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ABSTRACT

This paper considers the problem of minimizing a
frequency-weighted lz-sensitivity measure subject to la-
scaling constraints for 2-D state-space digital filters.
First, the frequency-weighted lo-sensitivity is analyzed
for 2-D state-space digital filters described by the Roesser
local state-space model. Next, the minimization prob-
lem of the frequency-weighted l-sensitivity subject to
la-scaling constraints is formulated. The constrained
optimization problem is then converted into an un-
constrained optimization formulation by using linear-
algebraic techniques. An efficient quasi-Newton algo-
rithm with closed-form formula for gradient evaluation
is applied to solve the unconstrained optimization prob-
lem. The optimal state-space filter structure with min-
imum frequency-weighted ls-sensitivity and no overflow
oscillations is constructed by applying the optimal coor-
dinate transformation. Finally, a numerical example is
presented to demonstrate the validity and effectiveness
of the proposed technique.

1. INTRODUCTION

In many practical aplications, it is desirable to realize a
state-space model from a given transfer function so that
the filter possesses minimum sensitivity with respect to
the realization coefficients in a certain sence. So far,
several techniques have been reported for synthesizing
2-D state-space filter structures with minimum coeffi-
cient sensitivity. These include the l; /lo-mixed sensitiv-
ity minimization problem [1]-[6] and the ls-sensitivity
minimization problem [6]-[10]. Some researchers have
considred the minimization problem of the frequency-
weighted sensitivity for 2-D state-space digital filters
[4]-[7]. More recently, the minimization problem of lo-
sensitivity subject to la-scaling constraints has been ex-
plored for 2-D state-space digital filters [11],[12]. Tt is
well known that the use of scaling constraints can be
beneficial for suppressing overflow oscillations [13],[14].
However, frequency-weighted sensitivity measures have
not yet been considered in [11],[12].

In this paper, we treat the problem of minimiz-
ing a frequency-weighted [5-sensitivity measure subject
to ls-scaling constraints for 2-D state-space digital fil-
ters described by the Roesser local state-space (LSS)
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model [15]. First, an expression for evaluating the lo-
sensitivity is introduced, and the minimization problem
of the [o-sensitivity subject to ls-scaling constraints is
formulated. An iterative method is developed for solv-
ing the constrained optimization problem. This relies
on the convertion of the constrained optimization prob-
lem into an unconstrained optimization formulation and
utilizes an efficient quasi-Newton method with closed-
form formula for gradient evaluation. The optimal filter
structure with minimum [;-sensitivity and no overflow
oscillations is constructed by applying the resulting co-
ordinate transformation matrix. A numerical example is
presented to demonstrate the validity and effectiveness
of the proposed technique. The technique proposed here
may be viewed as an extension of the ls-sensitivity min-
imization technique reported in [11] to the frequency-
weighted [s-sensitivity minimization.

Throughout the paper, I, stands for the identity
matrix of dimension n X n, ® is used to denote the direct
sum of matrices, the transpose (conjugate transpose) of
a matrix A is indicated by AT (A*), and the trace and
1th diagonal element of a square matrix A are denoted
by tr[A] and (A);;, respectively.

2. Lo-SENSITIVITY ANALYSIS

Consider a LSS model (A, b, ¢, d), , for 2-D IIR digital
filters which is stable, separately locally controllable and
separately locally observable [15],[16]

mll(iaj) = Am(lvj) + bu(lvj) (1)

where
w11 (i, 7) = { ﬁ&j}r’{; ] =i = { ziéz:% ]
ac[d ] e [B] emre e

with an m x 1 horizontal state vector 2" (i, 5), an n x 1
vertical state vector xV(7,7), a scalar input u(i,j), a
scalar output y(i, j), and real constant matrices Ay, Ao,
Az, Ay, by, ba, c1, co and d of appropriate dimensions.
The transfer function of the LSS model in (1) is given
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by
H(z1,20) =¢(Z — A)"'b+d

where Z = z11,, ® z21,,.
To define the frequency-weighted l>-sensitivity of the
LSS model in (1), we need the following definitions.
Definition 1: Let X be an m X n real matrix and let
f(X) be a scalar complex function of X, differentiable
with respect to all the entries of X. The sensitivity
function of f(X) with respect to X is then defined as

9f(X) 9f(X)
8X ’ 8xij

(2)

Sx = (Sx)ij = (3)

where z;; denotes the (4, j)th entry of matrix X.

Definition 2: In order to take into account the sensi-
tivity behavior of the transfer function in a specified fre-
quency band, or even at some discrete frequency points,
the weighted sensitivity functions are defined as

5H(2’1,Z2) o 8H(Z1,ZQ)
oA Walz) =g
(5H(21,22) 6H(zl,z2)
StV el 4
5b Wg(z1, 22) b (4)
(5H(21,22) 5H(21722)
“oer bRl
where Wa(z1,22), Wg(z1,22), and Weg(z1,22) are

scalar, stable, causal functions of the complex variables
z1 and zo.

Notice that ¢ in (4) is not meant to be a derivative
operator, but rather a notation for defining the weighted
parameter sensitivity.

Definition 3: Let X(z1,22) be an m x n complex
matrix valued function of the complex variables z; and
z9. The ls norm of X (21, 22) is then defined by

||X(Z1732)||2

- <t { (27))? 7§

where I'; = {z; : |z;] = 1} for i =1, 2.

From Definitions 1-3, the overall frequency-weighted
lo-sensitivity measure for the LSS model in (1) can be
evaluated by

X Zl,ZQ
I

dzleQ %
*(21, 22)
Z1%2
(5)

2 5H(21,22) 2

deT

H(SH 21722

H(SH 21722

2 2

= HWA(21722)[F (z1,22)G

"l

W1, 26 (o 20| W o, ) F (21, 2
(6)

21722

where

F(z1,20) = (Z - A)7'b, G(21,22)=c(Z - A)!

The frequency-weighted ls-sensitivity measure in (6) is
then written as

S = tr[M 4] + tr[W 5] + tr[ K ¢] (7)
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where M 4, W g, and K ¢ are obtained by the following
general expression:

ledZQ
Z1%22

1 *
= Wﬁ . Y(Zl,ZQ)Y (Zl,ZQ)
1 2

with Y (21,22) = Wal(z1,22)[F (21, 22)G (21, 22)] T for
X =Ma, Y (21,22) = W§(21,22)G" (21, 22) for X =
Wpg, and Y (21,22) = We(z1,22)F (21,22) for X =
Kc. The matrices Ko, Wpg, and M 4 can be com-
puted using

Kc = Zz.fc(za])fg(lvj)

i=0 j=0
Wi =) g5i,1)95i, 1) 8)
i=0 j=0
M= 35 HIG.0)HaA(G))
=0 j=0
where
Lo _ | A1 A on_| 0 0
A —{0 0}’ A _{Ag A,
A = T, AT =03 >1), AGT =0(j>1
A(LJ) — A(LO)A(i*l:j) + A(Orl)A(i)jfl)

— A(iflrj)A(er) + A(i)jfl)A(OJ)’ (Z ])

S a1, | by Gj-1 | O
i —a [ eao[ 8]

2

(ij-1| 0 O
} +cA [ 0 I,

(0,0)

Lo (i—1,7) I,, O
g(i,j) =cA [ 0O 0

H(i,j)= > > flkrg(i—kj—r)
(0,0)<(k,r)<(4,5)
folivi)y= >3 welkr)fi—kj—r)
(0,0)<(k,r)<(4,5)
gp(ii)= D> wplkr)g(i—kj—r)
(0,0)<(k,r)<(4,5)
HA(l,]): ZZ U}A(k,’f’)H(l—k‘,]—’f’)

(0,0)<(k,r)<(4,5)

with partial ordering for integer pairs (4, j) as described
in [15, p. 2], and wa(k,r), wp(k,r), and we(k,r) de-
noting the unit-sample responses of frequency-weighting
functions Wa(z1, 22), Wg(z1, 22), and We(z1, 22), re-
spectively.

3. Lyo-SENSITIVITY MINIMIZATION

3.1 Problem Formulation
Using a 2-D coordinate transformation defined by
z(i, j)

=T 'x(i,j) (9)
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where T = T & T4 is a block-diagonal nonsingular
matrix with an m x m submatrix Ty and an n x n sub-
matrix T4, we obtain a new realization (A,b,¢,d)m n
characterized by
A=T7'AT, b=T"'b, ¢=cT. (10)
Applying the coordinate transformation in (9) to the
LSS model in (1), the weighted lo-sensitivity measure in

(7) is changed to
S(T) = tr[T" M o(T)T)+tr[TTW pT]+tr[T
(11)

where

T)=> > Hi(i.j)T "T 'Ha(i.j)
i=0 j=0
It is noted that the local controllability Gramian K
for the LSS model in (1) is given by

1 N dz1d
K = (271_])2 féﬁ F2F(z1722)F (21,2’2) ziZ:;Q
= > FNF 6 )
i=0 j=0
(12)

which is related to the local controllability Gramian K
for the new realization (A, b, €, d)m » in (10) by
K=T'KT " (13)

If Io-scaling constraints are imposed on the new local
state vector E(i, j), then it is required that

(?4)1'1' = (TZIK‘*TZT)jj =1 for j=1,2,---.,n
(14)
where
_ | K1 Kb
K= [ K; K, }

with an m x m submatrix K7 and an n X n submatrix
K 4 along its diagonal.

The minimization problem of the frequency-weighted
lo-sensitivity subject to lo-scaling constraints is now for-
mulated as follows: Given matrices A, b, and ¢, find an
(m + n) x (m + n) block-diagonal nonsingular matriz
T =T, & T4 which minimizes S(T) in (11) subject to
la-scaling constraints in (14).

3.2 Problem Solution

Because the LSS model in (1) is assumed to be stable
and separately locally controllable, submatrices K1 and

K 4 are symmetric and positive-definite [16]. Thus K /2
and K}l/ satisfying K; = Kl/QK'Zl/2 for i = 1,4 are
also symmetric and positive-definite. By deﬁmng

it follows that

K, ?K,K,®
I,

LT I,

K= _1 _1
K,"K;K;’

(16)
Thus, the lp-scaling constraints in (14) can be written
as

(T;TTII)z‘i =1 for i=1,2,---,m
AT (17)

(T, T, ) =1 for j=1,2,---,n

It is noted that the conditions in (17) are always satisfied

A1 A1
by choosing T’y and T, as
A —1 t t t
- n_ b2 ftim
[Eaa]l” [[£12]] [[E1m ]
(18)
A —1 t t t
- UL B N
[[Bar[” |[Eaz]] £l

From (15), it follows that (11) can be written as

~ A~ A AT Aa ~ T ~—T ~ ~
Jo(T) = tr[TM 4(T)T | +te[T WpT |+tr[T KT

(19)
where
ZZHAz]T T HA(Z 7)
=0 j=0
with
H (i j) = (K & K4) 2 Ha(i, j) (K1 © Ky4)*

Wp=(K ®&Ky):Wgp(K, & K,)?
K¢ = (K1®K4)_%KC(K1®K4)_%~

Following the above arguments, the problem of finding
an (m + n) x (m 4+ n) block-diagonal nonsingular ma-
trix T = T'1 @ T4 which minimizes S(T') in (11) sub-
ject to le-scaling constraints in (14) is converted into
an unconstrained optimization problem of finding an
(m + n) (m + n) block-diagonal nonsingular matrix
T = T, & T4 given by (15) which minimizes J,(T) in
(19).

In order to apply a quasi-Newton algorithm for the
minimization of J,(T') in (19) with respect to matrix
T =T,®T, given by (15), we define an (m? 4+ n?) x 1

vector & = (tllv t,{Zv o t,{ma tZla tZZ? e 477,)T In this
The

way, Jo(T') is a function of x, denoted by Jo(x).
algorithm starts with a trivial initial point @y obtained
from an initial assignment T' = I,,,4,,. Then, in the kth
iteration a quasi-Newton algorithm updates the most
recent point &y to point &y as [17]

T = T1 b T4 (15)
=T\ & T4)T(K1 ©® K4)7%, Tp+1 = Tk + apdg (20)
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where
dk = —SkVJO(EIZk)

ar = arg min J,(xr + ady)
(e}

8,0,

Sk+1 =Sk + (1+ &S’Y’“) N7y

i Ok
_5k755k+5k7k5:
e
SO = Im2+n2;
Y = VJO(:Bk+1) — VJO(:Bk).

O)p = Tpy1 — Tk

Here, VJ,(x) is the gradient of J,(x) with respect to
x, and S is a positive-definite approximation of the
inverse Hessian matrix of J,(x). This iteration process
continues until

|[Jo(@rt1) = Jo(mk)| < (21)

where € > 0 is a prescribed tolerance. If the iteration
is terminated at step k, then x; is viewed as a solution
point.

The implementation of (20) requires the gradient of
Jo(x). Closed-form expressions for V.J,(x) are given
below.

9J,(T) : JO(Tij)_JO(T)
= lim ————————~=

= 2(p1 — B2 + B3 — P4)

where Tij is the matrix obtained from T = T, & T4
with a perturbed (4, j)th component, which is given by
[18, p.655]

. . ATg, eTT . -
Ty =T+ =290 g =7 Ag el
1—Ae;Tg,,
g = o riln b /o = et e
EAR VI H R I E A
B = el Ma(T)Tg;,

T | S L T o AT
Bo =elT [ZZHA(p’ Q)T TH ,(p, Q)] 9ij
p=0 g=0

Tanvar AL T4 Tg
63:6jTWBT Tgij’ ﬂ4:ejT chz]
4. NUMERICAL EXAMPLE

Consider a 2-D stable recursive digital filter specified by
(A,b,c,d)2,2 where

1.888990 —0.912190 —0.114079  0.000000

A — 1.000000  0.000000  0.000000  0.000000
- 0.242902 —0.226159 1.888990 0.926336
—0.244143  0.230044 —0.984729  0.000000

b =10.023466  0.000000 —0.027123 0.092453]T

c =10.269725 —0.851676 —0.233354 0.000000]
d = 0.08900
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Let the frequency weighted functions be given by a 2-D
FIR low-pass filter with the following unit-sample re-
sponse:

’U}A(l,]) = wB(Zaj) = ’U}C(l,])
= 0.256322 exp[—0.103203{ (i — 4)% + (j — 4)}]
for (0,0) < (4,4) < (20,20), and zero elsewhere.
Using truncated versions of (12) and (8) over (0,0) <

(i,7) < (200,200) to evaluate the Gramians K, K,
W and M 4, it was found that

K =
1.000000  0.978030 0.164896 —0.167073
0.978030 1.000000 0.132858 —0.133867
0.164896 0.132858 1.000000 —0.985382
—0.167073 —0.133867 —0.985382 1.000000
KC =10 x
[ 3.294482 3.241498 0.217805 —0.239120 T
3.241498 3.294482 0.273305 —0.285263
0.217805 0.273305 0.434813 —0.413683
| —0.239120 —0.285263 —0.413683 0.405666 |
WB = 103 X
0.430004 —0.378971 0.215395 0.250372 T
—0.378971 0.344251 —0.219055 —0.242076
0.215395 —0.219055 3.258040 2.969501
0.250372 —0.242076 2.969501 2.795718 |
M,y = 10° x
0.602109 —0.525988  0.717257  0.794037 T
—0.525988  0.469122 —0.644409 —0.712423
0.717257 —0.644409  6.220951 5.654101
0.794037 —0.712423 5.654101 5.338146 |

From (7), the frequency-weighted lo-sensitivity of filter
(A, b, c,d)22 was found to be

S = 126.9935053243 x 10*.

Choosing T = I, & I, as the initial estimate and a
tolerance ¢ = 1078 in (21), it took the proposed quasi-
Newton algorithm 21 iterations to converge to the solu-
tion
Pt _ [ 0.904809

0.697047 @ 0.839016  0.582244
—0.173105 1.128976 —0.399854 0.939719

or equivalently,
Tovt — [1.141842 0.575681]69{ 0.266819

—0.911117
1.111047 0.768680 —0.094981

0.976390

From (19), the minimized frequency-weighted Is-
sensitivity measure was given by

Jo(T™") = 4.0943096873 x 107,

The profile of the frequency-weighted lo-sensitivity
measure J,(x) during the first 21 iterations is shown in
Fig. 1, from which it is observed that with a tolerance
e = 1078 the algorithm converges with 21 iterations.
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Fig. 1. Profile of J,(x) during the first 21 iterations.

The optimal filter structure (A, b, €, d)2» (that min-
imizes (11) subject to the lo-scaling constraints in (14))
is synthesized by substituting matrix T' = T °?* into (10)
as

0.930710 —0.144845 —0.098266  0.335553

A— 0.140214  0.958280  0.142034 —0.485008
| 0.024963 —0.000865  0.958846  0.115600
—0.021316  0.037074 —0.175824  0.930144

b=[ 0.075755 —0.109496  0.331951 0.126980 ]T
c=[ —0.638268 —0.499391 —0.062263 0.212613].

5. CONCLUSION

In this paper, we have investigated the minimization
problem of the frequency-weighted ls-sensitivity sub-
ject to lo-scaling constraints for 2-D state-space digi-
tal filters described by the Roesser LSS model. An ef-
ficient iterative technique has been presented to solve
the problem. This technique relies on the conversion
of the constrained optimization problem into an un-
constrained optimization problem which is solved us-
ing an efficient quasi-Newton algorithm. The optimal
state-space filter structure with minimum frequency-
weighted [o-sensitivity and no overflow oscillations has
been constructed by applying the resulting coordinate-
transformation matrix. Our computer simulation re-
sults have shown the validity and effectiveness of the
proposed technique.
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