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Abstract—The Rudin-Osher-Fatemi (ROF) algorithm for de-

noising and de-blurring of still digital images is well known to 

offer excellent image restoration performance. However, 

application of the ROF algorithm in the past has indicated that 

one can get the best results from the algorithm only when one 

terminates the algorithm at the “right time” which turns out to 

be way before the corresponding parabolic partial differential 

equation converges to its steady-state solution, and the 

determination of that right time for terminating the algorithm 

becomes a key issue for the best utilization of the algorithm. In 

this paper, a simple yet effective termination criterion for the 

ROF algorithm is proposed. Performance results are given to 

demonstrate the effectiveness of the proposed criterion when it is 
incorporated with the ROF algorithm. 

I. INTRODUCTION

Image degradations are always undesirable. The most 
common example is digital imaging in which degradations 
impair the observer’s visual experience. In advanced image 
and video applications such as object detection and 
recognition, degradations also impose certain difficulties to 
image analysis tasks. Therefore, it is of critical importance 
that digital image processing techniques be investigated and 
applied in order to remove or reduce such degradations [1]-
[3]. Image restoration is a signal processing procedure that 
attempts to reconstruct or recover a digital image degraded by 
blurring and noise contamination, and has been a subject of 
studies over the past four decades [1]-[7]. Among other 
things, the Rudin-Osher-Fatemi (ROF) algorithm for de-
noising [4] and de-blurring [5] has been recognized as one of 
the most effective methods for the restoration of degraded 
still digital images. However, application of the ROF 
algorithm in the past has indicated that one can get the best 
result from the algorithm only when one terminates the 
algorithm at the “right time” which turns out to be way before
the corresponding parabolic partial differential equation 
(PDE) converges to its steady-state solution, and the 
determination of that “right time” for the termination of the 
algorithm becomes a key issue for the best utilization of the 

algorithm. In this paper, a simple yet effective termination 
criterion for the ROF algorithm is proposed. Performance 
results are given to demonstrate the effectiveness of the 
proposed criterion when it is incorporated with the original 
ROF algorithm. 

The rest of the paper is organized as follows. In Section 2, 
the image model to be adopted and the ROF algorithm are 
briefly reviewed. In Section 3, algorithmic behavior of the 
ROF algorithm is analyzed by examining simulation results of 
the algorithm applied to a test image. The simulations serve to 
illustrate the performance difference between the best possible 
result of the algorithm and the result corresponding to the 
steady state of the evolutionary PDE. Based on the analysis, a  
termination criterion for the ROF algorithm is proposed. For 
simplicity and clarity, throughout we shall focus our attention 
on the de-noising problem. We should stress however that the 
proposed termination criterion has been found to work equally 
well when incorporated with the de-blurring algorithm 
proposed in [5]. Simulation studies of the ROF algorithm with 
the proposed termination criterion incorporated are presented 
in Section 4 where performance of the ROF algorithm is 
evaluated and compared with the well-known wavelet-based 
de-noising algorithm proposed by Donoho et al [6]. 

II. IMAGE MODEL AND THE ROF ALGORITHM 

A. Image Model 

The degradation model in the spatial domain is given by 

                  0 ( , ) ( , ) ( , )u x y u x y v x y= +                      (1)

where 0 ( , )u x y  is the observed image, ( , )u x y is the desired 

image, and ( , )v x y  denotes the noise that contaminates the 

pure image ( , )u x y . It is assumed that the noise ( , )v x y is a 

realization of a Gaussian random process with zero mean and 
standard deviation σ . The de-noising problem at hand is to 
derive a kind of optimal estimation of the original pure image 

( , )u x y based on the contaminated observation 0 ( , )u x y .
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B. The ROF Algorithm 

Let Ω be the region where the image function ( , )u x y in 

(1) is defined. The total variation (TV) of the image is defined 
as 

                          2 2[ ]TV x yJ u u u dxdy
Ω

= +                             (2) 

where ( , ), / , and / .x yu u x y u u x u u y= = ∂ ∂ = ∂ ∂  In [4], it is 

proposed that the de-nosing problem be addressed by solving 
the constrained variational optimization problem  

                      Minimize 2 2

x yu u dxdy
Ω

+                              (3a) 

       Subject to: 0( , ) ( , )u x y dxdy u x y dxdy
Ω Ω

=                  (3b)          

                         [ ]2 2

0

1
( , ) ( , )

2
u x y u x y dxdy σ

Ω

− =              (3c) 

Since the presence of noise in an image leads to a higher value 
of the TV of the image but, on the other hand, the TV of the 
image is also contributed by the edges and oscillatory features 
(such as textures) of the image itself, it is intuitively justified 
that the de-noising problem can be addressed by minimizing 
the TV of the image subject to the reasonable constraints (3b) 
and (3c) which essentially state that the noise contained in the 
image as a 2-D random field has zero mean and standard 
deviation σ .

By defining the Lagrangian of (3) as the functional 

    2 2 2 2

1 2 1 0 2 0

1
( , , ) ( ) ( )

2
x y

L u u u u u u u dxdyλ λ λ λ σ
Ω

= + + − + − −    (4) 

where 1 2andλ λ are Lagrange multipliers and applying the 

Euler-Lagrange equation to it, one concludes that the solution 
of problem (3) satisfies the second-order PDE 

     1 2 0
2 2 2 2

( ) 0
yx

x y x y

uu
u u

x yu u u u
λ λ∂ ∂+ − − − =

∂ ∂+ +
   (5a) 

subject to the boundary condition 

                  
( , )

0 on the boundary 
u x y

n

∂ = Γ = ∂Ω
∂

              (5b) 

where n denotes the normal along the boundary of region Ω .
In the ROF method [4], the solution of (5) is obtained by 
introducing a time-dependent image function u(t, x, y) and 
solving the nonlinear parabolic PDE for u(t, x, y) with time t
as an evolution parameter:  

02 2 2 2
( ) for 0, ( , )

yx

x y x y

uuu
u u t x y

t x yu u u u
λ∂ ∂ ∂= + − − > ∈ Ω

∂ ∂ ∂+ +
   (6a) 

                                ( , ,0) givenu x y                                    (6b) 

        
( , , )

0 on the boundary  for 0
u x y t

t
n

∂ = Γ = ∂Ω >
∂

       (6c)                     

where the initial value u(x, y, 0) in (6b) is typically taken to be 
the observed noisy image data u0(x, y). It was argued that as 
time t moves forward, the solution of (6) converges to a 
steady-state and that steady-state solution u(x, y) = lim u(x, y,
t) as t approaches infinity, which is obviously independent of 
time t, therefore satisfies Eq. (5) [4]. The Lagrange multiplier 
in (6a) is now time-dependent and is found to be given by 

     02 2 0

2 2 2 2 2

( )1 ( )
( )

2

y yx x
x y

x y x y

u uu u
t u u dxdy

u u u u
λ

σ Ω

= − + − +
+ +

      (7) 

III. ANALYSIS OF THE ROF ALGORITHM AND AN 

EFFECTIVE TERMINATION CRITERION

A. Analysis of the ROF Algorithm 

The theoretical justification for the approach taken in [4], 
as outlined above, “comes from the fact that it is merely the 
gradient-projection method of Rosen.” After comparing the 
method with a work by Geman and Reynolds based on 
simulated annealing, it is realized in [4] that the steady-state 
solution of (5) offers only a local solution of the original 
variational optimization problem (3). This sub-optimality is 
also confirmed by our application experiences with the ROF 
algorithm as they have indicated that improved de-noising 
performance can be achieved by terminating the algorithm at a 
right time before the steady-state is reached. To illustrate our 
point, we apply the ROF algorithm to an 8-bit test image 

( , )u x y of size 512 ×  512 known as “boat”. In the simulation, 

the observed noisy image 0 ( , )u x y  is generated by adding a 

Gaussian noise with zero-mean and σ  = 30 to the original 

noise-free image ( , )u x y . As usual, the performance of the 

algorithm is evaluated in terms of peak signal-to-noise ratio 
which is defined as 

     
2

10

255
PSNR 10log (dB)

MSE
=     where MSE is given by 

[ ]2

1 1

1
ˆMSE ( , ) ( , )

N M

i j

u i j u i j
MN = =

= −

with u(i, j) and ˆ( , )u i j representing the original and de-noised 

images, respectively. The numerical method described in [6] 

for solving (6) was applied to the noisy “boat”, i.e. 0 ( , )u x y ,

and the results obtained are shown in Figs. 1 and 2. The two 
curves shown Fig. 1 are the progressive PSNR over the first 
500 iterations (see Fig. 1a on the left) and the Lagrange 

function ( )tλ in (7) over the first 500 iterations (see Fig. 1b on 

the right). Since the iteration number is proportional to time t,
these curves can also be viewed as the PSNR and Lagrange 
multiplier values versus time t. From the figures it is observed 
that the Lagrange function converges after 500 or so iterations 
and the PSNR tends to converge after 500 iterations. It is also 
observed that the peak of the progressive PSNR occurs after 
120 iterations, way before the algorithm converges. The PSNR 
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Figure 1: (a) Progressive PSNR for image boat and (b) Lagrange 

function ( )tλ over first 500 iterations for image boat.

of the noisy date, i.e. u0(x, y), was found to be 18.59 dB, after 
120 iterations the PSNR reached its peak at 28.12 dB, and 
after 500 iterations the PSNR was 23.80 dB.  

Visual examination of the de-noising performance is 
provided by Fig. 2 where the de-nosing results after 120 
iterations and 500 iterations are shown and compared with the 
original and initial noisy data. We see that the de-noised image 
after 120 iterations (in Fig. 2c on the lower left) possesses 
superior visual quality where the noise is largely removed but 
the image edges and other details are well preserved, while the 
de-noised image after 500 iterations (in Fig. 2d on the lower 
right) is obviously over smoothed where the noise is 
completely wiped out but a great deal of image details are also 
lost. It should be stressed that the observations made here are 
not only valid for the particular image used in the simulation, 
but also for a large variety of digital images. 

The above analysis serves a motivation to develop a 
termination criterion that can be used to identify the right time 
to bring the algorithm to a halt so as to achieve near-optimal 
performance the ROF algorithm has to offer. 

(a) Original Image (b) Degraded Image

(c) Optimum De−Noised Image (d) De−Noised Image After 500 Iterations

Figure 2: (a) original image “boat”, (b) noisy “boat”, (c) de-noised 
“boat” after 120 iterations, and (d) de-noised “boat” after 500 

iterations. 

B. A Termination Criterion for the ROF Algorithm 

As is seen from Fig. 1a, the progressive PSNR exhibits a 
monotonic increasing period before reaching its peak value. 

Mathematically, assuming the progressive PSNS is a 
differentiable function of time, this means that the PSNR 
curve over a time duration from t = 0 to certain moment, say t
= tc, has positive derivative which then gradually tend to zero. 
As such, detecting the appropriate time instant to terminate the 
algorithm amounts to detecting the first time instant when the 
rate of PSNR improvement becomes very small in magnitude.
The idea just described can be implemented in terms of the 
available image data as follows. Because the original noise-
free image is not available in a practical application, we  
define a quantity, d(n), as 

                               0( ) n F
d n u u= −                                (8) 

where 
F

is the Frobenius norm, u0 is the noisy image, and 

nu is the de-noised image after n iterations. Using (1), d(n) can 

be  expressed as 

                                   ( ) n F
d n u u v= − +                              (9) 

From (9) we see that as iterate nu gets closer to the original 

image u, d(n) tends to be a constant value 
F

v . In words, as 

the iteration starts, we shall see a fairly dynamic d(n) as the 

part nu u− changes considerably, but as the iteration continues, 

d(n) becomes less and less dynamic and the “right time” to 
terminate the iteration is the moment when the dynamics of 
d(n) is considered insignificant. The nice thing about using 
d(n) to catch the right moment is that, as (8) indicates, d(n) is 
readily available while the PSNR is not because the latter 
involves the original image u. Since the significance of the 
rate of d(n) can be measured by 

                                  ( ) ( 1)n d n d nδ = − −                           (10)         

we propose that the ROF algorithm be terminated when the 

value of nδ falls below a prescribed threshold ε , i.e., 

                                   ( ) ( 1)d n d n ε− − <                            (11)      

In a wide range of simulations, it was found that a value of 
thresholdε in the range [0.01, 0.05] usually gives good results. 
The additional computational burden required by this criterion 
is fairly light that is the evaluation of the Frobenius norm of 

0nu u−  and verification of condition (11) in each iteration. As 

an example, the plots in Fig. 3 demonstrate how this 
termination criterion works. Again the image boat was used 
with the same noise-corrupted version as in Fig. 2a and b. Fig. 
3a shows a profile of PSNR during the first 200 iterations 

while Fig. 3b shows how the Frobenius norm n F
u u−

changes as the iteration continues where u represents the 
noise-free image. From this figure it is quite clearly that the 
de-noised image un is closest to the ideal image u after 120 
iterations. The problem with this approach is however that this 
profile is usually not available because it would require the 
precise knowledge of image u. Fig. 3c and d depict the 

profiles of d(n) and nδ defined by (8) and (10), respectively.  

If a threshold ε  = 0.05 is used, then the number of iterations 

required to perform so that nδ begins to fall below threshold  
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Figure 3: (a) Progressive PSNR for image boat, (b) n F
u u− versus 

iteration, (c) d(n) versus iteration, and (d) nδ versus iteration. 

ε  is found to be 125 (see also Fig. 3d), which appears to be a 
good estimate of the optimum iteration number. Here we 

stress the point that both d(n) and nδ  are readily available in 

practice.

IV. PERFORMANCE EVALUATION

Two test images, namely boat and lena (both are 8 gray-
level images of size 512× 512), were used in the simulations. 
To each test image, Gaussian noise of zero-mean and σ  = 30 

was added in order to generate a noisy image u0, and a 
threshold ε  = 0.05 was used for the ROF algorithm for both 

images. For comparison purposes, the wavelet-based 
algorithm proposed by Donaho et al [6] for image de-noising 
was also applied to the same test images. The wavelet used 
was the Daubechies wavelet of length 8 (D8) which was 
found to produce the best de-nosing results within the 
Daubechies wavelet family for the images used here. The 
algorithms’ performance is evaluated in terms of PSNR and 
visual quality of the de-noised images. In addition, the CPU 
times required by the algorithms were also recorded. 
    For image boat, the PSNR obtained by the ROF and 
wavelet algorithms were found to be 28.09 dB and 25.29 dB, 
respectively. The ROF algorithm however required 59.61 
seconds of CPU time versus 9.34 seconds for the wavelet 
algorithm on a PC with a 3.1 GHz Pentium 4 processor. For 
image lena, the PSNR achieved by the ROF and wavelet 
algorithms were found to be 29.54 dB and 26.70 dB, 
respectively. The ROF algorithm required 56.91 seconds of 
CPU time versus 9.34 seconds for the wavelet algorithm. We 
see that in both cases the ROF algorithm offers a 2.8 dB gain 
relative to the wavelet algorithm. Visual examination of the 
de-noising results (see Figs. 4 and 5) also confirms the 
superiority of the ROF algorithm as it well preserves edges 
and other image details. It is also noted that the performance 
gains of the ROF algorithm were achieved at the cost of 
increased computational complexity. Our simulations have 
indicated that the ROF algorithm shall be an excellent 
candidate method for image de-noising tasks where 
performance is a primary concern relative to complexity. 

(a) Original Image (b) Degraded Image

(c) Restored Image by Wavelet D8 (d) Restored Image by MROF

Figure 4: (a) Original boat, (b) noisy boat, (c) de-noised boat by 
wavelet D8, and (d) de-noised boat by the ROF algorithm.  

(a) Original Image (b) Degraded Image

(c) Restored Image by Wavelet D8 (d) Restored Image by MROF

Figure 5: (a) Original lena, (b) noisy lena, (c) de-noised lena by 
wavelet D8, and (d) de-noised lena by the ROF algorithm. 
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