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ABSTRACT

A tuning technique is proposed for the location of hot
spots in proteins using a bandpass notch (BPN) digi-
tal filter. The technique involves tuning the notch fre-
quency of the filter over a small frequency range. To
facilitate tuning, a user-friendly graphical interface has
been implemented using MATLAB. Simulations have
shown that the use of the tuning technique leads to
improved hot-spot predictions compared to results ob-
tained using untuned BPN filters.

1. INTRODUCTION

Accurate location of hot spots in proteins is an impor-
tant aspect in the broader problem of understanding
protein function. To locate hot spots, biologists per-
form site-directed mutagenesis [1] experiments which
are complex and expensive in terms of time and re-
sources. Several computational techniques have been
developed that provide good estimates of hot-spot loca-
tions using computer-generated models of protein func-
tion. Using these estimates, biologists can selectively
perform laboratory experiments to confirm the hot-
spot locations thereby saving a considerable amount
of time and resources.

A simple and effective strategy to computationally
predict hot spots based solely on a protein’s amino acid
sequence is to employ the resonant recognition model
(RRM) [2]. According to the RRM, each protein func-
tional group corresponds to a unique frequency com-
ponent known as the characteristic frequency of the
group. The hot spots of a protein are the amino acids
corresponding to the regions in the protein numerical
sequence where the characteristic frequency is domi-
nant. Identifying these regions amounts to locating
hot spots. In previous work, we introduced a filter-
based technique for identifying hot-spot locations us-
ing a second-order bandpass notch (BPN) digital fil-
ter [3, 4]. The technique was shown to yield accurate
results. Here, we propose an enhancement that can

be used to improve the accuracy further by tuning the
BPN filter. The enhancement uses a least-squares poly-
nomial model to characterize the variations of the filter
coefficients in response to small changes in the notch
frequency. This model can then be used for comput-
ing the filter coefficients for slight changes in the notch
frequency without having to redesign the filter. The pa-
per also describes a graphical interface that implements
the technique in the MATLAB environment. Simula-
tions show that the use of the tuning technique yields
improved hot-spot predictions compared to results ob-
tained using untuned BPN filters.

The paper is organized as follows. Section 2 briefly
describes the RRM and the filter-based hot-spot loca-
tion technique. Section 3 presents the proposed tuning
technique. Section 4 describes the implementation de-
tails in terms of the graphical interface developed using
MATLAB. Section 5 demonstrates the usefulness of the
technique by applying it to a set of example protein se-
quences.

2. THE RRM AND FILTER-BASED
HOT-SPOT LOCATION

Predicting the locations of hot spots using the reso-
nant recognition model involves first mapping a set of
protein character sequences belonging to the functional
group of interest into numerical sequences. For this
mapping, a physical measure known as the electron-ion
interaction potential (EIIP) is employed [2]. An EIIP
value exists for each of the 20 amino acids. The dis-
crete Fourier transforms (DFTs) of the EIIP sequences
are then computed and are multiplied pointwise to ob-
tain what is known as a consensus spectrum. A distinct
peak in the consensus spectrum yields the characteris-
tic frequency of the functional group. Identifying the
regions in a protein EIIP sequence where the character-
istic frequency is dominant would locate its hot spots.

Once the characteristic frequency is identified, dif-
ferent techniques can be adopted for locating hot spots.



In [3,4], we introduced a filter-based technique in which
a narrowband bandpass digital filter is designed to se-
lect the characteristic frequency component and the
EIIP sequence is filtered using a zero-phase filter [5]. A
plot of the output signal power versus location reveals
the hot spots as distinct peaks. An inverse-Chebyshev
IIR filter was initially used and, subsequently, in [4],
a second-order BPN filter was proposed which is de-
signed as follows. The transfer function of the BPN
filter is given by

GBPN (z) =
1
2

[
(1− d0)(z2 − 1)
z2 + d1z + d0

]
(1)

where d0 and d1 denote the coefficients of the filter. Co-
efficient d0 is equal to the square of the pole radius and
controls the selectivity of the filter. As d0 approaches
unity, the selectivity is increased but at the same time
the sensitivity of the filter to roundoff errors is also in-
creased. The best design for a specified stability margin
can be achieved by fixing d0 and determining d1 such
that the area under the amplitude response curve is
minimized. This is a unimodal minimization problem,
and hence its solution can be readily obtained by us-
ing a 1-dimensional optimization technique such as the
golden-section search [6].

3. PROPOSED TUNING TECHNIQUE

Although the BPN filter-based technique is effective in
locating hot spots, the accuracy of the results obtained
depends on how accurately the characteristic frequency
has been determined. This, in turn, depends on the
lengths of the EIIP sequences used to compute the con-
sensus spectrum. Typically, protein sequences are short
of the order of a couple of hundred amino acids. This
limits the accuracy of the characteristic frequency as
determined by the consensus spectrum, which may be
offset by a small amount relative to the true charac-
teristic frequency. This problem can be circumvented
by tuning the notch frequency, ω0, of the BPN filter in
order to achieve an accurate estimate of the true char-
acteristic frequency. Such a tuning must be computa-
tionally efficient and must not require redesigning the
filter so that the effects of changing the notch frequency
can be instantaneously observed in terms of the hot-
spot results. In what follows, we model the variations
of the filter coefficients in response to small changes in
the notch frequency using a least-squares polynomial
of order two. The model is then used to tune the notch
frequency of the BPN filter.

The zero-pole plot of the BPN filter is shown in Fig-
ure 1. The zeros of the BPN filter are always located on
the real axis at z = ±1 and, for a fixed stability mar-
gin, τ , with respect to the unit circle of the z plane,
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Figure 1. Zero-pole plot corresponding to the BPN
filter. Zeros are denoted by ‘o’ and poles by ‘×’.

d0 = (1− τ)2 and hence the poles move along semicir-
cles of radius 1− τ as the notch frequency varies from
0 to π in a manner shown in Figure 1. With d0 fixed,
coefficient d1 is a function of the notch frequency, ω0,
as illustrated in Figure 2. For small variations in ω0,
coefficient d1 can be expressed as a quadratic function
of ω0 as

d1(ω0) = d10 + α1(ω0 − ω0U ) + α2(ω0 − ω0U )2 (2)

where d10 and ω0U are the values of d1 and the notch
frequency in the untuned BPN filter, and α1 and α2

are coefficients to be determined. The notch frequency
is bounded by the interval ωl ≤ ω0 ≤ ωu centered at
ω0, where ωl = ω0 − ε and ωu = ω0 + ε with ε being
a small positive constant. To determine α1 and α2,
a set of N BPN filters, say 10, can be designed with
notch frequencies uniformly distributed in the interval
[ωl, ωu]. The values of d1 for these filters can then be
used to form the overdetermined system

Ω α ≈ d (3)

where

Ω =

 ωl − ω0 (ωl − ω0)2
...

...
ωu − ω0 (ωu − ω0)2

 α =
[
α1

α2

]

and

d =

 d1ωl
− d1ω0

...
d1ωu − d1ω0


The shortest-length least-squares solution for (3) can
be obtained by

α ≈ Ω+ d (4)



Figure 2. Variation of d1 with small changes in the
notch frequency. The values of ωl, ω0, and ωu are 0.1,
0.15, and 0.2, respectively.

where Ω+ denotes the Moore-Penrose pseudo-inverse
of Ω [7]. The values of α1 and α2 thus obtained can
be used in (2) to determine coefficient d1 for any BPN
filter with notch frequency in the interval [ωl, ωu]. In
effect, with the coefficients of the untuned BPN filter
and the values of α1 and α2 known, the coefficients
of any BPN filter with notch frequency in the inter-
val [ωl, ωu] can be obtained with good accuracy using
the model in (2) without going through the filter de-
sign process. Tuning can, therefore, be easily achieved
by simply changing the notch frequency and instanta-
neously observing the effects of the change in terms of
the hot-spot results.

4. IMPLEMENTATION

To facilitate the application of the tuning technique, a
graphical user interface (GUI) has been implemented in
MATLAB.1 A screen shot of the GUI is shown in Fig-
ure 3. The basic operation of the software is as follows.
The user first selects a set of protein sequences using
the listbox and clicks on “Compute Consensus Spec-
trum.” This displays the consensus spectrum identi-
fying the characteristic frequency as a distinct peak.
The software also assigns default values for the filter
design parameters. The user can keep these values or
alter them as desired. Then the user clicks on “De-
sign Filter” to design the untuned BPN filter. Click-
ing on “Predict” will predict hot-spot locations for the
selected protein sequences using the untuned BPN fil-
ter and display corresponding plots in separate win-
dows. Finally, clicking on “FreqVarGUI” will deduce
the least-squares model and invoke the slider shown

1The MATLAB source code can be obtained by contacting
the authors.
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Figure 3. Screen shot of the tuning GUI: (a) the hot-
spot GUI to design the untuned BPN filter and predict
default hot-spot locations; (b) the slider for the notch
frequency.

in Figure 3(b) which can be used to tune the notch
frequency of the filter. As the notch frequency changes
with the movement of the slider, the software computes
the new filter coefficients and updates the plots to re-
flect the new hot-spot locations. For more details re-
garding the filter design parameters in Figure 3(a), the
reader is referred to [4].

To predict the hot-spot locations of an unknown
protein sequence, a training set of known protein se-
quences belonging to the same functional group as the
unknown sequence can first be processed to calibrate
the GUI. The software can then be applied to the un-
known sequence for accurate prediction of its hot spots.
In a typical tuning session, the user varies the notch
frequency from ωl to ωu and records the frequency
that yields the maximum number of hot-spot locations.
This frequency can be taken to be an accurate estimate
of the true characteristic frequency.

5. RESULTS

To demonstrate the usefulness of the proposed tuning
technique, we applied it to a set of four example pro-
tein sequences. The values used for N and ε were 10
and 0.05, and ωl, ω0, and ωu were set to 0.2716, 0.3216,



Table 1. Hot-spot Locations Obtained by Tuning the BPN Filter

Char. frequency Hot-spot locations

Protein Untuned Tuned Data reported Untuned Tuned
name BPN filter BPN filter in ASEdb BPN filter BPN filter

C. fimi endoglucanase C 0.093 0.098 19, 50, 75, 84 50, 75, 84 19, 50, 75, 84

human basic FGF 0.904 0.900 24, 96, 103, 140 24, 96, 103 24, 96, 103, 140

barnase 0.321 0.323 27, 54, 59, 60, 27, 54, 59, 60, 27, 54, 59, 60,
73, 82, 83, 87, 73, 83, 87, 102, 73, 82, 83, 87,
102, 103 103 102, 103

barstar 0.321 0.323 33, 35, 38, 39, 33, 35, 38, 33, 35, 38, 39,
42, 73, 76, 80 42, 73, 76, 80 42, 73, 76, 80

and 0.3716, respectively. The results are summarized
in Table 1. For comparison, the table also lists results
obtained using biological methodologies reported in the
alanine scanning energetics database (ASEdb) [8]. From
the table, it is evident that by using the tuning tech-
nique to adjust the notch frequency of the BPN filter,
we were able to predict certain hot-spot locations that
were not predicted using the untuned BPN filter. Lo-
cations 19 in endoglucanase C, 140 in FGF, 82 in bar-
nase, and 39 in barstar correspond to these locations. It
should be mentioned that proteins barnase and barstar
belong to the same functional group and hence share
the same characteristic frequency.

6. CONCLUSION

A tuning technique has been proposed for improving
the accuracy of hot-spot locations predicted using a
second-order BPN filter. The technique has been im-
plemented in the form of a graphical interface in the
MATLAB environment. The usefulness of the tech-
nique has been demonstrated by applying it to a set
of example protein sequences. Simulation results have
shown that by using the proposed tuning technique to
adjust the notch frequency of the BPN filter, certain
hot-spot locations that were missed by the untuned
BPN filter can now be identified.
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