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Abstract—This paper investigates the joint precoding opti-
mization for a relay-assisted multi-antenna downlink system.
Aiming at multiuser sum capacity maximization, we first propose
an iterative optimization algorithm which exploits quadratic
programming approaches. Inspired by the results obtained from
the iterative optimization algorithm, in order to further reduce
the computational complexity, we then develop an efficient source
and relay precoding strategy which diagonalizes the compound
channel of the backward and the forward channel in our
system. Simulation results verify the effectiveness of our proposed
precoding schemes.

I. INTRODUCTION

Relaying technology has attracted a great deal of interest
due to its ability to extend the coverage in cellular networks.
Recently, relay-based network architecture shows its promising
potential on practical applications in future wireless systems,
such as long-term evolution (LTE) and IEEE 802.16 [1]–[3].
Moreover, multiple-input multiple-output (MIMO) is a well-
known technology for current radio networks to significantly
improve the spectral efficiency and link reliability [4]. For
these reasons, a number of studies have focused on investigat-
ing relay-assisted multi-antenna systems [5] and developing
efficient precoding/relaying approaches [6], [7].

In point-to-point MIMO systems, it is known that the
optimal pre-processing strategy is the singular-value decompo-
sition (SVD)-based precoding with conventional water-filling
like power allocation [4]. When a single relay is utilized
between the source and the destination, however, the optimiza-
tion of source precoding and relaying scheme is different and
becomes more complex. Studies in [6], [7] have revealed that
the optimal amplify-and-forward relaying strategy follows a
similar structure as the SVD-based precoding in MIMO sys-
tems without relays. In [8], the authors further investigate the
optimization problem of joint source precoding and relaying
design.

On the other hand, when multiple antennas are employed
at the transmitter, multiple users can be scheduled at a time
for simultaneous transmission. Therefore, the multiuser MIMO
downlink system is also an essential scenario in practical
applications. In [5], the information theoretic limit has been
investigated and dirty paper coding (DPC) is proven to be
an optimal transmission strategy to achieve the full capacity
of a MIMO downlink channel. Because the implementation
complexity of DPC is prohibitively high for most wireless
applications, a number of less-complex linear precoding tech-
nologies are then developed in [10]–[12].

Recently, an increasing attention has been paid for using
relay stations in multiuser MIMO networks to deal with remote
mobile users and thus to enlarge the coverage [13]–[16].
In [13], the precoding design for multiple access channels
(MAC) using regenerative two-way relaying has been ad-
dressed. Concerning a single-direction relay-assisted MAC,
the outage performance obtained by several simple relaying
strategies is analyzed in [14]. Since it is hard to obtain the op-
timal precoding design for the relay-assisted multiuser MIMO
systems, some suboptimal solutions have been developed in
[15], [16]. More specifically, in [15], sum capacity bounds are
derived for the multiuser MIMO relay system which exploits
non-linear precoding at the source and linear processing at
the relay. Aiming at transmit power minimization under pre-
defined quality-of-service (QoS) requirements, an iterative
joint precoding and relaying algorithm is proposed in [16].

In this paper, we consider the joint optimization of linear
pre-processing at both the source and the relay in a MIMO-
relay assisted multiuser downlink channel. Different from [16],
we optimize the joint precoding strategy by maximizing the
achievable sum capacity of our systems under fixed transmit
power constraints. By using quadratic approximation, we first
focus on directly solving the precoding optimization problem
with efficient quadratic programming approaches. Since the
original problem is non-convex, the proposed iterative method
generally converges to some local optimum solutions. Nu-
merical results still demonstrate significant performance gain.
Fortunately, we also observed that the optimized precoding
solutions obtained by the iterative quadratic programming
method always diagonalize the compound channel of our
system at high SNRs. Inspired by this observation, we then
propose an efficient joint precoding and relaying scheme which
diagonalizes the compound channel to several parallel single-
stream channels.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiuser downlink channel with an Ns-
antenna base station (BS) serving L single-antenna users
through an Nr-antenna relay station (RS). Since this study
focuses on the problem of precoding design, like in [15], [16],
we do not consider the problem of remote user scheduling
in our system. We assume that only a two-hop protocol is
employed by the relay station, and a half-duplex scheme is
utilized. The direct links between the source and the remote
users are neglected due to some facts including large path
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Fig. 1. System model of a relay-assisted multi-antenna downlink channel.

loss and severe shadowing effects. The system structure of the
relay-assisted multi-antenna downlink channel is illustrated in
Fig. 1.

Let s ∈ CL×1 be the transmit symbol vector at the source.
Denote W as the precoding matrix at the source base station
(BS) before transmitting the symbols. Then, the received
symbols at the relay station is

r = HWs + n (1)

where H ∈ CNr×Ns is the channel matrix from the source
to the relay station, and n is the complex Gaussian noise
with zero-mean and unit variance. The entries of the channel
matrix H are assumed to be independent zero-mean complex
Gaussian random variables of unit variance. The energy of
the input symbols is normalized, i.e., E{ssH} = IL. The
transmit power constraint at the BS can thus be given by
tr

(
WWH

)
= P1, where P1 includes the effect of path loss

of the backward channel.
After receiving the symbols, the relay pre-processes the

received vector by a precoding matrix F, and then broadcast
to distributed users. The transmit vector at the relay is

sr = FHWs + Fn (2)

where the transmit power constraint at the relay station is

tr
(
FHWWHHHFH

)
+ tr

(
FFH

)
= P2. (3)

Denote gH
k as the 1 × M channel vector between the relay

station and the kth user terminal. The finally received symbol
at user k is

yk = gH
k FHWs + gH

k Fn + zk (4)

where zk is the complex Gaussian noise with zero mean and
unit variance. Note that the kth symbol sk in s is the desired
information for user k.

Representing the BS precoding matrix by W = [w1 · · ·wL]
where wk is the beamformer for data sk to user k, we can
calculate the SINR at user k as

γk =
|gH

k FHwk|2∑
j 6=k |gH

k FHwj |2 + ‖gH
k F‖2 + 1

. (5)

Thus, aiming at sum capacity maximizing, the joint precoding
and relaying optimization problem can be formulated as

max
F,W

1
2

L∑

k=1

log(1 + γk) (6a)

s.t. tr
(
WWH

)
= P1; (6b)

tr
(
FHWWHHHFH

)
+ tr

(
FFH

)
= P2 (6c)

where the factor 1
2 in the objective function results from the

fact that data is transmitted over two time-slots. It can be easily
verified that this optimization problem is non-convex, and it
is difficult to obtain the globally optimal solution. In the fol-
lowing sections, we will first introduce an iterative algorithm
which exploits efficient quadratic programming approaches
[18] to obtain a local optimal solution to this problem. Then,
for implementation complexity reduction, we also develop an
efficient non-iterative precoding and relaying design method
using parallel transmission strategy.

III. ITERATIVE PRECODING OPTIMIZATION

The proposed optimization algorithm is based on iterative
mechanism, and the optimized problem in each iteration is
formulated as a quadratic program which can be efficiently
solved. Without loss of generality, we assume that W(n) and
F(n) are precoding matrices obtained at the nth step. Let

W(n+1) = W(n) + ∆(n+1)
w , F(n+1) = F(n) + ∆(n+1)

f (7)

be the updated precoding matrices in the next iteration process.
Then, the optimization problem in the (n+1)th step is to find
optimal ∆w and ∆f by maximizing the objective function in
(6). Accordingly, we can write the optimization problem in
the (n + 1)th step as follows:

max
∆

(n+1)
f ,∆

(n+1)
w

L∑

k=1

(
log

(
1 + γ

(n+1)
k

)
− log

(
1 + γ

(n)
k

))

(8)

s.t. tr
(
W(n+1)W(n+1)H

)
= P1;

tr
(
F(n+1)HW(n+1)W(n+1)HHHF(n+1)H

)

+ tr
(
F(n+1)F(n+1)H

)
= P2.

In order to make the above optimization problem more
tractable, the challenge here is to reformulate the above
problem into a standard quadratic program. Before doing this,
we need an assumption that both matrices ∆w and ∆f are
element-wise very small. Note that this assumption is critical
for our proposed iterative algorithm and will definitely be
satisfied because we will add it as an additional constraint in
the above problem. Under this assumption, we then implement
quadratic approximation to the objective function in (8) and
apply linear approximation to the constraints. Following de-
tailed manipulations provided in Appendix A, we reformulate
the problem in (8) into a standard quadratic program:

min
x

1
2
xT




L∑

k=1

pkpT
k(

1 + γ
(n)
k

)2


x−

(
L∑

k=1

pT
k

1 + γ
(n)
k

)
x (9)

s.t. 2
[
dT

eT

]
x =

[
p̂1

p̂2

]
;

|xi| ≤ τ ; i = {1, 2, · · · , 2(NsL + N2
r )},

where pk is given by (21), and d, e, p̂1, and p̂2 are from (22),
(23), (24), and (25), respectively. The desired vector x defined



in (18) is made up of the elements of optimized ∆w and ∆f .
Note that the bound constraints with a small predetermined
τ are used to guarantee the assumption of a small x, i.e.,
small precoding update steps. Note that this problem (9) can
be efficiently solved [18], and, for instance, by directly using
quadprog in MATLAB. At this point, we are now ready to
present the detailed description of our proposed iterative joint
precoding optimization method in Algorithm 1.

Algorithm 1 : Iterative Joint Precoding Optimization

1: Select an initial point, i.e., W(0) and F(0).
2: The nth iteration process:

Given W(n) and F(n), find the optimal solution of x by
solving problem (9). Then, obtain ∆(n+1)

w and ∆(n+1)
f by

reshaping x according to (18).
3: Find α∗, a value of α ∈ [0, 1] that maximizes the objective

function in (6) with W = W(n) + α∆(n+1)
w and F =

F(n) + α∆(n+1)
f , using a line search.

4: Update W(n+1) = W(n) + α∗∆(n+1)
w and F(n+1) =

F(n) + α∗∆(n+1)
f .

5: End the nth iteration process. Go back to Step 2 until
‖α∗x‖2 ≤ ε converges for a very small ε.

6: Scale the obtained solution of W and F according to the
power constraints in (6b) and (6c), respectively.

Here, we provide some remarks on the proposed iterative
optimization algorithm:
• Since the original problem in (6) is non-convex, it is

generally difficult to obtain the globally optimal solution
to this problem. Although this implies that the proposed
iterative optimization algorithm converges to some local
optimum solutions, numerical results still demonstrate
significant performance gain.

• Line search has been popular and essential to many
optimization algorithms in that an iteration step is not
considered complete until a line search step is carried
out [18]. In Step 3, we introduce a line search step for
finding the optimal scalar α∗ before updating the required
precoding matrices. This scalar is utilized to guarantee the
convergence of our iterative algorithm.

• We apply linear approximation to obtain the power con-
straints in (9). Although we restrict that x is very small,
the original power constraints in (6) are only satisfied
within an acceptable tolerance. In order to strictly guar-
antee the original transmit power constraints and also for
fair comparison, we add the last Step 6.

• The final performance of our iterative algorithm also
depends on the selected initial point. Fortunately, using
different initial points, we observed that the obtained
precoding matrices always diagonalize the compound
channel of our system at high SNRs. This observation in-
spired us to further develop an efficient precoding design
strategy in the following section. It is an alternative to
balance the computational complexity and the achievable
sum capacity performance.

IV. EFFICIENT PARALLEL TRANSMISSION SCHEME

In this section, we propose an efficient source and relay
precoding design strategy by diagonalizing the compound
channel of our system, i.e., GFHW, where G = [g1 · · ·gL]H

represents the concatenation of relay-to-user channels. This
parallel transmission scheme exploits SVD-based precoding at
the source, and combines the SVD-based receiving matrix and
the zeroforcing beamforming technique at the relay station.
Note that the precoding matrices designed for parallel trans-
missions follows a similar structure of the channel inversion
based precoding design in [16]. However, we modified the
design of precoding matrices in order to make it more suitable
for some practical applications without channel information
feedback from the relay. The differences mainly lie in two
aspects. First, the source precoder design in [16] requires
both channel information of H and G, while our proposed
source precoder only depends on H. Moreover, we design
the precoding by aiming at sum capacity maximization which
allows an easy way to find the optimal eigenmode-matching
for source-to-relay and relay-to-user channels.

Using SVD, the source-to-relay channel can be decomposed
by

H = UΣVH (10)

where Σ is the diagonal matrix with singular-values sorted in
decreasing order. Let V ∈ CNs×L and U ∈ CNr×L represent
the first L columns of V and U, respectively. Denote Σ as
the primary L × L diagonal block of Σ. Then, the proposed
structure of the precoding matrices are

W =

√
P1

L
VΠ (11)

and
F =

√
ρF̂ΠU

H
(12)

where F̂ = [f1 · · · fL] with fk for user k being the normalized
kth column of the matrix GH

(
GGH

)−1
, Π is a permutation

matrix, and

ρ =
P2

tr
(
F̂HF̂

(
P1
L ΣπΣ

H

π + I
)) (13)

with Σπ = ΠΣΠ is a scalar to make the power constraint in
(6c) satisfied.

After determining the proposed structure of precoder ma-
trices, we need to choose an optimized Π by maximizing the
sum capacity of our system. By substituting the precoders (11)
and (12) into (5), the achievable SINR can be calculated by

γparal
k =

σ2
π(k)P1

L

(
1− 1

ρ|gH
k fk|2 + 1

)
(14)

where σπ(k) is the kth diagonal element of ΠΣΠ, that is,
π(k)th diagonal element of Σ. Accordingly, the achievable
capacity is given by

R =
1
2

L∑

k=1

log

(
1 +

σ2
π(k)P1

M

(
1− 1

ρ|gH
k fk|2 + 1

))
. (15)



Thus far, its easy to find the optimal Π by maximizing the
sum capacity R. Given the values of σ2

k and |gH
k fk|2, we

generally need to compare R obtained by using all L! possible
permutation patterns, and then pick out the best one.

V. SIMULATION RESULTS

This section presents simulation results of our proposed
precoding optimization strategies. We average the sum ca-
pacity over 2000 random channel realizations. We test the
system with P1 = P2 which indicates that the backward and
the forward channels have the same average channel energy
including the transmit power constraints and the effects of path
loss. For comparison, we implement four different precoding
strategies as follows:
• Identity-based precoding: W = ηŴ where Ŵ is an

Ns×L matrix with 1 as its diagonal elements and zeros
elsewhere. F = µINr . η and µ are scalars to make the
power constraint in (6b) and (6c) satisfied.

• Match filter based precoding: W = P1
L V, and F =

µF̃U
H

where F̃ = [g1/‖g1‖ · · · gL/‖gL‖] and µ is
a scalar to guarantee the power constraint in (6c).

• Parallel transmission with eigenmode matching: the effi-
cient precoding design proposed in Section IV.

• Iterative joint optimization proposed in Algorithm 1. We
implement the iterative joint precoding algorithm with
τ = 0.03 1 and ε = 10−5. We use the closed-form
precoding design in Section IV with permutation matrix
Π = I as the initial point for our iterative optimization
algorithm.

Fig. 2 compares the ergodic sum capacity obtained by the
above four different precoding strategies under Ns = Nr =
L = 2 as a function of channel average SNRs. From the
results, we find that significant performance gain is achieved
by using properly designed precoding methods. The iterative
algorithm achieves the maximum sum capacity at the cost of
relatively high computational complexity. Its achievable sum
capacity can serve as an upper bound for that obtained by the
other efficiently-designed precoding approaches. Fig. 3 depicts
the sum capacity comparison under Ns = Nr = L = 4. Simi-
lar observations can be concluded from the results in Fig. 3. By
comparing the two figures, we find that the iterative algorithm
provides more performance gain for systems equipped with
more antennas and serving more mobile users.

Among the closed-form precoding design methods, it can be
found that the match filter based precoding design outperforms
the others from small to moderate SNRs. When SNR grows
large, however, the parallel transmission scheme achieves
better performance than the match filter based precoding.
This coincides with our observation from the results obtained
by using iterative joint optimization algorithm. At high SNR
regimes, parallel transmission structure seems to be the best

1By defining ρ1 = P1
L

and ρ2 from (13), we use Algorithm 1 to find the
optimized solutions to W and F which have been normalized by

√
ρ1 and√

ρ2, respectively. This allows us to use a same τ in the proposed iterative
algorithm under different SNRs configurations.
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Fig. 2. Comparison of ergodic sum capacity achieved by different precoding
schemes as a function of P1 = P2 = SNR in dB under Ns = Nr = L = 2.
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Fig. 3. Comparison of ergodic sum capacity achieved by different precoding
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precoding strategy. This is because the sum capacity perfor-
mance is dominated by the multi-user interference when SNR
becomes large.

VI. CONCLUSION

We propose an iterative algorithm for jointly optimizing the
precoding at both the source and the relay in a multiuser
multi-antenna downlink channel. The iterative optimization
algorithm shows that the obtained precoding matrices always
diagonalize the compound channel of our system at high
SNRs. Based on this observation, we then present an efficient
precoder design strategy which balances the computational
complexity and the achievable sum capacity for our system.
Empirical results compare the performance achieved by differ-
ent precoding strategies. It shows that the iterative optimization
algorithm provides the best performance with the cost of much
more computational complexity. Efficient parallel transmission
precoding strategy is an alternative which provides a different
tradeoff between the performance and the implementation
complexity.



APPENDIX A
QUADRATIC PROGRAM REFORMULATION OF (8)

Due to space constraints, we only provide an outline of
the reformulation process. The complete description will be
presented in an extended journal version of this paper. Start
with the following definition

xk = |gH
k FHwk|2. (16)

By substituting (7) into the above expression and separating
the real and imaginary parts in the variables, we can re-write
the updated x

(n+1)
k using linear approximation by

x
(n+1)
k ≈ x

(n)
k + 2aT

k x (17)

where

x = [vec(∆w)T
R, vec(∆w)T

I , vec(∆f )T
R, vec(∆f )T

I ]T (18)

with vec(·) being the vectorization of a matrix, and subscripts
R and I representing the real and imaginary parts, respectively.

aT
k =

[
01×Ns(k−1),uT

k,k,R,01×Ns(L−1),uT
k,k,I ,0,vT

k,k,R,vT
k,k,I

]

where uk,j = vec
(
HHF(n)HgkgH

k F(n)Hw(n)
j

)
and vk,j =

vec
(
gkgH

k F(n)Hw(n)
j w(n)H

j HH
)

. Similarly, by defining the
denominator of γk in (5) by yk, we obtain the linear approx-
imation of yk as

y
(n+1)
k ≈ y

(n)
k + 2bT

k x (19)

where

bT
k =


cT

k,j,R, cT
k,j,I ,


tT

k +
∑

j 6=k

vT
k,j




R

,


tT

k +
∑

j 6=k

vT
k,j




I




with cT
k,j = [uT

k,1, · · · ,uT
k,(k−1),01×Ns

,uT
k,(k+1), · · · ,uT

k,L]
and tk = vec

(
gkgH

k F(n)
)
. Further by applying Taylor ex-

pansion to γk = xk/yk with respect to xk and yk, from (17)
and (19), we have

γ(n+1) ≈ γ(n) +
(

2
y(n)

ak − 2x(n)

y(n)2
bk

)T

x. (20)

By defining

pk =
2

y(n)
ak − 2x(n)

y(n)2
bk, (21)

and applying second-order Taylor expansion to the objective
function in (6) with respect to γ in (20), we obtain the
quadratic-form objective in (9).

Similarly, by implementing linear approximation to the
power constraint in (6), we finally have the quadratic program
in (9), where

dT =
[

vec
(
W(n)

)T

R
, vec

(
W(n)

)T

I
,01×2N2

r

]
, (22)

eT =
[

vec
(
HHF(n)HF(n)HW(n)

)T

R
,

vec
(
HHF(n)HF(n)HW(n)

)T

I
,

vec
(
F(n)HW(n)W(n)HHH + F(n)

)T

R
,

vec
(
F(n)HW(n)W(n)HHH + F(n)

)T

I

]
, (23)

p̂1 = P1 − tr
(
W(n)W(n)H

)
, (24)

and

p̂2 = P2− tr
(
F(n)

(
HW(n)W(n)HHH + I

)
F(n)H

)
. (25)
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