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Abstract—Is sparsity an issue in filter design problems? and
why is it important? How a digital filter can be designed to
have a sparse impulse response for efficient implementation
while achieving improved performance relative to its non-sparse
counterpart? In an attempt to address these questions, this paper
comes up with a design technique for optimal linear-phase FIR
filters with sparse impulse responses.

I. INTRODUCTION

Research in the analysis and design of digital filters has
stayed active since late 1960’s, as a result the field has matured
to form an important part of theory and practice in digital
signal processing [1]–[5]. Inspired by the recent development
in compressive sensing and sparse signal processing [6]–[9],
this paper takes a new look at the filter design problem and
attempts to address the following questions: (i) is sparsity
an issue in filter design problems to explore and why is it
important? and (ii) how a digital filter can be designed to
have a sparse impulse response for efficient implementation
while achieving improved performance relative to its non-
sparse counterpart? In brief terms, our design method can
be described as a two-phase algorithm in that, for a desired
frequency response and an upper bound of filter order, the
locations of impulse response components that can be set to
zero with minimal impact on filter performance are identified
and the number of such locations are maximized in design
phase 1; and an optimal FIR filter (either in least-squares or
minimax sense) subject to the sparsity identified in phase 1
is then designed in phase 2. Illustrations and technical details
of the design method are given in Sections 2, 3, and 4, and
design examples are presented in Section 5.

II. OBSERVATIONS AND THE DESIGN PROBLEM

For simplicity of presentation, throughout we examine a
class of linear-phase FIR filters whose transfer functions
assume the form of

H(z) =
N∑

i=0

hiz
−i (1)

with N even and hi = hN−i for i = 0, 1, . . . , N/2.

A. Is sparsity an issue in filter design problems?

An impulse response {hi, i = 0, 1, . . . , N} is said to be
sparse if a considerable number of hi’s are exactly equal to
zero. An impulse response is said to be K-sparse if there are
only K nonzero hi’s. The primary reason we are interested in

digital filters with sparse coefficients is because this sparsity
implies reduced implementation complexity, hence real-time
application potential and cost effectiveness. Speculating on
why sparsity has not been an explicit issue of research for
digital filters in the past, we mention a generic observation
that the impulse of a digital filter is typically not sparse, see
e.g., Fig. 1. It is also observed, on the other hand, that usually
an impulse response contains hi’s of small magnitude relative
to a given threshold δ, see e.g. Fig. 1. Moreover, if two filters
are designed to approximate a desired frequency response, then
the impulse response of the filter of higher-order contains more
small-magnitude hi’s than its lower-order counterpart, see e.g.
Fig. 1b.
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Fig. 1. (a) Impulse response of a bandpass FIR filter of order 26, no zero-
valued components, there are L = 4 components with magnitude less than
δ = 0.0017; (b) impulse response of a bandpass FIR filter of order 36, no
zero-valued components, there are L = 12 components with magnitude less
than δ.

Suppose h contains L coefficients with magnitude less than
δ, then a sparse ĥ can be constructed within a small vicinity
of h by simply setting the L small coefficients to zero. This
procedure is often called hard-thresholding in the literature.
By viewing ĥ as the impulse of an FIR filter Ĥ(z), we see
that Ĥ(z) has a sparse impulse response if L is not small, and



the closeness between the two filters in the frequency domain
is indicated by

max
ω
|Ĥ(ejω)−H(ejω)| ≤ L · δ (2)

which can be verified using the Cauchy-Schwartz inequality.

B. A design formulation faithful to coefficient sparsity

Although (2) shows that H(ejω) is well behaved for small
coefficient variations, any changes made in the coefficients
inevitably lead to performance degradation, making a sparse
Ĥ(ejω) only suboptimal. For illustration clarity, we intro-
duce a term equivalent non-sparse filter. Suppose a sparse
Ĥ(z) is of order N with L zero coefficients (thus it has
K = N + 1 − L nonzero coefficients). An FIR He(z) with
a non-sparse impulse response is said to be equivalent to
Ĥ(z) if He(z) is designed to approximate the same desired
frequency response (as Ĥ(z) does) and contains also K
nonzero coefficients. Evidently, here the term “equivalent” is
meant to require the same number of multiplications per output
sample. As an example, Fig. 2a shows the amplitude response
of a sparse bandpass Ĥ(z) of order N = 36 obtained by hard-
thresholding (with δ = 0.0017) an equiripple bandpass filter
of order 36. There are L = 12 zero coefficients in H(z). Fig.
2b shows the amplitude response of an equivalent non-sparse
bandpass filter He(z) of order 24 (= N − L). We see that
the sparse Ĥ(z) fails to keep the equiripple property and its
stopband attenuation is worse than its equivalent non-sparse
counterpart.
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Fig. 2. (a) Amplitude response of a sparse bandpass Ĥ(z) of order 36
with K = 25 nonzero coefficients; (b) amplitude response of an equiripple
non-sparse bandpass filter of order 24.

From the observations made above, it is quite clear that
one needs a new formulation for filter design that is faithful
to coefficient sparsity while maintaining optimal performance.

In our problem formulation, an order upper bound N̂ rather
than a specific filter order is given. This is because sparsity
is one of the design considerations and the sparsity depends
heavily on filter length. We remark that the order upper bound
may be determined by system’s requirement such as the largest
acceptable group delay, etc. The design objective is to obtain a
linear-phase FIR filter with a K-sparse impulse response that
optimally approximates a desired frequency response Hd(ω)
in either a least-squares (LS) or a minimax sense.

III. THE DESIGN METHOD AT A GLANCE

The design of an optimal filter with sparse coefficients is
accomplished in two phases. The aim of the first phase is at
identifying the locations where the filter coefficients should
be set to zero to satisfy the sparsity requirement. Since one
is dealing with an impulse response to approximate a given
Hd(ω) and since one wants to enhance its sparsity, phase 1 of
the design is achieved by minimizing a weighted sum:

minimize
a

‖H(ejω)−Hd(ω)‖2,∞ + µ‖a‖1 (3)

where ‖ · ‖2,∞ denotes L2-norm for (LS) or L∞-norm (for
minimax), vector a is related to the filter coefficients as a =
[a0 a1 · · · aN̂/2]

T , and

H(ejω) =
N̂∑

i=0

hie
−jiω = e−jN̂ω/2

N̂/2∑

i=0

ai cos iω (4)

and µ > 0 is a scalar weight. The L1-penalty term in (3) helps
produce an impulse response that tends to be more sparse. This
is based on a recent discovery that under certain conditions the
sparsest solution of a underdetermined linear system Ax = b
can be found by minimizing L1-norm ‖x‖1 subject to Ax = b
[10]. Problem (3) is a convex problem which admits a unique
solution a (hence h) that can be found using an efficient solver
such as SeDuMi. Hard-thresholding with an appropriate δ is
then applied to h to yield an ĥ with the desired sparsity. Note
that depending on the value of δ used, the dimension of ĥ, N ,
may or may not be equal to N̂ , i.e., N ≤ N̂ . In phase 2 of the
design, a filter Hs(z) of order N that optimally approximates
Hd(ω) subject to the coefficient sparsity identified in phase 1
is designed. Suppose ĥ (obtained in phase 1) contains L zeros,
thus the solution vector â in phase 1 contains L/2 zeros. Let
the locations of the zeros in â be ik for k = 1, 2, . . . , L/2.
Filter Hs(z) is designed by solving the constrained problem

minimize
a

‖H(ejω)−Hd(ω)‖2,∞ (5a)

subject to: aik
= 0 for k = 1, 2, . . . , L/2 (5b)

Note that in (5a) the L1-penalty term has been dropped so
that the filter is genuinely optimal while the constraints in (5b)
ensure the coefficient sparsity. Also note that (5) is a convex
problem. Details in solving (3) and (5) are given next.



IV. ALGORITHMS FOR LS AND MINIMAX DESIGNS

A. An algorithm for weighted LS designs

Phase 1: Given an order upper bound N̂ , a desired Hd(ω) =
e−jN̂ω/2Ad(ω) and desired sparsity K, and let H(z) assume
the form of (4). We can write the objective function in (3) as

J2(a) =
∫ π

−π

W (ω)[aT c(ω)−Ad(ω)]2 dω + µ‖a‖1 (6)

where c(ω) = [1 cos ω · · · cos N̂ω/2]T and W (ω) ≥ 0 is
a weighting function. The first term in (6) is quadratic in a,
hence up to a constant J2(a) can be written as

J2(a) = aT Qa + aT p + µ‖a‖1 (7)

If we place a bound for each component of a, i.e. |ai| ≤ di

and treat di’s as auxiliary variables, then minimizing J2(a) in
(7) can be formulated as

minimize xT Q̂x + xT p̂ (8a)
subject to: Ax ≥ 0 (8b)

where x = [a0 · · · aN̂/2 d0 · · · dN̂/2]
T ,

Q̂ =
[

Q 0
0 0

]
, p̂ =

[
p
µe

]
and A =

[
I I
−I I

]

with I the identity matrix of dimension 1 + N̂/2 and e the
all-one vector of dimension 1 + N̂/2. Since Q is positive
semidefinite, (8) is a standard convex quadratic programming
problem which can be solved by efficient solvers including
MathWorks’ optimization toolbox and SeDuMi. The locations
in the impulse response where zeros should be placed are
identified by applying hard thresholding with an appropriate δ
to the solution vector a (the first 1 + N̂/2 components of x).
The value of δ is set to yield L zeros in h so that the required
sparsity K = N + 1− L is met.
Phase 2: Let the indices of zero components in a be given
by ik for k = 1, 2, . . . , L/2. We now solve the constrained
problem

minimize e2(a) =
∫ π

−π

W (ω)[aT c(ω)−Ad(ω)]2 dω (9a)

subject to: aik
= 0 for k = 1, 2, . . . , L/2 (9b)

The constraints in (9b) can be eliminated by substituting (9b)
into (9a). This leads to an unconstrained convex problem

minimize e2(a) =
∫ π

−π

W (ω)[ãT c̃(ω)−Ad(ω)]2 dω (10)

where ã is a “compressed” version of a, generated by deleting
its zero components, and c̃(ω) is a vector with corresponding
cosine functions. Evidently, (10) is quadratic and can be
expressed (up to a constant) as

e2(ã) = ãT Q̃ã + ãT p̃ (11)

where Q̃ =
∫ π

−π
W (ω)c̃(ω)c̃T (ω) dω is positive definite. The

unique minimizer of (11) is given by ã = − 1
2Q̃

−1
p̃ and the

optimal sparse a is obtained by inserting L/2 zeros back into
ã at indices ik for k = 1, 2, . . . , L/2.

B. An algorithm for weighted minimax designs

Phase 1: The main difference from the LS design is that here
we solve a minimax problem with a weighted L1-penalty term:

minimize
a

[max
ω

W (ω)|aT c(ω)−Ad(ω)|+ µ‖a‖1] (12)

By introducing an upper bound η for the first term over a set
of frequency grids Ω in the frequency region of interest, we
convert (12) into

minimize η + µ‖a‖1 (13a)
subject to: W (ω)|aT c(ω)−Ad(ω)| ≤ η for ω ∈ Ω (13b)

Next, we write a = u− v with u ≥ 0 and v ≥ 0. Vectors u
and v can be set as u = max{a, 0} and v = max{−a, 0}.
In this way, the L1-norm of a can be expressed as ‖a‖1 =
eT u + eT v and (13) becomes

minimize cT x (14a)
subject to: |(u− v)T c(ω)−Ad(ω)| ≤ η for ω ∈ Ω (14b)

u ≥ 0 and v ≥ 0 (14c)

where x = [η uT vT ]T and c = [1 µeT µeT ]T . We see that
the objective function as well as the constraints in (14) are all
linear, hence (14) is a linear programming (LP) problem which
can be solved using e.g. MathWorks’ optimization toolbox.
The rest of phase 1 is identical to the counterpart of the LS
algorithm described in Sec. 4A.
Phase 2: Here one solves the constrained minimax problem

minimize
a

max
ω

W (ω)|aT c(ω)−Ad(ω)| (15a)

subject to: aik
= 0 for k = 1, 2, . . . , L/2 (15b)

Like the LS algorithm, substituting (15b) into (15a) leads the
above problem to an unconstraint minimax problem as

minimize
a

max
ω

W (ω)|ãT c̃(ω)−Ad(ω)| (16)

The problem in (16) can in turn be converted to

minimize η (17a)
subject to: W (ω)|ãT c̃(ω)−Ad(ω)| ≤ η for ω ∈ Ω (17b)

which is an LP problem when the upper bound η is treated as
an auxiliary variable. The rest of phase 2 is identical to that
of the LS algorithm in Sec. 4A.

V. DESIGN EXAMPLES

The algorithms described in Sec. 4 were applied to design
linear-phase FIR filters with sparse coefficients. Presented
below are three examples for illustrating the proposed algo-
rithms. In all examples, the weight W (ω) was set to one in
the frequency bands of interest and zero elsewhere.
Example 1 An LS lowpass filter with normalized passband
edge ωp = 0.5, stopband edge ωa = 0.6, sparsity K = 23,
and order upper bound N̂ = 32 was designed by applying the
algorithm in Sec. 4A. With µ = 0.004 and δ = 0.006, the
algorithm yielded a filter of order N = 28 whose response
contains L = 6 zeros, thus the sparsity requirement K = N +



1−L = 23 is met. The L2 approximation error achieved was
0.0005. For comparison, with the same design specifications
(without sparsity) an equivalent non-sparse LS lowpass filter
of order 22 was designed. The non-sparse filter yielded an L2

approximation error 0.0012.
Example 2 A minimax lowpass filter with ωp = 0.55,
ωa = 0.6, K = 53, and N̂ = 64 was designed by applying
the algorithm in Sec. 4B. With µ = 0.07, δ = 0.003, and
190 equally spaced frequency grids over the passbnad and
stopband, the algorithm yielded a filter of order N = 64 with
L = 12 zero coefficients, thus satisfying K = N +1−L = 53.
The L∞ (maximum) error was found to be 2.1332 × 10−2.
An equivalent non-sparse equiripple FIR filter of order 52
with the same design specifications (without sparsity) was
designed using the Parks-McClellan algorithm. The L∞ error
it achieved was 3.4657 × 10−2. The amplitude responses of
these filters are shown in Fig. 3.
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Fig. 3. Amplitude response of (a) the sparse minimax lowpass filter and (b)
the equivalent non-sparse minimax lowpass filter in Example 2.

Example 3 A minimax bandpass filter with ωa1 =
0.265, ωp1 = 0.4, ωp2 = 0.6, ωa2 = 0.73, K = 35 and
N̂ = 64 was designed using the algorithm in Sec. 4B. With
µ = 0.04, δ = 4 × 10−4, and 220 equally spaced frequency
grids over the passbnad and stopbands, the algorithm produced
a filter of order N = 64 with L = 20 zero coefficients, thus
meeting K = N +1−L = 35. The L∞ error was found to be
2.5404× 10−4. An equivalent non-sparse equiripple bandpass
filter of order 34 with the same design specifications (without
sparsity) was designed using the Parks-McClellan algorithm.
The L∞ error it yielded was 6.0742 × 10−3. The amplitude
responses of these filters are depicted in Fig. 4.
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Fig. 4. Amplitude response of (a) the sparse minimax bandpass filter and
(b) the equivalent non-sparse minimax bandpass filter in Example 3.

VI. CONCLUDING REMARKS

After this work was done, [11] was brought to the authors’
attention, where sparsity of half-band like FIR filters was
examined. We also remark that there exist several techniques
for efficient implementation of FIR filters, e.g., the frequency
response masking technique, and it shall be interesting to
examine these techniques with a comparative study.
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