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Abstract—Designing perfect-reconstruction orthogonal cosine-
modulated filter banks is essentially a nonconvex problem and to
date only local solutions can be claimed. By virtue of the recent
progress in global polynomial optimization, this paper describes
an attempt of developing a global design method using an order-
recursive strategy combined with a technique that identifies a
desirable initial point in each round of recursion. Simulation and
comparison studies are presented to evaluate the performance of
the proposed design technique.

I. INTRODUCTION

Orthogonal cosine modulated (OCM) filter banks are among

the most popular filter banks for multirate signal processing as

they admit efficient implementation through polyphase decom-

position and their design can be carried out with considerably

reduced complexity relative to that of a general M -channel

system because in the former case one is focused on a single

prototype filter (PF). A great deal of research on (locally)

optimal design of OCM filter banks has been made [1]–[4],

however, their global design remains a challenge primarily

because the design problem is nonconvex.

This paper presents an attempt towards global design of

OCM filter banks. In brief terms, the design is performed

using an order-recursive strategy combined with a technique

for identifying a desirable initial point in each round of the

recursion. The recent breakthrough in global polynomial opti-

mization problems (POPs) [5] is found useful in substantiating

our design notion. Design examples are presented to illustrate

the proposed method and compared with those obtained by

existing design techniques.

II. PRELIMINARIES

An M -channel, maximally decimated OCM filter bank is

illustrated in Fig. 1. The coefficients of the analysis and

synthesis filters are respectively given by
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for 0 ≤ k ≤ M − 1 and 0 ≤ n ≤ N − 1, where {ℎ(n)} is the

impulse response of the finite-impulse-response (FIR) PF and

D is the system delay.
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Fig. 1. M -channel maximally decimated filter bank.

There exist discrete cosine transform (DCT) modulations

for OCM filter banks with structures other than that of (1)

[1]. In this paper we concentrate on the DCT-IV OCM filter

banks as defined in (1). In the rest of the paper, it is assumed

that: 1) the channel number M is even; 2) the filter length N
assumes the form N = 2mM for some positive integer m;

and 3) the system delay is D = N − 1 since the PF of an

OCM filter bank has a linear phase response. For the rationale

of these assumptions, see [1]–[3].

The input-output relation of the system in the z-domain is

given by

Y (z) = T0(z)X(z) +

M−1
∑

l=1

Tl(z)X(ze−j2�l/M ) (2)

where

T0(z) =
1

M

M−1
∑

k=0

Fk(z)Hk(z)

is the distortion transfer function determining the distortion

caused by the system for the unaliased component X(z), and

Tl(z) =
1

M

M−1
∑

k=0

Fk(z)Hk(ze
−j2�l/M ) for l = 1, 2, ⋅ ⋅ ⋅ ,M−1

are the alias transfer functions that determine how the aliased

components X(ze−j2�l/M ) are attenuated. The OCM filter

bank holds the PR property if and only if

T0(z) = z−D, Tl(z) = 0 for l = 1, 2, ⋅ ⋅ ⋅ ,M − 1 (3)

Under this circumstance, (2) becomes Y (z) = z−DX(z) and

in the time domain the output is a delayed replica of the input

as y(n) = x(n−D).



Typically, the “closeness” of an OCM filter bank to the PR

property is measured in the frequency domain by means of

1) amplitude distortion

em(!) = 1− ∣T0(e
j!)∣, for ! ∈ [0, �] (4)

2) worst case aliasing error

ea(!) = max
1≤l≤M−1

∣Tl(e
j!)∣, for ! ∈ [0, �] (5)

Alternatively, the PR conditions can be described in the time

domain by the quadratic equations

al,n(h) = hTQl,nh− cn = 0 (6a)

for 0 ≤ n ≤ m− 1 and 0 ≤ l ≤ M/2− 1

where h = [ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎN−1]
T

denotes the coefficients of the

PF, and

Ql,n = V2M−1−lDnV
T
l +VM−1−lDnV

T
M+l(6b)

Dn(i, j) =

{

1, if i+ j = n

0, otherwise
(6c)

Vl(i, j) =

{

1, if i = l + 2jM

0, otherwise
(6d)

cn =
1

2M
�(n− s) (6e)

for i = 0, 1, ⋅ ⋅ ⋅ , N − 1 and j = 0, 1, ⋅ ⋅ ⋅ , N − 1.

We consider designing a PR OCM filter bank with its PF’s

stopband energy

e2(h) =

∫ �

!s

∣H(ej!)∣2d! (7)

minimized, where !s = (1 + �)�/2M is the stopband edge

of the PF with � > 0 (� is always assumed to be 1 in our

designs). By writing

H(ej!) =

N−1
∑

k=0

ℎke
−jk! = hTp(!) (8)

with p(!) = [1 e−j! ⋅ ⋅ ⋅ e−j(N−1)!]T and using (8), the

stopband energy becomes [4]

e2(h) = hTPh (9)

where P is a symmetric positive-definite Toeplitz matrix

determined by its first row [� − !s,− sin!s,− sin 2!s/2,
⋅ ⋅ ⋅ ,− sin(N − 1)!s/(N − 1)].

Since the impulse response of the PF is symmetrical, the

design variables are only components in the first half of the

PF’s impulse response, i.e., ĥ = [ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎN/2−1]
T . Thus,

matrices P and Ql,n of size N×N in (9) and (6a) are reduced

to matrices P̂ and Q̂l,n of size N/2×N/2 and the optimization

problem is cast as

minimize e2(ĥ) = ĥT P̂ĥ (10a)

subject to: al,n(ĥ) = ĥT Q̂l,nĥ− cn = 0 (10b)

for 0 ≤ n ≤ m− 1 and 0 ≤ l ≤ M/2− 1

The impulse response h can then be obtained as h =
[

ĥT flipud(ĥ)T
]T

where flipud(ĥ) denotes a vector

generated by flipping vector ĥ upside down.

III. GLOBAL DESIGN

The design problem formulated in (10) is nonconvex be-

cause of the presence of the mM/2 quadratic equality con-

straints in (10b). As a result, (10) admits local minimizers

whose performance may be less than satisfactory. The princi-

ple idea we follow in this paper to reach a global design is

to conduct a local search in a region that is sufficiently close

to the global solution. To secure such a good starting (i.e.

initial) point, we propose an order-recursive strategy based on

the observation (see Sec. III-B) that the profile of the global

solution of order N = 2Mm is quite close to that of the

global solution of order N ′ = 2M ′m′ as long as the difference

between (m,M ) and (m′,M ′) remains small. The design is

accomplished by (i) obtaining a low-order global design and

(ii) using interpolation/zero-padding of the design obtained to

produce a desirable initial point for PF of slightly increased

order and carry out the design by a locally optimal method.

Repeat this step until the filter order reaches the targeted

value. In what follows we describe the technical details that

implement this design strategy.

A. Global Design of Low-Order PFs

Problem (10) is a polynomial optimization problem (POP)

since the objective function and constraints are all polyno-

mials of degree two. Reference [5] provides a semidefinite-

programming [6] relaxation based method to obtain global

solutions for a large class of POPs. GloptiPoly [7] and

SparsePOP [8] are two popular solvers based on [5] in finding

global solutions of POPs of small sizes. GloptiPoly was found

to work well for problem (10). As an example, with M = 2,

m = 1 and � = 1, the toolbox produces two globally optimal

impulse responses as

h(2,1) =

[

ĥ(2,1)

flipud(ĥ(2,1))

]

=

⎡

⎢

⎢

⎢

⎣

0.235923416966353

0.440840267366581

0.440840267366581

0.235923416966353

⎤

⎥

⎥

⎥

⎦

and −h(2,1). Unfortunately, the usefulness of the software is

limited to OCM filter banks of low order. In our simulations

the software was found to work only for the following cases:

a) M = 2, 1 ≤ m ≤ 5; b) M = 4, 1 ≤ m ≤ 3; c) M = 6,

m = 1; d) M = 8, m = 1.

B. Global Design of High-Order PFs

First, we observe a common pattern among globally optimal

impulse responses of low-order PFs. Shown in Fig. 2 are

the globally optimal impulse responses of low order obtained

using GloptiPoly, where the impulse responses are plotted over

normalized interval [0, 1]. We note that:

1) For a fixed M , the impulse responses with different m
exhibit a similar pattern and are close to each other.
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Fig. 2. Pattern of impulse responses of globally optimal PFs.

2) For m = 1, the impulse responses with different M also

exhibit a similar shape.

These observations allow us to follow the design strategy

described earlier which results in an algorithm as follows:

Algorithm 1

Input Data: Target filter order Ñ = 2m̃M̃ .

Step 1 Design a globally optimal PF with m = 1 and

M = 2 using GloptiPoly. Denote the solution by h =
[

ĥT flipud(ĥ)T
]T

.

Step 2 Design a globally optimal PF with m = 1 and M = M̃
by the following steps:

2.1 Set M = M + 2. Generate a vector ĥint
0 of length-(mM )

by linear interpolating ĥ, and obtain hint
0 by symmetrical

extension of ĥint
0 .

2.2 Obtain a locally optimal design h with hint
0 as initial point

(see Sec. IV).

2.3 If M = M̃ , go to Step 3; otherwise, repeat from Step 2.1.

Step 3 Design a globally optimal PF with m = m̃ and M =
M̃ by the following steps:

3.1 Set m = m+ 1. Generate a vector ĥ
zp
0 of length mM̃ by

padding zeros at the front of ĥ, and obtain h
zp
0 by symmetrical

extension of ĥ
zp
0 .

3.2 Obtain a locally optimal design h with h
zp
0 as initial point

(see Sec. IV).

3.3 If m = m̃, output h as the optimal design and terminate;

otherwise, repeat from Step 3.1.

As an example, Fig. 3 illustrates Step 2.1, where the impulse

response of the globally optimal PF with m = 1 and M = 2
is linearly interpolated to yield a vector hint

0 whose profile is

similar to that of the globally optimal impulse response with

m = 1 and M = 4. Another example is provided in Fig. 4

where vector h
zp
0 is produced by padding zeros to the globally

optimal impulse response with m = 1 and M = 4. We see

that h
zp
0 is quite close to the globally optimal impulse response

with m = 2 and M = 4.

IV. LOCAL DESIGN

Local design is an important ingredient of Algorithm 1

(see Steps 2.2 and 3.2). This section describes a sequential

convex programming (CP) technique for these local designs.
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Fig. 3. Effect of linear interpolation when m = 1.
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Fig. 4. Effect of zero-padding when M = 4.

The design technique is in spirit similar to that proposed in

[9], however here it is for a PF in OCM filter banks while

[9] concerns with two-channel orthogonal filter banks and

wavelets.

Suppose that we are in the kth iteration to compute � so

that ĥk+1 = ĥk+� reduces the PF’s stopband energy in (10a)

and better satisfies the PR conditions in (10b). The objective

function in (10a) then becomes

ĥT
k+1P̂ĥk+1 = �T P̂� + 2�T P̂ĥk + ĥT

k P̂ĥk (11)

For � with ∥�∥ small, (10b) can be linearly approximated as

al,n(ĥk + �) ≈ al,n(ĥk) + gT
l,n(ĥk)� = 0 (12)

for 0 ≤ n ≤ m− 1 and 0 ≤ l ≤ M/2− 1

where gl,n(ĥk) = 2Q̂l,nĥk is the gradient of al,n(ĥ) at ĥk.

Using (11) and (12), the kth iteration of (10) assumes the form

minimize �T P̂� + �Tbk (13a)

subject to: Gk� = −ak (13b)

∥�∥ is small (13c)

where bk = 2P̂ĥk, Gk ∈ RN/4×N/2 collects the N/4
rows gT

l,n(ĥk) and ak ∈ RN/4 consists of N/4 components

al,n(ĥk). The equality constraint (13b) can be eliminated via

the singular value decomposition of Gk = UΣV as [6]

� = Ve�+ �s (14)



Assuming Gk has full row-rank that is N/4, then � is an

N/4-dimensional free vector, Ve is a matrix consisting of the

last N/4 columns of V, and �s = −G
†
kak where † denotes

the pseudo-inverse of a matrix. Thus, (13) can be cast as

minimize �T P̃k�+ �T b̃k (15a)

subject to: ∣∣�∣∣ is small (15b)

where P̃k = VT
e P̂Ve, b̃k = 2VT

e P̂(ĥk +�s). Since (15) is a

convex QP problem, it can be solved efficiently in MATLAB

using command quadprog(). Using the solution of (15) in

Eq. (14), an optimal �k is obtained and point ĥk is updated

to point ĥk+1. This iterative procedure continues until ∥�k∥
is less than a prescribed tolerance.

We now conclude this section with a couple of remarks.

1. As can be seen in (15b), the constraint on the smallness of

∥�∥ (see (13c)) is replaced by a constraint on the smallness

of ∥�∥. This change is justified by noticing that (14) implies

that ∥�∥ ≤ ∥�∥+∥�s∥ where �s is a minimum-norm solution

of (13b), hence a sufficiently small ∥�∥ implies a small ∥�∥.

2. The algorithm occasionally does not converge to a highly

accurate solution because of numerical difficulties. In such

a case, the filter coefficients obtained are slightly adjusted

using a Gauss-Newton technique [6] with adaptively controlled

weights in order for the final solution to satisfy the PR

condition (10b) with high accuracy.

V. SIMULATION RESULTS

A. Performance of Algorithm 1 for Low-Order Designs

The design strategy described in Sec. III-B was applied to

design low-order PFs for the cases: a) M = 2, 2 ≤ m ≤ 5; b)

M = 4, 1 ≤ m ≤ 3; c) M = 6, m = 1; d) M = 8, m = 1.

The impulse responses obtained were found to be practically

identical to those generated from GloptiPoly in Sec. III-A,

giving a convincing support to our design concept.

B. Performance of Algorithm 1 for High-Order Designs

The proposed method was also applied to design high-

order PFs of OCM filter banks with satisfactory results. As

an example, an OCM filter bank with m = 20 and M = 4
was designed using Algorithm 1. The design was performed

on a PC laptop with a 1.66 GHz dual-core processor. The

magnitude response of the optimized PF is shown in Fig. 5.

For comparison, an OCM filter bank with the same design

specifications was designed by the method in [4]. Table I lists

the performance of the two filter banks in terms of stopband

energy (see (10a)) of the optimized PFs and the largest

equation error amongst all quadratic equality constraints in

(10b). To explicitly measure the PR satisfaction, Table I also

lists the maximum of absolute value of amplitude distortion

(see Eq. (4)) as well as the maximum of absolute value of

worst case aliasing error (see Eq. (5)), for ! ∈ [0, �]. From

the table, the superior performance of the filter bank produced

by the proposed design technique is observed. We remark

however that the performance gain was at the cost of increased

computational complexity: the proposed design required 59.5
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Fig. 5. Magnitude response of globally optimal PF of an OCM filter bank
with m = 20, M = 4 and � = 1.

TABLE I
PERFORMANCE COMPARISON

Global design Local design

Energy in stopband 8.226e-13 6.585e-10

Largest eq. error 1.839e-15 2.297e-10

max(∣em(!)∣) 3.975e-14 9.811e-10

max(∣ea(!)∣) 3.314e-14 3.003e-9

seconds of CPU time versus 19.7 seconds by the method in

[4].

VI. CONCLUSION

A strategy for the global design of PR OCM filter banks has

been proposed. The method is built upon some recent progress

in global polynomial optimization and an effective local design

technique, in conjunction with several critical observations

on the globally optimal impulse responses. Several design

examples have been presented to verify the design concept

and demonstrate the superiority of the proposed algorithm.
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