
An Effective Termination Criterion for the

Rudin-Osher-Fatemi Algorithm for Image Restoration

Haoran Zhang and Wu-Sheng Lu

Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, Canada

{haoran, wslu}@ece.uvic.ca

Abstract—The Rudin-Osher-Fatemi (ROF) algorithm for de-

noising and de-blurring of still digital images is well known to

offer excellent image restoration performance. However,

application of the ROF algorithm in the past has indicated that

one can get the best results from the algorithm only when one

terminates the algorithm at the “right time” which turns out to

be way before the corresponding parabolic partial differential

equation converges to its steady-state solution, and the

determination of that right time for terminating the algorithm

becomes a key issue for the best utilization of the algorithm. In

this paper, a simple yet effective termination criterion for the

ROF algorithm is proposed. Performance results are given to

demonstrate the effectiveness of the proposed criterion when it is
incorporated with the ROF algorithm.

I. INTRODUCTION

Image degradations are always undesirable. The most
common example is digital imaging in which degradations
impair the observer’s visual experience. In advanced image
and video applications such as object detection and
recognition, degradations also impose certain difficulties to
image analysis tasks. Therefore, it is of critical importance
that digital image processing techniques be investigated and
applied in order to remove or reduce such degradations [1]-
[3]. Image restoration is a signal processing procedure that
attempts to reconstruct or recover a digital image degraded by
blurring and noise contamination, and has been a subject of
studies over the past four decades [1]-[7]. Among other
things, the Rudin-Osher-Fatemi (ROF) algorithm for de-
noising [4] and de-blurring [5] has been recognized as one of
the most effective methods for the restoration of degraded
still digital images. However, application of the ROF
algorithm in the past has indicated that one can get the best
result from the algorithm only when one terminates the
algorithm at the “right time” which turns out to be way before
the corresponding parabolic partial differential equation
(PDE) converges to its steady-state solution, and the
determination of that “right time” for the termination of the
algorithm becomes a key issue for the best utilization of the

algorithm. In this paper, a simple yet effective termination
criterion for the ROF algorithm is proposed. Performance
results are given to demonstrate the effectiveness of the
proposed criterion when it is incorporated with the original
ROF algorithm.

The rest of the paper is organized as follows. In Section 2,
the image model to be adopted and the ROF algorithm are
briefly reviewed. In Section 3, algorithmic behavior of the
ROF algorithm is analyzed by examining simulation results of
the algorithm applied to a test image. The simulations serve to
illustrate the performance difference between the best possible
result of the algorithm and the result corresponding to the
steady state of the evolutionary PDE. Based on the analysis, a
termination criterion for the ROF algorithm is proposed. For
simplicity and clarity, throughout we shall focus our attention
on the de-noising problem. We should stress however that the
proposed termination criterion has been found to work equally
well when incorporated with the de-blurring algorithm
proposed in [5]. Simulation studies of the ROF algorithm with
the proposed termination criterion incorporated are presented
in Section 4 where performance of the ROF algorithm is
evaluated and compared with the well-known wavelet-based
de-noising algorithm proposed by Donoho et al [6].

II. IMAGE MODEL AND THE ROF ALGORITHM

A. Image Model

The degradation model in the spatial domain is given by

 0 (,) (,) (,)u x y u x y v x y= + (1)

where 0 (,)u x y is the observed image, (,)u x y is the desired

image, and (,)v x y denotes the noise that contaminates the

pure image (,)u x y . It is assumed that the noise (,)v x y is a

realization of a Gaussian random process with zero mean and
standard deviation σ . The de-noising problem at hand is to
derive a kind of optimal estimation of the original pure image

(,)u x y based on the contaminated observation 0 (,)u x y .

1-4244-1190-4/07/$25.00 ©2007 IEEE. 489 PACRIM'07

B. The ROF Algorithm

Let Ω be the region where the image function (,)u x y in

(1) is defined. The total variation (TV) of the image is defined
as

 2 2[]TV x yJ u u u dxdy
Ω

= + (2)

where (,), / , and / .x yu u x y u u x u u y= = ∂ ∂ = ∂ ∂ In [4], it is

proposed that the de-nosing problem be addressed by solving
the constrained variational optimization problem

 Minimize 2 2

x yu u dxdy
Ω

+ (3a)

 Subject to: 0(,) (,)u x y dxdy u x y dxdy
Ω Ω

= (3b)

 []2 2

0

1
(,) (,)

2
u x y u x y dxdy σ

Ω

− = (3c)

Since the presence of noise in an image leads to a higher value
of the TV of the image but, on the other hand, the TV of the
image is also contributed by the edges and oscillatory features
(such as textures) of the image itself, it is intuitively justified
that the de-noising problem can be addressed by minimizing
the TV of the image subject to the reasonable constraints (3b)
and (3c) which essentially state that the noise contained in the
image as a 2-D random field has zero mean and standard
deviation σ .

By defining the Lagrangian of (3) as the functional

 2 2 2 2

1 2 1 0 2 0

1
(, ,) () ()

2
x y

L u u u u u u u dxdyλ λ λ λ σ
Ω

= + + − + − − (4)

where 1 2andλ λ are Lagrange multipliers and applying the

Euler-Lagrange equation to it, one concludes that the solution
of problem (3) satisfies the second-order PDE

 1 2 0
2 2 2 2

() 0
yx

x y x y

uu
u u

x yu u u u
λ λ∂ ∂+ − − − =

∂ ∂+ +
 (5a)

subject to the boundary condition

(,)

0 on the boundary
u x y

n

∂ = Γ = ∂Ω
∂

 (5b)

where n denotes the normal along the boundary of region Ω .
In the ROF method [4], the solution of (5) is obtained by
introducing a time-dependent image function u(t, x, y) and
solving the nonlinear parabolic PDE for u(t, x, y) with time t
as an evolution parameter:

02 2 2 2
() for 0, (,)

yx

x y x y

uuu
u u t x y

t x yu u u u
λ∂ ∂ ∂= + − − > ∈ Ω

∂ ∂ ∂+ +
 (6a)

 (, ,0) givenu x y (6b)

(, ,)

0 on the boundary for 0
u x y t

t
n

∂ = Γ = ∂Ω >
∂

 (6c)

where the initial value u(x, y, 0) in (6b) is typically taken to be
the observed noisy image data u0(x, y). It was argued that as
time t moves forward, the solution of (6) converges to a
steady-state and that steady-state solution u(x, y) = lim u(x, y,
t) as t approaches infinity, which is obviously independent of
time t, therefore satisfies Eq. (5) [4]. The Lagrange multiplier
in (6a) is now time-dependent and is found to be given by

 02 2 0

2 2 2 2 2

()1 ()
()

2

y yx x
x y

x y x y

u uu u
t u u dxdy

u u u u
λ

σ Ω

= − + − +
+ +

 (7)

III. ANALYSIS OF THE ROF ALGORITHM AND AN

EFFECTIVE TERMINATION CRITERION

A. Analysis of the ROF Algorithm

The theoretical justification for the approach taken in [4],
as outlined above, “comes from the fact that it is merely the
gradient-projection method of Rosen.” After comparing the
method with a work by Geman and Reynolds based on
simulated annealing, it is realized in [4] that the steady-state
solution of (5) offers only a local solution of the original
variational optimization problem (3). This sub-optimality is
also confirmed by our application experiences with the ROF
algorithm as they have indicated that improved de-noising
performance can be achieved by terminating the algorithm at a
right time before the steady-state is reached. To illustrate our
point, we apply the ROF algorithm to an 8-bit test image

(,)u x y of size 512 × 512 known as “boat”. In the simulation,

the observed noisy image 0 (,)u x y is generated by adding a

Gaussian noise with zero-mean and σ = 30 to the original

noise-free image (,)u x y . As usual, the performance of the

algorithm is evaluated in terms of peak signal-to-noise ratio
which is defined as

2

10

255
PSNR 10log (dB)

MSE
= where MSE is given by

[]2

1 1

1
ˆMSE (,) (,)

N M

i j

u i j u i j
MN = =

= −

with u(i, j) and ˆ(,)u i j representing the original and de-noised

images, respectively. The numerical method described in [6]

for solving (6) was applied to the noisy “boat”, i.e. 0 (,)u x y ,

and the results obtained are shown in Figs. 1 and 2. The two
curves shown Fig. 1 are the progressive PSNR over the first
500 iterations (see Fig. 1a on the left) and the Lagrange

function ()tλ in (7) over the first 500 iterations (see Fig. 1b on

the right). Since the iteration number is proportional to time t,
these curves can also be viewed as the PSNR and Lagrange
multiplier values versus time t. From the figures it is observed
that the Lagrange function converges after 500 or so iterations
and the PSNR tends to converge after 500 iterations. It is also
observed that the peak of the progressive PSNR occurs after
120 iterations, way before the algorithm converges. The PSNR

490

0 100 200 300 400 500
18

20

22

24

26

28

30
P

S
N

R
 (

dB
)

Iteration

(a) Progressive PSNR

0 100 200 300 400 500
−1

0

1

2

3

4

5

6

7

8

Iteration

(b) Lagrange Multiplier λ(t)

 (a) (b)

Figure 1: (a) Progressive PSNR for image boat and (b) Lagrange

function ()tλ over first 500 iterations for image boat.

of the noisy date, i.e. u0(x, y), was found to be 18.59 dB, after
120 iterations the PSNR reached its peak at 28.12 dB, and
after 500 iterations the PSNR was 23.80 dB.

Visual examination of the de-noising performance is
provided by Fig. 2 where the de-nosing results after 120
iterations and 500 iterations are shown and compared with the
original and initial noisy data. We see that the de-noised image
after 120 iterations (in Fig. 2c on the lower left) possesses
superior visual quality where the noise is largely removed but
the image edges and other details are well preserved, while the
de-noised image after 500 iterations (in Fig. 2d on the lower
right) is obviously over smoothed where the noise is
completely wiped out but a great deal of image details are also
lost. It should be stressed that the observations made here are
not only valid for the particular image used in the simulation,
but also for a large variety of digital images.

The above analysis serves a motivation to develop a
termination criterion that can be used to identify the right time
to bring the algorithm to a halt so as to achieve near-optimal
performance the ROF algorithm has to offer.

(a) Original Image (b) Degraded Image

(c) Optimum De−Noised Image (d) De−Noised Image After 500 Iterations

Figure 2: (a) original image “boat”, (b) noisy “boat”, (c) de-noised
“boat” after 120 iterations, and (d) de-noised “boat” after 500

iterations.

B. A Termination Criterion for the ROF Algorithm

As is seen from Fig. 1a, the progressive PSNR exhibits a
monotonic increasing period before reaching its peak value.

Mathematically, assuming the progressive PSNS is a
differentiable function of time, this means that the PSNR
curve over a time duration from t = 0 to certain moment, say t
= tc, has positive derivative which then gradually tend to zero.
As such, detecting the appropriate time instant to terminate the
algorithm amounts to detecting the first time instant when the
rate of PSNR improvement becomes very small in magnitude.
The idea just described can be implemented in terms of the
available image data as follows. Because the original noise-
free image is not available in a practical application, we
define a quantity, d(n), as

 0() n F
d n u u= − (8)

where
F

is the Frobenius norm, u0 is the noisy image, and

nu is the de-noised image after n iterations. Using (1), d(n) can

be expressed as

 () n F
d n u u v= − + (9)

From (9) we see that as iterate nu gets closer to the original

image u, d(n) tends to be a constant value
F

v . In words, as

the iteration starts, we shall see a fairly dynamic d(n) as the

part nu u− changes considerably, but as the iteration continues,

d(n) becomes less and less dynamic and the “right time” to
terminate the iteration is the moment when the dynamics of
d(n) is considered insignificant. The nice thing about using
d(n) to catch the right moment is that, as (8) indicates, d(n) is
readily available while the PSNR is not because the latter
involves the original image u. Since the significance of the
rate of d(n) can be measured by

 () (1)n d n d nδ = − − (10)

we propose that the ROF algorithm be terminated when the

value of nδ falls below a prescribed threshold ε , i.e.,

 () (1)d n d n ε− − < (11)

In a wide range of simulations, it was found that a value of
thresholdε in the range [0.01, 0.05] usually gives good results.
The additional computational burden required by this criterion
is fairly light that is the evaluation of the Frobenius norm of

0nu u− and verification of condition (11) in each iteration. As

an example, the plots in Fig. 3 demonstrate how this
termination criterion works. Again the image boat was used
with the same noise-corrupted version as in Fig. 2a and b. Fig.
3a shows a profile of PSNR during the first 200 iterations

while Fig. 3b shows how the Frobenius norm n F
u u−

changes as the iteration continues where u represents the
noise-free image. From this figure it is quite clearly that the
de-noised image un is closest to the ideal image u after 120
iterations. The problem with this approach is however that this
profile is usually not available because it would require the
precise knowledge of image u. Fig. 3c and d depict the

profiles of d(n) and nδ defined by (8) and (10), respectively.

If a threshold ε = 0.05 is used, then the number of iterations

required to perform so that nδ begins to fall below threshold

491

0 50 100 150 200
18

20

22

24

26

28

30

Iteration

P
S

N
R

 in
 d

B

(a)

0 50 100 150 200
10

15

20

25

30

Iteration

(b)

F
ro

be
ni

us
 n

or
m

 o
f

u
−

 u
n

0 50 100 150 200
0

5

10

15

20

25

30

35
(c)

Iteration

d(
n)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

δ n

Iteration

(d)

Figure 3: (a) Progressive PSNR for image boat, (b) n F
u u− versus

iteration, (c) d(n) versus iteration, and (d) nδ versus iteration.

ε is found to be 125 (see also Fig. 3d), which appears to be a
good estimate of the optimum iteration number. Here we

stress the point that both d(n) and nδ are readily available in

practice.

IV. PERFORMANCE EVALUATION

Two test images, namely boat and lena (both are 8 gray-
level images of size 512× 512), were used in the simulations.
To each test image, Gaussian noise of zero-mean and σ = 30

was added in order to generate a noisy image u0, and a
threshold ε = 0.05 was used for the ROF algorithm for both

images. For comparison purposes, the wavelet-based
algorithm proposed by Donaho et al [6] for image de-noising
was also applied to the same test images. The wavelet used
was the Daubechies wavelet of length 8 (D8) which was
found to produce the best de-nosing results within the
Daubechies wavelet family for the images used here. The
algorithms’ performance is evaluated in terms of PSNR and
visual quality of the de-noised images. In addition, the CPU
times required by the algorithms were also recorded.
 For image boat, the PSNR obtained by the ROF and
wavelet algorithms were found to be 28.09 dB and 25.29 dB,
respectively. The ROF algorithm however required 59.61
seconds of CPU time versus 9.34 seconds for the wavelet
algorithm on a PC with a 3.1 GHz Pentium 4 processor. For
image lena, the PSNR achieved by the ROF and wavelet
algorithms were found to be 29.54 dB and 26.70 dB,
respectively. The ROF algorithm required 56.91 seconds of
CPU time versus 9.34 seconds for the wavelet algorithm. We
see that in both cases the ROF algorithm offers a 2.8 dB gain
relative to the wavelet algorithm. Visual examination of the
de-noising results (see Figs. 4 and 5) also confirms the
superiority of the ROF algorithm as it well preserves edges
and other image details. It is also noted that the performance
gains of the ROF algorithm were achieved at the cost of
increased computational complexity. Our simulations have
indicated that the ROF algorithm shall be an excellent
candidate method for image de-noising tasks where
performance is a primary concern relative to complexity.

(a) Original Image (b) Degraded Image

(c) Restored Image by Wavelet D8 (d) Restored Image by MROF

Figure 4: (a) Original boat, (b) noisy boat, (c) de-noised boat by
wavelet D8, and (d) de-noised boat by the ROF algorithm.

(a) Original Image (b) Degraded Image

(c) Restored Image by Wavelet D8 (d) Restored Image by MROF

Figure 5: (a) Original lena, (b) noisy lena, (c) de-noised lena by
wavelet D8, and (d) de-noised lena by the ROF algorithm.

REFERENCES

[1] A. Rosenfeld, Picture Processing by Cmputer, Academic Press, 1969.

[2] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall,
1989.

[3] R. C. Gonzalez, and R. E. Woods, Digital Image Processing, 2nd
edition, Prentice-Hall, 2002.

[4] L. I. Rudin, S. Osher and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D., vol. 60, pp. 259-268, 1992.

[5] L. I. Rudin and S. Osher, ”Total variation based image restoration with
free local constraints,” Proc. ICIP, pp. 31-35, Austin, TX., 1994.

[6] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet
shrinkage: Asymptopia?” J. Roy. Stat. Soc., vol. 57, pp. 301-369, 1995.

[7] A. Chambolle, “An algorithm for total variation minimization and
application” J. Math. Imaging and Vision, vol. 20, pp. 89-97, 2004.

492

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

