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ABSTRACT — The traditional EE math courses in com-
plex variables and z-transforms are taught here in the con-
text of digital filter design. The course material is inte-
grated via a project which requires the design of a sim-
ple digital filter, and a complete mathematical analysis and
computer sitmulation of the filter characteristics. The de-
sign 1s facilitated with software that displays the filter im-
pulse and frequency response as the poles and zeros of the
transfer function are placed on and moved around the z-
plane. The mathematical analysis includes finding the in-
verse z-transform to obtain the filter impulse response us-
ing 5 different mathematical methods, thus covering in one
place virtually all of the complex variable and z-transform
math learned in the course. The filter design context and
the self-checking nature of this project has made it popular
with students. A similar approach may also be used with
Laplace transforms in the context of analog filter design.

I. INTRODUCTION

The traditional EE math courses in complex variables
and z-transforms may seem irrelevant to many students.
The traditional complex variables course curriculum in-
cludes properties of functions of a complex variable z, com-
plex contour integrals, convergence of sequences and series,
power series expansions, and may include properties and
calculation of z-transforms. All of this mathematics has its
major EE applications in digital filters, digital signal pro-
cessing and digital control systems. However, these courses
typically come later in the program, so the students do not
see the relevance of the math at the time they are taking
the math course.

These traditional math courses can be made much more
interesting and relevant for students by applying this math-
ematics to digital filter design. In this paper, we present
a new approach to the traditional complex variables and z
transforms course curriculum. This new approach unifies
all of the material under the banner of a simple digital filter
design and a complete analysis of it’s properties. Similarly,
this approach may be used with analog filter design, analog
control systems and Laplace transforms.

The paper is organized as follows. In Section 2, the tra-
ditional course curriculum is reviewed, and the connections
to digital filter design are pointed out. In Section 3, the
new course curriculum is described.

Thanks to all the students in my courses who put up with my
approach and seemed to enjoy it.

II. TRADITIONAL COURSE CURRICULUM AND
CONNECTIONS TO DIGITAL FILTERS

A standard course in complex variables, e.g. [1], includes
properties of functions of a complex variable z, complex
line and contour integrals, convergence of sequences and
series, power series expansions and residue theory. A stan-
dard course in signals and systems e.g. [2], includes z-
transform definitions and properties, methods for taking
inverse transforms using long division, partial fractions and
tables, and methods for solving difference equations via
transform methods.

It is typically not emphasized that the inverse z-
transforms can also be taken using contour integrals
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This integral can be evaluated in two ways: using inte-
gration along a path which encircles all of the poles of
Y (2)2*~1, as well as using residue theory to obtain

ylk] = Res[Y (2)2" 7] (2)

The inverse z-transforms can also be found using power se-
ries expansions in negative powers of z about z = 0 (Lau-
rent series)

Y(z) =) ylk" (3)

with a defined radius of convergence (ROC) equal to the
magnitude of the pole of Y (z) with the largest absolute
value. This ROC can also be found using the ratio or root
tests used to test convergence of series.

These 3 methods of taking inverse z-transforms incorpo-
rate most of the material of the standard course in complex
variables.

If all 6 methods of inverse z-transforms are applied to the
same function, then in general, the algebraic expression for
the sampled time domain signal y[k] as a function of k will
be different. However, the actual numerical values of y[k]
for each k will of course be identical.

Digital filter design normally involves selecting the pole
and zero locations to obtain a desired transfer function
H(z). The filter impulse response (or response to any other
input) is found by taking an inverse z-transform. Thus
there is a strong connection between a course in complex
variables and practical applications. The connection 1s es-
tablisehd by using complex variable theory to take the in-
verse z-transform to get a practical result (the numerical



values of the discrete-time system response) which can be
plotted and observed.

III. NEW COURSE CURRICULUM

The course begins with an introduction to digital au-
dio (CD, DVD, MP3, MP4) and digital video (DVD) as
a means to motivate the study of sampled (discrete-time)
systems. Other applications of digital signal processing
such as digital control systems and systems for manipula-
tion and enhancement of digital (still) images are presented
also. We emphasize the key idea that in all DSP, analog
input signals (audio, video, control) are sampled and quan-
tized by an A/D to produce numbers, and these numbers
are manipulated to yield different numbers which may be
input to a control program and/or go to a D/A for analog
output.

We then introduce discrete-time systems, linearity and
time-invariance, difference equations FIR/ITR and convo-
lution. z-transforms and the transfer function H(z) are
introduced as a means to solving difference equations with
arbitrary input X(z). At this point, we have motivated
the need for taking the inverse z-transform of the output
Y(z) = H(z)X(z). We then introduce the (co mplex) in-
version integral which defines the inverse z-transform, and
are thus confronted with the need to learn about complex
contour integrals and integration along a path. We mention
how the contour integral which yields y[k] can be simpli-
fied using partial fractions, so that it reduces to the sum of

integrals of the form
P ()
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for an mth order pole, where there will be a different set of
integrals for each value of k. Next we introduce techniques
to simplify the calculation of inverse z-transforms, first us-
ing residue theory, and then using power series expansions
(Laurent series) thus motivating the requisite knowledge
of sequences, series and their convergence properties. In
this way, the complex variable theory is put in the context
of predicting the outputs of digital filters using inverse z-
transforms.

IV. SOFTWARE

Software 1s used to aid the visualization of filter impulse
and frequency responses as a function of pole and zero loca-
tions. There are several versions of such software available,
including one called POT [3] developed as a stand-alone
package as a student project. POI allows poles and zeros
to be dragged and dropped on the z-plane, and displays
expressions for the difference equations and transfer func-
tion as well as impulse and frequency responses. In addi-
tion, Matlab is used to implement the filters. Both POI
and Matlab are used to filter real data (speech, music and
image) to show the effect of various filter types such as
lowpass, highpass, bandpass and bandstop. Block diagram
software such as MAX/MSP [5] for music signal process-
ing,and others [6] are mentioned.

V. TERM PROJECT - DESIGN OF DIGITAL FILTERS

The contents of the traditional course curriculum in com-
plex variables and z-transforms can be retained in it’s en-
tirety and unified via a course project as follows. A key
attribute of this project i1s that it is self-checking: the 8
separate and independent calculations of the filter impulse
response must all yield the same result.

Everything about a 2-pole 2-zero bandpass filter.

Design a digital bandpass filter, test the filter character-
istics, and document your results in a succinct but complete
report. The specifications for the bandpass filter are
o - passband center frequency fo; = 1,000 Hz.

o - sampling rate f; = 8,000 Hz
¢ - 3dB bandwidth B = 500 Hz
¢ - using 2 poles and 2 zeros.

Use any general purpose software such as C, Fortran,
Matlab, Maple, and spreadsheets. Title all graphs, label
the axes, and include a scale with proper units.

1. Filter design

(a) Design the filter and specify the transfer function
H(z). Scale the filter for unity gain at fi.

(b) An approximate formula for the 3 dB bandwidth B
of the filter as a function of the magnitude |a| of the poles
(distance of pole from origin) is w = 2|1 —a|/+/a, where dw
is the normalized bandwidth B in radians. This shows that
the distance of the pole from the unit circle |1 — a| controls
the bandwidth. Find a numerical value for |a| such that
B =500 Hz.

(c) Plot the frequency response (both amplitude and
phase) of H(z). Check that the power response is down
3 dB at f; + B/2, as it should be with the correct value
of |a|. What is the phase shift at f, and at f; + B/2?
Write your own program to make this plot, and compare
the results with POI.

(d) Find the difference equations by analysis and compare
with POI.

2. Find the impulse response by computer.

(a) Take the IDFT (Inverse Discrete Fourier Transform)
of the sampled frequency response to obtain the impulse
response h(n). Do this manually with your own program,
and with a Matlab, spreadsheet or other standard FFT
routine. Use N = 1024. Find the frequency resolution.

(b) Find the impulse response h(n) using the difference
equations. Obtain numerical results for hA(n) for 0 < n <
25. Spreadsheets are recommended for programming the
difference equations, but other types of computer simula-
tion (e.g. C, Fortran) are acceptable. Repeat using MAT-
LAB. For what value of n is h(n) less than one percent of
it’s maximum value?

3. Find the impulse response h(n) by analysis.

(a) Find the impulse response h(n) by taking the inverse
z-transform of H (z) using the inversion integral. Do the in-
tegral by two different methods, contour integration along
a path, and residues. Obtain results for 0 < n < 3 in each
case.

(b) Find the impulse response h(n) using a Laurent series
expansion of H(z) for 0 < n < 3. Find the radius of
convergence of the Laurent series using both the ratio test



and the root test.

(c) Take the inverse z-transform using 3 different meth-
ods long division, partial fractions with first order factors,
partial fractions with quadratic factors. Obtain numerical
results for 0 < n < 3 in each case.

4. Prepare a table with 9 columns, listing n and h(n) for
the difference equation calculation, the IDFT calculation,
and the 6 analytical methods, for 0 < n < 3.

5. Demonstrate that the filter works correctly by computer
simulation as follows:

(a) Evaluate the filter output y(n) with sinusoidal input

z(n) by using the difference equations. Use sampled sine
waves at the center frequency fi, repeat again at the 3 dB
down frequency f; + B/2. Verify that both the amplitude
and phase of the y(n) sine wave output are correct relative
to the input z(n), by plotting the input and output on the
same graph, and measuring the amplitude and phase shift.
If the filter is initialed with all zeros, then how long is the
transient response before the amplitude and phase reach a
steady state?
Note that the resulting points will not look much like a sine
wave because there are only about 4 samples per cycle. You
can (optionally) use an interpolation routine (a plotting
option) to get a smooth sine wave curve through the sample
points.

(b) Repeat by computing the convolution of the input
z(n) with h(n), and compare the results with the difference
equation method. How many terms of h(n) are needed to
get reasonable agreement?

(c) Now consider the input z(n) to be three sine waves
at f1/2, f1,3f1/2. The bandpass filter output y(n) should
be a sine wave at fi, 1.e. the other frequencies are mostly
filtered out. Verify this and plot the input and output on
the same graph. Take the DFT of z(n) and y(n), and
verify that Y (f) = X (f)H(f) at selected sample points in
the frequency domain.

(d) Now consider the input z(n) to be f; — fi = 7,000
Hz. Compute the filter output y(n) by convolution, and
explain the result.

(e) Use the filter to process the a voice audio file and

describe the effect of the filter (i.e. how is the output sound
different from the input). Is the voice still intelligible after
filtering 7
6. Take the DFT of the impulse response to find the fre-
quency response H(f). Choose the DFT size N to obtain
a frequency resolution of 5 Hz or better. Use zero-padding
if needed. Repeat using a smaller DFT size for which the
frequency resolution is about 16 Hz. Explain why H(f) is
different for different values of N. Which H(f) is correct,
if any 7
7. Consider the filter difference equation with initial condi-
tions y(—1) = 0,y(—2) = 1, and input z(n) = u(n). Find
the filter output y(n) by z-transform analysis, and confirm
the result by computer simulation.
8. Consider an adaptive (time-varying) version of the
bandpass filter where the center frequency f; changes in
response to a control signal. Modify the MATLAB filter
implementation to achieve this.

The last item of the project tests understanding of the
relationship between the filter coefficients ag, by in the dif-
ference equation

ylk] = arylk — 1]+ asylk — 2]+ box[k] + b1z [k — 1] + bz [k — 2]
(5)
and the the pole-zero locations py, zx in the transfer func-
tion ( i )
zZ—Z1)\2 — Z9
O Y — (6)
(z = p1)(z = p2)
where py = pi,a1 = p1 + p2,a2 = —p1p2, b1 = —bo(z1 +
z2), ba = boz1z2. The adaptive filter illustrates how to con-
trol ay, as, by, by so that fi (i.e. the phase of p1) changes
in proportion to the control signal.

H(z) =

VI. SUMMARY

We have shown how the traditional course content in
complex variables and z-transforms is integrated via a
project which requires the design of simple digital filter.
The impulse response of this filter is found using a total
of 8 different methods, both analysis and computer calcu-
lation, thus unifying all of the course material in a design
context. The course project has proven to be very popu-
lar with students, over the last 5 years. Each year, several
students come to visit the author to say that they learned
the whole course by doing the project.
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