next up previous
Next: About this document ... Up: Solution to Assignment 2 Previous: Question 2

Question 3

Using the definition of z-transform, show that

(a) $ \gamma^{k-1} u \left [k-1 \right ] {\Longrightarrow} \frac{\large 1}{\large z- \gamma } $

(b) $ u \left [ k-m \right ] {\Longrightarrow} \frac{\large z}{\large z^{m}(\large z-1)} $

Solution.

(a) Let $ x\left [k \right] = \gamma^{k-1} u \left [k-1 \right ],$ then from the definition of z-transform


\begin{eqnarray*}X \left (z \right) & = & \sum_{ k= -\infty }^{ \infty } \gamma^{k-1}u[k-1]z^{-k}\\
\end{eqnarray*}


Now let k - 1 = m, then the above equation is equivalent to

\begin{eqnarray*}X \left (z \right) & = & \sum_{ m= -\infty }^{ \infty } \gamma^...
...= & \frac{z^{-1}}{1-\gamma z^{-1}}\\
& = & \frac{1}{z-\gamma}
\end{eqnarray*}


(b) From the definition of z-transform,


\begin{eqnarray*}X \left (z \right) & = & \sum_{ k= -\infty }^{ \infty } u[k-m]z^{-k}\\
\end{eqnarray*}


Let k - m = n, the above equation is equivalent to


\begin{eqnarray*}X \left (z \right) & = & \sum_{ n= -\infty }^{ \infty } u[n]z^{...
...ft(1-z^{-1} \right)}\\
& = & \frac{z}{z^m \left( z-1 \right)}
\end{eqnarray*}




Hyun Ho Jeon
2001-01-28