
ELEC 400: Random Signals
Lecture Notes Set 14

1 Random Processes

A useful extension of the idea of random variables is the random process. While the random
variable X is defined as a univariate function X(s) where s is the outcome of a random
experiment, the random process is a bivariate function X(s, t) where s is the outcome of a
random experiment and t is an index variable such as time. Examples of random processes
are the voltages in a circuit over time, light intensity over location. The random process, for
two outcomes s1 and s2 can be plotted as

Just as for random variables, usually the s is not explicitly written in X(s, t) so the random
process is denoted as X(t).

1.1 Classification of Random Processes

Random processes are classified according to the type of the index variable and classifi-
cation of the random variables obtained from samples of the random process. The major
classification are given below:

Name Domain of t Classification of X(t, s) for a fixed t

Continuous Random Process all t ∈ [−∞,∞] Continuous random variable
Discrete Random Process all t ∈ [−∞,∞] Discrete random variable

Continuous Random Sequence countable set: {t1, t2, ...} Continuous Random Variable
Discrete Random Sequence countable set: {t1, t2, ...} Discrete Random Variable

Examples of each type of random process are:
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Continuous Random Process: Voltage in a circuit, temperature at a given location over
time, temperature at different positions in a room.

Discrete Random Process: Quantized voltage in a circuit over time.

Continuous Random Sequence: Sampled voltage in a circuit over time.

Discrete Random Sequence: Sampled and quantized voltage from a circuit over time.

1.2 Deterministic and Non-deterministic Random Processes

A random process is called deterministic if future values of a random process can be per-
fectly predicted from past values. If a process does not have this property it is called
non-deterministic.
Example: A random process over time is defined as

X(t) = A cos (ω0t + Θ)

where A and ω0 are known constants and Θ is a random variable. Since from a few samples
of X(t) taken at different known times it is possible to calculate θ and thus determine the
sample function of X(t) for all future values of t, this process is deterministic.

2 Stationarity and Independence

A random process is called stationary if its statistical properties do not change over time.
For example, ideally, a lottery machine is stationary in that the properties of its random
number generator are not a function of when the machine is activated. The temperature
random process for a given outdoor location over time is not stationary when considered
over the period of a whole year as the mean temperature at different times of the year will
vary. If a random process is not stationary it is called non-stationary. This is a good natural
language definition but we require a more rigorous mathematical definition. This motivates
us to come up with a good method of describing random processes in a mathematical way.

2.1 Distribution and Density Functions of Random Processes

We will designate the cumulative distribution function (CDF) of random process X(t) at
time t1 as

FX(x1; t1) = P [X(t1) ≤ x1] (1)

We can extend this to second order or higher distribution functions easily. The second order
distribution function for random process X(t) is given by

FX(x1, x2; t1, t2) = P {X(t1) ≤ x1 and X(t2) ≤ x2} (2)

The N th order distribution function for random process X(t) is

FX (x1, ..., xN ; t1, ..., tN) = P {X (t1) ≤ x1, ..., X (tN) ≤ xN} (3)

2



We can extend our idea of probability density functions (PDFs) from random variables to
density functions for random processes. The first order density function for random process
X(t) is then

fX(x1; t1) =
∂

∂x1

FX (x1; t1) (4)

The second order density function is then

fX(x1, x2; t1, t2) =
∂2

∂x1∂x2

FX (x1, x2; t1, t2) (5)

By extension, the N th order density function is then

fX (x1, ..., xN ; t1, ..., tN ) =
∂N

∂x1...∂xN

FX (x1, ..., xN ; t1, ..., tN) (6)

2.1.1 Independent Processes

Two random process X(t) and Y(t) are called independent if all possible random variables
generated by sampling from X(t) are independent of all possible random variables generated
by sampling from Y(t). This definition can be rewritten in terms of distribution and density
functions so we can apply it mathematical problem solving.
If we define the N th order joint CDF of X(t) and Y(t) as

FX,Y (x1, ..., xN , y1, ..., yN ; t1, ...tN , t′1, ..., t
′
N)

= P {X (t1) ≤ x1, ..., X (tN) ≤ xN , Y (t′1) ≤ y1, ..., Y (t′N) ≤ yN} (7)

We can define the joint PDF of X(t) and Y(t) as

fX,Y (x1, ..., xN , y1, ..., yN ; t1, ..., tN , t′1, ..., t
′
N)

=
∂2N

∂x1...∂xN∂y1...∂yN

FX,Y (x1, ..., xN , y1, ..., yN ; t1, ..., tN , t′1, ..., t
′
N) (8)

Independence of X(t) and Y(t) can then be redefined as allowing (8) to be factored as

fX,Y (x1, ..., xN , y1, ..., yN ; t1, ..., tN , t′1, ..., t
′
N)

= fX (x1, ..., xN ; t1, ...tN) fY (y1, ..., yN ; t′1, ...t
′
N) (9)

for all selections of x1,...,xN ,y1,...,yN ,t1,...,tN , t′1,...,t
′
N , and N .

2.2 First Order Stationarity

Now that we have a notation for describing the density of random processes, we can address
the definitions of stationarity. A random process X(t) is called stationary to order one if its
first order density function does not change with a shift in time, or in terms of our density
notation:

fX (x1; t1) = fX (x1; t1 + ∆) (10)

for all x1, t1 and ∆. If X(t) is stationary to order random variables X1 = X(t1) and
X2 = X(t2) will have the same PDF for any selection of t1 and t2. This means that the
expectation of any function of X(t) will be a constant over t. That is,

E {g [X (t1)]}E {g [X (t2)]} (11)

for any function g (·), t1 and t2.
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2.3 Second Order Stationarity

A common mistake when first working with random processes is to mistake first order sta-
tionarity for general stationarity. It can be easily shown that first order stationarity is not
enough to ensure stationarity of all statistical properties.
Example: A random process is given by

X(t) = N

where N is a Gaussian random variable with mean 0 and variance 1:

fN (n) =
1√
2π

exp

(

−n2

2

)

This process is constant over all time but different instances of the random process have
different values. The first order density function of X(t) is then

fX (x1; t1) =
1√
2π

exp

(

−x1
2

2

)

and the second order density function is

fX (x1, x2; t1, t2) = fX (x2; t2|X(t1) = x1) fX (x1; t1)

= δ (x2 − x1)
1√
2π

exp

(

−x1
2

2

)

where the second line is a result of X(t1) = X(t2) for all t1 and t2 from the definition of the
random process. One sample function of X(t) is shown below:

One sample function of X(t)

Example 2: A second random process, Y(t), is defined as

Y(t) = Ni for i ≤ t < i + 1

where Ni for i = ...,−2,−1, 0, 1, 2... are independent and identically distributed Gaussian
random variables with PDFs of

fNi
(ni) =

1√
2π

exp

(

−ni
2

2

)

We get a random process which is constant for period of length 1 but changes value at every
integer time index, with its value being independent in each interval. One sample function
of Y(t) is shown below:
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One sample function of Y(t)

The first order density function of Y(t) is given by

fY (y1; t1) =
1√
2π

exp

(

−y1
2

2

)

The second order density function of Y(t) given in terms of conditional PDFs is

fY (y1, y2; t1; t2) = fY (y2; t2|Y(t1) = y1) fY (y1; t1) (12)

We note that Y(t1) = Y(t2) if t1 and t2 are located between the same two integers: i ≤
t1, t2 < i + 1 for some i. If this case is not true, then Y(t1) and Y(t2) are independent. The
second order density function of Y(t) is then

fY (y1, y2; t1; t2) =







δ (y1 − y2)
1√
2π

exp
(

−y1
2

2

)

if i ≤ t1, t2 < i + 1 for some i

1

2π
exp

(

−y1
2+y2

2

2

)

otherwise

Note from the previous examples, that two functions can have the same first order density
function but different second order density functions. This motivates the definition for
different orders of stationarity.
A random process X(t) is called second order stationary or stationary to order two if

fX (x1, x2; t1, t2) = fX (x1, x2; t1 + ∆, t2 + ∆) (13)

for all possible selections of x1, x2, t1, t2 and ∆. It can be easily seen that second order
stationarity implies first order stationarity but the reverse is not true.
To study second order stationarity some useful functions have been developed. The first
of these is the autocorrelation function of a random process which is defined for a random
process X(t) as

RXX (t1, t2) = E [X (t1) X (t2)] (14)

If X(t) is stationary to order two then it can be seen that

RXX (t1, t2) = E [X (t1) X (t2)]

=

∫ ∞

−∞

∫ ∞

−∞
x1x2 fX (x1, x2; t1, t2) dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞
x1x2 fX (x1, x2; t1, t1 + τ) dx1dx2 where τ = t2 − t1

= E [X (t1) X (t1 + τ)] for any t1

= RXX (τ) (15)

5



2.4 Wide Sense Stationarity

It should be noted that all processes that are stationary to order two have the property that
RXX (t1, t2) = RXX (t2 − t1) but the converse is not true. This property is useful so processes
that have this property are given a special name, Wide Sense Stationary. A random process
is called Wide Sense Stationary if

E [X (t)] = X, a constant over all t, and (16)

RXX (t1, t2) = RXX (τ) where τ = t2 − t1 (17)

Example: A random process X(t) is defined as

X(t) = A cos (ωt + φ)

where A and ω are constants and φ is a random variable that is uniformly distributed from
0 to 2π. The expected value of X(t) is

E [X(t)] =

∫

2π

0

1

2π
A cos (ωt + φ) dφ = 0

The autocorrelation function is given by

RX X (t, t + τ) = E [X(t) X(t + τ)]

= E {A cos (ωt + φ) A cos [ω (t + τ) + φ]}

= E

{

A2

2
[cos (2ωt + ωτ + φ) + cos (−ωτ)]

}

=
A2

2
E [cos (2ωt + ωτ + φ)] +

A2

2
E [cos (ωτ)]

=
A2

2
(0) +

A2

2
cos (ωτ)

=
A2

2
cos (ωτ)

The mean is a constant and the autocorrelation function is only a function of τ so this
process is Wide Sense Stationary. It is easily seen that if φ is uniformly distributed in

[

0, π
4

]

the process is not Wide Sense Stationary as the autocorrelation in this case is a function of
both t1 and t2.
Second Order Stationarity is a sufficient but not necessary condition for Wide Sense Station-
arity. That is, there exist processes which are Wide Sense Stationary but not second order
stationary but the reverse is not true.
Two random processes X(t) and Y(t) are called jointly Wide Sense Stationary if they are
individually Wide Sense Stationary and

RXY (t, t + τ) = E [X(t) Y(t + τ)] = RXY (τ)

2.5 Nth Order Stationarity

A random process is called stationary to order N or N th order stationary if

fX (x1, ..., xN ; t1, ..., tN ) = fX (x1, ..., xN ; t1 + ∆, ..., tN + ∆)
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for all possible x1, ..., xN , t1, ..., tN , and ∆. It is easy to see if a random process is stationary
to order N it is also stationary to all orders less than N . If a random process is stationary
to orders 1,2 up to infinity it is called strictly stationary.

3 Time Averages and Ergodicity

Define the time average operator as

A [·] = lim
T→∞

1

2T

∫ T

−T

[·] dt (18)

We denote a single sample function of random process X(t) as x(t). The time average of a
sample function x(t) is denoted as

x = A [x(t)] = lim
T→∞

1

2T

∫ T

−T

x(t)dt (19)

We will also define a time average autocorrelation function as

RXX (τ) = A [x(t) x(t + τ)] = lim
T→∞

1

2T

∫ T

−T

x(t) x(t + τ)dt (20)

It can be seen that in general x and RXX (τ) are random variables. It can be easily shown
that

E [x] = X (21)

E [RXX (τ)] = RXX (τ) (22)

Assume that there was some theorem or set of properties of X(t) that make x and RXX (τ)
constants for all sample functions x(t) of X(t), so that x = X and RXX (τ) = RXX (τ).
We call processes that have these properties ergodic. In natural language, ergodic processes
have their time averages equal to their statistical averages. Ergodicity is a restrictive form
of stationarity. It is very difficult to prove mathematically and impossible to prove exper-
imentally. It is often, however, assumed to be true for a given observed process to make
useful kinds of statistical manipulations possible. For example, any time you take multiple
measurements of a single process at different times and average them together to calculate
an estimate of the mean of signal you are assuming that the process being observed is in
some way ergodic.
We call two processes jointly ergodic if they are individually ergodic and if

RXY (τ) = lim
T→∞

1

2T

∫ T

−T

x(t) y(t + τ)dt = RXY (τ) (23)

3.1 Mean Ergodic Processes

A process with a mean value X which is not dependent on t is called mean ergodic or ergodic
in the mean if its statistical average, X = E [X], equals the time average, x = A [x(t)] of any
sample function x(t) with probability 1.
Assume:
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1. E [X(t)] = X < ∞

2. X(t) is bounded, which means that for all sample functions x(t), | x(t)| < ∞ for all t.

3. limT→∞
1

2T

∫ T

−T
E [|X(t)|] < ∞

4. E
[

|X(t)|2
]

= RXX (t, t) = E
[

X (t)2
]

< ∞. A random process that satisfies this is
called a regular process.

The first three properties are required to allow us to exchange statistical average and time
average integrals for these random processes.
Define a random variable Ax from X(t) as

Ax = lim
T→∞

1

2T

∫ T

−T

X(t)dt (24)

Ax = E [Ax] = E

{

lim
T→∞

∫ T

−T

1

2T
X(t)dt

}

= lim
T→∞

∫ T

−T

1

2T
E [X(t)] dt

= lim
T→∞

∫ T

−T

1

2T
Xdt = X

(25)

We now use Chebychev’s Inequality for a random variable X:

P
[∣

∣X − X
∣

∣ < ε
]

≥ 1 − σX
2

ε2

for positive ε, σX
2 = Var(X), and X = E [X]. In our case, X = Ax:

P
{
∣

∣AX − AX

∣

∣ < ε
}

≥ 1 − Var (AX)

ε2
for ε > 0 (26)

For our random process to be mean ergodic, we need the probability in (26) to be 1 no
matter the value of ε is. For this to be true, we need the Var (AX) = 0. To see what the
requirements for this condition are, we calculate this variance as

Var (Ax) = E
[

(

Ax − Ax

)2
]

= E

{

[

lim
T→∞

1

2T

∫ T

−T

X(t) − Xdt

]2
}

= E

{

lim
T→∞

1

(2T )2

∫ T

−T

∫ T

−T

[

X(t) − X(t)
] [

X(t1) − X(t1)
]

dtdt1

}

defining CXX (t1, t2) = E {[X(t1) − E [X (t1)]] [X(t2) − E [X (t2)]]}

= lim
T→∞

1

(2T )2

∫ T

−T

∫ T

−T

CXX (t, t1) dtdt1 (27)
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For the random process X(t) to be mean ergodic, we need the integral in (27) to be 0. If X(t)

is a Wide Sense Stationary process, then CXX(t, t1) = RXX (t, t1)−X
2

= RXX (t1 − t)−X
2
.

We can then rewrite the integral from (27) as

Var (Ax) = lim
T→∞

1

(2T )2

∫ T

−T

∫ T

−T

CXX (t1 − t) dtdt1

= lim
T→∞

(

1

2T

)2 ∫ T

−T

∫ T−t

−T−t

CXX (τ) dτdt using τ = t1 − t (28)

The integration region of (28) is shown below.

By swapping the order of the integrals, the variance is rewritten as

Var (AX) = lim
T→∞

1

2T

∫

2T

−2T

(

1 − |τ |
2T

)

CXX (τ) dτ (29)

Noting that CXX (−τ) = RXX (−τ) − X
2

= RXX (τ) − X
2

= CXX (τ), the variance is
bounded by

Var (AX) < lim
T→∞

1

2T

∫

2T

−2T

|CXX (τ)| dτ (30)

This bound goes to zero if

1. CXX (0) < ∞

2. limτ→∞ CXX (τ) = 0.

3.
∫ ∞
−∞ |CXX (τ)| dτ < ∞.
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These conditions cause Var(AX) = 0 and thus are sufficient conditions for X(t) to be mean
ergodic.
Example: A wide sense stationary random process, X(t), has the autocorrelation function of
RXX (τ) = e−ατ2

and a mean of E [X (t)] = 0 for all t. This process is also mean ergodic since
CXX (0) = RXX (0) = 1 < ∞, limτ→∞ CXX (τ) = 0, and

∫ ∞
−∞ |CXX (τ)| dτ =

∫ ∞
−∞ e−ατ2

dτ =
√

π√
α

< ∞ using Equation (C-51) of the textbook.

3.1.1 Mean Ergodic Sequences

The procedure for defining sufficient conditions for mean ergodic processes can also be
extended to random sequences. Define RXX [m] = E {X[n] X [n + m]} and CXX [m] =

RXX [m] − X
2
, with X[n] being a wide sense stationary random sequence. A random se-

quence is called mean ergodic if

AX = lim
N→∞

1

2N + 1

N
∑

n=−N

X [n] = X with probability 1 (31)

We proceed, as in the previous section, by calculating the variance of AX and finding condi-
tions for making its variance 0:

Var (AX) = E

{

lim
N→∞

[

1

2N + 1

N
∑

m=−N

X[m] − X

][

1

2N + 1

N
∑

n=−N

X[n] − X

]}

= E

{

lim
N→∞

(

1

2N + 1

)2 N
∑

m=−N

N
∑

n=−N

[

X[m] − X
] [

X[n] − X
]

}

= lim
N→∞

(

1

2N + 1

)2 N
∑

m=−N

N
∑

n=−N

E
{[

X[m] − X
] [

X[n] − X
]}

= lim
N→∞

(

1

2N + 1

)2 N
∑

m=−N

N
∑

n=−N

CXX [n − m]

= lim
N→∞

(

1

2N + 1

)2 N
∑

m=−N

N−m
∑

k=−N−m

CXX [k]

= lim
N→∞

1

2N + 1

2N
∑

k=−2N

CXX [k]

(

1 − |k|
2N + 1

)

(32)

If in the limit as N → ∞, this variance sum goes to zero, then the random sequence is mean
ergodic.
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