next up previous
Next: Question 2 Up: Solution to Assignment 3 Previous: Solution to Assignment 3

Question 1

For the three filters of assignment 1, find the transfer function of H(z). Write H(z) as a ratio of polynomials and identify the poles and zeros. Choose a a = 0.9.

Solution.

(a) For the impulse response

\begin{eqnarray*}h \left [ k \right ] & = & 0.5 \delta \left [ k \right ] + \delta \left [ k-1 \right ] + 0.5 \delta \left [ k-2 \right ]
\end{eqnarray*}


its z-transform can be expressed as:

\begin{eqnarray*}H \left (z \right) & = & \sum_{ k= - \infty }^{ \infty } h[k]z^...
...& = & 0.5 + z^{-1} + 0.5z^{-2}\\
& = & \frac{0.5(z+1)^2}{z^2}
\end{eqnarray*}


The above equation is equivalent to

\begin{eqnarray*}H \left (z \right) & = & b_{0} \frac{(z-z_1)(z-z_2)}{(z-p_1)(z-p_2)}
\end{eqnarray*}


where z1= z2=-1 and p1=p2=0 and b0=0.5.

(b) For the impulse response

\begin{eqnarray*}h \left [ k \right ] & = & \delta \left [ k \right ] - \delta \left [ k-1 \right ]
\end{eqnarray*}


its z-transform can be expressed as:

\begin{eqnarray*}H \left (z \right) & = & \sum_{ k= - \infty }^{ \infty } h[k]z^...
...1 \right ]z^{-1} \\
& = & 1 - z^{-1} \\
& = & \frac{z-1}{z}
\end{eqnarray*}


The above equation is equivalent to

\begin{eqnarray*}H \left (z \right) & = & b_{0} \frac{z-z_1}{z-p_1}
\end{eqnarray*}


where z1=1 and p1=0 and b0=1.

(c) For the output sequence

\begin{eqnarray*}y \left [ n \right ] & = & ay \left [ n-1 \right ] + x\left [ n-1 \right ]
\end{eqnarray*}


its z-transform can be expressed as:

\begin{eqnarray*}Y \left (z \right) & = & \sum_{ k= - \infty }^{ \infty } y[k]z^...
...sum_{ k= - \infty }^{ \infty } { ay[k-1]z^{-k}+x[k-1]z^{-k} }\\
\end{eqnarray*}


Using the linearity and time-shifting properties of the z-transform , we can write

\begin{eqnarray*}Y \left (z \right) & = & aY(z)z^{-1} + X(z)z^{-1}
\end{eqnarray*}


The above equation is equivalent to (1-az-1)Y(z) & = & X(z)z-1

Thus

\begin{eqnarray*}H(z) & = & \frac{Y(z)}{X(z)}\\
& = & \frac{z^{-1}}{1-az^{-1}}\\
& = & \frac{1}{z-a}\\
& = & \frac{1}{z-p_1}
\end{eqnarray*}


where p1=a=0.9.



Hyun Ho Jeon
2001-02-05