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Abstract

Objective: To evaluate the effectiveness of a new method of using Independent Component Analysis (ICA) and k-means clustering to
increase the signal-to-noise ratio of Event-Related Potential (ERP) measurements while permitting standard statistical comparisons
to be made despite the inter-subject variations characteristic of ICA.
Methods: Per-subject ICA results were used to create a channel pool, with unequal weights, that could be applied consistently across
subjects. Signals derived from this and other pooling schemes, and from unpooled electrodes, were subjected to identical statistical anal-
ysis of the N170 own-face effect in a Joe/No Joe face recognition paradigm wherein participants monitored for a target face (Joe) pre-
sented amongst other unfamiliar faces and their own face. Results between the Joe, unfamiliar face and own face conditions were
compared using Cohen’s d statistic (square root of signal-to-noise ratio) to measure effect size.
Results: When the own-face condition was compared to the Joe and unfamiliar-face conditions, the channel map method increased effect
size by a factor ranging from 1.2 to 2.2. These results stand in contrast to previous findings, where conventional pooling schemes failed to
reveal an N170 effect to the own-face stimulus (Tanaka JW, Curran T, Porterfield A, Collins D. The activation of pre-existing and
acquired face representations: the N250 ERP as an index of face familiarity. J Cogn Neurosci 2006;18:1488–97). Consistent with con-
ventional pooling schemes, the channel map approach showed no reliable differences between the Joe and Unfamiliar face conditions,
yielding a decrease in effect size ranging from 0.13 to 0.75.
Conclusions: By increasing the signal-to-noise ratio in the measured waveforms, the channel pool method demonstrated an enhanced
sensitivity to the neurophysiological response to own-face relative to other faces.
Significance: By overcoming the characteristic inter-subject variations of ICA, this work allows classic ERP analysis methods to exploit
the improved signal-to-noise ratio obtainable with ICA.
� 2007 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Responses to experimental manipulations, measured by
Event-Related Potentials (ERPs), are considered distinct

when ERP peaks differ significantly in amplitude, latency,
and/or scalp topography (Dien and Santuzzi, 2005). The
effects of an experimental manipulation can be made more
visible by employing any of a wide variety of signal pro-
cessing techniques, such as spatial-, frequency- and/or
time-domain filtering, to separate the signal of interest
from background noise. A key issue in the design of such
filters is consistency – the ERP data must be processed
consistently across subjects and conditions to avoid
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introducing processing artefacts as a side effect of enhanc-
ing the measurability of the bona fide effects under study.
Dimensionality-reduction techniques, such as Independent
Component Analysis (ICA), can be very effective at
increasing signal-to-noise ratio, but typically exhibit varia-
tions of scalp topography across subjects (Delorme and
Makeig, 2004), which preclude the consistent use of stan-
dard statistical analysis techniques, such as ANOVA. We
report a method of using ICA which restores consistency
while retaining the increased signal-to-noise ratio.

Measurability of an effect is enhanced by increasing the
signal-to-noise ratio, which amounts to increasing the effect
size. This results either from an increased difference in the
means of some statistic used to distinguish between exper-
imental conditions, or from a reduced variance of that dif-
ference, or both. Since increasing the difference between the
means is usually considered infeasible for ERP measure-
ments, the reduction of variance is typically pursued and
most often achieved by increasing the number of measure-
ments taken (Tabachnick and Fidell, 1989).

Variance across trials can be reduced by increasing the
number of trials. Indeed, trial-averaging of event-locked
potentials is commonly used to suppress random back-
ground EEG while emphasising the EEG due to the cogni-
tive processes under study. However, the number of useful
trials is usually limited by habituation, fatigue and other
extraneous effects that tend to increase with experiment
duration. For example, in a virtual Morris Water Maze
paradigm (Sorensen et al., 2006), the behavioural implica-
tions of repetition limit reliable data collection to only 30
trials or so. Similarly, variance across subjects can be
reduced by increasing the number of subjects. However,
it is often impractical even to double the number of sub-
jects in many experiments due to scarcity of suitable sub-
jects, limitations on total time available, and so on. In
any case, doubling the number of subjects would only
decrease the variance by a factor of 2. In contrast, this
paper describes an example in which the proposed method
increases the effect size by as much as 2.2 times. In terms of
the constant-mean techniques discussed above, this is
equivalent to reducing variance by a factor of 5 without
requiring any additional data collection.

Another way of reducing variance involves channel
pooling, or averaging of measurements taken from adja-
cent electrodes. Pooling is also often employed to simplify
ERP analysis by reducing the number of degrees of free-
dom. In some cases, pooling may reduce problems associ-
ated with statistical testing of channels having correlated
activity, on the assumption that correlation decreases with
distance between electrodes. Generally, channels are
selected for pooling based on commonly accepted practice,
ad hoc observation, or channel · condition interaction
effects. Unfortunately, channel pooling often leads to blur-
ring of amplitude effects, which attenuates statistical mea-
sures of difference between conditions (Dien and
Santuzzi, 2005). Therefore, many ERP components are
generally accepted as being best measured at particular

individual electrodes. The N170 ERP peak, which we use
as our example, can be measured with or without pooling
in face recognition paradigms. It has been measured from
T5 and T6 (Rossion et al., 2000), or from P7 pooled with
PO7 and P8 pooled with PO8 (Gauthier et al., 2003).

In this paper, we present a more general concept of
pooling that avoids the shortcomings of conventional pool-
ing while retaining the advantages, such as reduced vari-
ance and decreased sensitivity to outliers. In generally-
accepted practice, pooling is applied to electrodes which
are in adjacent positions on the scalp, or symmetrically
located with respect to the midsagittal plane, and pooling
is discrete; channels either do or do not belong to a given
pool. In contrast, our approach permits partial member-
ship of channels that are not necessarily adjacent and
may even have opposite polarities. We assign a weight
between �1 and +1 to each channel, which defines that
channel’s degree of membership in the channel pool. We
refer to the set of all weights for a given pool as the channel
map of that pool. In this paper, we demonstrate the con-
struction and use of such channel maps to enhance the
measured signal corresponding to a particular ERP. This
signal is then used to evaluate the ERP amplitude peak uni-
formly across subjects in order to quantify differences
among experimental conditions.

1.1. Related work

In some cases, channel selection reduces to a simple
choice of reference electrodes (McFarland et al., 1997) to
keep the reference far from the brain region of interest,
determined a priori. For Brain–Computer Interface appli-
cations (Lal et al., 2004), channel selection is sometimes
accomplished with the aid of clustering methods (Mont-
gomery et al., 2005), but this differs from the present work
in that the focus is usually on finding the minimal set of
electrodes required to discriminate between a small number
of conditions (typically two) whereas our aim is to make
the most effective channel map possible, using all of the
available electrodes.

A commonly-used method of separating an ERP into
components is Principal Component Analysis (PCA),
which decouples estimated sources based on their second-
order statistics. The first component identified by PCA
accounts for the largest fraction of the total energy of an
ERP peak and is therefore usually physiologically quite
plausible. Unfortunately, the physiological plausibility of
the remaining PCA components becomes increasingly com-
promised by the restriction that each component be
orthogonal to every previous component. Statistics beyond
second-order are not used by PCA, and this leads to misal-
location of variance and indeterminate factor interactions –
in addition to which, PCA suffers from latency jitter
(Achim and Marcantoni, 1997; Dien, 1998). Kayser and
Tenke (2003) performed a systematic exploration of these
issues and determined analysis methodologies which mini-
mize the problems as much as possible, but found that the
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problems can only be mitigated, not eliminated, because
the limitations are inherent to the formal mathematical
structure of PCA. In contrast, ICA implicitly takes into
account statistics of all orders (Hyvärinen et al., 2001) to
find components exhibiting maximal statistical indepen-
dence, and thus the results of ICA reflect the structure of
the sources themselves much more closely than do the
results of PCA.

The approach which bears, perhaps, the strongest
resemblance (in some of its more recent refinements) to
that adopted in this paper is the Topographic Components
Model (TCM), originally proposed by Möcks (1998a,b).
This is a trilinear model, wherein the multi-channel EEG
trace for each subject is modeled as a sum of terms, each
of which is a product of three factors. The three factors
composing each term are a scalp topography, a time course
and a so-called ‘‘loading factor’’. The loading factors indi-
cate the degree to which the individual topographic ERP
components, each represented by the product of a scalp
topography and a time course, are present in the data.
Thus the model represents a multi-channel EEG data set
as a weighted sum of topographic ERP components.

Application of TCM to discrimination between normal
and abnormal visual evoked potentials (Field and Graupe,
1990, 1991a) and classification of subjects based on the
auditory P300 (Field and Graupe, 1991b) showed that
TCM can give a better fit to real EEG data, using fewer
parameters, than can be obtained with PCA. However,
latency jitter proved to be no less a problem for TCM than
for PCA, and the applications of TCM to real neurophysi-
ological data are subject to a number of criticisms, not least
among which is the fact that additional orthogonality con-
straints are required to obtain a solution. By way of rem-
edy, Achim and Bouchard (1997) extended the model to
permit variations in latency and time-scale across condi-
tions. Their approach begins with Singular Value Decom-
position (SVD) of concatenated data sets to produce
topographies and initial estimates of waveforms for the
components, followed by an iterative adjustment of ampli-
tude, onset and duration parameters extracted from the
waveforms by spline interpolation. The results reported
are obtained only on simulated data sets and have not been
generalized to more than two experimental conditions or
more than one subject.

A relatively recent extension to TCM (Wang et al., 2000)
relaxes the strict one-to-one correspondence between
topographies and waveforms, which is characteristic of ear-
lier versions of TCM, and permits the number of topogra-
phies to differ from the number of waveforms. In this
approach, SVD is applied to a concatenation of EEG
traces, each of which is obtained by averaging all trials
for a given subject and condition. Topographies are deter-
mined by spatial SVD, and waveforms are determined by
temporal SVD. Thus, though the use of SVD again leads
to orthogonal waveforms, the net activation of a topogra-
phy is expressed as a weighted sum of waveforms using a
matrix of loading factors that need not be diagonal, and

therefore the activations of any pair of topographies will
not generally be orthogonal. In order to obtain a unique
solution, however, the components must be rotated such
that averaging the loading matrices of all subjects results
in a diagonal matrix. Once again, a constraint is imposed
to make the model mathematically tractable at the expense
of neurophysiological plausibility.

One characteristic which is common to PCA, SVD and
ICA is that they estimate time courses and spatial profiles
separately for each subject to minimize departures from
spatial stationarity, and consequently fail to provide a
framework for making the kind of between-subjects com-
parisons facilitated by TCM. One of the key objectives of
the present work, therefore, is to combine the advantages
of TCM and ICA. This is made possible by the fact that
many of the topographies corresponding to the indepen-
dent components bear a marked similarity to one another
between subjects, which suggests clustering and averaging
within clusters after ICA as a method of creating compo-
nents which capture what is common to all subjects. Con-
treras-Vidal and Kerick (2004) clustered components using
both k-means clustering and hierarchical clustering to
make cross-subject comparisons. Using scalp topographies
and spectral characteristics of ICA-derived sources as clus-
tering criteria, they demonstrated that sources common
across subjects will be clustered together while sources
unique to specific subjects are highly unlikely to be placed
in clusters.

A principle benefit of ICA is that it does not limit anal-
ysis to well-known ERP peaks, but permits mining of data
for statistically independent sources. ICA not only provides
for data-driven component selection but further enables
analysis of events that are not prominent in averaged data.
The scalp topographies provided by ICA are independent
of time, and analysis is therefore relatively unhindered by
latency jitter between trials. ICA has been demonstrated
(Makeig et al., 2000) to be effective for recovering the
waveforms and scalp topographies of statistically indepen-
dent sources explicitly constructed to simulate the charac-
teristics of the EEG signals typically encountered in ERP
analysis. The statistical independence of the sources found
by ICA dramatically reduces the need for repeated-mea-
sures corrections to mitigate the increased probability of
type-1 errors which would otherwise result from the appli-
cation of multiple statistical tests to adjacent electrodes
with partially correlated activity. In numerous studies
using real data (e.g. Jung et al., 2001; Makeig et al.,
2004; Onton et al., 2005), ICA has been used successfully
to separate EEG into components. These are the main rea-
sons why our work utilizes ICA.

We use ICA, clustering and averaging to construct chan-
nel maps which are, in effect, spatial filters derived from the
data. We use the channel map corresponding to a given
component to emphasise specific features in ERP data rep-
resenting multiple conditions, collected from multiple sub-
jects. Unlike methods based on statistical measures of ICA
source waveforms (Delorme and Makeig, 2004), we use the
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components found by ICA purely for constructing channel
maps, with the objective of increasing effect size consis-
tently across subjects in support of standard statistical
analysis methods.

1.2. ICA in theory

The basic concept of ICA is perhaps best understood by
considering the so-called cocktail party problem. There are
n people in a room, all speaking simultaneously, and each
voice is a source signal, si(t). There are also m microphones
situated about the room, and each one produces an
observed signal, xi(t). This is a latent-variables model; the
source signals are not observable in isolation because each
microphone responds to some unknown mixture of the
sources. The task, then, is to recover the si(t) knowing only
the xi(t).

In using ICA to solve this problem, it is assumed that
the observed signals can be expressed as instantaneous, lin-
ear, time-invariant mixtures of statistically independent
sources which are either non-Gaussian or non-white or
non-stationary. Specifically, one introduces the model

xðtÞ ¼ AsðtÞ; ð1Þ

where x(t)=[x1(t), x2(t), . . .,xm(t)]T, s(t)=[s1(t), s2(t), . . ., sn

(t)]T, and the unknown m · n matrix, A, is called the mixing
matrix. Each row of A determines how the sources combine
to form a particular observed signal, and each column of A

determines how a particular source is distributed among
the observed signals. This situation is depicted schemati-
cally in the online-only Figure S1.

Some of the assumptions leading to this example are
somewhat unrealistic in the context of the cocktail party
because, for instance, people will tend to move about the
room and the room acoustics will exhibit significant delays
and reverberations, which necessitate the treatment of the
aij as time-dependent impulse response functions. On the
other hand, the assumptions allowing the aij to be treated
as simple, real constants are rather well satisfied by EEG
signals. In this case, the observed signals are just the volt-
ages on the electrodes, and the underlying sources are the
potentials generated by the neural activity of anatomical
structures in the brain which, for each subject, reside at
fixed, though possibly unknown, locations within the skull.
At the time and distance scales of interest in electroenceph-
alography, electromagnetic propagation delays are entirely
negligible and biological tissues behave essentially as linear
isotropic media (Makeig et al., 1996). In addition, the sta-
tistical properties of EEG signals satisfy all of the desider-
ata: they are non-Gaussian and non-white and non-
stationary, all at the same time (Parra and Sajda, 2003).

Eq. 1 is deceptively simple, because both of the factors
on the right hand side are to be estimated. This results in
two irreducible indeterminacies. First, any of the si(t)
may be multiplied by any nonzero constant, because the
inverse of that constant can be absorbed into the corre-
sponding column of A without changing the left hand side

of the equation in any way. A commonly adopted conven-
tion is to scale the si(t) to unit variance, but even so, a fac-
tor of ±1 remains, which cannot be resolved. Second, the
si(t) may appear in any order, though this can be rendered
irrelevant by adopting the convention that the si(t) are
ordered such that the magnitude of the columns of A
decreases with increasing column index.

Without loss of generality, the xi(t), and therefore the
si(t), may be assumed to have zero mean, but a number
of additional assumptions are required in order to make
this problem soluble. First, the columns of the mixing
matrix must be linearly independent. Second, there must
be at least as many signals as there are sources to be esti-
mated: m P n. And finally, the sources are assumed to be
statistically independent, which means that

pðs1ðtÞ; s2ðtÞ; . . . snðtÞÞ ¼ p1ðs1ðtÞÞp2ðs2ðtÞÞ . . . pnðsnðtÞÞ; ð2Þ

where p is the joint distribution and the pi are the marginal
distributions of the si(t). This should not be confused with
the more commonly encountered condition of vanishing
correlation,

hsiðtÞsjðtÞi ¼ hsiðtÞihsjðtÞi; i 6¼ j ð3Þ

which follows from it. In fact, Eq. 2 implies the much
stronger condition

hf ðsiðtÞÞgðsjðtÞÞi ¼ hf ðsiðtÞÞihgðsjðtÞÞi; i 6¼ j ð4Þ

for any measurable functions, f and g (Papoulis, 1991). It
should be noted, however, that Eqs. 3 and 4 are completely
equivalent for Gaussian sources, and therefore at most one
of the pi may be Gaussian.

Unfortunately, it is not generally possible to utilize Eq. 2
directly. In practice, therefore, the process reduces to the
task of iteratively finding a linear transform, W, such that

sðtÞ ¼WxðtÞ ð5Þ

and the components of the left-hand side, the si(t), are as
independent as possible, in the sense that some measure
of independence is maximized. The matrix, W, is called
the unmixing matrix. It can be shown (Comon, 1994) that
such ‘‘maximally independent’’ components approach
strict independence, and W approaches A�1 asymptoti-
cally, when m = n. Closely related to this fact is the empir-
ical observation that the greater the number of sensors, the
higher the statistical independence among the calculated
sources. Essentially, this is because the ICA algorithm
has a greater number of degrees of freedom to work with.

The various approaches to ICA differ primarily in which
measure of independence is chosen to be maximized, and
how the maximization is accomplished. One of the earliest
approaches was based on maximum likelihood estimation
(Pham et al., 1992). Another approach, called InfoMax
(Bell and Sejnowski, 1995), maximizes the information flow
through a neural network implementation of ICA. Alterna-
tively, one may minimize the Gaussianity (Hyvärinen and
Oja, 1997) of the estimated sources or minimize the mutual
information between them (Cardoso, 1999). In fact, the
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approach one chooses is largely a matter of taste, because it
can be shown (Lee et al., 2000) that all these approaches
are essentially equivalent.

Noise sources are not explicitly modeled in Eq. 1, but
this is not a major issue in practice (Makeig et al., 1996)
because any noise which is present should be extracted as
one or more of the independent components. In conse-
quence, particularly in EEG work, it is quite possible for
the largest-magnitude component to be an artefact compo-
nent. EEG data are generally not averaged prior to per-
forming ICA, so that all available information can be
treated in a uniform manner. Classification of components
as bona fide sources or noise is done after the fact. This is a
strength of the ICA methodology because it allows for
rejection of artefacts that would not otherwise be separable
from the data, and the extraction of sources that would
otherwise be overwhelmed by strong artefacts. It does,
however, place the onus on the experimenter to carefully
scrutinize the components returned by ICA and decide
which ones are, in fact, noise.

1.2.1. ICA in practice

Fig. 1 shows some of the results obtained via indepen-
dent component analysis of data acquired in the experi-
ment described in the next section. We present them here
to illustrate some of the subtleties involved in interpreting

the results of ICA. Each vertical pair of panels in Fig. 1
(a/d, b/e, and c/f) is a geometric representation of the sche-
matic depiction in the online-only Figure S1(b). The lower
panel of this figure (d, e, or f) shows the time course, or
waveform, of one of the sources, si(t), extracted from
EEG data by ICA; the upper panel (a, b, or c) shows
how that source projects to the scalp, and is constructed
as follows. Each element of the ith column of the mixing
matrix, aij, is placed at the location of the electrode which
measures signal, xj(t). This is a geometric layout of a chan-
nel map. Finally, the spaces between the electrode locations
are interpolated to make a continuous scalp topography
out of the discrete channel map. The largest positive values
map to the deepest shades of red1 (indicated by (+)), the
most negative values map to the deepest shades of blue
(indicated by (�)), and values near zero map to shades of
green.

At each instant in time, the product of the source
waveform and the associated channel map gives the con-
tribution of that source to the potential at every point on
the scalp. Taken over the entire time interval, this prod-
uct is called a back-projected source in the ICA litera-
ture, and is known as a topographic component in the

Fig. 1. The subtle relationships among components within and between subjects. (a) Channel map a
ð1Þ
1 , (b) channel map a

ð1Þ
2 , (c) channel map a

ð2Þ
3 , (d)

source sð1Þ1 , (e) source sð1Þ2 , (f) source sð2Þ3 .

1 For interpretation of the references to color in this figure, the reader is
referred to the web version of this paper.
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TCM literature. The channels of a back-projected source
will vary together with time and demonstrate perfect
covariance, with each channel having the same waveform
multiplied by a unique constant, either positive or
negative.

Panels a/d and b/e show two different components
from one subject, while panels c/f show a single compo-
nent from another subject. Careful consideration of the
relationships among them highlights some practical ram-
ifications of independent component analysis, and dem-
onstrates why some degree of visual inspection is
completely unavoidable when dealing with components
extracted by ICA.

Referring to Fig. 1, we see that, in all three waveforms,
there is a peak at approximately 170 ms, flanked by two
peaks of the opposite polarity. The time courses of sources
sð1Þ1 and sð1Þ2 strongly resemble one another to within addi-
tive noise, and resemble the negative of sð2Þ3 , also to within
additive noise. We express this by writing

sð1Þ1 � sð1Þ2 � �sð2Þ3 ð6Þ

where parenthesised superscripts identify the subject and
subscripts identify the component.

The channel maps display an even more intriguing struc-
ture. In this case, it is the sum of a

ð1Þ
1 and a

ð1Þ
2 which resem-

bles the negative of a
ð2Þ
3 , again to within additive noise.

That is,

a
ð1Þ
1 þ a

ð1Þ
2 � �a

ð2Þ
3 ð7Þ

Taken together, these two equations allow us to write, at
each instant of time,

sð1Þ1 a
ð1Þ
1 þ sð1Þ2 a

ð1Þ
2 � sð2Þ3 a

ð2Þ
3 ð8Þ

Evidently, the ICA algorithm found more-or-less the same
bilateral component in the two subjects, but split the com-
ponent further into left- and right-hemisphere contribu-
tions in the first subject, while the irreducible sign
ambiguity was resolved differently in the second subject
than in the first. This illustrates the fact that the sign ambi-
guity is inconsequential as long as one takes the product of
the waveform and the channel map, and makes all compar-
isons between subjects at the level of back-projected topo-
graphic components. The application of the investigator’s
judgement at this point is unavoidable, because there is
no mathematical reason to prefer 1 · 1 over (�1) · (�1).
Only neurophysiological insight can provide that
preference.

In summary, care must be taken when comparing ICA
results between subjects. Each subject’s functional brain
anatomy will be at least somewhat different (for example,
how tightly left and right occipital areas are coupled for
a particular behaviour), and noise sources will also vary
appreciably between experimental set-ups for different sub-
jects, as will the non-task-specific neural background activ-
ity of each subject. Because ICA is rather sensitive to such
differences and assumes spatial stationarity, it must be

applied to each subject individually. This introduces the
potential for resolving the sign ambiguity differently from
one subject to the next, which creates the need for the type
of visual inspection and analysis described above, but such
analysis becomes rapidly intractable with increasing num-
bers of subjects and experimental conditions, requiring
the use of software to automate as much as possible of
the process.

As of version 5.0 beta, the EEGLab software package
(Delorme and Makeig, 2004) includes clustering of com-
ponents based on topographies, modelled dipoles, spec-
tral features and time-domain characteristics of
extracted sources. The underlying assumption is that
sources with similar scalp topographies and waveform
characteristics are due to the same neurophysiology
across subjects, and that differences within any cluster
are due to slight anatomical variations among subjects.
The methods offered in EEGLab make comparisons of
waveforms across subjects, calculated using a different
spatial filter and sphering matrix for each subject, and
no mechanism is provided to include subjects in the sta-
tistical analysis for which ICA failed to find a compo-
nent that could reasonably be included in a cluster.
Thus the EEGLab clustering documentation (Delorme
et al., 2006) explicitly warns that, ‘‘claims to discovery
of physiological facts from component clustering should
be accompanied by thoughtful caveat and, preferably,
by results of statistical testing against a stable null
hypothesis’’. However, no generally available software
package creates channel pools from clustered ICA com-
ponents so that standard statistical methods can be used
for ERP analysis.

Our method differs from those available in EEGLab in
that we combine ICA results from individual subjects to
form canonical channel maps applicable to the entire
group, which satisfies the consistency requirement outlined
in the introduction and allows statistical tests to be made
among experimental conditions across multiple subjects.
To demonstrate this method, we use the ‘‘Joe/No Joe’’ task
to examine the N170 face recognition ERP component
(Tanaka et al., 2006) in which participants monitor for a
target face (i.e., ‘‘Joe’’) presented among other unfamiliar
faces and the participant’s own face.

2. Methods

2.1. Participants

Twelve graduate students from the University of Victo-
ria, six males and six females, aged 23–55 (31 ± 11) years,
participated in this study. Eleven were right handed and
one was left handed. All had normal or corrected-to-nor-
mal visual acuity and normal colour vision and none had
a history of neurological disorders. Permission for data col-
lection was granted by the University of Victoria Ethics
Committee and informed consent was given by each
participant.
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2.2. Apparatus and stimuli

Stimuli consisted of gray-scale images of human faces,
digitized at a resolution of approximately 120 · 180 pixels,
presented on a 17-in. 1024 · 768 CRT monitor using E-
Prime experiment control software (Psychological Software
Tools, Pittsburgh, PA). These stimuli were viewed from a
distance of about 70 cm in a quiet, dimly lit room, and sub-
tended viewing angles of about 3.3� horizontally and 5�
vertically.

Each participant viewed 12 different faces. One of these
was the participant’s own face, and the remaining 11 were
completely unfamiliar faces prior to the experiment. One of
the unfamiliar faces, of the same gender as the participant,
was designated as the target face and named ‘‘Joe’’ or
‘‘Jane.’’ Target faces were counterbalanced so that each
of the unfamiliar faces served as the target face for each
participant.

2.3. Experimental procedures

Subjects were seated comfortably in a chair and intro-
duced to their target faces. Each trial began with the dis-
play of a fixation mark in the form of a ‘+’ sign, which
remained at the centre of the screen for 500 ms. A face
image was presented immediately afterwards, and
remained visible for 500 ms. This stimulus was followed
by a blank screen for another 500 ms. Following the
post-stimulus delay, the participant was visually prompted
for a response by the single-word question ‘‘Joe?’’ (or
‘‘Jane?’’ according to gender), which was displayed for
one full second in order to give the participant ample time
to respond. The required response was to press a button
with the left or right index finger (randomized between par-
ticipants) if the picture was Joe/Jane, and otherwise to
press another button with the index finger of the opposite
hand. Immediately following the response, or after the
maximum time allowed for a response had elapsed, the
screen was again blanked for an inter-trial delay of one sec-
ond. Participants were given a self-timed rest between sets,
and longer breaks between blocks, while electrode imped-
ances were checked and corrected if necessary. Each face
appeared 70 times for a total of 840 trials. The trials were
divided into four blocks and the order of presentation was
random within blocks, with the proviso that no image ever
appeared twice in a row.

2.4. Electrophysiological recordings

Electroencephalograms were recorded using a montage
of 21 electrodes, placed at locations selected from the
extended international 10–20 system (Jasper, 1958) using
electrode caps fitted for each participant. Signals were
acquired using the QuickAmp ERP tool kit (Brain Prod-
ucts GmbH, Gilching, Germany) and digitized at a rate
of 250 samples per second to 22-bit accuracy, giving a res-
olution of 71.5 nV/bit and a full-scale range of ±150 mV.

Digitized signals were recorded to disk using Brain Vision
Recorder software (Brain Products GmbH, Gilching, Ger-
many). Electrode impedances were maintained below
5 KX. A linked-earlobe reference was used, and electrooc-
ulogram (EOG) recordings were taken for artefact
removal. Horizontal EOG was recorded from the external
canthi of both eyes, while vertical EOG was recorded from
the sub-orbital area of the right eye and referenced to Fp2.

2.5. Data analysis

The three experimental conditions were designated
Own, Joe and Other. Selection of the Joe face and one face
to represent the Other condition was alternated across sub-
jects. The data were examined for statistical evidence of
distinctions between these conditions in the N170 ERP
component, against the null hypothesis that no such dis-
tinctions existed. This analysis was repeated eight times,
using waveforms generated from the data in different ways.
First (case 1), using a channel map constructed as described
in the next section, which exhibited a pronounced bilateral
symmetry. Second (cases 2 and 3), this channel map was
decomposed, as described in a subsequent section, into a
pair of channel maps with mirror symmetry across the mid-
sagittal plane. As bases for comparison, channels known to
be relevant to the N170 were pooled in three different ways.
First (case 4), PO7 and PO8 were pooled together to form a
bilaterally symmetric pool of the sort one might use to sup-
press hemispheric differences so as to allow examination of
ERP components common to both hemispheres. Second
(cases 5 and 6), PO7 and PO8 were considered separately;
that is, unpooled. Third (cases 7 and 8), PO7 and PO8 were
pooled with their nearest neighbours (PO7 with CP3 and
PO8 with CP4), forming a pair of pools with mirror sym-
metry across the midsagittal plane, such as one might use
in an attempt to reject noise while retaining hemispheric
differences. These eight cases were distinguished only by
the pooling method used.

The data were pre-processed identically in all cases,
using Brain Vision Analyzer (Brain Products GmbH, Gil-
ching, Germany); the procedure was typical for ERP anal-
ysis of early face-recognition ERP components (Tanaka
and Porterfield, 2001). Epochs of 1100 ms length, begin-
ning 200 ms prior to stimulus onset and extending to
900 ms afterwards, were segmented off-line. The digitized
signals were filtered using a 4th order digital Butterworth
filter having a pass band of 0.1–40 Hz. Trials with eye-
movement artefacts were smoothed using the algorithm
described in Gratton et al. (1983); trials with amplitudes
exceeding ±100 lV or amplitude steps exceeding ±50 lV
were excluded. The data were then averaged across trials
for each subject and condition to generate a standard
ERP trace for each electrode.

At this stage, the pooled waveforms were calculated
quite differently in each of the eight cases, as described
above. After pooling, however, data analysis continued
identically in all cases.
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Each pooled waveform was baseline corrected by sub-
tracting the mean value of the signal in the 200 ms interval
immediately preceding stimulus onset. N170 amplitudes
were extracted from the trial-averaged waveforms for each
subject by finding the most negative peak within a window
of ±50 ms, centred at 170 ms post-stimulus. For all sub-
jects, this peak was visibly distinguishable from other
large-amplitude variations in the ERP waveform. Means
and variances of these amplitude peaks were then calcu-
lated across the twelve subjects for each experimental
condition.

Repeated-measures 1-way ANOVA was applied to the
bilaterally symmetric cases (cases 1 and 4 above), to assess
the significance of differences between conditions while fac-
toring out variations between subjects. In the remaining
cases, repeated-measures 2-way ANOVA was used to eval-
uate the effects of condition, hemisphere, and condi-
tion · hemisphere interactions. As usual, a difference was
taken to be significant if the probability was less than
0.05 that it was due to random effects. In addition, differ-
ences between experimental conditions were quantified
using Cohen’s d statistic (Cohen, 1992), which measures
effect size by expressing the distance between the means
of a pair of distributions in units determined by the stan-
dard deviation of that distance. Suppose we measure the
value of some random variable under two different experi-
mental conditions, and we obtain values of l1 ± r1 and
l2 ± r2, where l1 and l2 are the means for the conditions
and the corresponding standard deviations are r1 and r2.
Then the distance between the two means, Cohen’s d, is
defined as

d ¼ l1 � l2

r
; where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

2

r
: ð9Þ

Evidently, Cohen’s d statistic is just the square root of the
signal-to-noise ratio. As such, it serves as an excellent basis
for comparison between situations wherein the means and
standard deviations are not directly comparable – such as
between the proposed and conventional pooling methods.
To provide a familiar basis of comparison for the effect
sizes measured by Cohen’s d, paired t-tests were also
performed.

2.6. ICA-derived channel maps

The procedure for constructing a channel map respon-
sive to the posterior N170 ERP component, and applicable
across all subjects and conditions, is outlined in Fig. 2. The
ICA implementation distributed with EEGLab v4.512 soft-
ware (Delorme and Makeig, 2004) for MatLab was used to
identify 18 maximally independent components for each of
the 12 subjects. The only pre-processing used to prepare the
data for ICA was 0.1–40 Hz band-pass filtering and aver-
age referencing. The ocular channels (LHEOG, RHEOG
and VEOG) were excluded from the analysis, leaving 18
channels and thus limiting the number of sources to be

found by ICA to at most 18. In order to focus the analysis
on activity occurring in the physiologically relevant time
interval, the first and last 200 ms were trimmed from the
dataset for each trial. For each of the 12 subjects, the short-
ened trials for all conditions (70 trials · 3 conditions) were
concatenated and subjected to ICA, so that the ICA algo-
rithm could respond to the contrast between sources, both
within and between experimental conditions (Makeig et al.,
2000). This resulted in an 18 · 18 mixing matrix for each
subject. In each matrix, each column represented the scalp
topography of one source for one subject. A noteworthy
aspect of this procedure is that the data were not explicitly
segregated by condition. Because ICA finds statistically
independent components, sources that were consistent
between conditions were combined by the algorithm into
a single component, while sources that were distinct from
one condition to the next were assigned to separate
components.

In order to resolve the sign ambiguity prior to cluster-
ing, the sources had to be back-projected to the scalp
(recall Fig. 1 and Eq. 8). Thus, to calculate time-domain
source waveforms representing individual source activities
over the entire epoch of �200 to 900 ms, the trial-averaged
data for each condition were multiplied by the inverse of
the mixing matrix; this was done for each subject sepa-
rately. The 18 resulting source waveforms for each of the
12 subjects were normalized to zero-mean and unit-vari-
ance. The final step in back-projecting the sources to the
scalp was to multiply each source for each subject by its
associated column of the mixing matrix for that subject.

The k-means clustering algorithm was then used to
group components having similar spatio-temporal profiles.
Given an integer, k, this algorithm groups the data into
exactly k clusters, such that the sum of the intra-cluster
variances is minimized. A description of the algorithm is
provided in Karhunen et al. (2000) and references therein.
Unfortunately, choosing the number of clusters can be
quite complex; estimation of the optimal number of clus-
ters is an area of research in itself (Burman, 1989; Xu,
1997). Currently, there is no generally applicable automatic
procedure for selecting the optimal number of clusters.
Therefore the selection is most effectively made by a human
expert, relying on criteria that must necessarily remain
somewhat arbitrary. For our purposes, the quality of each
cluster was evaluated using the standard error of the clus-
ter-average weight at each electrode, the covariance of the
back-projected average sources, and the proportion of sub-
jects involved. It was found empirically that the best bal-
ance between these figures of merit was obtained when
the number of clusters was set at 10, which lead to clusters
involving at least 9 of the 12 subjects.

Back-projected sources were clustered for each condi-
tion separately, according to their squared Euclidian dis-
tance. The pre-stimulus interval was included in the
clustering procedure on the premise that the period of
non-stimulus (average non-activity) is as important for
grouping as was the post-stimulus period. For each cluster,
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the average of all the back projections in the cluster was
calculated. It was found that, for each experimental condi-
tion, exactly one cluster exhibited a significant bilateral,
occipito-parietal negative peak in the vicinity of 170 ms
post-stimulus. The channel weights, shown in the online-
only Figure S2 with standard error indicated, were
obtained by averaging within each of these three clusters,
over a window of 16 ms length, centered on the peak.
The scalp topographies shown in the figure were interpo-
lated from the channel weights using spherical splines.
The covariance of the waveforms resulting at each elec-
trode when the back-projected sources are averaged
together within each cluster is clearly evident in the figure.

As can be seen from the online-only Figure S2, the cluster-
ing of components generated by ICA resulted in very similar
relative channel weights for the three experimental condi-
tions. At 170 ms, all three conditions exhibited a pro-
nounced, bilaterally symmetric, occipito-parietal negativity
and a corresponding positivity in the anterior central region
of the scalp. This is reflected in the emphasis placed on the Fz,
Cz, PO7, and PO8 electrodes by the channel weights.

The channel maps constructed for each condition were
averaged to arrive at the canonical channel map for the
N170, shown in Fig. 3(a). The pronounced bilateral sym-
metry of this channel map was not by design; it emerged
as a result of clustering statistically independent topo-
graphic components. The cluster which responded most
strongly at 170 ms also happened to be bilaterally
symmetric.

In order to decompose the bilateral channel map into
left and right hemispheric components, which could be
compared directly to the signals obtained from PO7
and PO8, the channel map was modelled as the sum of
a pair of dipoles having mirror symmetry across the mid-
sagittal plane. DIPFIT, supplied with EEGLab, was used
for this purpose. Starting from a random initial place-
ment of the dipole pair, the algorithm optimized the fit
by iteratively adjusting the positions and orientations of
the dipoles, subject to the symmetry constraint. The fit
turned out to be excellent, with a residual variance of
only 1%. Nonetheless, it should be emphasized that this
was not done for purposes of source localization. Indeed,

Fig. 2. Procedure for constructing the bilateral channel map.
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18 electrodes do not provide sufficient spatial resolution
to warrant detailed conclusions regarding the location
of sources. However, the resulting left and right hemi-
spheric channel maps, shown in Fig. 3(b) and (c), did
provide a suitable basis for comparison with PO7 and
PO8 individually, while the bilateral channel map of
Fig. 3(a) was comparable to the pool composed of
PO7 and PO8 together. The waveforms shown in the sec-
ond and third rows of Fig. 3 are averages across all sub-
jects of the waveforms obtained by applying the
indicated pools to the preprocessed EEG data.

3. Results

The mean values of the peaks at 170 ms are shown in
Fig. 4, together with their standard errors. A striking
aspect of this figure is that the means are greater than the
width of the error bars only for the three channel maps;
all other measurements are completely contained within
their error bars except for PO7 in the Own and Other con-
ditions. The improvement in signal-to-noise ratio obtained
by using the channel maps is thus visually obvious. Addi-
tionally, it can be seen that the inclusion of CP3 and CP4

Fig. 3. Decomposition of bilateral channel map into left and right hemispheric maps. (a) Bilateral channel map, (b) left hemisphere channel map, (c) right
hemisphere channel map, (d) waveform – channel map, (e) waveform – channel map, (f) waveform – channel map, (g) waveform – PO7 and PO8, (h)
waveform – PO7, (i) waveform – PO8.
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in pools with PO7 and PO8 not only moves the means in a
positive direction, but does so to different extents in the left
and right hemispheres, thereby appearing to introduce an
effect of hemisphere, independent of condition. These qual-
itative observations will be born out quantitatively by fur-
ther examination of the results.

The mean differences between conditions are shown in
the online-only Figure S3. It is immediately apparent that
all of them, including those obtained using the channel
maps, are smaller than their respective error bars. Thus,
the effect sizes are seen to be moderate at best, even when
using the channel maps. However, the error bars on the
measurements obtained with the channel maps are consis-
tently smaller than those obtained using any of the other
pooling methods, showing that the channel maps are
indeed more effective at reducing variance than the other
pooling methods.

That this variance reduction in fact corresponds to an
increased effect size is evident from Fig. 5, which shows
clearly that the channel maps have sharpened the contrast
between Own and Joe, and even more so between Own and
Other, but enhanced the similarity between Joe and Other.
For Own versus either of the other two conditions, the left
and right channel maps increased effect size as compared to
the unpooled electrodes PO7 and PO8, whereas pooling
CP3 with PO7 and CP4 with PO8 reduced the effect size.
In regard to the difference between Joe and Other, the
inverse is the case. The same observations apply to the
bilateral channel map as compared to the pool of PO7 with
PO8.

The online-only Figure S4 shows the results of paired t-
tests applied to the effects of Fig. 5. As expected, the p-
value is small wherever the effect size is large, and vice
versa. Once again, the use of the channel maps provides
stronger evidence supporting the same conclusions that
can be deduced from the signals on PO7 and PO8, whether
individually or pooled. Namely, that Joe and Other do not

differ significantly, while Own is distinctly different from
the other two conditions, and that this pattern is more pro-
nounced in the left hemisphere than the right.

All relevant descriptive statistics, including effect sizes
and results of paired t-tests, are tabulated in Table 1. Prob-
abilities shown in boldface type are those for which com-
parisons between conditions yielded statistically
significant (p 6 .05) differences. In keeping with the inter-
pretations of the preceding figures, the pool of PO7 with
PO8 showed a significant own-face effect (p = .05), which
was even more apparent using the bilateral channel map
(p = .04). The data for PO7 and PO8 individually were
too noisy to permit the effect to be localized to a hemi-
sphere, though the effect was larger in the left hemisphere.
In contrast, the increased effect-size resulting from the use
of the left and right channel maps allowed the effect to
reach statistical significance in the left hemisphere
(p = .05), but not in the right hemisphere (p = .10). The
inclusion of CP3 and CP4 in pools with PO7 and PO8
reduces the effect size for Own as compared to either of
the other two conditions, and increases the effect size for
Joe versus Other, with the result that the effect of condition
is completely obscured by this pooling method.

For the bilaterally symmetric pools, a one-way repeated
measures ANOVA was performed, and the results appear
in Supplemental Table T1. The results bear out the com-
ments regarding Table 1. The effect of condition is found
to be significant (p = .04) when using the bilateral channel
map, but not when using the pool of PO7 and PO8.

For the pools having midsagittal mirror symmetry, a
two-way repeated measures ANOVA was performed,
and the results appear in Supplemental Table T2. Once
again, a significant effect of condition is apparent using
PO7 and PO8 unpooled (p = .04), and the same effect
is more pronounced using the left and right channel
maps (p = .01). An effect of hemisphere, which appears
significant using PO7 and PO8 (p = .01), is completely

Fig. 4. Mean for each condition, with standard error, using each pooling method.
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invisible when using the left and right channel maps
(p = .44) but is greatly emphasised (p = .001) when pool-
ing PO7 with CP3 and PO8 with CP4. Referring back to
Fig. 4, it can be seen that CP3 and CP4 introduce a very
large hemispheric difference, which is essentially indepen-
dent of condition. This difference reflects hemispheric
specialization effects which are interesting in their own
right, but which have nothing to do with distinguishing
between conditions in regard to processing that is occur-
ring occipito-parietally at 170 ms. This difference is so
large that it is tempting to conclude that it gives rise,
through volume conduction, to the hemispheric difference
seen on PO7 and PO8. The complete disappearance of
this effect when using the channel maps tends to support
this conclusion.

Finally, the Supplemental Table T3 compares the var-
ious pooling methods by listing numerical ratios of effect
sizes obtained using them. Compared to the pool of PO7

and PO8, the bilateral channel map increased effect size
by factors of 1.2 and 1.7 for Own versus Joe and Other,
and decreased effect size by a factor of .29 for Joe versus
Other. Compared to PO7, the left channel map increased
effect size by factors of 1.3 and 2.0 for Own versus Joe
and Other, and decreased effect size by a factor of .75
for Joe versus Other. Compared to PO8, the right chan-
nel map increased effect size by factors of 1.2 and 2.2 for
Own versus Joe and Other, and decreased effect size by a
factor of .13 for Joe versus Other. In each case, use of
channel maps moved the effect size in the direction of
reduced uncertainty. Where conventional pooling
schemes showed a difference, the channel maps showed
a greater difference; where conventional pooling schemes
showed a similarity, the channel maps showed a greater
similarity. By contrast, the pools involving CP3 and
CP4 always moved the effect size in the direction of
greater uncertainty.

Fig. 5. Effect size (Cohen’s d) of the differences measured by each pooling method.

Table 1
Descriptive statistics and t-test results for all pooling methods

Pooling method p-value (t-test) Cohen’s d Mean, variance

Own vs. Joe Own vs. other Joe vs. other Own vs. Joe Own vs. other Joe vs. other Own Joe Other

Bilateral channel map 0.04 0.07 0.78 0.28 0.24 0.02 �1.6 �1.0 �1.0
6.6 3.7 5.4

PO7 + PO8 0.05 0.17 0.47 0.23 0.14 0.08 �1.2 �0.2 �0.5
24 14 21

Left channel map 0.05 0.10 0.41 0.32 0.21 0.11 �1.3 �0.8 �1.0
3.1 1.6 2.1

PO7 0.06 0.25 0.28 0.26 0.10 0.15 �1.8 �0.7 �1.3
25 13 20

PO7 + CP3 0.34 0.63 0.25 0.15 0.07 0.23 �0.5 �0.2 �0.7
6 4 5

Right channel map 0.10 0.14 0.88 0.19 0.19 0.01 �1.2 �0.8 �0.8
4.6 3.9 4.5

PO8 0.10 0.38 0.44 0.15 0.08 0.07 �0.9 �0.1 �0.4
29 27 29

PO8 + CP4 0.70 0.60 0.20 0.05 0.09 0.13 0.5 0.7 0.3
6.3 9.7 9.0

Probabilities in boldface are statistically significant (p � 0.5); not corrected for multiple tests.
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4. Discussion

In this paper we have shown how to use ICA, clustering
and averaging to construct channel maps which can be
applied consistently across subjects and which enhance
the effects of experimental condition in specific brain
regions while filtering out other effects. In contrast to con-
ventional pooling schemes, these channel maps increase
effect size without introducing extraneous effects, and
thereby enhance the discriminatory power of standard sta-
tistical analysis techniques.

We demonstrated the use of such channel maps by using
them to investigate the effects of experimental condition on
the posterior N170 ERP component. When subjected to
the same statistical analysis, the data obtained using the
channel maps enhanced both the contrasts and the similar-
ities between experimental conditions that were exhibited
by the noisier data obtained using the best conventional
pooling schemes, including unpooled electrodes where
appropriate. This led to reduced uncertainty in asserting
the presence of differences, where they existed, as well as
in asserting their absence, where they did not. In contrast
to a previous study employing conventional pooling proce-
dures (Tanaka et al., 2006), the current channel map
approach revealed differences in the ERP response to the
Own condition in comparison to the Joe and Other
conditions.

Given the montage used in this experiment, the only
possible conventional pooling choice for studying bilater-
ally symmetric effects is to pool PO7 with PO8. However,
use of this pool inevitably results in an effect size which is
intermediate between the sizes of the effects observed on
the unpooled electrodes, and therefore results in a loss of
information. On the other hand, the bilateral channel
map yields a net information gain in that it sharpens the
contrast between Own vs. Joe and Other, and enhances
the similarity between Joe and Other.

Again, given the montage, CP3 and CP4 are the best
choices for constructing conventional pools with PO7 and
PO8 that have midsagittal mirror symmetry. These pools
turn out to be ill-advised; not only do they reduce the sig-
nal-to-noise ratio, but – worse – they introduce a strong
hemispheric effect originating outside the brain regions of
interest. There is thus no way, using conventional pooling,
to improve upon the unpooled signals from PO7 and PO8.
The left and right channel maps, however, being derived
from the bilateral channel map by dipole decomposition,
are highly selective for signals with occipito-parietal origins
and yield a net information gain over the unpooled
electrodes.

The consistent applicability across subjects of our chan-
nel maps stands in sharp contrast to other approaches
involving ICA and clustering, such as those provided with
EEGLab, which result in subject-specific scalp topogra-
phies. In cases where compelling evidence exists for signif-
icant variations in functional anatomy from one subject to
the next, such subject-specific approaches may be war-

ranted, but then the applicability of standard statistical
analysis is called into question; the meaning and validity
of statistical comparisons between data that are not pre-
processed in a uniform manner must be carefully estab-
lished on a case-by-case basis. Use of channel maps
constructed as described in this paper, however, is com-
pletely consistent across subjects and therefore such con-
cerns do not arise.

The method described in this paper thus establishes a
link between novel ICA-based methods and standard sta-
tistical techniques which are well established in the field
of ERP research. We have shown that ICA-derived chan-
nel maps increase the power of statistical analysis by
increasing signal-to-noise ratio as measured by Cohen’s
d statistic. Of course, we have only applied these channel
maps in a single paradigm as a demonstration of the
method, though there is nothing in the method which
is specific to the paradigm. Nonetheless, it remains for
future research to apply the method in a wide variety
of paradigms to verify its general applicability, and to
determine the degree to which further increases in sig-
nal-to-noise ratio can be obtained by increasing the den-
sity of electrodes on the scalp.
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