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Abstract— The minimization problem of frequency-weighted
l2-sensitivity subject to l2-scaling constraints is formulated for
two-dimensional (2-D) state-space digital filters described by the
Roesser model. It is shown that the Fornasini-Marchesini second
model can be readily imbedded in the Roesser model. An iterative
method is developed to solve the constrained optimization prob-
lem. This method converts the problem into an unconstrained
optimization formulation by using linear-algebraic techniques
and solves it by applying an efficient quasi-Newton algorithm. A
case study is presented to illustrate the utility of the proposed
technique.

I. INTRODUCTION

For 2-D state-space digital filters, the l1/l2-mixed sensitivity
minimization problem [1]-[6] and l2-sensitivity minimization
problem [6]-[10] have been investigated. In [9], it has been
argued that the sensitivity measure based on a pure l2-norm
is more natural and reasonable relative to the l1/l2-mixed
sensitivity minimization. It should be realized that solutions for
frequency-weighted sensitivity minimization would be of prac-
tical use as these solutions allow to emphasize or de-emphasize
the filter’s sensitivity in certain frequency regions of interest.
Synthesis procedures of the optimal (finite word-length) FWL
2-D filter structures that minimize the frequency-weighted
sensitivity measure have been considered [4]-[7]. However,
the minimization methods proposed in the above work do
not impose constraints on the scaling of the design variables.
As a result, elimination of overflow cannot be ensured. More
recently, the minimization problem of l2-sensitivity subject to
l2-scaling constraints has been explored for a class of 2-D
state-space digital filters [11]. However, frequency-weighted
sensitivity measure has not yet been considered in [11].

This paper investigates the minimization problem of
frequency-weighted l2-sensitivity subject to l2-scaling con-
straints for 2-D state-space digital filters described by the
Roesser local state-space (LSS) model [12]. Moreover, it is
shown that the Roesser LSS model is more general than either
the Fornasini-Marchesini (FM) second LSS model [13] or its
transposed-structure model [11],[14].

II. PROBLEM FORMULATION

Consider a stable, separately locally controllable and sepa-
rately locally observable LSS model for 2-D recursive digital

filters which was originally proposed by Roesser [12],[15][
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where xh(i, j) is an m× 1 horizontal state vector, x v(i, j) is
an n × 1 vertical state vector, u(i, j) is a scalar input, y(i, j)
is a scalar output, and A1, A2, A3, A4, b1, b2, c1, c2, and
d are real constant matrices of appropriate dimensions. The
transfer function of the LSS model in (1) is given by

H(z1, z2) = c(Z − A)−1b + d (2)

where Z = z1Im ⊕ z2In and

A =

[
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]
, b =
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b2

]
, c =

[
c1 c2

]
.

For the sake of simplicity, the LSS model in (1) is represented
hereafter by (A, b, c, d)m,n.

Alternatively, an LSS model for a class of 2-D recursive
digital filters can be described by [11],[14][
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where x(i, j) is an N × 1 local state vector, u(i, j) is a scalar
input, y(i, j) is a scalar output, and A′

1, A
′
2, b

′, c′1, c
′
2 and d are

real constant matrices of appropriate dimensions. The transfer
function of the LSS model in (3) is given by
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(4)

If we define

xh(i, j) = x(i, j + 1), xv(i, j) = x(i + 1, j), (5)



the LSS model in (3) can then be imbedded in that of (1) as
a special case as follows:[
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where m = n = N . It is noted that D(z1, z2)T can be viewed
as a transfer function of the FM second LSS model [13]. This
reveals that the LSS model of D(z1, z2)T can be realized by
a transposed structure of that in (6). Therefore, we conclude
that the LSS model in (1) is more general than either the LSS
model in (3) or the FM second LSS model [13].

Definition 1 : Let X be an m×n real matrix and let f(X)
be a scalar complex function of X , differentiable with respect
to all the entries of X . The sensitivity function of f(X) with
respect to X is defined as

SX =
∂f(X)

∂X
, (SX )ij =

∂f(X)
∂xij

(7)

where xij denotes the (i, j)th entry of matrix X .
Definition 2 : In order to take into account the sensitivity

behavior of the transfer function in a specified frequency
band, or even at some discrete frequency points, the weighted
sensitivity functions are defined as

δH(z1, z2)
δA

= WA(z1, z2)
∂H(z1, z2)

∂A

δH(z1, z2)
δb

= WB(z1, z2)
∂H(z1, z2)

∂b

δH(z1, z2)
δcT

= WC(z1, z2)
∂H(z1, z2)

∂cT

(8)

where WA(z1, z2), WB(z1, z2), and WC(z1, z2) are scalar,
stable, causal functions of the complex variables z1 and z2.

Definition 3 : Let X(z1, z2) be an m × n complex matrix
valued function of the complex variables z1 and z2. The l2
norm of X(z1, z2) is defined as
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∮
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(9)
where j =

√−1 and Γi = {zi : |zi| = 1} for i = 1, 2.
From (2) and Definitions 1-3, the overall frequency-

weighted l2-sensitivity measure for the LSS model in (1) can
be evaluated by
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∥∥∥∥
2

2

+
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where

F (z1, z2) = (Z − A)−1b, G(z1, z2) = c (Z − A)−1.

The frequency-weighted l2-sensitivity measure in (10) can be
written as

S = tr[MA] + tr[W B] + tr[KC ] (11)

where MA, W B , and KC are obtained by the following
general expression:

X =
1

(2πj)2

∮
Γ1

∮
Γ2

Y (z1, z2)Y ∗(z1, z2)
dz1dz2

z1z2

with Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T for X =
MA, Y (z1, z2) = W ∗

B(z1, z2)G∗(z1, z2) for X = W B , and
Y (z1, z2) = WC(z1, z2)F (z1, z2) for X = KC .

Define a state-space coordinate transformation by [12],[15][
xh(i, j)
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]
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0 T −1
4

] [
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]
(12)

where T 1 and T 4 are m×m and n×n nonsingular matrices,
respectively. New realizations can then be characterized as
(A, b, c, d)m,n with

A = T −1AT , b = T −1b, c = cT (13)

where T = T 1 ⊕T 4. For the new realizations, the frequency-
weighted l2-sensitivity measure in (11) is changed to

S(P ) = tr[MA(P )P ]+tr[W BP ]+tr[KCP−1]

= tr[NA(P )P−1] + tr[W BP ] + tr[KCP−1]
(14)

where P = TT T = P 1 ⊕ P 4 and

MA(P ) =
1

(2πj)2

∮
Γ1

∮
Γ2

Y (z1, z2)P−1Y ∗(z1, z2)
dz1dz2

z1z2

NA(P ) =
1

(2πj)2

∮
Γ1

∮
Γ2

Y ∗(z1, z2)P Y (z1, z2)
dz1dz2

z1z2

with Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T .
If l2-scaling constraints are imposed on the horizontal and

vertical state vectors xh(i, j) and xv(i, j), we require that [16]

(K1)ξξ = (T−1
1 K1T

−T
1 )ξξ = 1 for ξ = 1, 2, · · · , m

(K4)ζζ = (T−1
4 K4T

−T
4 )ζζ = 1 for ζ = 1, 2, · · · , n

(15)
where
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=
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]

is the local controllability Gramian for the LSS model in (1)
with an m × m submatrix K1 and an n × n submatrix K4

along its diagonal [15].
Thus, the l2-scaling constrained frequency-weighted l2-

sensitivity minimization problem can be formulated as fol-
lows: Given matrices A, b, and c, obtain a block-diagonal



nonsingular matrix T = T 1 ⊕ T 4 which minimizes S(P ) in
(14) subject to l2-scaling constraints in (15).

III. PROBLEM SOLUTION

By defining

T̂ = T̂ 1 ⊕ T̂ 4 = (T 1 ⊕ T 4)T (K1 ⊕ K4)−
1
2 , (16)

it follows that

K = T̂
−T


 Im K

− 1
2

1 K2K
− 1

2
4

K
− 1

2
4 K3K

− 1
2

1 In


 T̂

−1
. (17)

Thus, the l2-scaling constraints in (15) can be written as

(T̂
−T

1 T̂
−1

1 )ξξ = 1, ξ = 1, 2, · · · , m
(T̂

−T

4 T̂
−1

4 )ζζ = 1, ζ = 1, 2, · · · , n.
(18)

It is obvious that the conditions in (18) are always satisfied
by choosing T̂

−1

1 and T̂
−1

4 as

T̂
−1

1 =

[
t11

||t11|| ,
t12

||t12|| , · · · ,
t1m

||t1m||

]

T̂
−1

4 =

[
t41

||t41|| ,
t42

||t42|| , · · · ,
t4n

||t4n||

]
.

(19)

Substituting matrix T = T 1 ⊕ T 4 which satisfies (16) into
S(P ) in (14), the frequency-weighted l2-sensitivity measure
can be expressed as

Jo(x) = tr[T̂ M̂A(P̂ )T̂
T
]+tr[T̂ Ŵ BT̂

T
]+tr[T̂

−T
K̂C T̂

−1
]

(20)
where P̂ = T̂

T
T̂ and

x = (tT
11, t

T
12, · · · , tT

1m, tT
41, t

T
42, · · · , tT

4n)T

M̂A(P̂ ) =
1

(2πj)2

∮
Γ1

∮
Γ2

Ŷ (z1, z2)P̂
−1

Ŷ
∗
(z1, z2)

dz1dz2

z1z2

with

Ŷ (z1, z2) = (K1 ⊕ K4)
1
2 Y (z1, z2)(K1 ⊕ K4)−

1
2

Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T

Ŵ B = (K1 ⊕ K4)
1
2 W B(K1 ⊕ K4)

1
2

K̂C = (K1 ⊕ K4)−
1
2 KC(K1 ⊕ K4)−

1
2 .

This means that the problem of obtaining an (m+n)×(m+n)
block-diagonal nonsingular matrix T = T 1 ⊕ T 4 which
minimizes S(P ) in (14) subject to the l2-scaling constraints
in (15) can be converted into an unconstrained optimization
problem of obtaining an (m2 + n2) × 1 vector x which
minimizes Jo(x) in (20).

By applying a quasi-Newton algorithm to minimize Jo(x)
in (20), in the kth iteration the most recent point xk is updated
to point xk+1 as [17]

xk+1 = xk + αkdk (21)

where

dk = −Sk∇Jo(xk), αk = arg min
α

Jo(xk + αdk)

Sk+1 = Sk +
(

1 + γT
k
Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

− δkγT
k
Sk+Skγk

δT

k

γT
k
δk

S0 = Im2+n2 , δk = xk+1 − xk

γk = ∇Jo(xk+1) −∇Jo(xk).

Here, ∇Jo(x) is the gradient of Jo(x) with respect to x, and
Sk is a positive-definite approximation of the inverse Hessian
matrix of Jo(x). The algorithm starts with a trivial initial point
x0 obtained from an initial assignment T̂ = Im+n, and this
iteration process continues until

|Jo(xk+1) − Jo(xk)| < ε (22)

where ε > 0 is a prescribed tolerance.

IV. A NUMERICAL EXAMPLE

Consider a 2-D stable recursive digital filter realization
(Ao, bo, co, d)2,2 where

Ao =

[
Ao

1 Ao
2

Ao
1 Ao

2

]
, bo =

[
bo
1

bo
2

]
, co =

[
co
1 co

2

]
with

Ao
1 =




0.0 0.481228 0.0 0.0
0.0 0.0 0.510378 0.0
0.0 0.0 0.0 0.525287

−0.031857 0.298663 −0.808282 1.044600




Ao
2 =



−0.226080 0.776837 0.024693 −0.000933
−0.843550 1.610400 −0.309366 0.065898
−1.260339 2.005100 −0.453220 0.203118
−1.121498 1.636435 −0.590516 0.562890




bo
1 = bo

2 = [ 0.0 0.0 0.0 0.198473 ]T

co
1 = [ −0.567054 0.231913 0.197016 0.239932 ]

co
2 = [ 0.464344 0.441837 −0.061100 0.105505 ]

d = 0.009430.

This 2-D filter was obtained by imbedding the LSS model of
Example 2 in [11] into the Roesser LSS model. The frequency-
weighted l2-sensitivity of the LSS model in (1) is obtained by
carrying out the l2-scaling for the above realization with a
diagonal coordinate matrix

T o = diag{1.000001, 1.000002, 1.000003, 1.000003,

1.000001, 1.000002, 1.000003, 1.000003}
and using frequency-weighted functions given by 2-D FIR
digital low-pass filters with the unit-sample response [18]

wA(i, j) = wB(i, j) = wC(i, j)

= 0.256322 exp[−0.103203{(i− 4)2 + (j − 4)2}]
for (0, 0) ≤ (i, j) ≤ (20, 20), and zero elsewhere. The above
frequency-weighted functions were selected to emphasize the



filter’s sensitivity in the passband and de-emphasize it in the
stopband. The frequency-weighted l2-sensitivity of the LSS
model in (1) (A, b, c, d)2,2 was found to be

S = 394423.679690.

By choosing T̂ = I2⊕I2 (therefore T = (K1⊕K4)1/2 in
(16)) as an initial estimate and a tolerance ε = 10−8 in (22),
the quasi-Newton algorithm took 54 iterations to converge to

T̂
opt

=




3.056671 −2.673365 0.575882 −0.429287
−0.331629 2.142411 −0.401503 −0.192081
−2.530651 0.932586 0.553002 −0.136935

1.754363 −0.312582 0.624509 0.515370




⊕




1.307170 −0.419919 0.045538 −0.194118
0.762443 0.830435 −0.297531 0.062104

−0.405202 0.189220 0.976564 −0.250656
1.071478 −0.069804 0.315533 0.828727




or equivalently,

T opt =




0.690639 0.697890 −0.986414 1.417930
0.205523 0.802226 −0.589043 1.251725
0.091157 0.584768 −0.335877 1.196490

−0.023116 0.340604 −0.305900 1.128518




⊕




0.595272 0.843931 0.159783 1.068904
0.406418 0.767684 0.282059 0.990157
0.270942 0.580437 0.379363 1.000879
0.148987 0.449337 0.230545 1.074708


 .

The minimized frequency-weighted l2-sensitivity was found to
be

Jo(T̂opt) = 4670.176797.

The profile of the l2-sensitivity measure Jo(T̂ ) during the
first 54 iterations is shown in Fig. 1, from which it is seen
that with a tolerance ε = 10−8 the algorithm converges with
54 iterations.
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Fig. 1. Profile of Jo(T̂ ) during the first 54 iterations.

V. CONCLUSION

The minimization problem of the frequency-weighted l2-
sensitivity subject to l2-scaling constraints for 2-D state-space

digital filters described by the Roesser LSS model have been
investigated. It has been shown that the FM second LSS model
can be imbedded in the Roesser LSS model as a special
case. An iterative algorithm has been developed to solve
the problem. This algorithm relies on the conversion of the
constrained optimization problem into an unconstrained op-
timization formulation and utilizes an efficient quasi-Newton
algorithm. Our computer simulation results have demonstrated
the validity and effectiveness of the proposed technique.
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