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ABSTRACT
This paper considers the problem of minimizing a
frequency-weighted l2-sensitivity measure subject to l2-
scaling constraints for 2-D state-space digital filters.
First, the frequency-weighted l2-sensitivity is analyzed
for 2-D state-space digital filters described by the Roesser
local state-space model. Next, the minimization prob-
lem of the frequency-weighted l2-sensitivity subject to
l2-scaling constraints is formulated. The constrained
optimization problem is then converted into an un-
constrained optimization formulation by using linear-
algebraic techniques. An efficient quasi-Newton algo-
rithm with closed-form formula for gradient evaluation
is applied to solve the unconstrained optimization prob-
lem. The optimal state-space filter structure with min-
imum frequency-weighted l2-sensitivity and no overflow
oscillations is constructed by applying the optimal coor-
dinate transformation. Finally, a numerical example is
presented to demonstrate the validity and effectiveness
of the proposed technique.

1. INTRODUCTION

In many practical aplications, it is desirable to realize a
state-space model from a given transfer function so that
the filter possesses minimum sensitivity with respect to
the realization coefficients in a certain sence. So far,
several techniques have been reported for synthesizing
2-D state-space filter structures with minimum coeffi-
cient sensitivity. These include the l1/l2-mixed sensitiv-
ity minimization problem [1]-[6] and the l2-sensitivity
minimization problem [6]-[10]. Some researchers have
considred the minimization problem of the frequency-
weighted sensitivity for 2-D state-space digital filters
[4]-[7]. More recently, the minimization problem of l2-
sensitivity subject to l2-scaling constraints has been ex-
plored for 2-D state-space digital filters [11],[12]. It is
well known that the use of scaling constraints can be
beneficial for suppressing overflow oscillations [13],[14].
However, frequency-weighted sensitivity measures have
not yet been considered in [11],[12].

In this paper, we treat the problem of minimiz-
ing a frequency-weighted l2-sensitivity measure subject
to l2-scaling constraints for 2-D state-space digital fil-
ters described by the Roesser local state-space (LSS)

model [15]. First, an expression for evaluating the l2-
sensitivity is introduced, and the minimization problem
of the l2-sensitivity subject to l2-scaling constraints is
formulated. An iterative method is developed for solv-
ing the constrained optimization problem. This relies
on the convertion of the constrained optimization prob-
lem into an unconstrained optimization formulation and
utilizes an efficient quasi-Newton method with closed-
form formula for gradient evaluation. The optimal filter
structure with minimum l2-sensitivity and no overflow
oscillations is constructed by applying the resulting co-
ordinate transformation matrix. A numerical example is
presented to demonstrate the validity and effectiveness
of the proposed technique. The technique proposed here
may be viewed as an extension of the l2-sensitivity min-
imization technique reported in [11] to the frequency-
weighted l2-sensitivity minimization.

Throughout the paper, In stands for the identity
matrix of dimension n×n, ⊕ is used to denote the direct
sum of matrices, the transpose (conjugate transpose) of
a matrix A is indicated by AT (A∗), and the trace and
ith diagonal element of a square matrix A are denoted
by tr[A] and (A)ii, respectively.

2. L2-SENSITIVITY ANALYSIS

Consider a LSS model (A, b, c, d)m,n for 2-D IIR digital
filters which is stable, separately locally controllable and
separately locally observable [15],[16]

x11(i, j) = Ax(i, j) + bu(i, j)

y(i, j) = cx(i, j) + du(i, j)
(1)

where

x11(i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]

A =
[

A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c = [ c1 c2 ]

with an m× 1 horizontal state vector xh(i, j), an n × 1
vertical state vector x v(i, j), a scalar input u(i, j), a
scalar output y(i, j), and real constant matrices A1, A2,
A3, A4, b1, b2, c1, c2 and d of appropriate dimensions.
The transfer function of the LSS model in (1) is given
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by
H(z1, z2) = c(Z − A)−1b + d (2)

where Z = z1Im ⊕ z2In.
To define the frequency-weighted l2-sensitivity of the

LSS model in (1), we need the following definitions.
Definition 1 : Let X be an m×n real matrix and let

f(X) be a scalar complex function of X, differentiable
with respect to all the entries of X. The sensitivity
function of f(X) with respect to X is then defined as

SX =
∂f(X)

∂X
, (SX )ij =

∂f(X)
∂xij

(3)

where xij denotes the (i, j)th entry of matrix X.
Definition 2 : In order to take into account the sensi-

tivity behavior of the transfer function in a specified fre-
quency band, or even at some discrete frequency points,
the weighted sensitivity functions are defined as

δH(z1, z2)
δA

= WA(z1, z2)
∂H(z1, z2)

∂A

δH(z1, z2)
δb

= WB(z1, z2)
∂H(z1, z2)

∂b

δH(z1, z2)
δcT

= WC(z1, z2)
∂H(z1, z2)

∂cT

(4)

where WA(z1, z2), WB(z1, z2), and WC(z1, z2) are
scalar, stable, causal functions of the complex variables
z1 and z2.

Notice that δ in (4) is not meant to be a derivative
operator, but rather a notation for defining the weighted
parameter sensitivity.

Definition 3 : Let X(z1, z2) be an m × n complex
matrix valued function of the complex variables z1 and
z2. The l2 norm of X(z1, z2) is then defined by

||X(z1, z2)||2
=

(
tr

[
1

(2πj)2

∮
Γ1

∮
Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

(5)
where Γi = {zi : |zi| = 1} for i = 1, 2.

From Definitions 1-3, the overall frequency-weighted
l2-sensitivity measure for the LSS model in (1) can be
evaluated by

S =
∥∥∥∥δH(z1, z2)

δA

∥∥∥∥
2

2

+
∥∥∥∥δH(z1, z2)

δb

∥∥∥∥
2

2

+
∥∥∥∥δH(z1, z2)

δcT

∥∥∥∥
2

2

=
∥∥WA(z1, z2)[F (z1, z2)G(z1, z2)]T

∥∥2

2

+
∥∥∥WB(z1, z2)GT (z1, z2)

∥∥∥2

2
+‖WC(z1, z2)F (z1, z2)‖2

2

(6)
where

F (z1, z2) = (Z − A)−1b, G(z1, z2) = c (Z − A)−1.

The frequency-weighted l2-sensitivity measure in (6) is
then written as

S = tr[MA] + tr[W B] + tr[KC ] (7)

where MA, W B, and KC are obtained by the following
general expression:

X =
1

(2πj)2

∮
Γ1

∮
Γ2

Y (z1, z2)Y ∗(z1, z2)
dz1dz2

z1z2

with Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T for
X = MA, Y (z1, z2) = W ∗

B(z1, z2)G∗(z1, z2) for X =
W B, and Y (z1, z2) = WC(z1, z2)F (z1, z2) for X =
KC . The matrices KC , W B, and MA can be com-
puted using

KC =
∞∑

i=0

∞∑
j=0

fC(i, j)f T
C (i, j)

W B =
∞∑

i=0

∞∑
j=0

g T
B (i, j)gB(i, j)

MA =
∞∑

i=0

∞∑
j=0

H T
A (i, j)HA(i, j)

(8)

where

A(1,0) =
[

A1 A2

0 0

]
, A(0,1) =

[
0 0

A3 A4

]

A(0,0) = Im+n , A(−i,j) = 0 (i ≥ 1), A(i,−j) = 0 (j ≥ 1)

A(i,j) = A(1,0)A(i−1,j) + A(0,1)A(i,j−1)

= A(i−1,j)A(1,0) + A(i,j−1)A(0,1), (i, j) > (0, 0)

f (i, j) = A(i−1,j)

[
b1

0

]
+ A(i,j−1)

[
0
b2

]

g (i, j) = cA(i−1,j)

[
Im 0
0 0

]
+ cA(i,j−1)

[
0 0
0 In

]

H(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

f (k, r)g (i − k, j − r)

fC(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

wC(k, r)f (i − k, j − r)

gB(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

wB(k, r)g (i − k, j − r)

HA(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

wA(k, r)H (i − k, j − r)

with partial ordering for integer pairs (i, j) as described
in [15, p. 2], and wA(k, r), wB(k, r), and wC(k, r) de-
noting the unit-sample responses of frequency-weighting
functions WA(z1, z2), WB(z1, z2), and WC(z1, z2), re-
spectively.

3. L2-SENSITIVITY MINIMIZATION

3.1 Problem Formulation

Using a 2-D coordinate transformation defined by

x(i, j) = T −1x(i, j) (9)
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where T = T 1 ⊕ T 4 is a block-diagonal nonsingular
matrix with an m×m submatrix T 1 and an n× n sub-
matrix T 4, we obtain a new realization (A, b, c, d)m,n

characterized by

A = T −1AT , b = T −1b, c = cT . (10)

Applying the coordinate transformation in (9) to the
LSS model in (1), the weighted l2-sensitivity measure in
(7) is changed to

S(T ) = tr[T T MA(T )T ]+tr[T T W BT ]+tr[T−1KCT−T ]
(11)

where

MA(T ) =
∞∑

i=0

∞∑
j=0

H T
A (i, j)T −T T −1HA(i, j).

It is noted that the local controllability Gramian K
for the LSS model in (1) is given by

K =
1

(2πj)2

∮
Γ1

∮
Γ2

F (z1, z2)F ∗(z1, z2)
dz1dz2

z1z2

=
∞∑

i=0

∞∑
j=0

f (i, j)f T (i, j)

(12)
which is related to the local controllability Gramian K
for the new realization (A, b, c, d)m,n in (10) by

K = T −1KT −T . (13)

If l2-scaling constraints are imposed on the new local
state vector x(i, j), then it is required that

(K1)ii = (T−1
1 K1T

−T
1 )ii = 1 for i = 1, 2, · · · , m

(K4)jj = (T−1
4 K4T

−T
4 )jj = 1 for j = 1, 2, · · · , n

(14)
where

K =
[

K1 K2

K3 K4

]
with an m × m submatrix K1 and an n × n submatrix
K4 along its diagonal.

The minimization problem of the frequency-weighted
l2-sensitivity subject to l2-scaling constraints is now for-
mulated as follows: Given matrices A, b, and c, find an
(m + n) × (m + n) block-diagonal nonsingular matrix
T = T 1 ⊕ T 4 which minimizes S(T ) in (11) subject to
l2-scaling constraints in (14).

3.2 Problem Solution

Because the LSS model in (1) is assumed to be stable
and separately locally controllable, submatrices K1 and
K4 are symmetric and positive-definite [16]. Thus K

1/2
1

and K
1/2
4 satisfying Ki = K

1/2
i K

1/2
i for i = 1, 4 are

also symmetric and positive-definite. By defining

T̂ = T̂ 1 ⊕ T̂ 4

= (T 1 ⊕ T 4)T (K1 ⊕ K4)−
1
2 ,

(15)

it follows that

K = T̂
−T

[
Im K

− 1
2

1 K2K
− 1

2
4

K
− 1

2
4 K3K

− 1
2

1 In

]
T̂

−1
.

(16)
Thus, the l2-scaling constraints in (14) can be written
as

(T̂
−T

1 T̂
−1

1 )ii = 1 for i = 1, 2, · · · , m

(T̂
−T

4 T̂
−1

4 )jj = 1 for j = 1, 2, · · · , n.
(17)

It is noted that the conditions in (17) are always satisfied
by choosing T̂

−1

1 and T̂
−1

4 as

T̂
−1

1 =

[
t11

||t11|| ,
t12

||t12|| , · · · ,
t1m

||t1m||

]

T̂
−1

4 =

[
t41

||t41|| ,
t42

||t42|| , · · · ,
t4n

||t4n||

]
.

(18)

From (15), it follows that (11) can be written as

Jo(T̂ )= tr[T̂ M̂A(T̂ )T̂
T
]+tr[T̂ Ŵ BT̂

T
]+tr[T̂

−T
K̂C T̂

−1
]

(19)
where

M̂A(T̂ ) =
∞∑

i=0

∞∑
j=0

Ĥ
T

A(i, j)T̂
−1

T̂
−T

ĤA(i, j)

with

ĤA(i, j) = (K1 ⊕ K4)−
1
2 HA(i, j)(K1 ⊕ K4)

1
2

Ŵ B = (K1 ⊕ K4)
1
2 W B(K1 ⊕ K4)

1
2

K̂C = (K1 ⊕ K4)−
1
2 KC(K1 ⊕ K4)−

1
2 .

Following the above arguments, the problem of finding
an (m + n) × (m + n) block-diagonal nonsingular ma-
trix T = T 1 ⊕ T 4 which minimizes S(T ) in (11) sub-
ject to l2-scaling constraints in (14) is converted into
an unconstrained optimization problem of finding an
(m + n) × (m + n) block-diagonal nonsingular matrix
T̂ = T̂ 1 ⊕ T̂ 4 given by (15) which minimizes Jo(T̂ ) in
(19).

In order to apply a quasi-Newton algorithm for the
minimization of Jo(T̂ ) in (19) with respect to matrix
T̂ = T̂ 1 ⊕ T̂ 4 given by (15), we define an (m2 + n2)× 1
vector x = (tT

11, t
T
12, · · · , tT

1m, tT
41, t

T
42, · · · , tT

4n)T . In this
way, Jo(T̂ ) is a function of x, denoted by Jo(x). The
algorithm starts with a trivial initial point x0 obtained
from an initial assignment T̂ = Im+n. Then, in the kth
iteration a quasi-Newton algorithm updates the most
recent point xk to point xk+1 as [17]

xk+1 = xk + αkdk (20)
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where

dk = −Sk∇Jo(xk)

αk = arg min
α

Jo(xk + αdk)

Sk+1 = Sk +
(
1 + γT

k
Skγk

γT
k δk

)
δkδ

T

k

γT
k δk

−δkγT
k Sk+Skγkδ

T

k

γT
k δk

S0 = Im2+n2 , δk = xk+1 − xk

γk = ∇Jo(xk+1) −∇Jo(xk).

Here, ∇Jo(x) is the gradient of Jo(x) with respect to
x, and Sk is a positive-definite approximation of the
inverse Hessian matrix of Jo(x). This iteration process
continues until

|Jo(xk+1) − Jo(xk)| < ε (21)

where ε > 0 is a prescribed tolerance. If the iteration
is terminated at step k, then xk is viewed as a solution
point.

The implementation of (20) requires the gradient of
Jo(x). Closed-form expressions for ∇Jo(x) are given
below.

∂Jo(T̂ )
∂tij

= lim
Δ→0

Jo(T̂ ij) − Jo(T̂ )
Δ

= 2(β1 − β2 + β3 − β4)

(22)

where T̂ ij is the matrix obtained from T̂ = T̂ 1 ⊕ T̂ 4

with a perturbed (i, j)th component, which is given by
[18, p.655]

T̂ ij = T̂ +
ΔT̂ gije

T
j T̂

1 − ΔeT
j T̂ gij

, T̂
−1

ij = T̂
−1 − Δgije

T
j

gij = ∂

{
tj

||tj ||
}

/∂tij =
1

||tj ||3 (tijtj − ||tj ||2ei)

β1 = eT
j M̂A(T̂ ) T̂ gij

β2 = eT
j T̂

−T

[ ∞∑
p=0

∞∑
q=0

ĤA(p, q)T̂
T
T̂ Ĥ

T

A (p, q)

]
gij

β3 = eT
j T̂ Ŵ BT̂

T
T̂ gij , β4 = eT

j T̂
−T

K̂Cgij .

4. NUMERICAL EXAMPLE

Consider a 2-D stable recursive digital filter specified by
(A, b, c, d)2,2 where

A =

⎡
⎢⎣

1.888990 −0.912190 −0.114079 0.000000
1.000000 0.000000 0.000000 0.000000
0.242902 −0.226159 1.888990 0.926336

−0.244143 0.230044 −0.984729 0.000000

⎤
⎥⎦

b = [ 0.023466 0.000000 −0.027123 0.092453 ]T

c = [ 0.269725 −0.851676 −0.233354 0.000000 ]

d = 0.08900

Let the frequency weighted functions be given by a 2-D
FIR low-pass filter with the following unit-sample re-
sponse:

wA(i, j) = wB(i, j) = wC(i, j)

= 0.256322 exp[−0.103203{(i− 4)2 + (j − 4)2}]
for (0, 0) ≤ (i, j) ≤ (20, 20), and zero elsewhere.

Using truncated versions of (12) and (8) over (0, 0) ≤
(i, j) ≤ (200, 200) to evaluate the Gramians K, KC ,
W B and MA, it was found that

K =⎡
⎢⎣

1.000000 0.978030 0.164896 −0.167073
0.978030 1.000000 0.132858 −0.133867
0.164896 0.132858 1.000000 −0.985382

−0.167073 −0.133867 −0.985382 1.000000

⎤
⎥⎦

KC = 10 ×⎡
⎢⎣

3.294482 3.241498 0.217805 −0.239120
3.241498 3.294482 0.273305 −0.285263
0.217805 0.273305 0.434813 −0.413683

−0.239120 −0.285263 −0.413683 0.405666

⎤
⎥⎦

W B = 103 ×⎡
⎢⎣

0.430004 −0.378971 0.215395 0.250372
−0.378971 0.344251 −0.219055 −0.242076

0.215395 −0.219055 3.258040 2.969501
0.250372 −0.242076 2.969501 2.795718

⎤
⎥⎦

MA = 105 ×⎡
⎢⎣

0.602109 −0.525988 0.717257 0.794037
−0.525988 0.469122 −0.644409 −0.712423

0.717257 −0.644409 6.220951 5.654101
0.794037 −0.712423 5.654101 5.338146

⎤
⎥⎦

From (7), the frequency-weighted l2-sensitivity of filter
(A, b, c, d)2,2 was found to be

S = 126.9935053243× 104.

Choosing T̂ = I2 ⊕ I2 as the initial estimate and a
tolerance ε = 10−8 in (21), it took the proposed quasi-
Newton algorithm 21 iterations to converge to the solu-
tion

T̂
opt

=
[

0.904809 0.697047
−0.173105 1.128976

]
⊕

[
0.839016 0.582244
−0.399854 0.939719

]

or equivalently,

T opt =
[

1.141842 0.575681
1.111047 0.768680

]
⊕

[
0.266819 −0.911117
−0.094981 0.976390

]

From (19), the minimized frequency-weighted l2-
sensitivity measure was given by

Jo(T̂
opt

) = 4.0943096873× 104.

The profile of the frequency-weighted l2-sensitivity
measure Jo(x) during the first 21 iterations is shown in
Fig. 1, from which it is observed that with a tolerance
ε = 10−8 the algorithm converges with 21 iterations.
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Fig. 1. Profile of Jo(x) during the first 21 iterations.

The optimal filter structure (A, b, c, d)2,2 (that min-
imizes (11) subject to the l2-scaling constraints in (14))
is synthesized by substituting matrix T = T opt into (10)
as

A =

⎡
⎢⎣

0.930710 −0.144845 −0.098266 0.335553
0.140214 0.958280 0.142034 −0.485008
0.024963 −0.000865 0.958846 0.115600

−0.021316 0.037074 −0.175824 0.930144

⎤
⎥⎦

b=[ 0.075755 −0.109496 0.331951 0.126980 ]T

c=[ −0.638268 −0.499391 −0.062263 0.212613 ] .

5. CONCLUSION

In this paper, we have investigated the minimization
problem of the frequency-weighted l2-sensitivity sub-
ject to l2-scaling constraints for 2-D state-space digi-
tal filters described by the Roesser LSS model. An ef-
ficient iterative technique has been presented to solve
the problem. This technique relies on the conversion
of the constrained optimization problem into an un-
constrained optimization problem which is solved us-
ing an efficient quasi-Newton algorithm. The optimal
state-space filter structure with minimum frequency-
weighted l2-sensitivity and no overflow oscillations has
been constructed by applying the resulting coordinate-
transformation matrix. Our computer simulation re-
sults have shown the validity and effectiveness of the
proposed technique.
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