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Abstract—This paper presents a technique to transform high-ef-
fort voices into breathy voices using adaptive pre-emphasis linear
prediction (APLP). The primary benefit of this technique is that it
estimates a spectral emphasis filter that can be used to manipulate
the perceived vocal effort. The other benefit of APLP is that it esti-
mates a formant filter that is more consistent across varying voice
qualities. This paper describes how constant pre-emphasis linear
prediction (LP) estimates a voice source with a constant spectral
envelope even though the spectral envelope of the true voice source
varies over time. A listening experiment demonstrates how differ-
ences in vocal effort and breathiness are audible in the formant
filter estimated by constant pre-emphasis LP. APLP is presented
as a technique to estimate a spectral emphasis filter that captures
the combined influence of the glottal source and the vocal tract
upon the spectral envelope of the voice. A final listening experi-
ment demonstrates how APLP can be used to effectively transform
high-effort voices into breathy voices. The techniques presented
here are relevant to researchers in voice conversion, voice quality,
singing, and emotion.

Index Terms—Adaptive pre-emphasis, breathiness, linear pre-
diction (LP), pre-emphasis, spectral slope, vocal effort, voice
quality.

I. INTRODUCTION

I N THIS paper, we present a technique to improve linear pre-
diction (LP) for the transformation of high-effort singing

voices into breathy voices. A common approach for this trans-
formation is to separate the voice into a source and filter, add
noise to the source to simulate aspiration noise, and to resynthe-
size the voice [1]. This approach works well for voices that al-
ready sound slightly breathy. However, it does not work as well
for voices that exhibit high vocal effort. The noise intended to
simulate aspiration noise does not sound like part of the synthe-
sized voice and instead sounds like a segregated stream of noise.
Also, the resulting voice retains the perception of high vocal ef-
fort, which is incompatible with breathy voices since breathy
voices exhibit low effort. We show that synthesized aspiration
noise does not blend with high-effort voices because the spec-
tral envelopes of high-effort and breathy voices are different.
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We present adaptive pre-emphasis linear prediction (APLP) to
model and modify the spectral envelope of the voice, thereby
reducing the perceived vocal effort and improving the blending
of aspiration noise.

There are many ways to describe the voice qualities that re-
sult from changes to the voice source and these terminologies
often overlap. Vocal effort has been chosen in the context of this
paper because increased effort describes a broad range of voice
qualities where the vocal folds remain closed for a large portion
of the glottal cycle. These voices have more high-frequency har-
monic content due to the short length of the glottal pulses and the
rapid closure of the vocal folds. We also chose the high-effort
terminology because it describes something that most people
can understand more easily than the standardized phonetic ter-
minology [2]. People do not need specialized phonetic training
to achieve a relatively consistent perception of vocal effort. It
is more difficult to teach people the meaning of terms such as:
pressed, laryngealized, creaky, or harsh voice. Vocal effort is a
concept that both specialists and nonspecialists can grasp and
come to agreement with less difficulty [3], [4].

Vocal effort is a subjective term that describes a strained or
tense voice quality. Although the most obvious result of in-
creased vocal effort is increased sound intensity [5], people can
distinguish the quantity of effort in a voice independent of the
volume at which the sample is provided [3]. Pitch can also be
an indication of vocal effort [6], [7]. However, in the case of
singing, the pitch has already been specified. Therefore, the
dominant cue of vocal effort for the singing voice is the spectral
envelope of the signal [4], [8].

When a voice involves effort, the resulting voice has more
high-frequency content than the same voice in a relaxed state
[9]. When a voice is relaxed (such as in lax [2] or breathy
voices), the vocal folds move freely, with slow glottal closure.
The lower harmonics are much stronger relative to the upper
harmonics. Air often leaks between the vocal folds when the
voice is relaxed. When air leakage causes significant aspiration
noise and the vocal folds are relaxed, it is known as a breathy
voice.

The spectral envelope of the voice source provides one of
the most important cues for the perception of vocal effort. This
envelope varies from voice to voice and can vary within the
context of a single phrase [10]. Studies show that it is pos-
sible to model the spectral envelope of the voice source with
a third-order low-pass filter [11], [12]. These studies modeling
the spectral envelope of the voice source show that the speed of
the return phase in the glottal pulses affects the spectral slope.
A slow glottal return phase, such as for a breathy voice, results
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Fig. 1. Spectral envelopes estimated by linear prediction without pre-emphasis:
a breathy voice (dashed line) and a high-effort voice (solid line). In each plot, the
same voice is singing the same vowel on the same pitch. The breathy voice has
less energy in the 1.5–4.5 kHz range than the corresponding high-effort voice.

in a steeper spectral slope starting at a lower frequency. A quick
glottal return phase, such as for a high-effort voice, results in a
less steep spectral slope.

The frequency response of the vocal tract also influences the
spectral envelope of the voice. For wider bandwidth voice sig-
nals (above 5 kHz), the frequency response of the vocal tract is
not flat throughout the entire frequency range. The difference
in the spectra between voices with high and low effort can be
seen in Fig. 1. The frequency response of the high-effort voice
is relatively flat up to 4–5 kHz after which it drops off sharply.
Physical models of the vocal tract have suggested that the cutoff
frequency and the suddenness of this drop-off is due to throat
constriction in the lower vocal tract [13]. This is also related to
the singer’s formant which results in the clustering of the third,
fourth, and fifth formants [14]. Unfortunately, little voice anal-
ysis has taken place beyond 5 kHz, and further research would
be useful to determine how much of the frequency response be-
yond 5 kHz is due to the vocal tract and how much is due to the
source. The challenge with analysis beyond 5 kHz is that the
acoustic waves in the vocal tract can no longer be assumed to
be plane waves as the wavelengths are shorter than the width of
the vocal tract. The drop-off observed in high-effort voice sam-
ples is a challenge to standard LP methods because the spectral
slope of the vocal tract can no longer be considered to be con-
sistent throughout the frequency range.

To convert a high-effort voice into a breathy voice, it is
not enough to add aspiration noise. To eliminate vocal effort,
we need to change the envelope of the spectrum to match the
breathy envelope then add aspiration noise corresponding to
breathiness. If we change one thing but not the other, then
different voice qualities result. Adding aspiration noise to a
high-effort voice without changing the spectral envelope results
in a voice that simultaneously exhibits effort and aspiration
noise. This has been described as a whispery voice [15],
[16]. Alternately, transforming the spectral envelope of the
high-effort voice into that of a breathy voice without adding
noise results in a voice that sounds lax and unnatural. It gives
the perception that the vocal folds are relaxed but there is no
aspiration noise that our ears expect to hear.

To create the perception of low vocal effort and to improve the
blending of aspiration noise into the voice, we propose APLP.
Adaptive pre-emphasis has been used with LP, but its relation-
ship to vocal effort and other voice qualities has not been elu-
cidated. Adaptive pre-emphasis is often used to avoid ill-condi-
tioning in fixed-point algorithms due to the contrast in spectral
slopes between voiced and unvoiced segments [17]. Some LP

algorithms use adaptive pre-emphasis to improve speech recog-
nition [18], [19] or accent detection [20]. We present APLP as a
technique to estimate the spectral emphasis of the voice due to
vocal effort. This spectral emphasis, once estimated, can be ma-
nipulated to change the perceived amount of vocal effort in the
voice. It is our expectation that reducing the perceived vocal ef-
fort will improve the blending of aspiration noise into the voice
while transforming high effort voices into breathy voices.

The APLP algorithm does not carry out the typical ideal of
separating out the vocal tract filter and the glottal source. Prac-
tically speaking, when analyzing a particular voice signal, it is
usually impossible to determine how much of the change in the
spectral emphasis is due to a change in the glottal source versus
the vocal tract filter. What is known is that, with increases in
vocal effort, both the glottal source and the vocal tract filter em-
phasize higher frequencies. For this reason, we created the spec-
tral emphasis filter to capture the combined influence of both the
glottal source and the vocal tract filter on the overall spectral en-
velope of the voice. While this differs from the typical goal of
separating the glottal source and the vocal tract, the spectral em-
phasis filter provides an easier way to manipulate the perceived
vocal effort independent of the formant filter.

There are two key differences between the APLP algorithm
presented here and other implementations of adaptive pre-em-
phasis for voice source analysis [21]–[23]. First, voice source
analysis extracts estimates of the glottal pulses whereas APLP
extracts a spectrally flat excitation and a spectral emphasis filter.
This spectral emphasis filter is distinct from the narrow spectral
peaks associated with the perception of formants. Second, cur-
rent methods of voice source analysis operate on frequencies no
higher than 5 kHz while APLP works with broader bandwidth
speech signals.

The APLP algorithm requires a more complex model of the
spectral emphasis. In standard methods of voice source anal-
ysis, the spectrum of the pre-emphasis has a simple slope, but
in APLP the pre-emphasis can have a more complex shape. This
is because APLP aims to analyze musical voice signals and ma-
nipulate them in a way that is musically relevant. In doing this,
frequencies above 5 kHz are important because they affect the
aesthetics of the voice signal. However, when wider bandwidth
signals are involved, the spectral emphasis no longer looks like
a simple slope. This is likely because the frequency response of
the vocal tract often drops off sharply beyond 4–5 kHz [13].

In addition, APLP does not require the ideal retention of
phase information. Voice source analysis aims to extract re-
alistic estimates of the glottal pulses [24]. This means that
the original signal must retain phase information to prevent
the extracted glottal pulses from looking distorted in the time
domain. In contrast, the APLP algorithm presented here is
not intended to extract the shapes of the glottal pulses. APLP
presented here focuses on musical signals where the absolute
phase information is less important.

There are other techniques for voice transformation that are
capable of manipulating the perceived vocal effort. One such
technique analyzes and resynthesizes the aperiodic component
of the voice source [25], [26]. This technique carries out LP
to estimate the formant filter before extracting the estimated
source. As will be shown in this paper, constant pre-emphasis
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LP results in an estimated formant filter that captures changes in
the spectral emphasis of the voice. Using APLP instead of stan-
dard LP in this technique would result in a formant filter that
is more consistent across varying voice qualities. In addition,
APLP would provide an estimate of the spectral emphasis of
the voice. This would be useful in the application of any further
aperiodic manipulations to the voice quality. Lastly, the spec-
tral emphasis filter estimated by APLP would provide a valu-
able starting point for any further manipulations to the spectral
envelope of the source.

The aforementioned technique of aperiodic analysis and syn-
thesis [26] is able to modify the perceived vocal effort. The type
of vocal effort presented in that technique is different than the
type of vocal effort manipulated by APLP in this paper. In the
aperiodic synthesis, the perceived vocal effort is primarily mod-
ified by increasing variation in the aperiodic component. This
results in a voice with more roughness or harshness. This rough-
ness is associated with vocal effort. However, APLP as pre-
sented here focuses on transforming voices that do not sound
rough or harsh. In the absence of these vocal aperiodicities,
vocal effort is primarily manipulated by changing the spectral
emphasis.

A different adaptive technique has been developed to ma-
nipulate voice timbre using harmonics plus noise analysis [27].
APLP differs from this technique in that APLP uses a source-
filter approach to manipulate the voice.

The paper is organized as follows. Section II describes how
LP operates and how the pre-emphasis essentially specifies the
spectral envelope of the estimate glottal source. This includes an
experiment that illustrates how constant pre-emphasis LP results
in a formant filter that influences the perception of breathiness
and vocal effort. Section III presents APLP as a method to esti-
mate a more consistent formant filter across varying voice qual-
ities. This includes a discussion of tradeoffs in the application
of APLP to wider bandwidth voice signals. Section IV presents
the APLP voice transformation algorithm and a listening exper-
iment to validate whether APLP is able to manipulate the per-
ception of vocal effort. This is followed by the Conclusion in
Section V.

II. INFLUENCE OF PRE-EMPHASIS ON

ESTIMATED GLOTTAL SOURCE

The source-filter model of the voice separates the glottal
source from the filtering influence of the vocal tract. However,
when there are dramatic changes in the spectral envelope of
the voice, constant pre-emphasis implementations of LP do not
appropriately separate the source and the filter. This happens
because the constant pre-emphasis specifies a constant spectral
envelope for the estimated glottal source. Meanwhile, the actual
glottal source varies. This section presents an explanation why
the pre-emphasis controls the spectral envelope of the estimated
glottal source.

The operation of LP is shown in Fig. 2(a). LP estimates a filter
that approximates the spectral envelope of the signal. Inverse fil-
tering the signal with the filter results in a spectrally flat signal.
To make LP correspond more closely to the linear model of the
voice [Fig. 2(b)], a pre-emphasis is typically applied as seen in

Fig. 2. (a) Linear prediction (LP) algorithm. (b) Linear model of speech pro-
duction. (c) Using LP to estimate a filter representing the influence of the vocal
tract V̂ (z) and to extract the corresponding signal representing the glottal source
Ĝ(z).

Fig. 2(c). This pre-emphasis specifies that the estimated glottal
signal, , will have a spectral slope that, on average, repre-
sents what would be expected according to voice physiology.

Mathematically, the estimated glottal signal has a spectral
slope that is the inverse to the frequency response of the pre-em-
phasis filter. This can be demonstrated in the following way.

The linear model of the voice is as follows [Fig. 2(b)]:

(1)

represents the flow signal from the glottal source (the
volume-velocity wave). is a filter that represents the in-
fluence of the vocal tract. represents the influence of lip
radiation with a filter: transform [28]. is the
acoustic pressure signal received at the ear.

Working with the derivative of the glottal airflow
makes it easier to see the features of the glottal pulses. When
we talk about the glottal source in this paper, we are referring
to . Since the filter for lip radiation approximates
taking the derivative [28], (1) can be simplified as

(2)

LP analyzes to estimate , where is the
chosen pre-emphasis filter

(3)

LP estimates an all-pole vocal tract filter that matches the
spectral envelope of . The excitation signal rep-
resents the spectrally flat excitation signal that LP would esti-
mate through inverse filtering. Note that for the excitation signal

to be spectrally flat, the estimated vocal tract filter
and pre-emphasis must appropriately fit the voice signal

. Typically, LP is of sufficient order in estimating the for-
mant filter that the resulting excitation appears spec-
trally flat.

In the application of LP to voice analysis, the original signal
is inverse filtered instead of . This filtering
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process can be seen in Fig. 2(c). By manipulating (3), the result
of inverse filtering can be shown to be

(4)

Since the excitation signal is spectrally flat, the extracted
residual has a spectral slope that is inverse to the
spectral slope of the pre-emphasis .

From (2), we can also see how to estimate the glottal source

(5)

Combining (4) and (5) shows that the estimated glottal source
has a spectral slope that is inverse to the spectrum of the

pre-emphasis

(6)

Constant pre-emphasis is commonly used in voice analysis.
This enforces a constant spectral envelope for the estimated
glottal source, as seen in (6). In contrast, the spectral envelope
of the actual glottal source varies through time. This means that
the estimated source does not capture variation in the spectral
envelope of the actual glottal source. Instead, this variation is
captured by the LP filter, . In constant pre-emphasis LP,
the influence of varying vocal effort is entangled in the estimated
vocal tract filter making it difficult to separate out and con-
trol the influence of effort.

In fixed-rate LP analysis, the pre-emphasis fully specifies the
spectral envelope of the estimated glottal source. However, in
closed-phase analysis, some of the variation in the spectral en-
velope does affect the estimated glottal source. This is because
closed-phase analysis excludes large spikes in the time domain
that occur at the instances of glottal closure. The amplitude of
these spikes vary with the rate of glottal closure, and this is
closely related to the perception of vocal effort. With higher
levels of vocal effort, the spikes are larger, and this tends to
flatten the voice spectrum. Since these spikes are excluded from
analysis, their influence is passed on to the estimated glottal
source during inverse filtering. This results in an estimated
glottal source that somewhat follows variation in the spectral
slope of the voice signal. With careful preparation, closed-phase
analysis can be used to make good estimates of the spectral slope
of the glottal source [29]. That said, in at least one case, adap-
tive pre-emphasis has been used to improve closed-phase anal-
ysis [23].

We are using fixed-rate analysis because we cannot depend
upon the source data being accurate enough to estimate rea-
sonable glottal pulses. Therefore, it is safe to say that the pre-
emphasis fully specifies the spectral slope of the estimated
glottal source.

If we want to control the perceived vocal effort, it is necessary
to estimate formant filters that remain consistent across varying
voice qualities. The theoretical analysis above suggests that con-
stant pre-emphasis LP results in estimated formant filters that
capture changes in the spectral emphasis of the voice. We carried
out a listening experiment to determine whether the formant fil-
ters estimated by constant pre-emphasis LP affect the perceived

TABLE I
ORIGINAL VOICE SAMPLES FOR CONSTANT PRE-EMPHASIS LP EXPERIMENT

h.e. = high effort

breathiness and vocal effort [30]. The experiment compares con-
stant pre-emphasis LP filters extracted from breathy and high
effort voices.

The experiment used pairs of samples where the same voice
sang the same vowel at the same pitch while varying between
breathiness and high vocal effort. To remove the influence of
the estimated voice source, LP filters were estimated from the
two samples using constant pre-emphasis LP. These LP filters
were then excited with the same artificial source. This resulted
in two synthesized samples where the only difference between
them was their associated constant pre-emphasis LP filters. One
of the LP filters was extracted from a high-effort voice and the
other LP filter was extracted from a breathy voice.

In the experiment, listeners rated the difference in perceived
vocal effort and breathiness between the LP filters. If the LP
filters from the high-effort and breathy voices were perceived to
be the same, then it should be possible to transform the voices
by manipulating only the estimated voice source. However, if
the LP filters were perceived to be different, then it would be
difficult to change the perceived breathiness and vocal effort by
modifying the estimated voice source alone.

Three pairs of voice samples were used in the experiment.
The characteristics of the extracted vowels are summarized in
Table I. LP was carried out on the voice samples with a con-
stant pre-emphasis filter with -transform . This
resulted in two LP filters, one representing a high-effort voice
and one representing a breathy voice. To compare the LP filters,
both LP filters were excited with the same Liljencrants–Fant
(LF) model for the voice source [31].

The perceptual criteria for this test was drawn from other
studies for evaluating breathy voices [29], [32] and a prior test
that we conducted [33]. The listener was given the following
question: “Listen to the two samples and rate which one sounds
more breathy.” After they evaluated all of the sample pairs, they
were given the next question: “Listen to the two samples. Rate
which voice sounds like it requires more effort to sing. Vocal ef-
fort would be associated with a tense voice rather than a relaxed
voice.” The samples were rated on a seven-point scale with 3
being much less breathy and 3 being much more breathy.

The listener did not know which sample pairs were being pro-
vided or the order in which they were presented. Within each
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Fig. 3. Plot of the relative difference in (a) perceived breathiness and (b) per-
ceived vocal effort within each sample pair. 95% confidence intervals have been
plotted. “Orig. Pair” represents the rating of the original high-effort voice rela-
tive to the original breathy voice. “Synth. Pair” represents the rating of the syn-
thesized high-effort voice relative to the synthesized breathy voice. The negative
rating for breathiness indicates that the high-effort sample sounds less breathy
than the corresponding breathy sample.

sample pair, the breathy or high-effort sample was randomly
chosen to be first. This order was randomized for each run. In
addition, the order of the six sample pairs was randomized for
each run of the test for each listener. There were a total of seven
listeners.

A test for statistical significance was carried out. The F-test
on the breathiness ratings resulted in an F-value of 22.0, indi-
cating that there is less than 0.01% chance that the observed
differences occurred due to noise. The F-test on the vocal ef-
fort ratings resulted in an F-value of 6.8, indicating that there is
only a 1.4% chance that the observed differences occurred due
to noise.

In the presentation of the results, the high effort voice is rated
with respect to the breathy voice. The results show that the
original pair of samples (unmodified) exhibit a large contrast in
breathiness as shown in Fig. 3(a). On average, the high-effort
sample sounds between less breathy and much less breathy than
the corresponding breathy sample. The synthesized pair provides
the comparison between the estimated formant filters while using
the same artificial excitation to eliminate the influence of the es-
timated source. When the filters from the high-effort and breathy
samples are compared, the contrast in breathiness is reduced but
not eliminated. On average, the high-effort filter sounds slightly
less breathy than the corresponding breathy filter. Even when the
high-effort filter and breathy filter are provided with the same
excitation, some of the perception of breathiness remains.

The results show that the original pair of samples (un-
modified) exhibit a large contrast in vocal effort as shown in
Fig. 3(b). On average, the high-effort sample is perceived to
have between more effort and much more effort than the cor-
responding breathy voice sample. When the high effort filters

Fig. 4. (a) APLP analysis. (BWE refers to bandwidth expansion.) (b) Linear
model of the voice resulting from APLP.

and the breathy filters are compared, the contrast in vocal effort
is reduced but not eliminated. On average, the high-effort filter
sounds like it has between more and slightly more effort than
the corresponding breathy filter. Even when the high-effort
filter and breathy filter are provided with the same excitation,
much of the perception of vocal effort remains.

This experiment demonstrated that constant pre-emphasis LP
does not fully separate the perception of breathiness and vocal
effort from the LP filter. Instead, the LP filter contains some of
the perception of breathiness and vocal effort. Further details
about the experiment can be found in the original paper [30]. To
appropriately separate variations in vocal effort and breathiness
from the LP filter, we propose adaptive pre-emphasis, which is
presented in the following section.

III. ADAPTIVE PRE-EMPHASIS LP ALGORITHM

As we described above, constant pre-emphasis LP does not
appropriately model the glottal source, especially in voices with
varying levels of vocal effort. In this section, we present APLP
as a way to address this problem. The APLP algorithm presented
here separates the voice signal into a spectrally flat excitation,
a spectral emphasis filter and formant filter. The purpose of this
separation is to make it easier to manipulate the spectral em-
phasis filter and thereby change the perceived voice quality.

The algorithm for APLP analysis is presented in Fig. 4(a).
The difference between APLP and the constant pre-emphasis LP
can be seen by comparing it to Fig. 2(c). In APLP, the pre-em-
phasis filter is estimated using low-order LP. This enables
the pre-emphasis filter to track variations in the spectral enve-
lope of the voice signal. The voice signal is inverse filtered
with the pre-emphasis to spectrally flatten the signal be-
fore the second stage of LP. This second stage of LP captures
the formant information in a filter using a higher order
for LP. Because the spectral emphasis is removed before the
second stage, the estimated formant filter from APLP is
more spectrally flat than the estimated formant filter from
constant pre-emphasis LP. In contrast, constant pre-emphasis
LP causes variation in the spectral emphasis to be included in
the estimated vocal tract filter .
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Fig. 5. Voice spectra from (a) a breathy voice and (b) a high-effort voice. In
each plot, the same voice is singing the same vowel on the same pitch. The spec-
tral emphasis filter (H (z)) estimated by low-order LP has also been plotted.

The algorithm for APLP analysis, presented in Fig. 4, pro-
duces the following model of the voice:

(7)

which appears quite different from the typical linear model of
the voice as presented in (1) and (2). A spectrally flat excita-
tion is shaped by the spectral emphasis filter which
is further shaped by the formant filter to produce the
sound received by the ear . Since the spectral emphasis
filter models the overall spectral emphasis, the formant
filter becomes more spectrally flat. The formant filter

captures the narrow peaks in the spectrum while the spec-
tral emphasis filter captures the overall shape of the spec-
trum. The perception of high vocal effort is caused by changes
to both the glottal source and the vocal tract filter. In the APLP
algorithm presented here, we lump both of these changes into
one spectral emphasis filter .

When working with voices sampled at or below 10 kHz, the
spectral emphasis filter has a spectrum that looks like a simple
slope. However, voice signals sampled at higher frequencies
often exhibit a trend that does not look like a spectral slope. In-
stead, for high effort voices, the spectrum can look relatively flat
up to 4.5 kHz and then drop off suddenly beyond that range. If
we estimate a pre-emphasis filter using LP with an order larger
than one, there is no longer a guarantee that the pole of the filter
will be at 0 Hz. For breathy voices, the regime of the voice ap-
pears relatively consistent throughout the frequency range and
the spectral emphasis filter has a spectrum that looks like
a slope as seen in Fig. 5(a). However, for high-effort voices, a
pole of the filter ends up being at an intermediate frequency as
seen in Fig. 5(b). In this situation, no longer looks like
the envelope of the glottal source.

In estimating the spectral emphasis filter with LP, it is impor-
tant to use bandwidth expansion (BWE) [34], [35] as seen in
Fig. 4. This ensures that the estimated spectral emphasis filter
does not become too peaky. If the spectral emphasis filter
becomes too sharply peaked, then it may capture formant infor-
mation that should, instead, be captured by the formant filter

Fig. 6. Formant filters estimated using (a) constant pre-emphasis LP and
(b) APLP. The same voice sang the same vowel at the same pitch while varying
the quantity of vocal effort. The dashed lines are estimated formant filters
from the breathy voice while the solid lines are estimated formant filters from
the high-effort voice. Note that the formant filters for breathy and high-effort
voices are more similar for APLP than for constant pre-emphasis LP. The
sampling rate is 22 050 Hz, the formant filter has an order of 30, and the
spectral emphasis filter has an order of 3.

. In the algorithm presented here, we used radial scaling
on the filter coefficients [34].

When voices exhibit high vocal effort, both the vocal tract
and the glottal source change in a way that affects the spectral
envelope of the voice. The spectral slope of the glottal source
steepens in a negative direction and the vocal tract exhibits a
drop-off in the spectrum above 4–5 kHz. The spectral emphasis
filter with a resonance [Fig. 5(b)] models this drop-off
in the spectrum. This means that the spectral emphasis filter is
now capturing more than just the spectral slope of the glottal
source. This is why the excitation of the formant filter is no
longer referred to as the glottal source but is now described as
a spectrally flat excitation shaped by a spectral emphasis
filter . In addition, has been given the subscript
“ ” to indicate that this filter models the perceptual influence
of the formants and not all of the frequency response of the vocal
tract.

In the current application, we are interested in manipulating
the perceived vocal effort, and it is convenient that the influence
of vocal effort upon the vocal tract is captured in the spectral
emphasis filter . In this way, the influence of vocal effort
is captured in one place rather than being partially represented
by the estimated glottal source and partially by the estimated
vocal tract filter.

In order to manipulate vocal effort in singing voices, we want
to separate the phonetic information (the formant filter) from
the information about the perceived breathiness and vocal ef-
fort. APLP is useful because it is able to capture the spectral
emphasis of the voice independent of the formant filter

. As a result, APLP provides a more consistent estimate of
the formant filter than constant pre-emphasis LP. This can be ob-
served in Fig. 6, which compares the formant filters from con-
stant pre-emphasis LP and APLP. Because APLP better sepa-
rates the phonetic information from the spectral emphasis, it is
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Fig. 7. APLP synthesis configured to modify the perception of vocal effort.
The spectrally flat excitation E(z) is shaped by the desired spectral emphasis
filter H (z). White noise is low-passed to remove the uppermost frequencies
and pulsed according to the glottal closure instants (GCI). The noise is added to
the spectrally emphasized excitation. The formant filter V (z) is then applied
to generate the newly synthesized voice signal S(z).

easier to manipulate the spectral emphasis independently of the
formant filter. In contrast, constant pre-emphasis LP entangles
the spectral emphasis information in the formant filter for sig-
nals sampled above 10 kHz [see Fig. 6(b)].

The following section explains how the APLP model of the
voice is used to convert high-effort voices into breathy voices
that exhibit low effort.

IV. VOICE TRANSFORMATION ALGORITHM

To transform high-effort singing voices into breathy voices,
we need to manipulate the spectral emphasis to change the per-
ceived effort and add noise to simulate breathiness. This section
describes the algorithm that carries out this transformation.

To modify the perceived vocal effort, the spectral envelope of
the residual has to be modified and resynthesized. The process
of resynthesizing the voice is illustrated in Fig. 7. First, the spec-
trally flat excitation from the high-effort voice is filtered
with the desired spectral emphasis filter . The values for
this spectral emphasis filter are from a breathy voice. Pulsed
white noise is added to the signal to simulate aspiration noise.
The resulting signal is a voice source with the desired spectral
emphasis plus noise. This signal is then fed through the formant
filter from the high-effort voice to synthesize the modi-
fied voice.

In the current experiment, we manipulated voice samples at
22 050 Hz using an LP order of 30 for the formant filter and an
LP order of 1 or 3 for the spectral emphasis filter. The window
size for autocorrelation LP was 416 samples with LP computing
filters every 32 samples. Bandwidth expansion was carried out
on the LP filters using radial scaling on the filter coefficients
[34] with for the spectral emphasis filter and

for the formant filter . The perceived influence
of pole scaling on the spectral emphasis filter is large while the
influence of pole scaling on the formant filter is subtle.

The greatest challenge in synthesizing breathy voices is that
the noise does not blend easily into the voice. Instead, listeners
typically perceive the noise to be a separate sound distinct from
the voice signal. Blending in the noise after the pre-emphasis
gives it approximately the correct shape. The noise floor repre-
senting breathiness in the voice source has an ap-
proximately flat spectrum. A first-order, low-pass, all-zero filter

was also added to reduce some of the uppermost

TABLE II
ORIGINAL VOICE SAMPLES FOR VOICE TRANSFORMATION EXPERIMENT

h.e. = high effort

noise frequencies that do not blend easily. Synthesized noise
blends more easily when it is pulsed in sync with the glottal clo-
sure instants [36]. We used Hann windows to provide the shape
of the pulses and a duty cycle of approximately 50%.

Now that the synthesis algorithm has been described, the fol-
lowing section will present a listening experiment that was car-
ried out to demonstrate that APLP is an improvement over con-
stant pre-emphasis LP in transforming high-effort voices into
breathy voices.

A. Listening Experiment

We have described how the APLP algorithm can transform
the spectrum of the voice. This section describes a perceptual
experiment to verify whether these changes are subjectively
perceivable.

As source data, we had pairs of voice samples where the same
person phonated the same vowel at the same pitch but with two
different voice qualities: one breathy and one high-effort. The
goal was to transform the high-effort sample into the breathy
sample. We had three different sample pairs as source data as
described in Table II.

We compared the capabilities of three different algorithms
to carry out the transformation of high-effort voices into
breathy voices: APLP with first-order pre-emphasis, APLP
with third-order pre-emphasis, and constant pre-emphasis LP.
A high-effort voice without processing was also included in
the comparison. The listener rated the effectiveness of the four
methods (including no processing) with respect to the target
breathy sample for the voice being transformed. The various
comparisons made for each sample pair are listed in Table III.

We applied APLP synthesis as described in Fig. 7 to trans-
form high-effort voices into breathy voices. The spectral em-
phasis used during synthesis was extracted from the
target breathy voice in the sample pair. Constant pre-emphasis
LP does not estimate a spectral emphasis filter. This is equiva-
lent to using the same spectral emphasis for analysis and syn-
thesis, meaning that the spectral emphasis is not modified. The
same quantity of aspiration noise was added to both the APLP
algorithm and the constant pre-emphasis LP algorithm.
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TABLE III
COMPARISON OF VOICE SAMPLES IN VOICE TRANSFORMATION

LISTENING EXPERIMENT

The onset for high-effort voices is typically much faster than
the onset for breathy voices. A steady-state section was ex-
tracted from the center of each voice sample to eliminate the
influence of voice onsets upon the perceptual rating.

There were 16 listeners in total. The listeners for the ex-
periment were audio engineers with experience in voice pro-
cessing (ten listeners), trained linguists (three listeners), and ex-
perienced singers (three listeners). The processed voice sam-
ples were rated relative to benchmark breathy samples. The un-
processed high-effort voice samples were also rated relative to
benchmark breathy samples. The variously processed sample
pairs were presented in a random order. In addition, the samples
were randomly presented before or after the benchmark breathy
samples without specifying the order to the listener.

The listeners went through the experiment three times to
make three different ratings.

• BREATHINESS: Please listen to the two samples and rate
how much more BREATHY one sample sounds than the
other sample. BREATHINESS corresponds to a soft, re-
laxed voice.

• VOCAL EFFORT: Please listen to the two samples and rate
how much more EFFORT is required on the part of the
singer to generate one sample rather than the other sample.
VOCAL EFFORT corresponds to a strained or tense voice.

• ARTIFICIALNESS: All of the samples have been digitally
modified in some way. Please listen to the two samples and
rate how ARTIFICIAL one sample sounds than the other.

In each iteration of the experiment, the order of the samples was
re-randomized. The relative rating was on a seven-point scale as
per ITU Standard 1284 [37].

The results of the experiment are presented in Fig. 8. A test
for statistical significance was carried out. The F-test on the
breathiness, vocal effort, and artificialness ratings resulting in
an F-values of 16.7, 16.1, and 10.0 respectively. This indicates
that there is less than a 0.01% chance that the observed differ-
ences could occur due to noise in each of the sets of ratings.

What we found was that all of the processing techniques
provided a increase in perceived breathiness [Fig. 8(a)]. The
original high-effort voice sounded less breathy than the cor-
responding breathy voice. After the transformation, all of the
voice samples sounded only slightly less breathy than the
breathy voice. The third-order APLP algorithm performed
better than the first-order APLP and constant pre-emphasis al-
gorithms. This is likely because the third-order APLP algorithm
models the drop-off in the high-effort voice spectrum, whereas
the first-order APLP algorithm estimates a spectral emphasis
that is similar in shape to the constant pre-emphasis filter.

Fig. 8. Statistical results from relative ratings of breathiness (top), vocal ef-
fort (middle), and artificialness (bottom). The horizontal axis represents the
processing applied to the high-effort voice: AP1 = first-order adaptive pre-em-
phasis, AP3 = third-order adaptive pre-emphasis, CP = constant pre-emphasis,
and original = no processing. All samples were rated relative to a corresponding
breathy voice. Each point represents three data sets rated by 16 listeners. 95%
confidence intervals have been plotted.

The similar ratings for breathiness between the APLP and
the constant pre-emphasis LP algorithms might give the im-
pression that APLP is not much more effective than constant
pre-emphasis LP. However, there are other factors to consider.
A breathy voice should exhibit low effort and the transformation
should, ideally, be free of unnatural artifacts.

The APLP algorithm was able to reduce the perceived ef-
fort of the voice more effectively than constant pre-emphasis LP
[Fig. 8(b)]. The constant pre-emphasis LP algorithm exhibited
nearly the same amount of vocal effort as the original high-effort
voice. In contrast, the first- and third-order APLP algorithms re-
duced the perceived vocal effort almost all the way down to the
breathy benchmark voices.

The best performance of the APLP algorithm was in the
perceptual rating of artificialness [Fig. 8(b)]. Constant pre-em-
phasis LP sounded more artificial than the original high-effort
voice. In contrast, APLP sounded less artificial. This is because
APLP was able to transform the spectral emphasis of the voice
to more closely match the target breathy voice.

The APLP algorithm actually sounded less artificial than the
original high-effort voice. This is likely because the original
high-effort voice exhibited so much effort that it sounded
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slightly unnatural. Using APLP on the high-effort voices
brought them into a range that people are more used to hearing.
This may be the reason why the listeners rated the re-synthe-
sized APLP voices as sounding less artificial than the original
high-effort voice.

In conclusion, all of the voice transformation algorithms in-
creased the perceived breathiness with third-order APLP per-
forming the best. However, our goal was not just to make a voice
that sounds breathy, but to make a voice that exhibits low-effort
and sounds free of artifacts. In the ratings for vocal effort and
artificialness, APLP outperformed the constant pre-emphasis al-
gorithm. APLP even sounded less artificial than the original
high-effort voice. This indicates that APLP is able to synthesize
natural-sounding voices when transforming high-effort voices
into breathy voices.

V. CONCLUSION

This paper presented APLP to estimate a spectral emphasis
filter for manipulating the perceived vocal effort of singing
voices. APLP also results in an estimated formant filter that
is more consistent across varying voice qualities. A listening
experiment was carried out to demonstrate that APLP’s spectral
emphasis filter can be used to transform high-effort voices into
breathy voices. This resulted in breathy voices that sounded
more relaxed and exhibited fewer artifacts than the corre-
sponding transformation using constant pre-emphasis LP.

The APLP algorithm can be used during voice analysis as
an indication of the perceived vocal effort in the voice [38].
Since vocal effort is influenced by the person’s emotional state,
this technique can be used to analyze the stress in a person’s
voice, which is a useful application in its own right. The filters
extracted with APLP could be manipulated to synthesize new
voices with different levels of vocal effort and correspondingly
different emotional states.

In this paper, we focused on the contrast between high effort
and breathy voices. There are many other voice qualities that ex-
hibit range of spectral envelopes. APLP could be used to manip-
ulate the spectral envelope to match any of these voice qualities.
APLP could also be enhanced with a complementary system to
control voice aperiodicities [26]. This could be useful in gener-
ating other types of voices such as creaky voice and harsh voice.

There are a few ways that the APLP algorithm could be
improved. We used low-order LP to estimate the spectral
emphasis filter. However, for high-effort voices, low-order LP
does not model the steepness of the drop-off around 4–5 kHz
[see Fig. 5(b)]. A spectral emphasis filter that more closely
matches the drop-off might result in a more effective filter for
controlling vocal effort. Second, we were able to apply APLP
for signals sampled up to 22 kHz. Implementing a warped [39]
version of APLP could result in an algorithm that works for
even wider bandwidth signals.

The transformation algorithm presented here focused on iso-
lated vowels. In order to transform phrases, it would be neces-
sary to carry out voiced-unvoiced detection and to apply APLP
only to the voiced sections. Since voices with high vocal ef-
fort exhibit a stronger attack, it is likely that this attack would
have to be controlled. In addition, the influence of the APLP al-
gorithm may not be consistent across different vowels. When

a voice changes from one vowel to another, some of the spec-
tral changes are similar to changes that occur between high and
low effort voices. For example, in changing between higher and
lower vowel qualities, there is an increase in the first formant fre-
quency that also increases the amplitude of the higher formants
[40]. In implementing APLP for phrases, it may be necessary to
adjust for these changes between different vowel qualities.
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