A Regularized Least Squares Approach for
Ultra-Wideband Time-of-Arrival Estimation with
Wavelet Denoising

Ted C.-K. Liu, Xiaodai Dong, and Wu-Sheng Lu
Department of Electrical and Computer Engineering, Ursigrof Victoria, Victoria, BC, Canada
e-mail: {tcliu, xdong, wsly @ece.uvic.ca

Abstract— Wireless localization and ranging are challenging estimation was proposed by [4], where the authors estimate
tasks which demand high signal-to-noise ratio (SNR) for anri-  the ToA by treating it as a by-product of the large scale
crease in accuracy. Impulsive ultra-wideband (UWB) technbay |ineqr least squares (LS) solution. Although this algaritis
is a promising signaling alternative that is capable of high imole. th bl idl-00sed and suff tout instabilit
resolution ranging with minimal cost on SNR. Unfortunately, S'm_p €, tne problem | : po and sufiers ou_pu In_sa iy,
typical time-of-arrival (ToA) estimation algorithms are compli- attributable to both noise and a dense multipath, inherént o
cated and perform poorly in the low SNR environment. In this an impulsive wideband channel. Moreover, its performasce i
paper, we propose aregularized least squares approach with not well documented and the relationship to channel samplin

wavelet denoising.to improve the estimator accuracy at low SR. rate is not examined. In [5], ToA estimation based on high-
Our approach estimates the ToA as a by-product of the channel

estimation; furthermore, it is simple and enables fast, orthe- resolution, peak'dEteCt'onfbased (PDB) |terat_|ve atgm?

fly, accurate ToA estimation applicable to real-time appliation. Was proposed, where variants of the suboptimal maximum
We demonstrate the robustness of our algorithm by simulatio  likelihood (ML) channel estimator are shown to provide good
where it is shown to outperform other high-resolution algoithms  result while being efficient at energy capture.

in ToA estimation. To improve the estimator accuracy at low SNR while
retaining its simplicity, we propose eegularized LS (RLS)
approach with wavelet denoising (WD) to the problem of

Since the spectral allocation approved by the U.S. FedeTalA estimation. Pioneered by Donoho and Johnstone [6],
Communications Committee in 2002, there have been manD has been successfully applied to boost the low SNR
potential applications envisioned for ultra-wideband (B\W performance of time-delay estimator [7] and several dioect
technology. Particularly in ranging and localization, UWBinding algorithms, e.g., [8], [9]. Our technique utilizeisctete
impulse radio (UWB-IR) is a promising candidate that cawavelet transform (DWT), and hyperbolic shrinkage of [10]
enable centimeter accuracy with minimum cost on the signalith the threshold developed by Donoho [11] to effectively
to-noise ratio (SNR) [1]. enhance the SNR prior to RLS channel estimation; there-

Locating a node in a wireless sensor network involvesiter, the final retrieval of accurate ToA information. Our
recording the range information from radio signals trawgli approach is simple and enables fast, on-the-fly, high-uésol
between a target node (TN) and a group of reference nodes\ estimation applicable to real-time ranging system.nfro
(RNs) [1]. The range information can be retrieved by seversimulation, our algorithm is shown to outperform the PDB
techniques, e.g., with signal strength, or time-of-atrf@A) algorithms of [5] when Nyquist sampling rate is available. T
estimation. Due to its inherent wideband characteristi®/BJ the best of authors’ knowledge, this approach has yet to be
IR with time-based positioning technique is a promisingdopted for UWB-IR ToA estimation. Note that higher range
solution for cost-effective, high-resolution ranging aodal- resolution can be achieved by interpolating from the Nyiuis
ization. rate samples.

Impulse-based ranging technique with ToA estimation wasThe rest of the paper is organized as follows: Secfion I
first considered in [2], where it utilizes generalized maxipresents the overall system model, including a descripifon
mum likelihood estimator to detect the direct path arrivaboth LS and RLS channel estimators. To examine the benefits
Although it shows a promising result on the measured dat#, denoising, Sectiop Il describes the critical composesft
it complicates the matter with the statistical modeling oVD and how they contribute to the SNR enhancement. Finally,
several parameters from measurement, which are subjeciM® propose our ToA estimator in Sectibnl IV, and compare
change depending on the environment, and requires Nyquist performance against the PDB algorithms in Secfidn V.
rate samples that is costly to obtain. To reduce the sampli@gncluding remarks are given in Section VI.
rate requirement, [3] proposed the use of symbol rate sample
after an energy detector to estimate the ToA. Unfortunately Il. SysTEM MODEL
because of a square-law device its performance degrade$he position of a sensor node is directly related to the ToA
significantly at low SNR. An inverse problem approach to ToAf the first multipath component. To estimate the ToA, a UWB

I. INTRODUCTION



ranging system periodically transmits sub-nanoseconsegulwhich yields the LS solution given by
between the RNs and a TN of unknown distance. For a single

A T —1ywwT 1
pulse transmitted through free-space, the received sagrthk ars = (W W)= "Wir = W, (7)
TN under multipath can be modeled as where || - ||? is the Euclidean norm(-)” denotes matrix
L1 transpose(-)~! is the matrix inversea denotes an estimate
r(t) = Z ayw(t — 7)) +n(t), (1) of a and W+ is the Moore-Penrose inverse . Unlike
—o [5], W' can bepre-computed and stored when a desired

resolutionA is given. Unfortunately[{7) is often sensitive to

whereuw(t) is th_e recelved_ pulse template of_durat[ii’;_;v, ™ noise in the received signal and can be quite unstable when
andr; are amplitude and time delay 6th multipath,L is an W is ill-posed

unknowna priori which presents the number of propagation

paths, n(t) is the additive white Gaussian noise (AWGN)B. Regularized LS Solution

with double-sided spectral densily, /2. The purpose of TOA  To find a meaningful result when the solution[id (6) becomes

estimation is to accurately prediet, over an observation unstable, we apply the technique mfyularization. Regular-

interval [0, T'). ization is a well-known technique for dealing with instability
To locate the TN, a series of measurements is first recordadihe inverse problem [12] by forcing an ill-posed problem

between itself and the RNs. Assuming the observation iaterinto a well-posed one with soma priori information. The

consists ofK equally spaced delays fér=0,1,..., K — 1, RLS solution solves the problem

each associating with a sparse channeldapWe can then .

simplify (@) by associating the sparse $ef, }= ' of channel min{|[Wa —r[[* + Allal[*}, ®)

coefficients with uniformly delayed received pulse temglaivhere A > 0 is the regularization parameter which controls

w(t —kA) for k=0,1,...,K -1, as the solution’s energy. Note that with= 0 the solution to[(B)
K—1 reduces to the LS one. With > 0, it is straightforward to
r(t) = Z arw(t — kA) + n(t). (2) show that the unique global solution {d (8) is given by
k=0 aprs = (WIW + A1) 'WTr = Wir, (9)

Suppose the received signal is sampled at samplingZime
Given time instant samples = (i —1)7T, fori =1,2,..., M,
(2) can be written as

where W1 is called the regularized pseudo-inverse, which
can also bepre-calculated and stored for fast, on-the-fly

processing.
K-1
r(t;) = Z arw(t; — kA) +n(t;), i=1,2,...,M, (3) [1l. WAVELET DENOISING
k=0 To realize a stable LS solution for accurate ToA estimation,
which in matrix notation is given by we apply the well-established technique of WD. Since its in-
troduction in [6], denoising with DWT has become a powerful
r=Wa+n=s+n, (4)  tool to recover noise corrupted data. To recav&isamples of
wherea = [ag, a1, ..., aK*l]T is the vector of sparse channef k_nown data s;]equenedérom theajnv?lse—corrupted obs?rvatu;n
coefficients, anch = [n(t1), n(ta),. .., n(ta)]" is the noise T = S+ n, wheren denotes x 1 vector samples o

AWGN with variances2, the purpose of WD is to differentiate

samples vectos = Wa is the signal portion of, and e .
P 5 gnalp the wavelet coefficients of from those ofn, assuming the

w(ty) w1 —A) ... wlt—(K-1)A) coefficients ofs resides mostly in the low frequency region
w(tz)  w(tz —A) ... wtz— (K —-1)A) and can be compressed into a few large values in the wavelet
- : : . : > domain. The compression is carried out by multiplyingith
witar) wtar —A) ... wltar — (K —1)A) a M x M orthonormal wavelet matrifwy;, as
5) rov = Wyr=Wys+Wyn

represents d/ x K matrix which comprises of delayed and — sy 4 (10)
sampled version ofv(t). In contrast to the matrix representa- v W
tions of [4] and [5], the step-size iR](5) can be varied for thehere the matriXWy;; can bepre-determined by knowing the
sake of estimation accuracy. Consequently, depending\ on wavelet filter orderf” and decomposition level. Moreover,
the linear system irL.{4) can be either over or underdeteminéue to the orthonormal property 8y, the noise is similarly
_ mapped tony, with identical statistics. However, because of

A. LS Solution its wideband nature, coefficients of noise are usually small

We treat the ToA estimation as a by-product of the L8&nd can be discarded; whereas, the large coefficients of the
channel estimator by solving the solution (4). For agesired signal are retained [6], [11]. Differentiating arget
overdetermined noiseless system there exists a uniquiosoluthese coefficients is identical to the filtering operatiohgeve
which solves the problem (I10) is multiplied by a matrixI modeled as

min |[Wa — r||2, (6) H = diagh(1), h(2), ..., h(M)]. (11)



ti>§ ToWalia ) . . 3) Select the wavelet filter ordér and WD decomposition
r(t)

— : ' level J, apply Daubechies DWT and Vidakovic hyper-

: f . . . X :
e e (WIW 4+ AD™W! L bolic shrinkage tor, and estimate the desired signal
' ' according to[(14).
Fig. 1. The RLS-WD ToA estimator. 4) Choose the channel tap estimator resolutigmnd K =

T/A, constructW according to[(b).
5) Estimate the channél using either LS solution if{7),
or RLS algorithm in[(®), with a pre-determined

The elements ol are set according to the thresholding ) Estimate the ToA as

criterion, with hard and soft thresholds from [11] being
the most common, or the hyperbolic shrinkage proposed by To = argngin|é| >(1-¢),

Vidakovic [10] defined as
where ¢ is the threshold set as a percentage of the

h(i) = (1 — %) it |rw (i) >0 (12) maximum estimated amplitude.
0 otherwise V. SIMULATION RESULTS
where r (i) denotes the-th element ofryy, andd is the To show the advantgge of our algorithm over its _countgr-
threshold from [6], [11], given by parts, we evaluate their performance by computer simuiatio
’ ’ in MATLAB ™ with the UviWave software package [13]
0 =+/20%log(M). (13) for Daubechies DWT. To accurately examine the performance

under multipath, we use the CM3 channel model from IEEE
802.15.3a [14], which models a severe office non line-of-sight

§=WJL Hry = WL HWyr, (14) enyironment. '_I'he received t.emplatxét) is assumed to be the

typical Gaussian doublet with pulse parametgr= 0.6 ns,

where § represents an estimate &f but with the noise which has a zero-to-zero pulse width ®fns. The pulse is
being significantly reduced. The process of discarding agdmpled afl, = 0.1 ns with the observation interval = 50
retaining the wavelet coefficients results in the overallRSNns, representing a medium distance ranging application. To
enhancement. study the performance of RLS-WD ToA estimator, we vary
A as a multiple ofT, when constructingW. A thousand

IV. RLS-WD TOA ESTIMATION different channel realizations are simulated prior to tmalfi

The distinct advantage of UWB in ranging is its higtperformance evaluation.
precision with minimal penalty on SNR. Many existing TOA To determine the most suitable for WD, we plot the
estimators, however, do not work well at the low SNR regiomutput SNR asF varies for a fixed input SNRof 0 dB in
thus are limited to only short distance ranging. To imprdwe t Fig.[2(a). As shown, by applying WD to the received signal we
estimator accuracy under low SNR, we adopt WD with RL8an have close ta dB of gain across alFF. Since increasing
channel estimation as shown in Hig). 1 for simple, yet aceyra# has no effect on the output SNR, we may further reduce
ToA estimation. We name this the RLS-WD ToA estimator.the denoising complexity by selecting the smallésbefore
One drawback of denoising with DWT is the requirement gierformance tapers off, which i = 8 in our case. For that

noise information, where its ability to remove noise dependalue of F, Fig. [2(b) illustrates the effectiveness of WRs
entirely on how accurate the noise variance can be estimatiegut SNR varies. We see that WD results in substantial gain
For narrowband signals and images, which map to a few large Jlow SNR before diminishing return at high SNR. However,
low-frequency coefficients in the wavelet domain, noiseé-vamwhen considering long distance ranging, the performance at
ance can be estimated from the finest scale wavelet coefficidow SNR is often of great interest. For the ease of simulation
[11]. However, due to the wideband characteristic of UWBhe variance in(13) is assumed to be perfectly estimatetehe
estimating variance from the first level decomposition igof the results shown act as a lower bound.
incorrect. For that, assuming a large distance betweensnodeWe compare the performance of our estimator with the
and a large sample siZd, the variance can be estimated fronsuboptimal ML PDB estimators in [5], namely, single search

The recovery of the desired signals now given by

the first few hundred noise samples as (PDB-SS1), search and subtract (PDB-SS2), search subtract
N and readjust (PDB-SSR). In general, these estimators first
1 . .
£2 N )2 compute the discrete match filter (MF) output betweaen
%) N1 (r(t;) — )7, (15)

and a sampled pulse template; thereafter, the selectiomeof t
maximum MF peaks with or without iteratively canceling

i=1

where/i is the sample mean andl a subset ofd/. Now, the

RLS-WD ToA estimator can be summarized as The output and input SNR are defined according 8 Rout =
1) ReceiveM samples of observation at sampling rate 201810(l[sll/[[8 — s||) and SNR;, = 20log,([ls|/|In|[), respectively,
. where|| - || denotes the Frobenius matrix norm.
T over the interval0, T'). 2The effectiveness of WD can be measured from the gain in SNR [8

2) Estimate the noise varianéé according to[(Ib). defined asSNRout — SNRjy,.
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Fig. 4. RMSE of ToA estimation as a function of SNR for diffiere
algorithms with¢ = 90%.

the peaks fromr, depending on the algorithm. For these
algorithms, a similar ToA estimation criterion to the RLW
is used and the number of peaks to defeét set tol00. Fig.[3  energy capture as a function of SNR for all algorithms, and
shows the behavior of root mean-squared error (RMSE) verstie RLS-WD is computed with = 0.1. The energy capture is
SNR when( = 95%, with the RLS-WD evaluated at = 2 in  computed between the received signal and its estimate. From
@), andA = 2T, and4T;. Clearly, the RLS-WD algorithm Fig.[§ we note that the RLS-WD loses energy initially due
outperforms others under all SNR. At low SNR, it performg denoising, but it quickly recovers at high SNR when the
better due to the input SNR enhancement from WD; whereagceived signal is less noisy. Also, a spacing2df, on A
at high SNR, the contribution from WD lessens. An interéstincaptures significantly more energy than far = 47, since
observation is the identical performance for= 27 and47s, K decreases as we increadein the signal model. Note that
which depending on the system requirement we may chogseill algorithms undergo denoising before ToA estimation,
either one without compromising the overall performance. the energy captured by RLS-WD would outperform all PDB

We observe a similar improvement on the RMSE whesstimators.
¢ = 90%, as shown in Fig[]4. Specifically, the RLS-WD Another parameter of interest is the choice ©f which
outperforms PDB algorithms when SNR 15 dB. For SNR inherently affects the estimator performance. For tha, [Bi
> 15 dB, all algorithms exhibit an error floor, particularly ashows the RMSE behavior for a varyingat A = 27, for
higher floor for RLS-WD than PDB-SSR, which we suspe®NR = {0,4,8,12,16,20} dB. Generally, a largé does not
is due to the limitation of the RLS. Once again, we stress @oduce the best result, especially in a low SNR environment
the importance of performance gain at low SNR that is mogghere noise can often be mistakenly identified as the direct
critical when considering long distance ranging applamati  path. However, at high SNR, a large often produces the

Apart from the RMSE behavior, we are also interested in theest result since the noise is either small or has been mostly
energy capture, as in [5]. For that, Fig. 5 illustrates th@ameremoved by WD.
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TABLE |
COMPARISON OFCOMPUTATIONAL COMPLEXITY

Flop Count
PDB-SS1 4M?
PDB-SS2 AZM?* + 5ZM
PDB-SSR| 4ZM? +4ZM + O(Z%)
RLS-WD | (4M?K +22K3) +4FJM

channel estimation. Our approach is simple and can provide
fast, on-the-fly, accurate ToA estimation applicable td-tisae
ranging system. From simulation, we have demonstrated the
robustness of our algorithm where it outperformed otheh-hig
resolution algorithms. Apart from being a better estimator
the RLS-WD is also capable of accurate channel estimation;
however, its threshold must be set according to the SNR for
the best performance. Finally, we have shown that the RLS-
WD has lower computational complexity than its counterpart

Increasing SNR

(1]

RMSE (ns)

(2]

10

05 06 07 08 09 [3]
Threshold ()

0.1 0.2 0.3 0.4

Fig. 6. RMSE versug for the RLS-WD ToA estimator al\ = 27 for [4]

SNR ={0, 4, 8,12, 16,20} dB, top to bottom.
[6]

In terms of complexity, the computational load of the RLS-
WD is mostly constant. Specifically, the RLS is equivalent tdSl
LS over a sphere and its complexity is abdM/ 2K + 22K
flops [15] with the remaining load going to DWT, which is
of O(M) per WD process [16]. However, when recognizing
the WD as a series of matrix multiplications in{14) with (8]
pre-computed matrices further indicates a constant psaugs
time for our approach. In contrast, the complexity of the®l
PDB estimators depends entirely on the channel conditidn afo)
the number of iterations’. Table[] compares the flop count
amongst the algorithms. For the PDB algorithms, they requilt-1]
4M? flops per MF computatio,M and222M +223/3+2M 12]
flops to compute the channel gain per iteration for PDB—S%Z
and PDB-SSR, respectively, whete denotes the iteration [13]
index. Hence, in a dense multipath channel, the RLS-WD,
would require less processing time than its counterparts.

7]

VI. CONCLUSION [15]

In this paper, we have proposed the RLS-WD ToA e$l6]
timator, which estimates the ToA as a by-product of the

especially when processing a dense multipath channel.
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