next up previous
Next: About this document ... Up: Solution to Assignment 5 Previous: Question 1

Question 2

Find $F_r = {\em DFT}$ $\{f_k=$[1 0 0 1]$\}$ and plot the magnitude and phase of Fr. Find the ${\em IDFT}$ of Fr to verify it is equal to [1 0 0 1] as expected.

Solution.

The DFT of fk is


Fr = $\displaystyle \sum_{ k= 0}^{ N_0 - 1 }f_k (e^{j2\pi r/N_0})^{-k}$ (17)
  = $\displaystyle 1\cdot e^0 + 0 + 0 + 1 \cdot (e^{j2\pi r/N_0})^{-3}$ (18)
  = $\displaystyle 1 + cos(3\cdot 2 \pi r/N_0) - jsin(3\cdot 2 \pi r/N_0)$ (19)

The magnitude and phase responses are
|Fr| = $\displaystyle \sqrt{(1+cos(3\cdot 2 \pi r/N_0))^2 + sin^2(3\cdot 2 \pi r/N_0)}$ (20)
arg(Fr) = $\displaystyle arctan[\frac{-sin(3\cdot 2 \pi r/N_0)}{1+cos(3\cdot 2 \pi r/N_0)}]$ (21)


  
Figure 1: Frequency responses of Fr

The IDFT of Fr is

fk = $\displaystyle \frac{1}{N_0}\sum_{ r= 0}^{ N_0 - 1 }F_r (e^{j2\pi r/N_0})^{k}$ (22)
  = $\displaystyle \frac{1}{N_0}\sum_{ r= 0}^{ N_0 - 1 }[e^{-j2\pi r/N_0 \cdot 0} +
e^{-j2\pi r/N_0 \cdot 3}]e^{j2\pi rk/N_0}$ (23)

Using

$\displaystyle \frac{1}{N_0}\sum_{ r= 0}^{ N_0 - 1 }e^{j2\pi rk/N_0}e^{-j2\pi rn/N_0}$ = $\displaystyle \delta_{kn}$ (24)

where

\begin{displaymath}\delta_{kn} = \left \{ \begin{array}{ll}
1 & \mbox{for $k=n$ }\\
0 & \mbox{otherwise}
\end {array}
\right. \end{displaymath}

fk is

fk = $\displaystyle \delta_{k\cdot0} + \delta_{k\cdot3}$ (25)
  = $\displaystyle \delta[k] + \delta[k-3]$ (26)

or fk = [1 0 0 1]


next up previous
Next: About this document ... Up: Solution to Assignment 5 Previous: Question 1
Hyun Ho Jeon
2001-03-14