

302 // Update the most recent mouse position.

303 info.mousePos = pos;

304

305 // Redraw the window with the new scaling applied.

306 glutPostRedisplay();

307 }

308

309 // Perform rotation.

310 void rotate(const Point2& pos)
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311 {

312 // Select the arcball rotation mode.

313 info.arcBall.setMode(info.rotateMethod);

314

315 // Specify the starting position for the arcball movement.

316 info.arcBall.start(winToWorld(info.mousePos));

317

318 // Specify the current position for the arcball movement.

319 info.arcBall.move(winToWorld(pos));

320

321 // Add the arcball rotation to the current rotation.

322 info.rot = ArcBall::combineRotations(info.rot, info.arcBall.getRotation ());

323

324 // Update the most recent mouse position.

325 info.mousePos = pos;

326

327 // Redraw the window with the new rotation applied.

328 glutPostRedisplay();

329 }

330

331 // Perform translation.

332 void translate(const Point2& pos)

333 {

334 // Calculate the amount by which to translate.

335 Real refDist = (1.0 / sqrt(2.0)) * norm(winToWorld(Point2(

336 info.viewportWidth - 1, info.viewportHeight - 1)) -

337 winToWorld(Point2(0, 0)));

338 Vector3 upDir = normalize(info.eyeUpDir);

339 Vector3 rightDir = normalize(CGAL::cross_product(info.sceneCenter -

340 info.eyePos , info.eyeUpDir));

341 Vector3 delta = winToWorld(pos) - winToWorld(info.mousePos);

342 Vector3 trans = (2.0 / refDist) * ((upDir * delta) * upDir + (rightDir *

343 delta) * rightDir);

344

345 // Apply the translation.

346 info.trans = info.trans + trans;

347

348 // Update the most recent mouse position.

349 info.mousePos = pos;

350

351 // Redraw the window with the new translation applied.

352 glutPostRedisplay();

353 }

354

355 ////////////////////////////////////////////////////////////////////////////////

356 // GLUT callback functions

357 ////////////////////////////////////////////////////////////////////////////////

358

359 // The window display callback function.

360 void display(void)

361 {

362 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

363 glMatrixMode(GL_MODELVIEW);

364

365 if (info.displayAxes) {

366 // Draw axes for world frame of reference.

367 glDisable(GL_LIGHTING);
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368 drawAxes();

369 glEnable(GL_LIGHTING);

370 }

371

372 if (info.displayArcBall) {

373 glDisable(GL_LIGHTING);

374 glPushMatrix();

375 if (!info.rotateMethod) {

376 // Draw three circles as a visual cue for rotation.

377 glTranslatef(info.sceneCenter.x(), info.sceneCenter.y(),

378 info.sceneCenter.z());

379 glRotatef(radToDeg(info.rot.angle), info.rot.axis.x(),

380 info.rot.axis.y(), info.rot.axis.z());

381 glScalef(info.arcBallRadius , info.arcBallRadius ,

382 info.arcBallRadius);

383 drawArcBall ();

384 } else {

385 // Draw single circle as a visual cue for rotation.

386 glTranslatef(info.sceneCenter.x(), info.sceneCenter.y(),

387 info.sceneCenter.z());

388 glColor3f(0.5, 0.5, 0.5);

389 glLineWidth (1.0);

390 drawCircle();

391 }

392 glPopMatrix ();

393 glEnable(GL_LIGHTING);

394 }

395

396 glPushMatrix();

397

398 // Establish the frame of reference (position and orientation)

399 // for the mesh object.

400 glTranslatef(info.trans.x(), info.trans.y(), info.trans.z());

401 glRotatef(radToDeg(info.rot.angle), info.rot.axis.x(),

402 info.rot.axis.y(), info.rot.axis.z());

403 glScalef(info.scale , info.scale , info.scale);

404

405 // Draw axes showing the frame of reference for the mesh object.

406 glDisable(GL_LIGHTING);

407 glPushMatrix();

408 glScalef(100.0, 100.0, 100.0);

409 drawAxes();

410 glPopMatrix ();

411 glEnable(GL_LIGHTING);

412

413 // For each vertex in the mesh...

414 for (Polyhedron::Vertex_const_iterator vertexIter =

415 info.mesh.vertices_begin(); vertexIter != info.mesh.vertices_end();

416 ++vertexIter) {

417 // Draw a sphere at the vertex position.

418 Point3 v = vertexIter ->point();

419 glPushMatrix();

420 glTranslatef(v.x(), v.y(), v.z());

421 glScalef(Info::sphereScale * info.smallEdge , Info::sphereScale *

422 info.smallEdge , Info::sphereScale * info.smallEdge);

423 drawSphere();

424 glPopMatrix ();
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425 }

426

427 // For each edge in the mesh...

428 for (Polyhedron::Edge_const_iterator edgeIter = info.mesh.edges_begin();

429 edgeIter != info.mesh.edges_end(); ++edgeIter) {

430 // Draw a rectangular prism along the extent of the edge.

431 Point3 v0 = edgeIter ->vertex()->point();

432 Point3 v1 = edgeIter ->opposite()->vertex()->point();

433 Point3 midpoint = CGAL::midpoint(v0, v1);

434 Vector3 axis = v1 - v0;

435 drawRectPrism(midpoint , norm(axis), 0.25 * Info::sphereScale *

436 info.smallEdge , axis);

437 }

438

439 glPopMatrix ();

440 glutSwapBuffers ();

441 }

442

443 // The window reshape callback function.

444 void reshape(GLint width , GLint height)

445 {

446 info.viewportWidth = width;

447 info.viewportHeight = height;

448

449 // Compute the aspect ratio being careful to avoid the possibility of

450 // division by zero (when the window width is zero).

451 GLfloat aspectRatio = static_cast<GLfloat >(width) /

452 ((height) ? height : 1.0);

453

454 // Set the viewport to the entire window.

455 glViewport(0, 0, width , height);

456

457 // Establish a perspective projection.

458 glMatrixMode(GL_PROJECTION);

459 glLoadIdentity();

460 gluPerspective(45.0, aspectRatio , 1.0, 1000.0);

461

462 // Establish a viewing transform.

463 glMatrixMode(GL_MODELVIEW);

464 glLoadIdentity();

465 gluLookAt(info.eyePos.x(), info.eyePos.y(), info.eyePos.z(),

466 info.sceneCenter.x(), info.sceneCenter.y(), info.sceneCenter.z(),

467 info.eyeUpDir.x(), info.eyeUpDir.y(), info.eyeUpDir.z());

468 info.arcBall.initialize(info.arcBallRadius , info.eyePos ,

469 info.sceneCenter - info.eyePos , info.eyeUpDir , info.sceneCenter);

470 }

471

472 // The keyboard callback function.

473 void keyboard(unsigned char key , int x, int y)

474 {

475 switch (key) {

476 case ’z’:

477 info.trans = info.trans + Vector3(0, 0, 0.5);

478 glutPostRedisplay();

479 break;

480 case ’r’:

481 // Change the rotation method.

Copyright c© 2013 Michael D. Adams Version: 2013-09-26



D.11. OPENGL AND CGAL EXAMPLE PROGRAMS 521

482 info.rotateMethod ˆ= 1;

483 glutPostRedisplay();

484 break;

485 case ’a’:

486 info.displayAxes ˆ= 1;

487 glutPostRedisplay();

488 break;

489 case ’b’:

490 info.displayArcBall ˆ= 1;

491 glutPostRedisplay();

492 break;

493 case ’q’:

494 // Quit the program.

495 exit(0);

496 break;

497 }

498 }

499

500 // The mouse callback function.

501 // This function is called for each press and each release of a mouse button.

502 void mouse(int button , int state , int x, int y)

503 {

504 // Compute the mouse position with the origin at the bottom left of the

505 // window.

506 Point2 mousePos(x, info.viewportHeight - 1 - y);

507

508 switch (button) {

509 case GLUT_LEFT_BUTTON:

510 if (state == GLUT_DOWN) {

511 // Enter rotation mode and save the initial mouse position.

512 info.mode = Info::rotateMode;

513 info.mousePos = mousePos;

514 } else if (state == GLUT_UP) {

515 // Perform any remaining rotation and exit rotation mode.

516 rotate(mousePos);

517 info.mode = 0;

518 }

519 glutPostRedisplay();

520 break;

521 case GLUT_MIDDLE_BUTTON:

522 if (state == GLUT_DOWN) {

523 // Enter scaling mode and save the initial mouse position.

524 info.mode = Info::scaleMode;

525 info.mousePos = mousePos;

526 } else if (state == GLUT_UP) {

527 // Perform any remaining scaling and exit scaling mode.

528 scale(mousePos);

529 info.mode = 0;

530 }

531 break;

532 case GLUT_RIGHT_BUTTON:

533 if (state == GLUT_DOWN) {

534 // Enter translation mode and save the initial mouse position.

535 info.mode = Info::translateMode;

536 info.mousePos = mousePos;

537 } else if (state == GLUT_UP) {

538 // Perform any remaining translation and exit translation mode.
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539 translate(mousePos);

540 info.mode = 0;

541 }

542 break;

543 default:

544 info.mode = 0;

545 break;

546 }

547 }

548

549 // The motion callback function.

550 // This function is called when the mouse moves within the window while

551 // one or more mouse buttons are pressed.

552 void motion(int x, int y)

553 {

554 // Compute the mouse position with the origin at the bottom left of the

555 // window.

556 Point2 mousePos(x, info.viewportHeight - 1 - y);

557

558 // Perform the appropriate processing for the current transformation mode.

559 switch (info.mode) {

560 case Info::rotateMode:

561 // We are in rotation mode. Perform the necessary rotation.

562 rotate(mousePos);

563 break;

564 case Info::scaleMode:

565 // We are in scale mode. Perform the necessary scaling.

566 scale(mousePos);

567 break;

568 case Info::translateMode:

569 // We are in translation mode. Perform the necessary translation.

570 translate(mousePos);

571 break;

572 }

573 }

574

575 ////////////////////////////////////////////////////////////////////////////////

576 // Main program

577 ////////////////////////////////////////////////////////////////////////////////

578

579 int main(int argc , char **argv)

580 {

581 const int winWidth = 1024;

582 const int winHeight = 1024;

583 bool useBuiltinMesh = (argc <= 1);

584

585 // Load the mesh.

586 if (!useBuiltinMesh) {

587 // Read the mesh in OFF format from standard input.

588 if (!(std::cin >> info.mesh)) {

589 std::cerr << "cannot read mesh from standard input\n";

590 exit(1);

591 }

592 } else {

593 // Use the default builtin mesh.

594 std::stringstream inStream(defaultMesh);

595 inStream >> info.mesh;
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596 }

597

598 // Compute the bounding box of the mesh.

599 if (info.mesh.size_of_vertices() > 0) {

600 Point3 v = info.mesh.vertices_begin()->point();

601 info.boundBox = Bbox_3(v.x(), v.y(), v.z(), v.x(), v.y(), v.z());

602 } else {

603 info.boundBox = Bbox_3(0, 0, 0, 0, 0, 0);

604 }

605 for (Polyhedron::Vertex_const_iterator vertexIter =

606 info.mesh.vertices_begin(); vertexIter != info.mesh.vertices_end();

607 ++vertexIter) {

608 const Point3& v = vertexIter ->point();

609 info.boundBox = info.boundBox + Bbox_3(v.x(), v.y(), v.z(), v.x(),

610 v.y(), v.z());

611 }

612

613 // Compute the length of the shortest edge in the mesh.

614 info.smallEdge = -1.0;

615 for (Polyhedron::Edge_const_iterator edgeIter = info.mesh.edges_begin();

616 edgeIter != info.mesh.edges_end(); ++edgeIter) {

617 Point3 v0 = edgeIter ->vertex()->point();

618 Point3 v1 = edgeIter ->opposite()->vertex()->point();

619 Real length = norm(v1 - v0);

620 if (info.smallEdge < 0.0 || length < info.smallEdge) {

621 info.smallEdge = length;

622 }

623 }

624

625 // Print some information about the mesh.

626 std::cout << "bounding box: "

627 << "[" << info.boundBox.xmin() << "," << info.boundBox.xmax() << "] x "

628 << "[" << info.boundBox.ymin() << "," << info.boundBox.ymax() << "] x "

629 << "[" << info.boundBox.zmin() << "," << info.boundBox.zmax() << "]"

630 << "\n";

631 std::cout << "length of shortest edge: " << info.smallEdge << "\n";

632

633 glutInit(&argc , argv);

634 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

635 glutInitWindowSize(winWidth , winHeight);

636 glutCreateWindow(argv[0]);

637

638 glutDisplayFunc(display);

639 glutReshapeFunc(reshape);

640 glutKeyboardFunc(keyboard);

641 glutMouseFunc(mouse);

642 glutMotionFunc(motion);

643

644 glEnable(GL_DEPTH_TEST);

645 glEnable(GL_CULL_FACE);

646 glEnable(GL_NORMALIZE);

647 glEnable(GL_LIGHT0);

648

649 glClearColor(0.0, 0.0, 0.0, 0.0);

650 glutMainLoop();

651

652 return 0;
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Figure D.10: Output of wireframe program.

653 }
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Appendix E

Miscellany

E.1 Definitions

(
n

k

)
=

n!

k!(n− k)!
(E.1)

E.2 Determinants

detAAAT = detAAA

det(AAABBB) = detAAAdetBBB

E.3 Series

The sum of an arithmetic series is given by

n−1
∑
k=0

(a+ kd) =
n(2a+d(n−1))

2
.

The sum of a geometric series is given by

n−1
∑
k=0

ark = a
rn−1

r−1

where r 6= 1.

E.4 Trigonometric Formulae

sin(a±b) = sinacosb± cosasinb

cos(a±b) = cosacosb∓ sinasinb

tan(a±b) =
tana± tanb

1∓ tana tanb
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E.5 Derivatives

d
dt
cos t =−sin t

d
dt
sin t = cos t

Lemma E.1 (Leibniz rule). If f (t) and g(t) are n times continuously differentiable, then

Dn[ f (t)g(t)] =
n

∑
k=0

(
n

k

)
Dk f (t)Dn−kg(t).

E.6 Integrals

∫
t sin tdt = sin t− t cos t

∫
t cos tdt = cos t+ t sin t

∫
t2 sin tdt =−t2 cos t+2cos t+2t sin t

∫
t2 cos tdt = t2 sin t−2sin t+2t cos t

E.7 Miscellaneous Theorems

Theorem E.1 (Bezout’s identity). If a and b are nonzero integers with greatest common divisor d, then there exist

integers x and y such that ax+by = d. Furthermore, d is the least positive integer for which there exist integers x and

y satisfying the preceding equation.

Theorem E.2 (Binomial theorem). For n ∈ N, the following relationship holds:

(x+ y)n =
n

∑
k=0

(
n

k

)
xkyn−k.

Theorem E.3 (Binomial theorem (multivariate case)). Let a denote a multi-index. Let x = (x1,x2, . . . ,xn). Let k ∈ N.

(x1 + x2 + . . .+ xn)
k = k! ∑

a:|a|=k

xa

a!
.

The conditions under which the order of integration can be interchanged are given by the following theorem.

Theorem E.4 (Fubini theorem). Let f be a (measurable) function defined on A×B. If f ∈ L1(A×B) or f ≥ 0, then

∫

A

(∫

B
f (x,y)dy

)
dx =

∫

B

(∫

A
f (x,y)dx

)
dy

Theorem E.5 (Holder inequality). Let p > 1, q > 1, and 1/p+1/q = 1. If a ∈ lp(N) and b ∈ lq(N), then

∑
k∈N

|akbk| ≤
(

∑
k∈N

|ak|p
)1/p(

∑
k∈N

|bk|q
)1/q

.

If f ∈ Lp(Ω) and g ∈ Lq(Ω), then

∫

Ω
| f (t)g(t)dt| ≤

(∫

Ω
| f (t)|p dt

)1/p(∫

Ω
|g(t)|q dt

)1/q

.
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Proof. See [1, pp. 548–551]

Theorem E.6 (Minkowski inequality). Let 1≤ p < ∞. If a,b ∈ lp(N), then

(
∑
k∈N

|ak +bk|p
)1/p

≤
(

∑
k∈N

|ak|p
)1/p

+

(
∑
k∈N

|bk|p
)1/p

. (E.2)

If f ,g ∈ Lp(Ω), then

(∫

Ω
| f (t)+g(t)|p dt

)1/p

≤
(∫

Ω
| f (t)|p dt

)1/p

+

(∫

Ω
|g(t)|p dt

)1/p

. (E.3)

Proof. See [1, pp. 548–551]

Theorem E.7 (Monotone convergence). Let { fn} be an increasing sequence in L with
∫
fndt ≤M < ∞ for all n. Let

f = lim fn, then f ∈ L and

∫
f dt = lim

n→∞

∫
fndt.

(That is, we can interchange the limit with the integral.)

Theorem E.8 (Dominated convergence). Let { fn} be a sequence in L and assume that f = lim fn (a.e.). If there is a

g ∈ L such that (for every n) | fn| ≤ g (a.e.), then f ∈ L and

∫
f dt = lim

n→∞

∫
fndt.

(That is, we can interchange the limit with the integral.)

Theorem E.9 (Levi). Let { fn} be a sequence in L with ∑∞
n=1

∫ | fn|dt < ∞. Then, the series ∑n fn converges almost

everywhere. Moreover, if f = ∑n fn (a.e.), then f ∈ L and

∫
f dt = ∑

n

∫
fndt.

(That is, we can interchange the infinite sum with the integral.)

Theorem E.10 (Fatou). Let { fn} be a sequence of nonnegative functions in L with

lim
n→∞

inf

∫
fndt = lim

n→∞

[
inf
n≤k

∫
fkdt

]
< ∞

and assume that f = limn→∞ fn (a.e.). Then, f ∈ L and

∫
f dt ≤ lim

n→∞
inf

∫
fndt.

E.8 Convolution

Consider the convolution of the sequences x and h given by

y[n] = x∗h[n] = ∑
k∈Z

x[k]h[n− k].

Let us define the sequence a[n] = h[−n] and the following (infinite dimensional) vectors:

xxx =
[
· · · x[−1] x[0] x[1] · · ·

]T
, yyy =

[
· · · y[−1] y[0] y[1] · · ·

]T
,

hhh =
[
· · · h[−1] h[0] h[1] · · ·

]T
, and aaa =

[
· · · h[1] h[0] h[−1] · · ·

]T
.
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(Note that aaa is simply hhh with the order of the elements reversed.) In what follows, let S denote an operator that

shifts the elements in a vector one row downward (or one column rightward). That is, Sa[·] = a[·−1]. For example,

S [ ··· 1 2 3 ··· ]T = [ ··· 0 1 2 3 ··· ]T . Consider the convolution y[n] evaluated at n = 0. We have

y[0] = ∑
k∈Z

x[k]h[−k]

= ∑
k∈Z

x[k]a[k]

= aaaTxxx.

Consider the convolution y[n] evaluated at n = 1. We have

y[1] = ∑
k∈Z

x[k]h[1− k]

= ∑
k∈Z

x[k]a[k−1]

= (Saaa)Txxx,

For arbitrary n, we have y[n] is given by

y[n] = ∑
k∈Z

x[k]h[n− k]

= ∑
k∈Z

x[k]a[k−n]

= (Snaaa)Txxx.

Using this result, we can rewrite the convolution in matrix form as




...
y[−2]
y[−1]
y[0]
y[1]
y[2]
...




=




...
(S−2aaa)T

(S−1aaa)T

aaaT

(Saaa)T

(S2aaa)T

...







...
x[−2]
x[−1]
x[0]
x[1]
x[2]
...




which is equivalent to




...
y[−2]
y[−1]
y[0]
y[1]
y[2]
...




︸ ︷︷ ︸
yyy

=




. . .
...

...
...

...
... . .

.

. . . h[0] h[−1] h[−2] h[−3] h[−4] . . .

. . . h[1] h[0] h[−1] h[−2] h[−3] . . .

. . . h[2] h[1] h[0] h[−1] h[−2] . . .

. . . h[3] h[2] h[1] h[0] h[−1] . . .

. . . h[4] h[3] h[2] h[1] h[0] . . .

. .
. ...

...
...

...
...

. . .




︸ ︷︷ ︸
AAA




...
x[−2]
x[−1]
x[0]
x[1]
x[2]
...




︸ ︷︷ ︸
xxx

Observe that the matrix AAA is Toeplitz. That is, the operation of multiplying by an infinite-dimensional Toeplitz matrix

is equivalent to convolution.

Consider the convolution of x and h given by

y[n] = x∗h[n] = ∑
k∈Z

x[k]h[n− k].
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Let us define the set of sequences

ak[n] = h∗[k−n], k ∈ Z.

(This implies that h[n− k] = a∗n[k].) We can re-express the above convolution in terms of ak as

y[n] = ∑
k∈Z

x[k]a∗n[k]

= 〈x,an〉 .

Thus, a convolution can be viewed as a sequence of inner products.

E.9 Miscellaneous Examples

Example E.1. Let AAA1 and AAA2 be the matrices given by

AAA1 =

[
1 2

3 4

]
and AAA2 =



−1 2 −1
3 −1 2

2 3 −1


 .

Find AAA−11 and AAA−12 .

Solution. Consider the quantity AAA−11 . First, we compute detAAA1 and AdjAAA1 to obtain

detAAA1 = (1)(4)− (2)(3)

= 4−6

=−2, and

AdjAAA1 =

[
(1)(4) (−1)(3)

(−1)(2) (1)(1)

]T

=

[
4 −3
−2 1

]T

=

[
4 −2
−3 1

]
.

Then, we have

AAA−11 = [detAAA1]
−1AdjAAA1

=− 1
2

[
4 −2
−3 1

]

=

[
−2 1
3
2
− 1

2

]
.

Consider the quantity AAA−12 . First, we compute detAAA2 and AdjAAA2 to obtain

detAAA2 = (−1)[(−1)(−1)− (2)(3)]− (2)[(3)(−1)− (2)(2)]+(−1)[(3)(3)− (−1)(2)]
= (−1)(−5)−2(−7)+(−1)(11)
= 5+14−11

= 8 and
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AdjAAA2 =




(1)(1−6) (−1)(−3−4) (1)(9+2)
(−1)(−2+3) (1)(1+2) (−1)(−3−4)

(1)(4−1) (−1)(−2+3) (1)(1−6)



T

=



−5 7 11

−1 3 7

3 −1 −5



T

=



−5 −1 3

7 3 −1
11 7 −5


 .

Then, we have

AAA−12 = [detAAA2]
−1AdjAAA2

= 1
8



−5 −1 3

7 3 −1
11 7 −5




=



− 5

8
− 1

8
3
8

7
8

3
8
− 1

8
11
8

7
8
− 5

8


 .

E.10 Elementary Matrix Operations

E.10.1 Inverse of Elementary Matrix

• A−1(k, l,a) = A(k, l,−a) (sign of one element changes)



1 0 0

0 1 0

0 a 1



−1

=



1 0 0

0 1 0

0 −a 1




• S−1(k,a) = S(k,1/a) (one element replaced by its reciprocal)



1 0 0

0 a 0

0 0 1



−1

=



1 0 0

0 1/a 0

0 0 1




E.10.2 S-Type Elementary Matrix Operations

• premultiply by S(2,2,b); row 2 multiplied by b


1 0 0

0 b 0

0 0 1





a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


=



a1,1 a1,2 a1,3
ba2,1 ba2,2 ba2,3
a3,1 a3,2 a3,3




• premultiply by S(3,3,b); row 3 multiplied by b


1 0 0

0 1 0

0 0 b





a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


=



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
ba3,1 ba3,2 ba3,3
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• postmultiply by S(2,2,b); column 2 multiplied by b



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3





1 0 0

0 b 0

0 0 1


=



a1,1 ba1,2 a1,3
a2,1 ba2,2 a2,3
a3,1 ba3,2 a3,3




• postmultiply by S(3,3,b); column 3 multiplied by b



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3





1 0 0

0 1 0

0 0 b


=



a1,1 a1,2 ba1,3
a2,1 a2,2 ba2,3
a3,1 a3,2 ba3,3




E.10.3 A-Type Elementary Matrix Operations

• premultiply by A(3,2,b); (row 3)+b(row 2)→ row 3



1 0 0

0 1 0

0 b 1





a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


=




a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

a3,1 +ba2,1 a3,2 +ba2,2 a3,3 +ba2,3




• premultiply by A(1,2,b); (row 1)+b(row 2)→ row 1



1 b 0

0 1 0

0 0 1





a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


=



a1,1 +ba2,1 a1,2 +ba2,2 a1,3 +ba2,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3




• postmultiply by A(3,2,b); (column 2)+b(column 3)→ column 2



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3





1 0 0

0 1 0

0 b 1


=



a1,1 a1,2 +ba1,3 a1,3
a2,1 a2,2 +ba2,3 a2,3
a3,1 a3,2 +ba3,3 a3,3




• postmultiply by A(1,2,b); (column 2)+b(column 1)→ column 2



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3





1 b 0

0 1 0

0 0 1


=



a1,1 a1,2 +ba1,1 a1,3
a2,1 a2,2 +ba2,1 a2,3
a3,1 a3,2 +ba3,1 a3,3




E.11 Distribution Theory

Definition E.1 (Test function). A smooth (i.e., infinitely differentiable) compactly-supported function on Rn is called

a test function.

The space of test functions is denoted as D(Rn) or simply D (i.e., D =C∞
0 (Rn)).

Example E.2. An example of test function φ is given by

φ(t) =

{
e1/(t2−a2) for |t|< a

0 otherwise

suppφ = [−a,a].

Definition E.2 (Distribution). A continuous linear functional on D(Rn) is called a distribution.
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Table E.1: Fourier transform pairs

Pair f (t) f̂ (ω)

1 e−a|t| 2a
ω2+a2

2 rect t
T

T sinc Tω
2

3 B
π sincBt rect ω

2B

4 tri t
T

T
2
sinc2 Tω

4

5 B
2π sinc2 Bt

2
tri ω

2B

6 e−t
2/(2σ2) |σ |

√
2πe−σ2ω2/2

The space of distributions is denoted D′(Rn) or simply D′. It is the dual space to D =C∞
0 (Rn).

Definition E.3 (Regular and singular distributions). A distribution F ∈D′ is called regular if there exists a locally

integrable function f such that

(F,φ) =
∫

R
f (t)φ(t)dt

for every φ ∈D. A distribution that is not regular is said to be singular.

Example E.3 (Dirac distribution). The Dirac distribution given by (δ ,φ) = φ(0) is an example of a singular distribu-

tion.

Definition E.4 (Schwartz function). A C∞ complex-valued function f on Rn is called a Schwartz function if for all

α,β there exist positive constants Cα,β such that

ρα,β ( f ) = sup
x∈Rn

∣∣∣xα ∂ β f (x)
∣∣∣=Cα,β < ∞

The space of Schwartz functions is denoted S(Rn) or simply S.

Example E.4. Examples of Schwartz functions include the following: f (t) = e−t
2
, any f ∈C∞

0 (R)

Definition E.5 (Tempered distribution). A continuous linear functional on S(Rn) is called a tempered distribution.

The space of tempered distributions is denoted as S′(Rn) or simply S′.

E.12 Tables

Some common Fourier transform pairs are given in Table E.1.
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