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Abstract—Orthogonal frequency division multiplexing (OFDM)
modulation is widely used in communication systems to meet
the demand for ever increasing data rates. In this paper, a low
complexity joint semiblind detection algorithm for OFDM systems
over time-varying channels is proposed based on the channel cor-
relation and noise variance. The problem is relaxed to a continuous
non-convex quadratic programming problem. Then an iterative
method is utilized to deduce a sequence of reduced-size quadratic
programming problems. These are solved by limiting the search
in the 2-dimensional subspace. Furthermore, a low-bit descent
search is employed to improve the system performance. Results
are given which demonstrate that the proposed algorithm provides
comparable performance with lower computational complexity
than that of a sphere decoder.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) modu-
lation is widely used in communication systems to efficiently
provide high data rates. The major advantage of OFDM over
single-carrier transmission is its ability to deal with severe chan-
nel conditions without complex equalization. The standards em-
ploying OFDM modulation include digital video broadcasting
(DVB) [1], digital audio broadcasting DAB [2], IEEE 802.11
[3] for wireless local area networks, and IEEE 802.16 [4] for
wireless metropolitan area networks.

In an OFDM system, the data stream is modulated on orthog-
onal subcarriers using phase-shift keying (PSK) or quadrature
amplitude modulation (QAM). OFDM systems are sensitive to
Doppler spread caused by user mobility, which results in loss
of orthogonality among subcarriers. This leads to intercarrier
interference (ICI) which degrades system performance.

In the design of most ICI reduction algorithms for OFDM
systems [5]-[6], perfect channel information is assumed at the
receiver. Many channel estimation methods have been proposed
for OFDM systems based on pilot symbols [7] [8]. In most
cases, channel estimation with pilot symbols is a robust method.
However, there are disadvantages such as bandwidth loss and
overhead, which can be excessive in fast fading channels. This
motivates the use of joint blind or semiblind detection methods
for OFDM systems. These methods exploit the statistical or
deterministic properties of the channel to detect the transmitted
signals without estimating the channel [9]-[11].

There have been several recent investigations on the joint
channel estimation and data detection problem in commu-
nication systems. In [9], a joint maximum-likelihood (ML)
channel estimation and signal detection problem for single-
input multiple-output (SIMO) systems was formulated and
solved via sphere decoding. A blind joint detection problem was
formulated in [10] as an integer programming problem based
on a regression model. Cui and Tellambura [11] proposed three
ML data detectors for OFDM systems over fast fading channels
with the assumption of known channel correlation.

A sphere decoder for joint semiblind detection provides near-
optimal performance with low computational complexity com-
pared to an exhaustive search [11]. However, the complexity
is still high, so there is need for a suboptimal detector which
yields a fast solution with good performance. In this paper, an
iterative joint semiblind detection algorithm (IJSD) for OFDM
systems over time-varying channels is proposed. The detection
problem is first relaxed to a continuous non-convex quadratic
programming (QP) problem. A sequence of reduced-size QP
problems are then deduced and solved by limiting the search
in the 2-dimensional subspace spanned by its steepest-descent
and Newton directions to reduce the computational complexity.
Furthermore, a low-bit descent search (LBDS) is employed to
improve the system performance.

II. SYSTEM MODEL

Here we consider the problem of joint ML channel estimation
and signal detection in an N -subcarrier OFDM system, where
the channel is time-varying within one OFDM symbol duration,
and the channel information is partly known, i.e., the channel
correlation and noise variance.

In an OFDM system, the transmitted signal is generated using
an inverse fast Fourier transform (IFFT)

xn =
1√
N

N−1∑
k=0

Xk exp
(

j2πkn

N

)
for n = 0, . . . , N − 1 (1)

where xn is the time-domain signal at the nth sampling instant,
and Xk is the frequency-domain data symbol for the kth
subcarrier. Equation (1) can be written in vector form as

x = FX (2)



where x = [x0 x1 . . . xN−1]T and X = [X0 X1 . . . XN−1]T

represent the time-domain and frequency-domain OFDM sym-
bols, respectively, and (·)T denotes transpose of a vector
or matrix. F is the IFFT matrix with elements fn,k =

1√
N

exp( j2πkn
N ). The OFDM symbol duration is denoted by

Ts, so the chip duration of each subchannel is Tc = Ts/N .
In this paper, we consider a doubly selective fading channel

model [12]. Thus, we have a wide sense stationary uncorrelated
scattering (WSSUS) channel with impulse response given by

h(t; τ) =
L−1∑
l=0

h(t; τl)δ(τ − τl) (3)

where τl is the lth path delay with τ0 < τ1 < . . . < τL−1,
and h(t; τl) is a complex Gaussian process with zero mean
and variance σ2

l . In a rich scattering environment, the channel
autocorrelation function is separable in terms of time and delay
[12], where the time-correlation function of the channel is
characterized based on Jakes’ model [13] as

E{hl1(t + ∆t)h∗
l2(t)} = σ2

l rt(∆t)δ(l1 − l2) (4)

where rt(∆t) = J0(2πfd∆t), and J0(·) denotes the zeroth-
order Bessel function of the first kind. The frequency-domain
correlation of the channel is given by

rf (∆f) =
L−1∑
l=0

σ2
l e−j2π∆fτl (5)

For simplicity, we assume τl = lTc.
Generally a cyclic prefix (CP) is inserted at the beginning

of each OFDM symbol before transmission. The length Ncp of
the cyclic prefix is greater than or equal to that of the channel
impulse response to eliminate intersymbol interference. Con-
sequently, the discrete signal at the receiver can be expressed
as

yn =
L−1∑
l=0

h(n, l)x(n− l)+wn for n = −Ncp, . . . , N −1 (6)

where wn is additive white Gaussian noise (AWGN) with zero
mean and variance σ2.

After removing the CP and performing a fast Fourier trans-
form (FFT), we obtain

Y = AX + W (7)

where Y = [Y0 . . . YN−1]T is the frequency-domain received
signal, A = FHHF, W = FHw, and (·)H denotes conjugate
transpose of a vector or matrix. H and w denote the time-
domain channel matrix and AWGN noise, respectively,

If h(t; τl) in (3) remains constant within one OFDM symbol
duration, then A is a diagonal matrix, and no ICI will occur.
Conversely, if the channel varies within one OFDM symbol,
the orthogonality of the subcarriers does not hold, and the
received signal contains both the transmitted signal and ICI

from other subcarriers [7]. In this case, the received signal on
the kth subcarrier is

Yk = Ak,kXk +
N−1∑

m=0,m �=k

Ak,mXm + Wk (8)

where k = 0, . . . , N − 1, Ak,m denotes the (k,m)th element

of A and
N−1∑

m=0,m �=k

Ak,mXm represents the ICI caused by other

subcarriers.
According to the central limit theorem, the received signal Y

can be modeled as i.i.d. zero mean complex Gaussian random
variables. Thus, the autocorrelation matrix of Y in (7) can be
written as [11]

RYY = σ2
ICI(XDRfXH

D + σ2
enIN ) (9)

where XD = diag(X)

[Rf ](i,j) = rf ((i − j)/NTc) (10)

σ2
ICI =

1
N2

N−1∑
n1=0

N−1∑
n2=0

rt[(n1 − n2)Tc] (11)

and

σ2
en =

((
∑L−1

l=0 σ2
l )(1 − σ2

ICI) + σ2)
σ2

ICI

(12)

III. JOINT SEMIBLIND DETECTION PROBLEM

FORMULATION

The correlation within the received signal is utilized to
develop the semiblind joint detector for OFDM systems in the
frequency-domain. By maximizing the log-likelihood function
of the received signal conditioned on the transmitted signal,
joint semiblind detection can be formulated as the following
minimization problem

minimize YHR−1
Y Y Y (13a)

subject to: Xk ∈ M for k = 0, . . . , N − 1 (13b)

where M contains the symbols from the modulation used.
Assuming BPSK or QPSK modulation, we have |Xk| = 1.

Thus the minimization problem (13) is equivalent to the prob-
lem [11]

minimize XT YH
D{σ2

ICI(Rf + σ2
enIN )}−1YDX∗ (14a)

subject to: Xk ∈ M for k = 0, . . . , N − 1 (14b)

where X∗ denotes the conjugate of the transmitted signal X.
Note that this semiblind detector exhibits a phase ambiguity,
where Xejφ, φ ∈ [0, 2π), satisfies (14). One or more pilot
tones can be employed to compensate for this ambiguity.

Define Q̂ = YH
D{σ2

ICI(Rf +σ2
enIN )}−1YD, it can be seen

that Q̂ is a positive definite Hermitian matrix. However, the
computational effort required to solve the semiblind problem
(14) increases exponentially with the number of variables. In
[11], a sphere decoder was proposed to solve this problem and



provide near-optimal performance. Although the computational
complexity of the sphere decoder is reduced by examining
lattice points inside a hypersphere [14], we seek a suboptimal
detector which provides comparable results to that of the sphere
decoder with lower computational complexity.

For simplicity, only the algorithm for a QPSK OFDM system
is described, as the algorithm for BPSK can be obtained with
a straightforward modification. As (14) is a complex-valued
optimization problem, we convert it into the following real-
valued optimization problem

minimize ‖Mz‖ (15a)

subject to: zk ∈ {−
√

2
2

,

√
2

2
} for k = 0, . . . , 2N − 1

(15b)

where M =
[

real(M̂) imag(M̂)
imag(M̂) −real(M̂)

]
, Q̂ = M̂HM̂, and

z =
[

real(X)
imag(X)

]
.

Clearly, the above problem is equivalent to a quadratic
programming problem of the form

minimize zT Qz (16a)

subject to: zk ∈ {−1, 1} for k = 0, . . . , 2N − 1 (16b)

where Q = MT M.
Problem (16) is a combinatorial optimization problem with

exponential computational complexity. This type of ML de-
tection problem can be solved more efficiently by expanding
the discrete feasible set into a continuous feasible region. The
constraints in (16b) imply zT z = 2N , which corresponds to a
2N -dimensional sphere centered at the origin with radius

√
2N .

Thus problem (16) can be converted to

min zT Qz (17a)

subject to: zT z = 2N (17b)

The receiver has knowledge that a particular QPSK symbol
was transmitted on some pre-defined subcarriers, and this can
be utilized to solve problem (17). Let zd be the vector of the
unknown transmitted data, Ωd be the index set corresponding to
zd, and Nd be the size of zd. The corresponding pilot symbol
vector is denoted as zp, Ωp is the index set associated with zp,
and Np is the size of zp. By substituting the known pilot tones
zp from the variable vector z, Qd and qd can be obtained from
Q with respect to Ωd and Ωp, respectively. Consequently we
have a quadratic optimization problem of the form

minimize zT
d Qdzd + qT

d zd (18a)

subject to: zT
d zd = Nd (18b)

IV. AN ITERATIVE JOINT SEMIBLIND DETECTION

ALGORITHM

A. Basic algorithm

The variables in (18) can be iteratively detected, where
only some binary components of zd are determined in each
iteration by solving a corresponding non-combinatorial problem
of type (18). Suppose that prior to the ith iteration some binary
components of vector zd have been determined. Let zi be the
reduced-size vector that collects all undecided components of
zd, Ωi be the index set corresponding to zi, and Ni be the
size of zi during the ith iteration, respectively. By substituting
the known binary components of zd into (18), a reduced-size
problem similar to (18) is obtained as

minimize zT
i Qizi + qT

i zi (19a)

subject to: zT
i zi = Ni (19b)

The computational complexity is reduced by realizing that the
variable set in problem (19) can be expressed with respect
to a 2-dimensional subspace spanned by its steepest-descent
direction (i.e., negative gradient of the objective function) and
Newton direction. In doing so, we set

zi = η
(i)
1 v(i)

1 + η
(i)
2 v(i)

2 (20)

where v(i)
1 = qi, v(i)

2 = Q−1
i qi, and η

(i)
1 , η

(i)
2 are two scalar

variables. Then (19) is converted to a 2-dimensional problem

minimize ηT
i Siηi + pT

i ηi (21a)

subject to : ηT
i Riηi = Ni (21b)

where ηi = [η(i)
1 η

(i)
2 ]T , Si = VT

i QiVi, pi = VT
i qi, Ri =

VT
i Vi, and Vi = [v(i)

1 v(i)
2 ]. Consequently, the solution of (21)

must satisfy the Karush-Kuhn-Tucker (KKT) conditions

2Siηi + pi + 2λiRiηi = 0 (22a)

ηT
i Riηi = Ni (22b)

where λi is a Lagrange multiplier at the ith iteration. It follows
that the optimal ηi can be obtained from (22a) as

η∗
i = −1

2
(Si + λ∗

i Ri)−1pi (23)

Thus, (22b) can be rewritten as

g(λi) =
Ni−1∑
k=0

p̂2
k

(λi + sk)2
= 4Ni (24)

where sk is the kth eigenvalue of Ŝi = R− 1
2

i SiR
− 1

2
i , which

admits an eigen-decomposition Ŝi = UiΣiUT
i , and p̂k is the

kth component of vector p̂i = UT
i R− 1

2
i pi.



The only unknown variable λi can be determined by solving
the one-variable optimization problem

minimize

∣∣∣∣∣
Ni−1∑
k=0

p̂2
k

(λi + sk)2
− 4Ni

∣∣∣∣∣ (25a)

subject to: − sl ≤ λi ≤ ‖p̂i‖
1.5

√
4Ni

− sl (25b)

with sl being the smallest value of sk such that p̂l �= 0. The
unique solution λ∗

i of (25) can be effectively identified via
bisection search.

Next, the magnitudes of the components of z∗i are examined.
If |z∗k| exceeds a given threshold ρ = α|z∗i |max, the corre-
sponding variable is claimed as sign(z∗k), otherwise component
z∗k remains undetermined and will be considered as a design
variable in the next iteration. Based on the components just
detected, a QP problem similar to (18) with reduced size is
produced where the vector zi contains only the undetermined
variables. This iterative process continues until all the variables
have been identified to produce an estimate of the transmitted
data.

Note that the evaluation of Q−1
i is numerically intensive

when its size is large. This can be alleviated using the well-
known formula for inverting a four-block matrix [15]. Thus the
major portion of the computational complexity for the proposed
algorithm is on the order of O(kN2) for each iteration, where
k denotes the average number of variables detected in one
iteration and k � N for a typical threshold value.

B. Performance Enhancement by Low-Bit Descent Search

In LBDS, a given binary sequence is associated with an
objective function to be minimized. The search process evalu-
ates, compares, and determines the optimal sign switches of
a relatively small number of sequence components to yield
maximum reduction in the objective function in (18). LBDS
has been applied recently to various problems [16]. As will be
demonstrated by simulation, the performance of the proposed
algorithm can be considerably enhanced using 1-bit or 2-bit,
or a combined 1-bit-and-2-bit LBDS, at an insignificant extra
cost in computational complexity.

The iteration of LBDS is described as follows [16]. At
each iteration, one-bit descent search evaluates zd � ξ (here �
denotes component-wise multiplication), where zd is the vector
defined in Section III, ξ = Q̃zd + qd/2, and Q̃ is generated
from matrix Qd with its diagonal components set to zero. Index
k∗ is then identified as where the corresponding component ξk∗

has maximum value, and the sign of zk∗ is switched to obtain
an improved solution. Similarly, a 2-bit LBDS is performed by
computing matrix G = ξeT + eT ξ − 2Qd � (zdzT

d ), where
e is the all-one vector. The index (k∗,m∗) is identified as
where the component Gk∗,m∗ reaches its maximum value, and
an improved solution is then obtained by switching the signs of
the k∗th and m∗th components of z∗d. The iterations continue

until there is no further reduction in the objective function (18),
at which point an estimate of the transmitted data is obtained.

V. SIMULATION RESULTS

The proposed IJSD algorithm was applied to an OFDM
system with N = 64 subcarriers and a cyclic prefix of
length Ncp = N/8. The carrier frequency of the OFDM
system was 5GHz and the bandwidth of the system was set
to 3MHz. The 6-ray COST 207 TU model with power profile
[0.189, 0.379, 0.239, 0.095, 0.061, 0.037] and delay profile
[0.0, 0.2, 0.5, 1.6, 2.3, 5.0] µs was employed for the simu-
lation. Each path is an independent complex Gaussian random
process with Jake’s Doppler spectrum. One or more pilot tones
was utilized to compensate for the phase ambiguity, and BPSK
or QPSK modulation was used for both the data and pilot
symbols. The channel correlation matrix was assumed perfectly
known at the receiver. The normalized Doppler frequency of the
channel denoted as fdTs. The performance of the proposed joint
detection algorithm was evaluated based on bit error rate (BER)
and computational complexity, in comparison with a sphere
decoder. The performance of the recursive detector [6] was used
as the benchmark with the assumption of perfect channel state
information (CSI).

The BER performance was evaluated with fdTs = 0.01 for
both BPSK and QPSK OFDM systems, as shown in Figs. 1
and 2. It can be observed that the IJSD algorithm provides
comparable results to those of the sphere decoder with much
less computational complexity. For example, for the QPSK
OFDM system, at an Eb/N0 of 30dB, the sphere algorithm
has a BER of 6.4 × 10−4, while the proposed algorithm with
α = 0.8 achieves a BER of 3 × 10−3 (with only 55% of the
CPU time of the sphere decoder). This is improved to a BER
of 8.5 × 10−4 with LBDS (and 57% of the CPU time of the
sphere decoder).

A larger α can provide better performance at a cost of
increased computational complexity, as shown in Fig. 3. The
proposed algorithm exhibits a performance loss due to a smaller
threshold, but this loss can be avoided by performing LBDS
with a slightly increased computational complexity. For the
QPSK OFDM system with Doppler spread fdTs = 0.01, the
algorithm with α = 0.5 only requires 45% of the CPU time of
the sphere decoder at an Eb/N0 of 30dB. The corresponding
BER with α = 0.5 is 4.5 × 10−3. This can be improved to
9 × 10−4 by performing LBDS with 50% of the CPU time
of the sphere decoder. Table I summarizes the computational
complexity of the IJSD algorithm relative to that of the sphere
decoder for a QPSK OFDM system at Eb/N0 = 30dB, where
the CPU time of the sphere decoder is normalized to one.

Simulations were also carried out to determine the impact
of normalized doppler spread fdTs on the system performance.
The BER performances of the proposed algorithm for fdTs =
0.001, 0.005, and 0.01 are depicted in Fig. 4. It can be
observed that at lower SNR, the proposed algorithm provides
similar performance for all values of Doppler spread. However,



for smaller Doppler spreads, better performance was achieved
at higher SNRs, e.g., at Eb/N0 = 30dB, a BER of 8.5× 10−4

was obtained for fdTs = 0.01 using the proposed algorithm
with LBDS, while a BER of 2.5 × 10−4 can be achieved for
fdTs = 0.001.

Simulations were also carried out to determine the impact
of the number of pilot tones on performance. The BER of
the proposed algorithm with LBDS for fdTs = 0.01 and 1,
2 and 4 pilot tones is shown in Fig. 5. It can be observed that
there is an error floor at high signal-to-noise ratios with one
pilot tone. The performance improves as the number of the
pilot tones increases, with the error floor significantly reduced.
For example, with one pilot tone, the proposed algorithm with
LBDS achieves a BER of 0.015 at a Eb/N0 of 30dB, while
with 2 pilot tones, a BER of 2.2 × 10−3 is obtained for the
same Eb/N0. The performance can be further improved to a
BER of 8.5 × 10−4 by utilizing 4 pilot tones.

VI. CONCLUSIONS

A low complexity joint semiblind detection algorithm for
OFDM systems over time-varying channels has been proposed.
The joint semiblind problem was relaxed to a continuous non-
convex QP problem. An iterative method was then utilized
to deduce a sequence of reduced-size QP problems by taking
advantage of the pilot tones. These were solved by limiting the
search in the 2-dimensional subspace to reduce the computa-
tional complexity. Furthermore, a low-bit descent search was
employed to improve the system performance. Results were
given which demonstrated that the proposed algorithm provides
similar performance with lower computational complexity com-
pared to that of a sphere decoder.
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm
Normalized CPU time
α = 0.8 α = 0.5

IJSD Without LBDS 0.55 0.45
IJSD With LBDS 0.57 0.5
Sphere decoder 1
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Fig. 1. BPSK OFDM system performance with fdTs = 0.01, α = 0.8 and
4 pilot tones.
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Fig. 2. QPSK OFDM system performance with fdTs = 0.01, α = 0.8 and
4 pilot tones.

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

Perfect CSI

α = 0.8 without LBDS

α = 0.8 with LBDS

α = 0.5 without LBDS

α = 0.5 with LBDS

Fig. 3. QPSK OFDM system performance with fdTs = 0.01, 4 pilot tones
and various thresholds using the proposed IJSD algorithm.
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Fig. 4. QPSK OFDM system performance with α = 0.8, 4 pilot tones and
various Doppler spreads using the proposed IJSD algorithm with LBDS.
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Fig. 5. QPSK OFDM system performance with fdTs = 0.01, α = 0.8 and
various pilot tones using the proposed IJSD algorithm with LBDS.


