PRACTICAL OPTIMIZATION:

Algorithms and Engineering Applications

Andreas Antoniou and Wu-Sheng Lu

Errata Corrections for Printing \#1
(Revision date: March 15, 2010)

NOTE:

We would greatly appreciate to be notified of any typographical errors in the textbook and the solutions of the end-of-chapter problems found at this website. Comments and suggestions for the next edition are especially welcome.

Andreas Antoniou and Wu-Sheng Lu

Chapter 1

- Page 18, line 7 - Change "Aninterior" to "An interior".
- Page 25, Prob. 1.3 - Change

$$
c_{2}(\mathbf{x})=-x_{2}-\frac{7}{5} x_{1}+\frac{77}{5} \geq 0
$$

to

$$
c_{2}(\mathbf{x})=x_{2}+\frac{7}{5} x_{1}-\frac{77}{5} \geq 0
$$

- Page 26, Prob. 1.6 - Change

$$
a_{1}(\mathbf{x})=2 x_{1}+3 x_{2}+x_{3}=30
$$

to

$$
a_{1}(\mathbf{x})=2 x_{1}+3 x_{2}+x_{3}-30=0
$$

Chapter 2

- Page 36, Theorem 2.2(b)(ii) - Change $\mathbf{H}(\mathbf{x})^{*}$ to $\mathbf{H}\left(\mathbf{x}^{*}\right)$.
- Page 43 , line $-1^{1}-$ Change $\mathbf{d} \hat{\mathbf{H}} \mathbf{d}$ to $\mathbf{d}^{T} \hat{\mathbf{H}} \mathbf{d}$.
- Page 59, Theorem 2.16 - Change $\mathbf{g}\left(x^{*}\right)$ to $\mathbf{g}\left(\mathbf{x}^{*}\right)$.
- Page 62, Prob. 2.10 - Change the second component of vector \mathbf{x}_{a} from -11.3479 to -1.3479 as follows:

$$
\mathbf{x}_{a}=\left[\begin{array}{lll}
0.6959 & -1.3479
\end{array}\right]^{T}
$$

Chapter 4

- Page 94, line $3-$ Change $F_{n}=1.44$ to $F_{n}=144$.
- Page 115, footnote - Change "Here and and" to "Here and in".

Chapter 5

- Page 121 , line $1-$ change " δ must" to " δ must be"
- Page 141, Prob. 5.2(a) - Change " x_{k+1} " to " x_{k} ".

Chapter 6

- Page 163, Algorithm 6.4 - lines 3 and 5 of Step 3, change $x_{k 0}$ to $\mathbf{x}_{k n}$.

[^0]- Page 167, Algorithm 6.5 - lines 3 and 5 of Step 3, change $x_{k 0}$ to $\mathbf{x}_{k n}$.

Chapter 7

- Page 190, line -3 - Change \mathbf{U} to \mathbf{V}.
- Page 192, line 8 - The formula for \mathbf{P}_{k+1} should read as follows:

$$
\mathbf{P}_{k+1}=\mathbf{P}_{k}+\frac{\boldsymbol{\gamma}_{k} \boldsymbol{\gamma}_{k}^{T}}{\boldsymbol{\gamma}_{k}^{T} \boldsymbol{\delta}_{k}}-\frac{\mathbf{P}_{k} \boldsymbol{\delta}_{k} \boldsymbol{\delta}_{k}^{T} \mathbf{P}_{k}}{\boldsymbol{\delta}_{k}^{T} \mathbf{P}_{k} \boldsymbol{\delta}_{k}}
$$

- Page 196 - Delete definite article "The" at the end of Step 6 in Algorithm 7.3 and insert it at the start of the first paragraph after the algorithm, i.e., that paragraph should start with "The computational ...".
- Page 201, Prob. 7.14 - Change Prob. 7.6 to Prob. 7.7.

Chapter 8

- Page 206, Algorithm 8.1, Step 3 - Change $\overparen{E}(\breve{\mathbf{x}})$ to $\widehat{E}\left(\widetilde{\mathbf{x}}_{k}\right)$.
- Page 215 , Algorithm 8.3, Step $3-$ Change $\widehat{E}(\stackrel{\widetilde{\mathbf{x}}}{ })$ to $\widehat{E}\left(\widetilde{\mathbf{x}}_{k}\right)$.
- Page 218, Eq. (8.28d) - Replace $M\left(\mathbf{x}, \omega_{i}\right)$ by $-M\left(\mathbf{x}, \omega_{i}\right)$, i.e., Eq. (8.28d) should read as follows:

$$
\begin{equation*}
\frac{\partial e_{i}(\mathbf{x})}{\partial \mathbf{b}}=-\frac{M\left(\mathbf{x}, \omega_{i}\right)\left\{\left[1+\mathbf{b}^{T} \hat{\mathbf{c}}\left(\omega_{i}\right)\right] \hat{\mathbf{c}}\left(\omega_{i}\right)+\left[\mathbf{b}^{T} \hat{\mathbf{s}}\left(\omega_{i}\right)\right] \hat{\mathbf{s}}\left(\omega_{i}\right)\right\}}{\left[1+\mathbf{b}^{T} \hat{\mathbf{c}}\left(\omega_{i}\right)\right]^{2}+\left[\mathbf{b}^{T} \hat{\mathbf{s}}\left(\omega_{i}\right)\right]^{2}} \tag{8.28d}
\end{equation*}
$$

Chapter 10

- Page 287 , lines $10-11$ should read as follows:
since $a_{i}\left(\mathbf{x}^{*}\right)=0$. It follows that $a_{i}\left(\mathbf{x}^{*}+\mathbf{s}\right)=0$ is equivalent to
- Page 287, line 13 - Change "if it is" to "if and only if it is".
- Page 301, line - 11 - Change

$$
3-x_{1}-x_{2}=0
$$

to

$$
3-x_{1}-2 x_{2}=0
$$

Page 301, line -9 - Change

$$
\mathbf{x}^{*}=\left[\begin{array}{c}
\frac{14}{3} \\
-\frac{5}{3}
\end{array}\right] \quad \text { and } \quad \mu_{2}^{*}=\frac{14}{3}
$$

to

$$
\mathbf{x}^{*}=\left[\begin{array}{c}
5 \\
-1
\end{array}\right] \quad \text { and } \quad \mu_{2}^{*}=4
$$

- Page 304, Eq. (10.92) - Change $\nabla_{x}^{2}\left(\mathbf{x}_{2}^{*}, \boldsymbol{\lambda}_{2}^{*}\right)$ to $\nabla_{x}^{2} L\left(\mathbf{x}_{2}^{*}, \boldsymbol{\lambda}_{2}^{*}\right)$.
- Page 309, Eq. (10.107b) - Change

$$
a_{i}^{T}(\mathbf{x})=\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}
$$

to

$$
a_{i}^{T}(\mathbf{x})=\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}=0
$$

- Page 314, Prob. 10.8 - Change "where $c>0$ is a constant" to "where $c>0$ is a constant such that $400 / c>61$ ".
- Page 315 - Prob. $10.10(b)$ should read as follows:

Which condition on \mathbf{M} will ensure that $\mathbf{A x} \geq \mathbf{b}$ implies $\mathbf{M A x} \geq \mathbf{M b}$?

Chapter 12

- Page 403, Prob. 12.2 - Change "Consider the problem Eq. (12.1)" to "Consider the problem in Eq. (12.1)".
- Page 405 - Eq. (P12.4) in Prob. 12.15 should read as follows:

$$
\begin{equation*}
\mathbf{d}=-\frac{1}{\tau} \mathbf{X} \overline{\mathbf{P}} \mathbf{X} \mathbf{c}+\mathbf{X} \overline{\mathbf{P}} \mathbf{e} \tag{P12.4}
\end{equation*}
$$

- Page 406, Prob. 12.22 - The last two lines should read as follows:
using a primal-dual algorithm and then taking the negative of the optimal Lagrange multiplier vector, $-\boldsymbol{\lambda}^{*}$, as \mathbf{x}^{*}.

Chapter 13

- Page 411, Eq. (13.11b) - Change \mathbf{A} to \mathbf{A}^{T}.
- Page 418, Eq. (13.29a) - Delete ";".
- Page 431 , line -5 - Change the equation number from (13.66a) to (13.66b).
- Page 442, Algorithm 13.8 - The title of the algorithm should read as follows:

Ellipsoid method for constrained CP problems

- Page 446, Prob. $13.10(b)$, last line - Change "positive definite" to "positive semidefinite".
- Page 446, Prob. 13.12(a) - Change "differentiable" to "convex and differentiable".
- Page 447, Prob. 13.13(a) - Change "Sec. 13.4" to "Sec. 13.3".

Chapter 14

- Page 485 , fist line after Eq. (14.101c) - Replace " $\hat{c}_{i} \in R^{n_{i} \times 1 "}$ by " $\hat{\mathbf{c}}_{i} \in R^{n_{i} \times 1 "}$, i.e., \hat{c}_{i} should be bold $\hat{\mathbf{c}}_{i}$.
- Page 491, line $2-$ Change \mathbf{z}_{i} to \mathbf{a}_{i}, i.e., the equation should read as follows:

$$
\delta_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}+c_{i}\right) \geq 1
$$

- Page 491, line -1 - Matrix A should read as follows:

$$
\mathbf{A}=\left[\begin{array}{llll}
\hat{\mathbf{A}}_{1} & \hat{\mathbf{A}}_{2} & \cdots & \hat{\mathbf{A}}_{q}
\end{array}\right]
$$

- Page 492, line $3-$ Replace " $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{q}\end{array}\right]^{T}$ with $x_{i} \in \mathcal{K}_{i}$ " by " $\mathbf{x}=\left[\begin{array}{llll}\mathbf{x}_{1}^{T} & \mathbf{x}_{2}^{T} & \cdots & \mathbf{x}_{q}^{T}\end{array}\right]^{T}$ with $\mathbf{x}_{i} \in \mathcal{K}_{i}$ "
- Page 492, line - 7 - Change (\mathbf{x}, \mathbf{y}) to (\mathbf{s}, \mathbf{y}).
- Page 494, Algorithm 14.5, Step 1 - Change "parameters q and n_{i} " to "parameters q, σ, and n_{i} "
- Page 495 , lines -10 to -6 should read as follows:

$$
\mathbf{s}_{0}=\mathbf{c}-\mathbf{A}^{T} \mathbf{y}_{0}=[-\beta 13.50010 .250 .51-0.3535-0.1767]^{T}
$$

$n_{1}=5, n_{2}=3$, and $n_{3}=3$, choosing $\beta=-3.7$ guarantees that $\mathbf{s}_{0} \in \mathcal{F}_{d}^{o}$. This gives

$$
\mathbf{y}_{0}=\left[\begin{array}{lllll}
-3.7 & -1.5 & -0.5 & -2.5 & -4
\end{array}\right]^{T}
$$

and

$$
\mathbf{s}_{0}=\left[\begin{array}{lllllllll}
3.7 & 3.5 & 0 & 0 & 1 & 0.25 & 0.51 & -0.3535 & -0.1767
\end{array}\right]^{T}
$$

- Page 498, Prob. 14.16 - Change " $\mathbf{F}(\mathbf{x})=\mathbf{F}_{i}+"$ to $" \mathbf{F}(\mathbf{x})=\mathbf{F}_{0}+$ ".

Chapter 15

- Page 519, line -3 - Change

$$
\mathbf{A}_{k+1}^{T} \approx \mathbf{A}_{k}^{T}+\sum_{i=1}^{q} \nabla^{2} c_{i}\left(\mathbf{x}_{k}\right) \boldsymbol{\Delta} \mathbf{x}_{k}
$$

to

$$
\mathbf{A}_{k+1}^{T} \approx \mathbf{A}_{k}^{T}+\left[\nabla^{2} c_{1}\left(\mathbf{x}_{k}\right) \boldsymbol{\Delta} \mathbf{x}_{k} \quad \nabla^{2} c_{2}\left(\mathbf{x}_{k}\right) \boldsymbol{\Delta} \mathbf{x}_{k} \cdots \nabla^{2} c_{q}\left(\mathbf{x}_{k}\right) \boldsymbol{\Delta} \mathbf{x}_{k}\right]^{T}
$$

- Page 529, Prob. 15.3 - Change " $c_{1}(\mathbf{x})=x_{1} x_{2}-25 \geq 0$ " to " $c_{1}(\mathbf{x})=-x_{1} x_{2}+25 \geq 0$ ".
- Page 520, Eq. (25.53) - Replace $-\gamma_{k}$ by γ_{k}, i.e., Eq. (25.53) should read as follows:

$$
\begin{equation*}
\Delta \mathbf{y}_{k}=\mathbf{Y}_{k} \boldsymbol{\Lambda}_{k}^{-1}\left(\gamma_{k}-\Delta \boldsymbol{\lambda}_{k}\right) \tag{15.53}
\end{equation*}
$$

Chapter 16

- Pages 541 - 549 - Change equation numbers $16.21-16.38$ to $16.20-16.37$, i.e., equation numbers $16.21,16.22, \ldots, 16.38$, should read $16.20,16.21, \ldots, 16.37$.
- Page 552, Eq. (16.46) - Change \mathbf{F} to \mathbf{H}, i.e., Eq. (16.46) should read as follows:

$$
\left[\begin{array}{cc}
\mathbf{D} & \mathbf{H} \tag{16.46}\\
\mathbf{H}^{T} & \mathbf{G}
\end{array}\right] \succ \mathbf{0}
$$

- Page 557 Eq. (16.63) - The second line in Eq. (16.63) should read as follows:

$$
\begin{equation*}
\left(\mathbf{Y} \mathbf{S}^{-1} \mathbf{Y}^{T}\right)_{j, j} \tag{16.63}
\end{equation*}
$$

- Page 557, line -1 - The inequality should read as follows:

$$
\left(\mathbf{Y} \mathbf{S}^{-1} \mathbf{Y}^{T}\right)_{j j} \leq u_{j, \max }^{2} \quad \text { for } j=1,2, \ldots, p
$$

- Page 567, Eq. (16.79) - Change u_{1} to μ_{i}, i.e., Eq. (16.79) should read as follows:

$$
\mathbf{P}_{i}=\left[\begin{array}{ccc}
\mu_{i} c_{i 1} & 0 & c_{i 2} \tag{16.79}\\
0 & \mu_{i} c_{i 1} & c_{i 3} \\
c_{i 2} & c_{i 3} & \mu_{i} c_{i 1}
\end{array}\right] \succeq \mathbf{0}
$$

- Page 575 , Eq. (16.101a) - Change K to $K+1$, i.e., Eq. (16.101a) as follows:

$$
\begin{equation*}
\hat{\mathbf{X}} \succeq \mathbf{0}, \hat{x}_{i i}=1 \quad \text { for } 1 \leq i \leq K+1 \tag{16.101a}
\end{equation*}
$$

- Page 583 - Change d in Eq. (16.117) to e as follows:

$$
\begin{equation*}
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-v^{2} / 2} d v \tag{16.117}
\end{equation*}
$$

- Page 588, Prob. 16.10, line -7 - Change the second \mathbf{Y} to \mathbf{Y}^{T}, i.e., the expression should read as follows:

$$
\left(\mathbf{Y} \mathbf{S}^{-1} \mathbf{Y}^{T}\right)_{j j} \leq u_{j, \max }^{2}
$$

- Page 588, Prob. 16.11 (c), line -2 - Delete the "to" after "assure".

Appendix A

- Page 592, second line after Eq. (A.1) - Change "exit" to "exist".
- Page 602, line -3 - Change " $\|\mathbf{x}\|=581.68 "$ to " $\|\mathbf{x}\|_{2}=581.68$ ".

[^0]: ${ }^{1}$ Count from the bottom of the page for negative lines.

