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Abstract—An optimized numerical mapping scheme for achiev-
ing improved location of exons in DNA sequences using digital
filters is proposed. Characteristic numerical values for the four
nucleotides, referred to as pseudo-EIIP values, are obtained using
a training procedure where the location accuracy is maximized
using a quasi-Newton algorithm based on the Broyden-Fletcher-
Goldfarb-Shanno updating formula. A training set of 80 DNA
sequences is chosen from the HMR195 database. The objective
function for the optimization procedure is formulated using the
so-called receiver operating characteristic (ROC) technique and
the procedure is initialized using electron-ion interaction potential
(EIIP) values. Unbiased testing of the optimized characteristic
values is carried out using a set of DNA sequences that has no
overlap with the training set. Simulation results show that the
pseudo-EIIP values yield more accurate exon locations than those
obtained using the actual EIIP values.

Index Terms—DNA, exons, period-3 property, electron-ion in-
teraction potential, bandpass notch digital filters, BFGS updating
formula, ROC plots.

I. INTRODUCTION

DNA encodes the set of instructions to build and maintain
a living organism [1]. It is composed of nucleotides that
can be of four possible types, namely, adenine, thymine,
guanine, and cytosine denoted by the letters A, T, G, and C,
respectively. A DNA sequence can thus be represented by a
string of characters. Specific regions in DNA known as genes
contain the instructions for making proteins. The genes of
higher organisms are split into coding regions called exons and
noncoding regions called introns. Accurate location of exons
is very important for understanding the functions of DNA and
proteins and their interrelationships.

It turns out that the power spectra of DNA segments
corresponding to exons exhibit a strong component at fre-
quency 2π/3, known as the period-3 frequency, while those
corresponding to introns do not. The strength of the period-
3 frequency component along the length of a DNA sequence
can thus be used to distinguish between introns and exons and
thereby locate the exons present in the DNA sequence [2]–[6].
Notable among the various approaches proposed in the past
is an approach based on the use of digital filters owing to its
high accuracy and computational efficiency [5], [6].

In addition to the choice of the filtering approach, the
choice of the character-to-numerical mapping scheme has a
critical influence on accuracy and computational efficiency.

The electron-ion interaction potentials (EIIPs) used in [4]
and [6], given in Table I, yield accuracies comparable to those
obtained using binary sequences [2], [3], [5] and lead, in
addition, to a significantly improved computational efficiency.
This is due to the fact that the use of EIIP values involves the
processing of only a single numerical sequence while the use
of binary sequences involves the processing of four numerical
sequences, one for each nucleotide. Thus if a set of alternative
characteristic numerical values for the four nucleotides that
would yield improved accuracy could be found to replace
the EIIP values, then the tremendous computational efficiency
associated with the processing of a single numerical sequence
can be achieved while achieving improved accuracy.

In this paper, we propose an optimization-based training
procedure for finding an alternative set of characteristic nu-
merical values to replace the EIIP values. Simulations have
shown that the numerical values obtained tend to yield im-
proved accuracy in the exon-location process. Furthermore,
they correlate well with the actual EIIP values and for this
reason we refer to the new values as pseudo-EIIP values.
The optimization is performed using a quasi-Newton algorithm
based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) up-
dating formula using the EIIP values as the initial point. The
objective function is formulated using the so-called receiver
operating characteristic (ROC) technique. To assure unbiased
testing, two separate data sets from the HMR195 database are
employed for the training and testing procedures.

The paper is organized as follows. Section II briefly de-
scribes exon location using digital filters, while Section III
discusses the ROC technique. The optimization-based training
procedure is described in Section IV and simulation results
are presented in Section V.

II. FILTER-BASED EXON LOCATION

Exons can be located by tracking the strength of the period-
3 frequency component along the length of a DNA sequence.
This can be effectively achieved through the following pro-
cedure: (1) The DNA sequence is converted into a numerical
sequence of the form

x[n] = wAxA[n] + wTxT [n] + wGxG[n] + wCxC [n] (1)



TABLE I
EIIP VALUES FOR THE NUCLEOTIDES

Nucleotide EIIP

Adenine (A) 0.1260

Thymine (T) 0.1335

Guanine (G) 0.0806

Cytosine (C) 0.1340

DNA 
sequence

EIIP 
Transformation [ ]x n

Power 
Computation ( )G z R ( )G z R

( )H z R ( )H z R

[ ]y n Processed 
DNA
sequence

Zero-phase lowpass filtering

Zero-phase narrowband 
bandpass filtering

2( [ ])y n

Fig. 1. Filter-based exon location system.

where wA, wT , wG, and wC are the four EIIP values and
xA[n], xT [n], xG[n], and xC [n] are the corresponding binary
sequences. (2) The numerical sequence x[n] is filtered using
a narrowband bandpass digital filter in order to select the
period-3 frequency. (3) The output of the bandpass filter,
y[n], which turns out to be an amplitude-modulated signal,
is demodulated by filtering its power (y[n])2 using a lowpass
filter. (4) The exon locations are identified as well-defined
segments of x[n] for which (y[n])2 is equal to or exceeds
a specified threshold. A block diagram of the system used is
illustrated in Figure 1. Zero-phase filtering [7] is employed in
order to avoid computing the phase response and to eliminate
phase distortion. See [6] for further details.

III. ROC TECHNIQUE

The ROC technique is a tool for evaluating prediction
techniques in terms of their performance [8]. It is based on
evaluation metrics known as the true positive rate (TPR) and
the false positive rate (FPR) defined by

TPR =
TP

TP + FN
and FPR =

FP
FP + TN

(2)

respectively, where TP, TN, FP, and FN denote the number
of true positives, true negatives, false positives, and false
negatives, respectively, of the predicted exon locations relative
to a set of known true locations. The TPR is plotted versus
the FPR to obtain a point in the ROC plane as illustrated
in Figure 2. Since the TPR and FPR can assume values in
the range 0 to 1, the total area of the ROC plane is unity.
The northwest pole, (0, 1), represents perfect prediction, i.e.,
FPR = 0 and TPR = 1. The goal of any prediction technique
is to reach this point. Informally, a point in the ROC plane is
better than another if it is to the northwest of the latter. The
diagonal line y = x represents random predictions.

The construction of an ROC plot for the classification
of predictions based on the above filter-based exon-location

(0,0)

(0,1)

Lin
e o

f ra
nd

om
 pr

ed
ict

ion
s

Denotes perfect prediction

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Typ
ica

l R
OC cu

rve
s

(1,0)

(1,1)

A B

Fig. 2. The ROC plane illustrating typical ROC curves. The shaded region
represents the area under curve A.

technique is carried out as follows: (1) For a given threshold
value, the numerical values of (y[n])2 are sorted into true
positives, true negatives, false positives, and false negatives
relative to a set of known true exon locations. (2) The
numerical values of TP, TN, FP, and FN are obtained and, in
turn, the metrics TPR and FPR are evaluated and used to plot
a point in the ROC plane. (3) The preceding steps are repeated
for different threshold values in the range of 0 to 1 and new
points are plotted in the ROC plane to obtain an ROC curve
as illustrated in Figure 2. The area under this curve (AUC)
is a good indicator of the overall performance of an exon-
location technique. The greater the AUC, the better would be
the performance. Thus, for a given range on the x axis, the
AUCs corresponding to two different exon location techniques
can be compared and their performance relative to each other
can be evaluated. ROC curves for two techniques A and B are
shown in Figure 2 where technique A is deemed to be better
than technique B.

IV. PROPOSED TRAINING PROCEDURE

A. Optimization

A better set of numerical constants associated with the
four nucleotides, designated as ŵA, ŵT , ŵG, and ŵC , can be
obtained by maximizing the AUC corresponding to a training
set of DNA sequences or, equivalently, by minimizing the
quantity 1 − AUC since the total area of the ROC plane is
unity.

A variety of algorithms can be used for the optimization
problem under consideration such as algorithms of the quasi-
Newton family which are both very efficient as well as
robust [9]. A quasi-Newton algorithm based on the BFGS
updating formula was found to give good results.

The objective function for the minimization involves several
interdependent steps including bandpass and lowpass filtering
of the numerical sequence, squaring the filtered output, and
computing the AUC. Hence, deriving a closed-form expression
for the objective function is not feasible. Instead, the opti-
mization is carried out by numerically evaluating the objective
function and the gradient in each iteration.



For the sake of consistency between the optimized numer-
ical constants and the EIIP values, we need to ensure that (1)
the four variables are always positive and (2) their numerical
values are normalized at the end of each iteration such that
their sum is always equal to the sum of the EIIP values.
Positive numerical values can be easily achieved by replacing
each variable by its square in the objective function. The
normalization can be achieved by using the scaling factor

µ =

√
0.4741

ŵ2
A + ŵ2

T + ŵ2
G + ŵ2

C

(3)

where the constant 0.4741 is the sum of the four EIIP
values. On the basis of extensive simulation results, the above
adjustments in the variables do not seem to impede our ability
to obtain optimized characteristic values that yield improved
exon-location predictions.

B. Model for ROC Curves

ROC curves are inherently not continuous due to the fact
that the number of thresholds used is finite. This poses a
problem for the optimization procedure because the objective
function to be minimized, 1−AUC, would not be continuous.
To overcome this problem, the ROC curve can be approxi-
mated using an exponential model of the form

y = α
(
1− e−[ β1

√
x + β2 x ]

)
(4)

where α, β1, and β2 are appropriate constants. These param-
eters can be determined by minimizing the error function

E(p) =
n∑
i=1

[
α
(
1− e−[ β1

√
xi + β2 xi ]

)
− yi

]2
(5)

where p = [α β1 β2]
T and {xi, yi} denotes the n pairs of

FPRs and TPRs forming the ROC curve that is being modeled.
E(p) can be minimized in a straightforward manner using
a quasi-Newton algorithm incorporating the BFGS updating
formula, as before. For this application, closed-form expres-
sions can be used for the gradient. A sample ROC curve
and the approximation obtained using the above approach are
illustrated in Figure 3. Using a termination tolerance of 10−6,
the algorithm required 19 iterations to converge. The values
obtained for the model parameters in this specific example are

α = 0.9291, β1 = 1.0611, β2 = 2.8443

As can be seen from Figure 3, the model closely approximates
the ROC curve and thus can be effectively used to compute
the AUC.

C. Training Procedure

The training procedure adopted is as follows: (1) A set of
DNA character sequences is chosen and the parameter vector
x is initialized using the positive square roots of the known
EIIP values. (2) The character sequences are converted into
numerical sequences using the squares of the current values
in x. (3) The sequences obtained are arranged consecutively
to form a single cumulative contiguous sequence. (4) The
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Fig. 3. An ROC curve and its exponential model.

cumulative sequence is processed using the exon-location
system in Figure 1 and the amplitudes of the processed signals
are normalized with respect to the interval [0, 1]. (5) Using
the ROC technique as detailed in Section III, a curve in the
ROC plane is obtained. (6) The ROC curve is approximated
using the exponential model of Eq. (4). (7) The objective
function 1−AUC is evaluated. (8) The gradient of the objective
function is evaluated by perturbing each variable, one at a
time, by 10−4. (9) An approximation to the Newton direction
is generated and the variables are normalized using Eq. (3) and
are then updated. (10) The procedure is repeated from Step (4)
until convergence is achieved. The squares of the optimized
parameters are the pseudo-EIIP values.

The quasi-Newton algorithm used in the above training
procedure was Algorithm 7.3 in [9].

V. RESULTS

We now present simulation results obtained by training the
numerical values using a specific data set and then testing the
pseudo-EIIP values on another data set that has no overlap with
the training set. This prevents the occurrence of any type of
training bias in the test results. The data sets were chosen from
the popular HMR195 database [10] since it provides the true
exon locations for each sequence in addition to the sequence
itself. Of the 195 sequences in the database, some were found
to have ambiguous nucleotides, i.e., nucleotides whose iden-
tities have not as yet been experimentally validated. Avoiding
such sequences, we selected 160 unambiguous sequences and
divided them into a training and a test data set of 80 sequences
each. The training procedure was carried out as described
in Section IV. The DNA sequences were processed using a
bandpass notch digital filter that was designed as described
in [11]. The execution of the quasi-Newton algorithm was ter-
minated when the 2-norm of the change in xk and the change
in the value of the objective function were both simultaneously
less than a termination tolerance of 10−6. The procedure took
a total of 42 iterations for the main objective function. The
average number of iterations taken for the exponential model
was 20. The optimized nucleotide parameters are compared



TABLE II
INITIAL AND OPTIMIZED VALUES

Nucleotide Initial (EIIP) Pseudo-EIIP

Adenine (A) 0.1260 0.1994

Thymine (T) 0.1335 0.1933

Guanine (G) 0.0806 0.0123

Cytosine (C) 0.1340 0.0692
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Fig. 4. ROC curves corresponding to the initial and the optimized values,
obtained using the training set.

with the corresponding EIIP values in Table II. The initial
and the final values of the objective function were 0.2661 and
0.1954, respectively.

The ROC curves obtained using the training set before and
after the training procedure are illustrated in Figure 4. As can
be seen, the pseudo-EIIP values yield a better measurement.
Unbiased testing was then carried out on the test set and
the resulting ROC curves obtained are shown in Figure 5.
From this figure, it is clear that in addition to the expected
improvements demonstrated on the training set, the pseudo-
EIIP values also perform well on a set of DNA sequences that
were not used for training. The overall accuracy, in terms of
ROC curves, is significantly improved. The optimum operating
threshold based on Figure 5 was found to be 0.15. It can be
used for quick preliminary exon-location studies.

The results obtained from the simulations are encouraging
since they strongly indicate that the nucleotide parameters
can be optimized for improved accuracy. Consequently, it is
possible to achieve the tremendous computational advantage
associated with the processing of a single numerical sequence
instead of four binary sequences. Extensive testing is currently
underway in order to fully explore the benefits of the training
procedure.

VI. CONCLUSION

A numerical mapping scheme that assigns optimized charac-
teristic numerical values, referred to as pseudo-EIIP values, to
the four nucleotides was proposed for use in filter-based exon
location in DNA sequences. The scheme employs a training
procedure executed using ROC plots. Unbiased testing was
carried out and simulation results obtained indicate that the
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Fig. 5. ROC curves corresponding to the initial and the optimized values,
obtained using a test set with no overlap with the training set.

pseudo-EIIP values yield more accurate exon locations than
those obtained using the actual EIIP values.

The ROC technique is a powerful tool that can be employed
for reliably evaluating the accuracies of prediction techniques
using large data sets. Furthermore, as demonstrated here, it can
be used as a training methodology for adjusting the parameters
of a prediction system for optimum performance. In the future,
we will investigate potential improvements to the training
procedure as well as the optimization of prediction techniques
for features in DNA other than exon location.
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