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Abstract—A new algorithm for signal reconstruction in a
compressive sensing framework is presented. The algorithm is
based on minimizing a re-weighted approximate `0-norm in the
null space of the measurement matrix, and the unconstrained
optimization involved is performed by using a quasi-Newton algo-
rithm. Simulation results are presented which demonstrate that
the proposed algorithm yields improved signal reconstruction
performance and requires a reduced amount of computation
relative to iteratively re-weighted algorithms based on the `p-
norm with p < 1. When compared with a known algorithm
based on a smoothed `0-norm, improved signal reconstruction
is achieved although the amount of computation is increased
somewhat.

I. INTRODUCTION

Compressive sensing (CS) comprises a collection of meth-
ods of representing a signal on the basis of a limited number
of measurements and then recovering the signal from these
measurements. It is now known that if a signal is measured in
terms of independent random projections (i.e., inner products
of the signal with random waveforms), then the signal can be
reconstructed using these measurements as long as a certain
condition that involves the dimension and sparsity of the signal
and the number of measurements collected is satisfied [1]-[3].
Algorithms for signal reconstruction in a CS framework are
referred to as sparse signal reconstruction (SSR) algorithms.
One of the most successful of these algorithms, known as basis
pursuit (BP), is based on constrained `1-norm minimization
[4]. Several SSR algorithms based on constrained `p-norm
minimization with p < 1 have also been proposed [5], [6].
An SSR algorithm based on the optimization of a smoothed
approximate `0-norm is studied in [7] where simulation results
are compared with corresponding results obtained with several
existing SSR algorithms with respect to reconstruction perfor-
mance and computational complexity. These results favor the
use of the approximate `0-norm.

In this paper, we present a new signal reconstruction algo-
rithm for CS. Like the algorithm in [7], the proposed algorithm
is based on the minimization of a smoothed approximate
`0-norm but it differs in several aspects. First, the `0-norm
minimization in our algorithm is carried out in the null space
of the measurement matrix. As a result, the constraints on mea-
surements are eliminated and the problem under consideration
becomes unconstrained. This opens the door for the use of

more efficient algorithms for the optimization. In addition, by
working in the null space, the size of the minimization problem
is considerably reduced. Second, a re-weighting technique is
incorporated into the minimization procedure so as to force
the algorithm to reach the desired sparse solution faster. Third,
instead of using a steepest-descent algorithm as is done in [7],
a quasi-Newton algorithm [8] is used to optimize the uncon-
strained objective function, which yields better solutions than
solutions obtained by using several existing SSR algorithms
[6], [7].

II. BACKGROUND

A real-valued, discrete-time signal represented by a vector
x of size N is said to be K-sparse if it has K nonzero
components with K ¿ N . Although most real-world sig-
nals do not look sparse under the canonical basis, many
natural and man-made signals admit sparse representations
with respect to an appropriate basis [9]. For this reason, in
the rest of the paper we focus on the class of K-sparse
signals. The acquisition of a sparse signal x in CS theory is
carried out by obtaining inner products of x with M different
waveforms {φ1, φ2, . . . , φM}, namely, yk = 〈φk, x〉
for k = 1, 2, . . . , M . If we let y = [y1 y2 · · · yM ] and

Φ =
[
φT

1 φT
2 · · · φT

M

]T

, then the data acquisition process
in a CS framework can be described as

y = Φx (1)

The size of the measurement matrix in (1) is M×N , typically
with M ¿ N . In this way, the signal x is ‘sensed’ by a
reduced or ‘compressed’ number of measurements, hence the
name of compressive sensing.

With M < N , (1) is an underdetermined system of linear
equations; hence reconstructing signal x from measurement y
is in general an ill-posed problem [10]. However, the sparsest
solution of (1) can be obtained by solving the constrained
optimization problem

minimize
x

||x||0
subject to: Φx = y

(2)

where ||x||0 is the `0-norm of x defined as ||x||0 =∑N
i=1 |xi|0 which, in effect, counts the number of nonzero
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components in x. Unfortunately, (2) is a combinatorial op-
timization problem whose computational complexity grows
exponentially with the signal size, N . A key result in the
CS theory is that if x is K-sparse, the waveforms in
{φ1, φ2, . . . , φM} are independent and identically distributed
(i.i.d.) random waveforms, and the number of measurements,
M , satisfies the condition

M ≥ c ·M · log(N/K) (3)

with c a small constant, then x can be reconstructed by solving
the convex problem

minimize
x

||x||1
subject to: Φx = y

(4)

where ||x||1 denotes the `1-norm defined as ||x||1 =∑N
i=1 |xi|[1]-[3].
For real-valued data {Φ, y}, (4) is a linear programming

(LP) problem whereas for complex-valued {Φ, y} (4) can be
cast as a second-order cone programming (SOCP) problem
[8]. Both the LP and SOCP problems can be solved using
reliable and efficient software.

The condition in (3) turns out to be quite restrictive for many
practical problems. Several authors have recently studied new
algorithms for signal recovery by means of an `p minimization
approach where the problem

minimize
x

||x||pp
subject to: Φx = y

(5)

is solved instead of that in (4) where ||x||pp =
∑N

i=1 |xi|p with
0 ≤ p < 1 [5], [6]. With p < 1, the problem in (5) becomes
nonconvex and multiple local solutions exist. However, if the
problem is solved with sufficient care, improved results can
be obtained relative to those obtained by solving the problem
in (4) [6]. In [7], the signal recovery problem is achieved by
minimizing a smoothed approximate `0-norm of x subject to
the condition Φx = y, namely,

minimize
x

F (x) =
N∑

i=1

(
1− e−x2

i /2σ2
)

subject to: Φx = y
(6)

where σ > 0 is a parameter. This problem is solved by using
an algorithm based on the steepest-descent approach. This
algorithm was found to offer improved signal reconstruction
performance and computational complexity with respect to
several existing algorithms. In the rest of the paper, the
algorithm in [7] is referred to as the SL0 algorithm.

III. SIGNAL RECONSTRUCTION BY MINIMIZING A
RE-WEIGHTED APPROXIMATE `0-NORM IN NULL SPACE

In this section, we present a method for the reconstruction
of signal x using measurement y = Φx by minimizing a
re-weighted approximate `0-norm of x in the null space of Φ.

A. Working in the Null Space of Φ

It is well known that all solutions of Φx = y can be
parameterized as

x = xs + V rξ (7)

where xs is a solution of Φx = y, V r is a N × (N −M)
matrix whose columns constitute an orthonormal basis of the
null space of Φ, and ξ is a parameter vector of dimension
N −M . Vector xs and matrix V r in (7) can be evaluated by
using the singular-value decomposition or, more efficiently,
the QR decomposition of matrix Φ [8],[10]. Using (7), the
constrained problem in (6) is reduced to

minimize
ξ

Fσ(ξ) =
N∑

i=1

{
1− e−[xs(i)+vT

1 ξ]2/2σ2
}

(8)

where vT
i denotes the ith row of matrix V r. The objective

function in (8) remains differentiable and its gradient can be
obtained as

5Fσ(ξ) =
V T

r g

σ2
(9a)

where g = [g1 g2 · · · gN ]T with

gi =
[
xs(i) + vT

i ξ
]
e−[xs(i)+vT

i ξ]2/2σ2
(9b)

Evidently, working in the null space of Φ through the param-
eterization in (7) facilitates the elimination of the constraints
in (6) and, furthermore, it reduces the problem size from N
to N −M . In this way, unconstrained optimization methods
that are more powerful than the steepest-descent method can
be applied to improve the reconstruction performance, as will
be shown in Sec. III-C.

B. Re-Weighting the Approximate `0-Norm

Signal reconstruction based on the solution of the problem
in (8) works well but the technique can be considerably
enhanced by incorporating a re-weighting strategy. The re-
weighted unconstrained problem is given by

minimize
ξ

Fσ(ξ) =
N∑

i=1

wi

{
1− e−[xs(i)+vT

i ξ]2/2σ2
}

(10)
where wi are positive scalars that form a weight vector w =
[w1 w2 · · · wN ]. Starting with an initial w(0) = eN (the
all-one vector of dimension N ), in the (k + 1)th iteration the
weight vector is updated to w(k+1) with its ith component
given by

w
(k+1)
i =

1

|x(k)
i |+ ε

(11)

where x
(k)
i denotes the ith component of vector x(k) obtained

in the kth iteration as x(k) = xs + V rξ
(k), and ε is a small

positive scalar to prevent numerical instability when |x(k)
i |

approaches zero. Evidently, for a small |x(k)
i | the re-weighting

strategy in (11) yields a large weight w
(k+1)
i and hence solving

the problem in (10) tends to reduce |x(k)
i | further thus forcing

a sparse solution. The gradient of the re-weighted objective
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function in (10) is still given by (9a) except that (9b) is slightly
modified to

gi = wi

[
xs(i) + vT

i ξ
]
e−[xs(i)+vT

i ξ]2/2σ2
(12)

It should be mentioned that various re-weighting techniques
have been recently proposed in the literature, see, for example,
[6], [11]. In the algorithms presented in these papers, a
sequence of optimizations is carried out where the weight
calculated in a given optimization is used to re-weight the
objective function for the next optimization, i.e., re-weighting
is used once in each optimization. In the proposed algorithm,
the re-weighting in (11) is used in each iteration.

C. Optimization of the Norm Using a Quasi-Newton Method
It can be readily verified that the region where function

Fσ(ξ) in (10) is convex is closely related to the value of
parameter σ: the greater the value of σ, the larger the convex
region. On the other hand, for Fσ(ξ) to well approximate the
`0-norm of x, σ must be sufficiently small. For this reason, the
solution of the optimization problem in (10) is obtained using a
relatively large σ = σ0. This solution is then used as the initial
point for minimizing Fσ(ξ) with a reduced value of σ, say, r·σ
with r < 1. This procedure is repeated until function Fσ(ξ)
with σ ≤ σJ is minimized where σJ is a prescribed value of σ.
For a fixed value of σ, the problem in (10) is solved by using a
quasi-Newton algorithm where an approximation of the inverse
of the Hessian is obtained by using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update formula [8]. We note that
applying a quasi-Newton algorithm is particularly convenient
in the present application because the gradient of the objective
function can be efficiently evaluated using the closed-form
formulas in (9a) and (12). As demonstrated in our simulation
studies (see Sec. IV), the application of the BFGS quasi-
Newton algorithm to the problem in (10) yields an improved
solution relative to that obtained by using the steepest-decent
algorithm.

D. Algorithm
The proposed method for reconstructing a sparse signal x

using a measurement y = Φx can now be implemented in
terms of the algorithm in Table I. This will be referred to
hereafter as the null-space re-weighted approximate `0-norm
(NRAL0) algorithm.

We conclude this section with a remark concerning the
initial value of parameter σ. It can be shown that function
Fσ(ξ) remains convex in the region where the largest mag-
nitude of the components of x = xs + V rξ is less than σ.
Based on this, a reasonable initial value of σ can be chosen as
σ0 = max |xs|+ τ where τ is a small positive scalar. As the
algorithm starts at the origin ξ(0) = 0, the above choice of σ0

ensures that the optimization starts in a convex region. This
greatly facilitates the convergence of the proposed algorithm.

IV. EXPERIMENTAL RESULTS

In the first experiment, the signal length and number of
measurements were set to N = 256 and M = 100, respec-
tively. A total of 15 sparse signals with sparsity K = 5q − 4,

TABLE I
THE NULL-SPACE RE-WEIGHTED APPROXIMATE `0-NORM ALGORITHM

Step 1
Input Φ, xs, σJ , r, τ , and ε.
Step 2
Set ξ(0) = 0, w(0) = eN , σ = max |xs|+ τ , and k = 0.
Step 3
Perform the QR decomposition ΦT = QR and construct V r

using the last N −M columns of Q.
Step 4
With w = w(k) and using ξ(0) as an initial point, apply the
BFGS algorithm to solve the problem in (10), where
re-weighting with parameter ε is applied using (11) in each
iteration. Denote the solution as ξ(k).
Step 5
Compute x(k) = xs + V rξ

(k) and update weight vector to
w(k+1) using (11).
Step 6
If σ ≤ σJ , stop and output x(k) as solution; otherwise, set
ξ(0) = ξ(k), σ = r · σ, k = k + 1, and repeat from Step 4.

q = 1, 2, . . . , 15 were used. A K-sparse signal x was con-
structed as follows: (1) set x to a zero vector of length N ; (2)
generate a vector u of length K assuming that each component
ui is a random value drawn from a normal distribution N (0,1);
(3) randomly select K indices from the set {1, 2, . . . , N}, say
i1, i2, . . . , iK , and set xi1 = u1, xi2 = u2, . . . , xiK

= uK .
The measurement matrix is of size M ×N and was generated
by drawing its elements from N (0,1), followed by a normal-
ization step so that the `2-norm of each column is unity. The
measurement is obtained as y = Φx. The performance of
the iteratively re-weighted (IR) algorithm [6] with p = 0.1
and p = 0, the SL0 algorithm [7], and the proposed NRAL0
algorithm with σJ = 10−4, r = 1/3, τ = 0.01, and ε = 0.09
was measured in terms of number of perfect reconstructions
over 100 runs. The results obtained are plotted in Figure 1. It
can be observed that the NRAL0 algorithm outperforms the
IR algorithm. On comparing NRAL0 with the SL0 algorithm,
the two algorithms are comparable for K smaller than 40,
but the NRAL0 algorithm performs better for K larger than
40. The mathematical complexity of the four algorithms was
measured in terms of the average CPU time over 100 runs
for typical instances with M = N/2 and K = round(M/2.5)
where N varies in the range between 128 and 512. The CPU
time was measured on a PC laptop with a Intel T5750 2
GHz processor using MTLAB commands tic and tac, and the
results are plotted in Figure 2. It is noted that the NRAL0
and SL0 algorithms are more efficient than the IR algorithm,
and the complexity of the NRAL0 algorithm is slightly higher
than that of the SL0 algorithm. The moderate increase in the
mathematical complexity of the NRAL0 algorithm is primarily
due to the fact that the objective function in (10) needs to be
modified in each iteration using (11).

In the second experiment, the four algorithms were tested
by using sparse signals with various values of N , M , and K
so as to examine the algorithms’ performance for signals of
different lengths, measurement numbers, and sparsity levels.
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Fig. 1. Number of perfect reconstructions by the IR, SL0, and NRAL0
algorithms over 100 runs.
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Fig. 2. Average CPU time required by the IR, SL0, and NRAL0 algorithms
over 100 runs.

Specifically, the algorithms were tested with N = 512 and
M = 200 using signals with sparsity K = 70, 90, and 110;
and with N = 1024 and M = 400, using signals with sparsity
K = 140, 180, and 220. The results obtained are summarized
in Table II. It is observed that the performance of the NRAL0
algorithm is consistently better than those of the IR and SL0
algorithms in most cases.

V. CONCLUSION

We have proposed an algorithm, called the null-space
re-weighted approximate `0-norm algorithm, for the recon-
struction of sparse signals using random-projection type of
measurements. The algorithm is based on minimizing an
approximate `0-norm of the signal in the null space of the
measurement matrix where a re-weighting technique is used
to force the solution’s sparsity and a quasi-Newton algorithm is

TABLE II
NUMBER OF PERFECT RECONSTRUCTIONS OF IR, SL0, AND NRAL0 FOR

VARIOUS VALUES OF N , M , AND K OVER 100 RUNS.

N /M Algorithm Number of perfect reconstructions
K=70 K=90 K=110

IR(p=0.1) 77 77 24
512/200 IR(p=0) 85 67 21

SL0 100 91 8
NRAL0 100 96 28

K=140 K=180 K=220
IR(p=0.1) 65 49 16

1024/400 IR(p=0) 75 59 20
SL0 100 94 2

NRAL0 97 96 29

used to accelerate the optimization. Simulation results are pre-
sented which demonstrate that the proposed algorithm yields
improved signal reconstruction performance and requires a
reduced amount of computation relative to iteratively re-
weighted algorithms based on the `p-norm with p < 1. When
compared with a known algorithm based on a smoothed `0-
norm, improved signal reconstruction is achieved although the
amount of computation is increased somewhat.
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