
JUnit-Testing GUI Components

Agenda

Test GUI Components
Simple GUI Application
Test Cases Design.
Test Cases Implementation with JUnit.
Test Cases Execution.

Project Part 3

Simple GUI Application

In our application we will cover testing
different GUI components, such as

JTextField
JButton
JDialog.
JMenu.

Application Overview

The application consist of one java class,
named MainFrame.java
The application has a text field. When a
string is typed, it adds ? to the end.
When the show button is clicked, a dialog
box displays the text + (...It works!).
The application also has a menu for
changing the text color.

Application GUI

MainFrame.java

GUI Functions

Prepare for Testing

Our Test Cases should cover:
JTextField.
JDialog Box
JButton.
JMenu.

Create test class for MainFrame using
JUnit plugin in Netbeans.

MainFrameTest.java

Problems

JUnit can not generate test functions to
GUI components.
GUI functions are private so there is no
direct path to access them.

Solution?

There are many ways to access Swing
components:

1. Application code has getXxx() methods to
return each component of interest.

2. Test code invokes events on a screen,
mimicking a human operator. Events are
typically mouse moves/clicks and key typing.

3. Test code traverses the component tree and
finds a component of a specific signature
(class, location, order, text contents, etc.).

Traverses GUI

To allows the test code to traverses
the GUI component tree.

Name each component that your test
code will request access to it using
setName() method.
Write the appropriated code to traverse
the GUI components and provide an
access to these components

Naming the GUI Components

We need to add the following function
to the MainFrame.java class
We call this function from the class
construction.

Create Traverse Class

Component traversal code is
encapsulated into a utility class,
TestUtils.
The TestUtils class contains the
following static methods:

getChildNamed()
getChildIndexed()
getChildIndexedInternal()

TestUtils.java

getChildNamed ()

getChildIndexed()

getChildIndexedInternal()

Design Test Cases with JUint

For each GUI component define a new test method in
MainFrameTest.java class with the following signature:

public void testYourGUICompnentName()
Define appropriate variables to implement your test scenario.
Use the TestUtils class to obtains access to the GUI
components
Use reference to control your GUI components.
Use you GUI component reference and swings/awt APIs to
change your GUI component behaviors.
Perform action to trigger the action listener of your component
using postActionEvent() method.

Testing the JTextFiled

Define your test method

Define variables for your test Cases

Testing the JTextField continue1

Begin your testing scenario

Use the traversal code to access the
GUI component

Testing the JTextField continue2

Use the reference of the GUI
component to modify it.

This method for automation
purpose only you don’t
have to use it

Post an action to the GUI component

This method for automation
purpose only you don’t
have to use it

Testing the JTextField continue3

Verify your test case

testInputJTextField()

Execute the Test Cases

You can execute your test cases
by:
1. Right click on test Suite class and select Run

File.
2. Right click on the test class and select Run File.
3. Right click on the Project Name and select Test.
4. Press Alt+F6 or Shift+F6

Project Part 3:Test Preparation

Requirements
Test Plan.
Test Design.
Test Implementation.

