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Abstract— Orthogonal frequency division multiplexing
(OFDM) modulation is widely used in communication systems to
meet the demand for ever increasing data rates. Characteristics
of the transmitted signal can be employed for blind channel
identification. In this paper, we propose a blind polynomial
channel estimation algorithm using noncircular second-order
statistics of the received OFDM signal. A set of polynomial
equations are then formulated based on the correlation of
the received signal. The solution of these equations provides
an estimate of the channel coefficients. Results are presented
which show that the proposed algorithm provides performance
comparable to the least minimum mean square error (LMMSE)
solution with lower computational complexity. The performance
is near-optimal for large OFDM systems.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) mod-
ulation is widely employed for high data rate communications.
In an OFDM system, the data stream is divided into a number
of parallel lower-rate data streams, which are modulated onto
orthogonal subcarriers. Thus, a frequency selective channel
can be divided into a set of flat fading channels. OFDM is ro-
bust over multipath fading channels and results in significantly
reduced receiver complexity [1]. The standards employing
OFDM modulation include digital video broadcasting (DVB)
[2], digital audio broadcasting (DAB) [3], IEEE 802.11a and
802.11g [4] for wireless local area networks, and IEEE 802.16
[5] for wireless metropolitan area networks.

For coherent detection of OFDM symbols, the receiver
requires reliable channel information. Channel information can
be estimated by utilizing pilot symbols in the frequency or time
domains [6], but this reduces system efficiency. Alternatively,
differential modulation can be implemented at the price of
performance loss.

Recently, blind channel identification and equalization for
OFDM system have attracted significant attention [7]-[11].
These methods estimate the channel information by exploiting
the statistical behavior of the channel or received signals.
Various blind estimation algorithms have been developed for
OFDM systems. Chang et. al [7] employed a regression model
to develop a joint blind detector for OFDM systems over time-
varying channels. Cui and Tellambura [8] developed joint blind
and semiblind maximum likelihood (ML) detectors which
exploit the relationship between subcarriers. In [9], Heath and

Giannakis exploited the cyclostationarity introduced by the
cyclic prefix (CP) to identify the channel impulse response.
Cai and Akansu [10] presented a noise subspace method by
utilizing the CP which results in faster convergence with
smaller data blocks. Furthermore, Li and Roy [11] proposed a
method to estimate the channel information based on virtual
carriers.

Based on the source characteristics, such as the noncircular-
ity of the input signals, blind identification techniques can be
used to obtain an estimate of the channel coefficients [12]. In
this paper, we take advantage of the nonzero cyclostationary
statistics of the transmitted signals, which in turn allows blind
polynomial channel estimation using second-order statistics
of the OFDM symbol. A set of polynomial equations are
formulated based on the correlation of the received signal.
An estimate of the time domain channel coefficients can then
be easily computed by solving these equations.

II. SYSTEM MODEL

In an OFDM system, the bandwidth is divided into N sub-
channels, and the data stream is modulated on the subcarriers
using quadrature amplitude modulation (QAM) or phase-shift
keying (PSK). The transmitted signals are generated using an
inverse fast Fourier transform (IFFT)

xn =
1√
N

N−1∑

k=0

Xk exp
(

j2πkn

N

)
for n = 0, . . . N − 1 (1)

where xn is the time-domain signal at the nth sampling instant,
and Xk is the frequency-domain data symbol for the kth
subcarrier. Equation (1) can be written in vector form as

x = FX (2)

where x = [x0 x1 . . . xN−1]T and X = [X0 X1 . . . XN−1]T

represent the time-domain and frequency-domain OFDM sym-
bols, respectively, and T denotes transpose. F is the IFFT
matrix with elements fn,k = 1√

N
exp( j2πkn

N ). The OFDM
symbol duration is denoted by Ts, so the chip duration of
each subchannel is Tc = Ts/N .

In this paper, we consider a frequency selective fading
channel model [14], where the channel is time-invariant within



one OFDM symbol. Thus, we have a wide sense stationary un-
correlated scattering (WSSUS) channel with impulse response
given by

h(τ) =
D∑

d=1

h(τd)δ(τ − τd) (3)

where τd is the dth path delay with τ1 < τ2 < . . . < τD. In
(3), h(τd) is a complex Gaussian process with zero mean and
variance σ2

d , φτ (τd).
A discrete version of the WSSUS channel in (3) can be

modeled as a tapped delay line (TDL) with channel coeffi-
cients [14]

h(l) =
D∑

d=1

h(τd)sinc
(

τd

Tc
− l

)
(4)

where h(l) denotes the channel coefficient for the lth tap, l =
0, . . . , L− 1 with L = bτD/Tcc+ 1, and the delay between
two taps is Tc.

Generally a CP is inserted at the beginning of each OFDM
symbol before transmission, and the length Np of the cyclic
prefix is greater than or equal to that of the channel impulse
response to eliminate the intersymbol interference. Thus, the
discrete signal at the receiver can be expressed as

yn =
L−1∑

l=0

h(l)x(n− l) + wn for n = −Np, . . . N − 1 (5)

where wn is additive white Gaussian noise (AWGN) with zero
mean and variance σ2

n. In vector form, (5) can be written as

y = HCPxCP + w (6)

where y = [y0 y1 . . . yN−1]T and w =
[w0 w1 . . . wN−1]T denote the time-domain
received signal and AWGN noise, respectively, and
xCP = [xN−L+1 xN−L+2 . . . x0 x1 . . . xN−1]T . Since the
CP is only a copy of part of the OFDM symbol, (6) can be
written as

y = Hx + w (7)

where H is the channel matrix given by

H =




h(0) 0 . . . h(1)
h(1) h(0) . . . h(2)

...
...

. . .
...

h(L− 1) h(L− 2) . . . 0
...

...
. . .

...
0 0 . . . h(0)




.

After removing the CP and performing a fast Fourier
transform (FFT), we obtain

Y = AX + W (8)

where Y = [Y0 . . . YN−1]T is the frequency-domain received
signal, A = FHHF, W = FHw, and H denotes Hermitian
transpose. For convenience, let h = [h(0) h(1) . . . h(L−1)]T .

III. BLIND POLYNOMIAL CHANNEL ESTIMATION FOR
OFDM SYSTEMS

The concept of circularity was introduced in [13]. It is
a simple expression of distribution, moments, and related
statistical objects of the random variable, which in turn induces
a correlation between the real and imaginary parts of the
random variable [13]. A scalar random variable Z is referred
to as circular at order 2 if E(Z2) = 0, and noncircular
at order 2 if E(Z2) is nonzero. A non-Gaussian random
variable is referred as circular if its distribution is invariant
when multiplied by a unit modulus complex number [12].

In this paper, we utilize the statistical property that discrete
signals are noncircular at given orders (at order-k for k-PSK
random variables), to develop a polynomial channel estimation
method for OFDM systems. In particular, we exploit the
noncircularity at order 2 of the transmitted signal [12]. For
example, for BPSK modulated signals in a single carrier
system, the noncircular and circular second-order correlations
are given by

E[xnxn+m] = δ(m) (9)

where δ(m) = 1 if m = 0 and δ(m) = 0 elsewhere. Based on
this property, a set of polynomial equations are derived such
that the channel must satisfy

E[y(n)y(n−m)] =
L−1∑

l=0

h(l)h(l + m) (10)

In what follows, BPSK modulation is employed in the
OFDM system. Assume the transmitted signals Xk are i.i.d.
and follow a uniform distribution. The channel is time-
invariant within one OFDM symbol, and the receiver has
knowledge of the channel length. Due to the noncircular
statistics of the transmitted signal Xk, we have R = E[XXT ]
with Ri,j = δ(i−j). Consequently, the correlation of the time
domain signal x is

E[xxT ] = FFT (11)

where

E[x(m)x(n)] =
1
N

N−1∑

k=0

e
j2πk(m+n)

N = FT
mFn (12)

and Fm is the mth column of matrix F. Thus, the correlation
E[xxT ] in (12) has the following structure

E[xxT ] =




1 0 0 . . . 0
0 0 0 . . . 1
...

...
...

. . .
...

0 0 1 . . . 0
0 1 0 . . . 0




The noise and the transmitted signal are independent, and
the real and imaginary parts of the noise are also independent,
so we have that

E[w(n)w(n− l)] = 0 ∀ l (13)

E[w(n)w(n− l)∗] = 0 for l 6= 0 (14)



and
E[|w(n)|2] = σ2

n (15)

Thus, for the received signals in the time domain, the corre-
lation is

E[yyT ] = HFFT HT (16)

where
E[y(n)y(n− l)] = FT

nhhT Fn−l (17)

Similarly, the circular second-order correlation of the trans-
mitted signal in time domain is obtained as

E[xxH ] = IN (18)

As a consequence, the circular correlation of the received
signals in the time domain is given by

E[yyH ] = HHH + σ2
nIN (19)

where

E[y(n)y(n− l)∗] =
L−1∑

l=0

h(l)∗h(m + l) + σ2
nδ(l) (20)

Based on a similar concept, equivalent equations can be
formulated for higher order PSK or QAM OFDM systems
with some minor modifications. For such systems, the real
and imaginary parts of the signals are considered separately
at the receiver, because the real and imaginary parts of Xk

have a deterministic square.

A. An illustrative example

Without restricting the generality, we use a simple example
to illustrate how to obtain a set of polynomial equations with
respect to the channel coefficients. Assume a 6-subcarrier
OFDM system with a channel of length L = 3, then h =
[h0 h1 h2]T , and the channel matrix is given by

H =




h0 0 0 0 h2 h1

h1 h0 0 0 0 h2

h2 h1 h0 0 0 0
0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0




After removing the CP, the noncircular and circular correla-
tion of the received signals in the time domain have the struc-
tures given in (22) and (23), respectively. It can be seen that
both E[yyT ] and E[yyH ] are circular matrices with respect to
the vectors vnc = [h2

0 2h0h1 h2
1 +2h0h2 2h1h2 h2

2 0] and
vc = [‖h‖2 +σ2

n h0h
∗
1 +h1h

∗
2 h0h

∗
2 0 h2h

∗
0 h2h

∗
1 +h1h

∗
0],

respectively. Both vectors have 2L − 1 nonzero components.
Thus we can obtain a system of 2L − 1 second order poly-
nomial equations, which corresponds to L unknown channel
coefficients. Note that vnc is only related to the channel
coefficients, and the polynomial system based on the noncir-
cular correlation is easier to solve. Based on the noncircular
correlation E[yyT ], the polynomial system of equations is





f1(h) = h2
0 − α1 = 0

f2(h) = 2h0h1 − α2 = 0
f3(h) = h2

1 + 2h0h3 − α2 = 0
f4(h) = 2h1h2 − α4 = 0
f5(h) = h2

2 − α5 = 0

(21)

with αi = vnc(i).
Several solutions are possible using the first, second and

fifth equations in (21). The other two equations allow a
unique solution of the channel coefficients, up to a sign.
¿From this example, it can be seen that it is possible to
identify a complex-valued channel by using the noncircular
second-order statistics or circular second order correlation
using only simple computations. It is worth noting that the
computational complexity of the proposed method is O(N2),
which corresponds to the calculation of the correlation matrix
yyT .

We summarize the polynomial channel estimation method
below.

Step 1: Obtain the received signal y, and compute the
correlation product yyT .

Step 2: Shift the rows of yyT with respect to the first row
and average them over the subcarriers to obtain an
approximation of vnc.

Step 3: Solve the polynomial system of equations based on
the noncircular correlation of the received signals to
obtain an estimation of the channel coefficients.

Step 4: Use the estimated channel coefficients for detection.

E[yyT ] =




h2
0 2h0h1 h2

1 + 2h0h2 2h1h2 h2
2 0

2h0h1 h2
1 + 2h0h2 2h1h2 h2

2 0 h2
0

h2
1 + 2h0h1 2h1h2 h2

2 0 h2
0 2h0h2

2h1h2 h2
2 0 h2

0 2h0h1 h2
1 + 2h0h2

h2
2 0 h2

0 2h0h1 h2
1 + 2h0h2 2h1h2

0 h2
0 2h0h1 h2

1 + 2h0h2 2h1h2 h2
2




(22)

E[yyH ] =




‖h‖2 + σ2
n h0h

∗
1 + h1h

∗
2 h0h

∗
2 0 h2h

∗
0 h2h

∗
1 + h1h

∗
0

h2h
∗
1 + h1h

∗
0 ‖h‖2 + σ2

n h0h
∗
1 + h1h

∗
2 h0h

∗
2 0 h2h

∗
0

h2h
∗
0 h2h

∗
1 + h1h

∗
0 ‖h‖2 + σ2

n h0h
∗
1 + h1h

∗
2 h0h

∗
2 0

0 h2h
∗
0 h2h

∗
1 + h1h

∗
0 ‖h‖2 + σ2

n h0h
∗
1 + h1h

∗
2 h0h

∗
2

h0h
∗
2 0 h2h

∗
0 h2h

∗
1 + h1h

∗
0 ‖h‖2 + σ2

n h0h
∗
1 + h1h

∗
2

h0h
∗
1 + h1h

∗
2 h0h

∗
2 0 h2h

∗
0 h2h

∗
1 + h1h

∗
0 ‖h‖2 + σ2

n




(23)



IV. PERFORMANCE EVALUATION

The proposed blind polynomial channel estimation algo-
rithm was applied to an OFDM system with BPSK modulation.
The carrier frequency of the OFDM system was 5 GHz and
the bandwidth of the system was set to 200 kHz. A WSSUS
channel was employed with an exponential multipath intensity
profile, i.e., σ2

d = exp(−d/D)/
∑D−1

d=0 σ2
d. The simulations

were carried out for various numbers of channel taps, where
each tap is an independent complex Gaussian random process
with Jake’s Doppler spectrum. Two pilot tones were utilized
to compensate for the sign ambiguity. The channel length
is assumed to be known at the receiver, and a one-tap zero
forcing (ZF) equalizer was employed to detect the received
signals. The normalized Doppler frequency of the channel
was set to fdTs = 0.001. The performance of the proposed
algorithm was evaluated based on the mean square error
(MSE), bit error rate (BER) and computational complexity.

Fig. 1 shows the BER performance of a 6-tap OFDM
system for different channel estimation methods with N = 128
subcarriers. It can be observed that the blind polynomial
channel estimation algorithm outperforms the least minimum
mean square error (LMMSE) solution at high SNRs with sim-
ilar computational complexity. For example, for the proposed
method, a BER of 10−3 was achieved at Eb/N0 = 25.5dB,
with approximately 0.5dB loss compared to that with perfect
channel state information (CSI). To obtain the same BER
with the LMMSE method, Eb/N0 = 27dB is necessary, and
additional information such as the noise variance and other
channel statistics are required.

Simulations were carried out to determine the impact of the
channel length on the system performance. The MSE of the
proposed algorithm for various channel lengths and N = 128
is depicted in Fig. 2. It can be observed that the proposed
algorithm achieves better performance with a shorter channel
length. This is because vnc has more nonzero components with
a longer length channel, which results in greater computational
errors. For example, the proposed algorithm achieves an MSE
of 10−3 at Eb/N0 = 17dB in a 3-tap channel, while the same
MSE was achieved at Eb/N0 = 22dB in a 5-tap channel.

The BER performance of the proposed algorithm with
various values of N in a 6-tap channel is shown in Fig. 3.
It can be observed that the BER performance improves as
the number of subcarriers increases. The reason is that the
proposed algorithm solves the polynomial equations based
on the approximate noncircular second order statistics. As
the number of subcarriers increases, the effect of noise on
the calculation vnc from yyT is reduced. For example, with
N = 64, the proposed algorithm achieves a BER of 10−3 at
Eb/N0 = 28dB, with approximately a 1.5dB loss compared
to perfect CSI. With N = 256, the same BER can be reached
at Eb/N0 = 26dB with almost no loss compared to perfect
CSI.

V. CONCLUSIONS

Based on the source characteristics, such as the noncircular
characteristics of the input signals, blind channel identification
techniques can be developed to obtain a system of poly-
nomial equations. In this paper, we exploited the nonzero
cyclostationary statistics of the transmitted signal to allow
blind polynomial channel estimation using the second-order
statistics. A set of polynomial equations was formulated based
on the correlation of the received signals. The solution of these
equations was easily obtained as the channel coefficients are
in the time domain. Performance results were presented which
show that the proposed algorithm provides better performance
than the LMMSE solution at high SNRs with low computa-
tional complexity. Near-optimal performance can be achieved
with large OFDM systems.
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Fig. 1. BER performance of a 6-tap 128-subcarrier OFDM system.
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Fig. 2. Mean square error of the proposed method for a 128-subcarrier
OFDM system with various channel lengths.
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Fig. 3. BER performance of the proposed method for an OFDM system
with various numbers of subcarriers and a 6-tap channel.


