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Abstract— Wireless localization and ranging are challenging
tasks which demand high signal-to-noise ratio (SNR) for an in-
crease in accuracy. Impulsive ultra-wideband (UWB) technology
is a promising signaling alternative that is capable of high-
resolution ranging with minimal cost on SNR. Unfortunately,
typical time-of-arrival (ToA) estimation algorithms are compli-
cated and perform poorly in the low SNR environment. In this
paper, we propose aregularized least squares approach with
wavelet denoising to improve the estimator accuracy at low SNR.
Our approach estimates the ToA as a by-product of the channel
estimation; furthermore, it is simple and enables fast, on-the-
fly, accurate ToA estimation applicable to real-time application.
We demonstrate the robustness of our algorithm by simulation
where it is shown to outperform other high-resolution algorithms
in ToA estimation.

I. I NTRODUCTION

Since the spectral allocation approved by the U.S. Federal
Communications Committee in 2002, there have been many
potential applications envisioned for ultra-wideband (UWB)
technology. Particularly in ranging and localization, UWB
impulse radio (UWB-IR) is a promising candidate that can
enable centimeter accuracy with minimum cost on the signal-
to-noise ratio (SNR) [1].

Locating a node in a wireless sensor network involves
recording the range information from radio signals traveling
between a target node (TN) and a group of reference nodes
(RNs) [1]. The range information can be retrieved by several
techniques, e.g., with signal strength, or time-of-arrival (ToA)
estimation. Due to its inherent wideband characteristic, UWB-
IR with time-based positioning technique is a promising
solution for cost-effective, high-resolution ranging andlocal-
ization.

Impulse-based ranging technique with ToA estimation was
first considered in [2], where it utilizes generalized maxi-
mum likelihood estimator to detect the direct path arrival.
Although it shows a promising result on the measured data,
it complicates the matter with the statistical modeling of
several parameters from measurement, which are subject to
change depending on the environment, and requires Nyquist
rate samples that is costly to obtain. To reduce the sampling
rate requirement, [3] proposed the use of symbol rate samples
after an energy detector to estimate the ToA. Unfortunately,
because of a square-law device its performance degrades
significantly at low SNR. An inverse problem approach to ToA

estimation was proposed by [4], where the authors estimate
the ToA by treating it as a by-product of the large scale
linear least squares (LS) solution. Although this algorithm is
simple, the problem isill-posed and suffers output instability,
attributable to both noise and a dense multipath, inherent of
an impulsive wideband channel. Moreover, its performance is
not well documented and the relationship to channel sampling
rate is not examined. In [5], ToA estimation based on high-
resolution, peak-detection-based (PDB) iterative algorithms
was proposed, where variants of the suboptimal maximum
likelihood (ML) channel estimator are shown to provide good
result while being efficient at energy capture.

To improve the estimator accuracy at low SNR while
retaining its simplicity, we propose aregularized LS (RLS)
approach with wavelet denoising (WD) to the problem of
ToA estimation. Pioneered by Donoho and Johnstone [6],
WD has been successfully applied to boost the low SNR
performance of time-delay estimator [7] and several direction
finding algorithms, e.g., [8], [9]. Our technique utilizes discrete
wavelet transform (DWT), and hyperbolic shrinkage of [10]
with the threshold developed by Donoho [11] to effectively
enhance the SNR prior to RLS channel estimation; there-
after, the final retrieval of accurate ToA information. Our
approach is simple and enables fast, on-the-fly, high-resolution
ToA estimation applicable to real-time ranging system. From
simulation, our algorithm is shown to outperform the PDB
algorithms of [5] when Nyquist sampling rate is available. To
the best of authors’ knowledge, this approach has yet to be
adopted for UWB-IR ToA estimation. Note that higher range
resolution can be achieved by interpolating from the Nyquist
rate samples.

The rest of the paper is organized as follows: Section II
presents the overall system model, including a descriptionof
both LS and RLS channel estimators. To examine the benefits
of denoising, Section III describes the critical components of
WD and how they contribute to the SNR enhancement. Finally,
we propose our ToA estimator in Section IV, and compare
its performance against the PDB algorithms in Section V.
Concluding remarks are given in Section VI.

II. SYSTEM MODEL

The position of a sensor node is directly related to the ToA
of the first multipath component. To estimate the ToA, a UWB



ranging system periodically transmits sub-nanosecond pulses
between the RNs and a TN of unknown distance. For a single
pulse transmitted through free-space, the received signalat the
TN under multipath can be modeled as

r(t) =

L−1
∑

l=0

αlw(t − τl) + n(t) , (1)

wherew(t) is the received pulse template of durationTp, αl

andτl are amplitude and time delay ofl-th multipath,L is an
unknowna priori which presents the number of propagation
paths, n(t) is the additive white Gaussian noise (AWGN)
with double-sided spectral densityN0/2. The purpose of ToA
estimation is to accurately predictτ0 over an observation
interval [0, T ).

To locate the TN, a series of measurements is first recorded
between itself and the RNs. Assuming the observation interval
consists ofK equally spaced delays fork = 0, 1, . . . , K − 1,
each associating with a sparse channel tapak. We can then
simplify (1) by associating the sparse set{ak}

K−1
k=0 of channel

coefficients with uniformly delayed received pulse template
w(t − k∆) for k = 0, 1, . . . , K − 1, as

r(t) =

K−1
∑

k=0

akw(t − k∆) + n(t) . (2)

Suppose the received signal is sampled at sampling timeTs.
Given time instant samplesti = (i−1)Ts for i = 1, 2, . . . , M ,
(2) can be written as

r(ti) =

K−1
∑

k=0

akw(ti − k∆) + n(ti) , i = 1, 2, . . . , M , (3)

which in matrix notation is given by

r = Wa + n = s + n , (4)

wherea = [a0, a1, . . . , aK−1]
T is the vector of sparse channel

coefficients, andn = [n(t1), n(t2), . . . , n(tM )]T is the noise
samples vector,s = Wa is the signal portion ofr, and

W =











w(t1) w(t1 − ∆) . . . w(t1 − (K − 1)∆)
w(t2) w(t2 − ∆) . . . w(t2 − (K − 1)∆)

...
...

. . .
...

w(tM ) w(tM − ∆) . . . w(tM − (K − 1)∆)











,

(5)
represents aM × K matrix which comprises of delayed and
sampled version ofw(t). In contrast to the matrix representa-
tions of [4] and [5], the step-size in (5) can be varied for the
sake of estimation accuracy. Consequently, depending on∆,
the linear system in (4) can be either over or underdetermined.

A. LS Solution

We treat the ToA estimation as a by-product of the LS
channel estimator by solving the solution to (4). For an
overdetermined noiseless system there exists a unique solution
which solves the problem

min ||Wa − r||2 , (6)

which yields the LS solution given by

âLS = (WT
W)−1

W
T
r = W

⊥
r , (7)

where || · ||2 is the Euclidean norm,(·)T denotes matrix
transpose,(·)−1 is the matrix inverse,̂a denotes an estimate
of a and W

⊥ is the Moore-Penrose inverse ofW. Unlike
[5], W

⊥ can bepre-computed and stored when a desired
resolution∆ is given. Unfortunately, (7) is often sensitive to
noise in the received signal and can be quite unstable when
W is ill-posed.

B. Regularized LS Solution

To find a meaningful result when the solution to (6) becomes
unstable, we apply the technique ofregularization. Regular-
ization is a well-known technique for dealing with instability
in the inverse problem [12] by forcing an ill-posed problem
into a well-posed one with somea priori information. The
RLS solution solves the problem

min{||Wa − r||2 + λ||a||2} , (8)

whereλ ≥ 0 is the regularization parameter which controls
the solution’s energy. Note that withλ = 0 the solution to (8)
reduces to the LS one. Withλ > 0, it is straightforward to
show that the unique global solution to (8) is given by

âRLS = (WT
W + λI)−1

W
T
r = W

⊥
λ r , (9)

where W
⊥
λ is called the regularized pseudo-inverse, which

can also bepre-calculated and stored for fast, on-the-fly
processing.

III. WAVELET DENOISING

To realize a stable LS solution for accurate ToA estimation,
we apply the well-established technique of WD. Since its in-
troduction in [6], denoising with DWT has become a powerful
tool to recover noise corrupted data. To recoverM samples of
a known data sequences from the noise-corrupted observation
r = s + n, wheren denotes aM × 1 vector samples of
AWGN with varianceσ2, the purpose of WD is to differentiate
the wavelet coefficients ofs from those ofn, assuming the
coefficients ofs resides mostly in the low frequency region
and can be compressed into a few large values in the wavelet
domain. The compression is carried out by multiplyingr with
a M × M orthonormal wavelet matrixWW , as

rW = WW r = WW s + WWn

= sW + nW , (10)

where the matrixWW can bepre-determined by knowing the
wavelet filter orderF and decomposition levelJ . Moreover,
due to the orthonormal property ofWW , the noise is similarly
mapped tonW with identical statistics. However, because of
its wideband nature, coefficients of noise are usually small
and can be discarded; whereas, the large coefficients of the
desired signal are retained [6], [11]. Differentiating amongst
these coefficients is identical to the filtering operation, where
(10) is multiplied by a matrixH modeled as

H = diag[h(1), h(2), . . . , h(M)] . (11)
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Fig. 1. The RLS-WD ToA estimator.

The elements ofH are set according to the thresholding
criterion, with hard and soft thresholds from [11] being
the most common, or the hyperbolic shrinkage proposed by
Vidakovic [10] defined as

h(i) =







√

(

1 − δ2

|rW (i)|2

)

if |rW (i)| > δ

0 otherwise
, (12)

where rW (i) denotes thei-th element ofrW , and δ is the
threshold from [6], [11], given by

δ =
√

2σ2 log(M) . (13)

The recovery of the desired signals is now given by

ŝ = W
T
W HrW = W

T
WHWW r , (14)

where ŝ represents an estimate ofs, but with the noise
being significantly reduced. The process of discarding and
retaining the wavelet coefficients results in the overall SNR
enhancement.

IV. RLS-WD TOA ESTIMATION

The distinct advantage of UWB in ranging is its high
precision with minimal penalty on SNR. Many existing ToA
estimators, however, do not work well at the low SNR region,
thus are limited to only short distance ranging. To improve the
estimator accuracy under low SNR, we adopt WD with RLS
channel estimation as shown in Fig. 1 for simple, yet accurate,
ToA estimation. We name this the RLS-WD ToA estimator.

One drawback of denoising with DWT is the requirement of
noise information, where its ability to remove noise depends
entirely on how accurate the noise variance can be estimated.
For narrowband signals and images, which map to a few large,
low-frequency coefficients in the wavelet domain, noise vari-
ance can be estimated from the finest scale wavelet coefficients
[11]. However, due to the wideband characteristic of UWB,
estimating variance from the first level decomposition is often
incorrect. For that, assuming a large distance between nodes
and a large sample sizeM , the variance can be estimated from
the first few hundred noise samples as

σ̂2 =
1

N − 1

N
∑

i=1

(r(ti) − µ̂)2 , (15)

whereµ̂ is the sample mean andN a subset ofM . Now, the
RLS-WD ToA estimator can be summarized as

1) ReceiveM samples of observationr at sampling rate
Ts over the interval[0, T ).

2) Estimate the noise variancêσ2 according to (15).

3) Select the wavelet filter orderF and WD decomposition
level J , apply Daubechies DWT and Vidakovic hyper-
bolic shrinkage tor, and estimate the desired signal
according to (14).

4) Choose the channel tap estimator resolution∆, andK =
T/∆, constructW according to (5).

5) Estimate the channel̂a using either LS solution in (7),
or RLS algorithm in (9), with a pre-determinedλ.

6) Estimate the ToA as

τ̂0 = argmin
tk

|â| > (1 − ζ) ,

where ζ is the threshold set as a percentage of the
maximum estimated amplitude.

V. SIMULATION RESULTS

To show the advantage of our algorithm over its counter-
parts, we evaluate their performance by computer simulation
in MATLAB TM with the Uvi Wave software package [13]
for Daubechies DWT. To accurately examine the performance
under multipath, we use the CM3 channel model from IEEE
802.15.3a [14], which models a severe office non line-of-sight
environment. The received templatew(t) is assumed to be the
typical Gaussian doublet with pulse parameterτm = 0.6 ns,
which has a zero-to-zero pulse width of2 ns. The pulse is
sampled atTs = 0.1 ns with the observation intervalT = 50
ns, representing a medium distance ranging application. To
study the performance of RLS-WD ToA estimator, we vary
∆ as a multiple ofTs when constructingW. A thousand
different channel realizations are simulated prior to the final
performance evaluation.

To determine the most suitableF for WD, we plot the
output SNR asF varies for a fixed input SNR1 of 0 dB in
Fig. 2(a). As shown, by applying WD to the received signal we
can have close to4 dB of gain across allF . Since increasing
F has no effect on the output SNR, we may further reduce
the denoising complexity by selecting the smallestF before
performance tapers off, which isF = 8 in our case. For that
value of F , Fig. 2(b) illustrates the effectiveness of WD2 as
input SNR varies. We see that WD results in substantial gain
at low SNR before diminishing return at high SNR. However,
when considering long distance ranging, the performance at
low SNR is often of great interest. For the ease of simulation,
the variance in (13) is assumed to be perfectly estimated, hence
the results shown act as a lower bound.

We compare the performance of our estimator with the
suboptimal ML PDB estimators in [5], namely, single search
(PDB-SS1), search and subtract (PDB-SS2), search subtract
and readjust (PDB-SSR). In general, these estimators first
compute the discrete match filter (MF) output betweenr

and a sampled pulse template; thereafter, the selection of the
maximum MF peaks with or without iteratively canceling

1The output and input SNR are defined according toSNRout =
20 log10(||s||/||ŝ − s||) and SNRin = 20 log10(||s||/||n||), respectively,
where|| · || denotes the Frobenius matrix norm.

2The effectiveness of WD can be measured from the gain in SNR [8],
defined asSNRout − SNRin.
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Fig. 2. Denoising performance of Daubechies DWT for UWB-IR.

the peaks fromr, depending on the algorithm. For these
algorithms, a similar ToA estimation criterion to the RLS-WD
is used and the number of peaks to detectZ is set to100. Fig. 3
shows the behavior of root mean-squared error (RMSE) versus
SNR whenζ = 95%, with the RLS-WD evaluated atλ = 2 in
(9), and∆ = 2Ts and 4Ts. Clearly, the RLS-WD algorithm
outperforms others under all SNR. At low SNR, it performs
better due to the input SNR enhancement from WD; whereas,
at high SNR, the contribution from WD lessens. An interesting
observation is the identical performance for∆ = 2Ts and4Ts,
which depending on the system requirement we may choose
either one without compromising the overall performance.

We observe a similar improvement on the RMSE when
ζ = 90%, as shown in Fig. 4. Specifically, the RLS-WD
outperforms PDB algorithms when SNR< 15 dB. For SNR
≥ 15 dB, all algorithms exhibit an error floor, particularly a
higher floor for RLS-WD than PDB-SSR, which we suspect
is due to the limitation of the RLS. Once again, we stress on
the importance of performance gain at low SNR that is more
critical when considering long distance ranging application.

Apart from the RMSE behavior, we are also interested in the
energy capture, as in [5]. For that, Fig. 5 illustrates the mean
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Fig. 4. RMSE of ToA estimation as a function of SNR for different
algorithms withζ = 90%.

energy capture as a function of SNR for all algorithms, and
the RLS-WD is computed withλ = 0.1. The energy capture is
computed between the received signal and its estimate. From
Fig. 5 we note that the RLS-WD loses energy initially due
to denoising, but it quickly recovers at high SNR when the
received signal is less noisy. Also, a spacing of2Ts on ∆
captures significantly more energy than for∆ = 4Ts since
K decreases as we increase∆ in the signal model. Note that
if all algorithms undergo denoising before ToA estimation,
the energy captured by RLS-WD would outperform all PDB
estimators.

Another parameter of interest is the choice ofζ, which
inherently affects the estimator performance. For that, Fig. 6
shows the RMSE behavior for a varyingζ at ∆ = 2Ts for
SNR = {0, 4, 8, 12, 16, 20} dB. Generally, a largeζ does not
produce the best result, especially in a low SNR environment
where noise can often be mistakenly identified as the direct
path. However, at high SNR, a largeζ often produces the
best result since the noise is either small or has been mostly
removed by WD.
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In terms of complexity, the computational load of the RLS-
WD is mostly constant. Specifically, the RLS is equivalent to
LS over a sphere and its complexity is about4M2K + 22K3

flops [15] with the remaining load going to DWT, which is
of O(M) per WD process [16]. However, when recognizing
the WD as a series of matrix multiplications in (14) with
pre-computed matrices further indicates a constant processing
time for our approach. In contrast, the complexity of the
PDB estimators depends entirely on the channel condition and
the number of iterationsZ. Table I compares the flop count
amongst the algorithms. For the PDB algorithms, they require
4M2 flops per MF computation,5M and2z2M +2z3/3+2M
flops to compute the channel gain per iteration for PDB-SS2
and PDB-SSR, respectively, wherez denotes the iteration
index. Hence, in a dense multipath channel, the RLS-WD
would require less processing time than its counterparts.

VI. CONCLUSION

In this paper, we have proposed the RLS-WD ToA es-
timator, which estimates the ToA as a by-product of the

TABLE I

COMPARISON OFCOMPUTATIONAL COMPLEXITY

Flop Count
PDB-SS1 4M2

PDB-SS2 4ZM2 + 5ZM
PDB-SSR 4ZM2 + 4ZM + O(Z4)
RLS-WD

(

4M2K + 22K3
)

+ 4FJM

channel estimation. Our approach is simple and can provide
fast, on-the-fly, accurate ToA estimation applicable to real-time
ranging system. From simulation, we have demonstrated the
robustness of our algorithm where it outperformed other high-
resolution algorithms. Apart from being a better estimator,
the RLS-WD is also capable of accurate channel estimation;
however, its thresholdζ must be set according to the SNR for
the best performance. Finally, we have shown that the RLS-
WD has lower computational complexity than its counterparts
especially when processing a dense multipath channel.
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