
A PHONETIC CONVERTER
FOR SPEECH SYNTHESIS IN ROMANIAN

Dragoş Burileanu*, Mihai Sima*, and Adrian Neagu†

*"Politehnica" University of Bucharest, Romania,
†Institut de la Communication Parlée, Grenoble, France

ABSTRACT

Letter-to-phone conversion, as part of the natural language
processing stage, plays a very important role in text-to-speech
(TTS) synthesis because it associates an appropriate phonetic
transcription with each word of the sentence to be pronounced.
The classical approach for the phonetic conversion is based in
most TTS systems on either a dictionary or a set of rules.
Because both methods have important drawbacks, we used a
completely different approach: we designed a very accurate
grapheme-to-allophone converter for unrestricted TTS synthesis
in Romanian, based on a parallel architecture of neural
networks. The percentage of correctly transcribed words is
extremely high, comparatively with both classical methods and
other related implementations. The paper motivates the neural
approach, describes the system architecture, gives
implementation details and discusses the main results obtained
for Romanian language.

1. INTRODUCTION
Usually, a TTS synthesis system includes a natural language
processing stage, able to produce a phonetic transcription of the
text to be read, information about intonation, stress and
duration, as well as a digital signal processing stage, which
transforms the symbolic information it receives into speech. The
presence of the phonetic transcription module is essential for a
TTS system, as it strongly influences the overall accuracy and
contributes to the conversion of an unrestricted text into
synthetic speech [3, 6].

However, the phonetic conversion is not a trivial task for a
TTS system as the pronunciation of words significantly differs
from their spelling in many languages. In Romanian language,
even if the coarticulation rules are fewer and less restrictive than
in English or French, for example, and the heterophonic
homographs are also fewer, the number of pronunciation
problems and ambiguities is still big enough [4].

Some examples of difficulties for Romanian language are
presented below; we mention that we used a phonetic code
based on the standardized SAM phonetic alphabet - SAMPA
[12].

A. Some graphemes have multiple phonetic values:
A1. The occlusive consonant 'c' is pronounced as follows:
• [k'], when it is followed by 'h': "chema" (to call) – [k'ema];
• [tS], when it is followed by 'e' or 'i': "cine" (who) –

[tSine];
• [k], in all other situations: "cap" (head) – [kap].

A2. The front vowel 'e' is pronounced as follows:
• [e_X] (semivowel) in: "perdea" (curtain) – [perde_Xa];
• [je] ([e] preceded by semivowel [j]) in: "el" (he) – [jel];
• [j] (semivowel – short 'i') in: "ea" (she) – [ja];
• [0] (phonetic-zero unit, so it is not pronounced): "geam"

(glass) – [dZ0am];
• [e], in all other situations: "erou" (hero) – [erow].
B. A number of consonants change some of their

phonological features in a specific context; e.g., the occlusive
consonant 'b' is devoiced and pronounced [p]: "absurd"
(irrational) – [apsurd].

C. Some graphemes may be reduced or deleted, such as 'ci'
in "cincisprezece" (fifteen) – [tSinsprezetSe].

2. MOTIVATION FOR A NEURAL APPROACH
As mentioned, two basic strategies are used for the phonetic
conversion of the input text [6]. Some TTS systems store in a
dictionary the phonetic transcriptions for the most used
morphemes of the language, others use a complete set of
grapheme-to-phoneme conversion rules. Many systems actually
make a compromise between a set of rules and a pronouncing
dictionary. But the development of such a set for a language is
usually a very laborious task. Also, the storage of a large
dictionary and the time required to identify a word raise many
problems.

In order to eliminate these drawbacks, new methods were
proposed in recent years, based on a "trainable" phonetic
converter general concept [5, 6, 8]. For example, many attempts
have been made to use artificial neural networks for solving this
task [1, 7, 9, 10, 11]. Unfortunately, their performances were so
poor that the general perception is this approach cannot compete
with rule-based system [6].

The phonetic converter created by the authors of this paper,
also based on a neural network approach, proves that very good
performances may be reached, if the system architecture is
optimized for this purpose and the complete phonetic features of
the language sounds are used.

Our motivation is based on three fundamental reflections.
Firstly, it is obvious that grapheme-to-allophone conversion may
be seen as mapping the input word graphemes into the elements
of a symbolic sequence (allophones), in accordance with some
phonetic and phonologic principles; a feed-forward neural
network can theoretically do this task.

Secondly, the neural approach is basically language
independent. A dictionary of phonetically transcribed words and
a phonetic description of fundamental sound units being given,



the retraining of the neural network is straightforward for the
new language.

Finally, the lack of detailed phonetic studies for Romanian
language and the numerous difficulties for the phonetic
conversion guided us to this solution.

3. THE SYSTEM ARCHITECTURE
The phonetic converter presented here is an improved version of
our first one [2]. Based on a parallel architecture of neural
networks, the present system receives sequences of five letters
at the input (the central one being the "target" letter) and
provides the articulatory features for the allophone
corresponding to the central letter at the output.

Each word of the input text is shifted in the input layer

from right to left, until the complete set of articulatory features
and consequently the phonetic transcription of the input text are
obtained [4].

Due to the insufficient phonetic and linguistic studies for
Romanian language, a great deal of effort was made for
establishing an optimum set of allophones and a complete
acoustic-phonetic description of them. We finally chose a basic
set of 33 allophones. We also defined 29 articulatory features
like "front", "back", "middle", "open", "closed", "occlusive",
"fricative", "liquid", "palatal", "velar", etc., extended with 2
special codes for phonetic-zero unit/word boundaries and one for
the primary stress.

The system architecture is presented in Figure 1.

Look-up table
(binary coded allophones)

Phonetic transcription
(allophones)

Decoding

Output layer
(31 binary nodes)

NN1 NN2 NN31

Hidden
layers

Input layer
(5x5 binary nodes)

x(n) x(n-1) x(n-2) x(n-3) x(n-4)
Shifting

algorithm

Orthographic input text
(grapheme strings)

Preprocessing

“Target”
letter

Five bits internal
representation

Figure 1. The architecture of the phonetic converter

The phonetic conversion covers the following steps:
1. Preprocessing the input orthographic text
A number of actions are performed in order to accomplish a

primary conversion of the letter input strings into a 27
fundamental orthographic character set. Firstly, the substitution
of upper cases into lower cases and hyphens removal are done.
Then, the replacement of some non-native Romanian letters with
graphemes corresponding to their basic phonetic values ('k' with
'c' or 'ch', 'x' with 'cs', 'q' with 'c', 'w' with 'v', and 'y' with 'i') is
performed. Finally, 'ch' and 'gh' graphemes are replaced by two
ASCII symbols used for the internal representation. The last two

actions actually perform a complete alignment of text strings
with phonetic ones.

2. Five bits internal representation
A 29 character set (the 27 previously mentioned plus word

boundaries and a special character for the primary stress) is five
bits coded, as opposed to the seven bits ASCII standard
representation. This action led to an important reduction of the
number of input nodes of the neural structure from 5×7 to 5×5.

3. Words shifting through the input layer
Each letter is leftward shifted at each step, both in training

phase and in testing phase. This algorithm starts with the first



letter on middle position and ends with the final letter on the
same middle position; the vacant places are filled with the '# '
symbol (word boundary).

Each sequence of five letters at the input layer will be
called the "input vector" hereafter.

An example of this procedure for the word "această" (this)
is presented in Table 1. In the second column we show the input
vectors corresponding to the word and in the third one the
allophone corresponding to the central letter.

Step Input vector Allophone
1 # # a c e [a]
2 # a c e a [tS]
3 a c e a s [0]
4 c e a s t [a]
5 e a s t ă [s]
6 a s t ă # [t]
7 s t ă # # [@]

Table 1. Word shifting through the input layer

4. Running through the neural network structure
The neural structure is a parallel architecture including 31

fully connected feed-forward neural networks (Multi-Layer
Perceptron type), one for each articulatory feature. The networks
have 25 binary nodes in common as inputs. Each network has a
different number of nodes in two hidden layers and one binary
output.

The networks are separately trained to learn the attached
articulatory feature of the allophone corresponding to the central
letter, using all the vectors in the training database. The
presence of this feature in the articulatory description of the
allophone is pointed out by "1" at the output of the network,
while the absence of the feature is pointed out by "0".

The networks work together in the testing (or recognition)
phase and provide at the outputs, at each step, the complete
articulatory description for the allophone corresponding to the
central letter under the form of a 31 binary coded vector.

By means of experiments, we established that including for
each letter the influence of four surrounding letters is sufficient
to overcome all the difficulties in Romanian language.

5. Getting the final phonetic transcription
In the final step, after obtaining the binary codification for

an allophone, a look-up table of coded allophones is used to
extract the graphic character of the desired allophone.

4. IMPLEMENTATION DETAILS
4.1. Allophone coding
The allophone set was preliminary coded using their articulatory
features with numbers from '2' to '30'. The symbols representing
the phonetic-zero unit and the word boundaries were coded with
'1' and the primary stress with '31'.

We must emphasize that we firstly used a set of articulatory
features based on the available bibliography. But some features
were hardly learned by the corresponding neural networks. Even
by increasing the number of nodes in hidden layers the number
of errors remained big enough. We give the following
interpretation: those features may not describe the corresponding

allophones very well, as they cannot be fully separated in the
n-dimensional space of training vectors. In order to allow a
better physical (acoustic and articulatory) modeling of these
sounds, additional features are necessary.

For those specific allophones, we consequently propose a
new set of articulatory features labeled "type 1", "type 2", etc.
The errors for this set of features drop off to insignificant values.

Table 2 shows the first eight lines of the complete
codification table [4].

No. Grapheme Allophone
Articulatory

features
Codes

1. a a open, central 2, 10
2. ă @ medium, central 3, 10
3. e e medium, front,

type 1
3, 11, 30

4. short - e e_X medium, front,
type 4

3, 11, 23

5. i i closed, front,
type 2

4, 11, 21

6. short - i j closed, front,
type 5

4, 11, 27

7. î (â) 1 closed, central 4, 10
8. o o medium, back,

type 3
3, 12, 22

Table 2. Decimal codification for some allophones

In the next stage, we built a binary codification for the
allophones; as mentioned, the presence of the feature in the
articulatory description of the allophone was marked with "1"
and the absence of the feature with "0". For example:

[a] (2, 10): 0100000001000000000000000000000
[e] (3, 11, 30): 0010000000100000000000000000010
[0], [#] (1): 1000000000000000000000000000000
This binary array was separately stored. During the training

phase, the desired allophone is presented and the corresponding
line is extracted. By comparing it with the network outputs, the
line is further used to compute the error. During the testing
phase the network outputs are compared with the array lines in
order to extract the corresponding allophone.

4.2. Training and testing the system
Training a neural network-based phonetic converter demands a
proper database, which must carry out two basic criteria:

• it must be large enough to cover the usual language words
as much as possible and also all the pronunciation difficulties of
the language;

• it must be limited so that the training time remains
reasonably low.

Therefore, we built from scratch a 5,000-word dictionary
phonetically coded by SAMPA symbols, containing the most
used words in Romanian language. This dictionary was
partitioned into a 4,000-word training database and a 1,000-
word testing database.

The neural networks were trained with an improved back-
propagation (BKP) algorithm, the back-propagation of errors
from the output layer and weighs modification being done after



an entire epoch (“batch”-type training). We used momentum, an
adaptive learning rate and an error criterion based on the global
mean-square error. For most neural networks, the training
stopped after an acceptable global error was reached. However,
for some of them it was necessary to reinitialize the weights or
to apply a "cross-validation" method (training was stopped when
the number of erroneous vectors from the testing database begun
to grow up, so when the networks started to lose their
generalization ability).

It is important to observe that by separately training each
network, the performances of the entire system dramatically
increased for the following reasons:

• each network was optimized in terms of training method
and number of nodes in the hidden layers;

• due to the small number of nodes and weights, the
training time was reasonably low for each network (hours);

• we were able to precisely determine which of the initially
proposed articulatory features generated large errors; we
consequently proposed a new set of features.

We also mention that the training time ranged from dozen
minutes for the small networks (14×7 nodes in hidden layers
and a medium of 100 training epochs) to 20 hours for the large
networks (37×27 nodes in hidden layers and a medium of 4,000
training epochs).

After the training phase and weights saving, the system
runs in the normal (testing) phase accordingly with the
procedure described in section 3. By running forward through
the neural structure, the allophone corresponding to the central
letter of each input vector is obtained by comparing the network
outputs with the binary coded look-up table. For the feature
combinations not found in the table, the decision is taken by
means of a minimum-distance criterion. Therefore, only the
errors resulting from confusions between allophones (i.e. a
feature combination corresponding to an incorrect allophone)
will remain.

4. RESULTS AND CONCLUSIONS
We further present (Table 3) the overall performances of the
phonetic converter. We show all the allophones that were not
correctly identified, by testing both the training database
(Tr-DB) and testing database (Te-DB).

We generally obtained no more than one error per word (an
incorrect allophone or a wrong position of the primary stress).
The errors in Table 3 and the errors for stress positioning (9 in
training + 4 in testing corpora) add up to a total of 61 in training
and 29 in test. This is a very high rate of correctly transcribed
words: over 98.4 % of good word transcription for the training
set and over 97.1 % for the testing set. Error rate will be further
diminished by a small exception dictionary. The phonetic
conversion time of a medium 6-letter word is less than 80 ms for
a standard PC configuration. We think that these results are very
favorable and prove the validity of our approach.

We must emphasize that the overall TTS system built by
our team is structured as a set of C-modules and runs in real
time under Windows. Based on a diphone-concatenation
scheme, the TTS system accepts Romanian language sentences
for input and generates good quality speech.

Desired
allophone

Obtained
allophone

Number of errors

Tr-DB Te-DB
i j 12 7
j i 7 3

e_X e 10 3
e e_X — 1
u w 2 2
w u 5 2

(tS)i (tS)0 6 3
(tS)0 (tS)i 1 —
(dZ)i (dZ)0 2 2
(k')i (k')0 1 —
(k')0 (k')i — 1

1 0 2 —
@ 0 1 —
tS 0 1 1
dZ 0 2 —

Table 3. Phonetic transcription errors

REFERENCES
[1] Ainsworth, W. A. and B. Pell. 1989. Connectionist Architectures for a
Text-to-Speech System. In Proceedings of EUROSPEECH, p.125-128.
[2] Burileanu, D. and S. Marinescu. 1996. A Neural System Architecture
for a Text-to-Speech System in Romanian language. In Proceedings of
ICSPAT. Boston, p.1363-1367.
[3] Burileanu, D. et al. 1997. Text-to-Speech Synthesis for Romanian
Language: Present and Future Trends. In Tufis, D. (ed.), Recent Advances
in Romanian Language Technology. Bucharest: Romanian Academy.
[4] Burileanu, D. 1998. Contributions on Speech Synthesis from Text in
Romanian Language. PhD Dissertation. Bucharest: "Politehnica"
University.
[5] Daelemans, W. and A. V. D. Bosh. 1997. Language-Independent Data-
Oriented Grapheme-to-Phoneme Convertion. In Van Santen, J. P. et al.
(ed.), Progress in Speech Synthesis. New York: Springer-Verlag.
[6] Dutoit, T. 1997. An introduction to Text-to-Speech Synthesis. Kluwer.
[7] Gubbins, P. R. and K. M. Kurtis. 1995. Neural Network Solutions for
Improving English Text-to-Speech Transcription. In Proceedings of the
International Conference on Phonetic Science. Stockholm, p.314-317.
[8] Jiang, L., H. W. Hon and X. Huang, 1997. Improvements on a
Trainable Letter-to-Sound Converter. In Proceedings of EUROSPEECH.
Rhodes, p.605-608.
[9] Karaali, O. et al. 1997. Text-to-Speech Conversion with Neural
Networks: A Recurrent TDNN Approach. In Proceedings of
EUROSPEECH. Rhodes, p.561-564.
[10] Lucas, S. M. and R. I. Damper. 1990. Text-to-Phonetics Translation
with Syntactic Neural Nets. In Proceedings of the ESCA Workshop on
Speech Synthesis. Autrans, p.87-91.
[11] Sejnowski, T. J. and C. R. Rosenberg. 1987. Parallel Networks that
Learn to Pronounce English Text. In Complex Systems, vol.1, p.145-168.
[12] Wells, J. 1993. Computer-Coding the IPA: A Proposed Extension of
SAMPA. University College, London.


