JOINTLY OPTIMIZED HIGH-ORDER ERROR FEEDBACK AND REALIZATION FOR ROUNDOFF NOISE MINIMIZATION IN STATE-SPACE DIGITAL FILTERS

Takao Hinamoto, Akimitsu Doi Hiroshima Institute of Technology Hiroshima 731-5193, Japan Emails: hinamoto@ieee.org, doi@cc.it-hiroshima.ac.jp Wu-Sheng Lu University of Victoria Victoria, BC, Canada V8W 3P6 Email: wslu@ece.uvic.ca

Abstract— The joint optimization problem of high-order error feedback and realization for state-space digital filters to minimize the effects of roundoff noise at the filter output subject to l_2 -scaling constraints is investigated. The problem is converted into an unconstrained optimization problem by using linear-algebraic techniques. The unconstrained optimization problem at hand is then solved iteratively by applying an efficient quasi-Newton algorithm with closed-form formulas for key gradient evaluation. Finally, a numerical example is presented to illustrate the utility of the proposed technique.

1. INTRODUCTION

The problem of reducing the effects of roundoff noise at the filter output is of critical importance in the implementation of IIR digital filters in fixed-point arithmetic. Error feedback (EF) is found useful for the reduction of finite-word-length (FWL) effects in IIR digital filters, and many EF techniques have been reported in the past [1]-[10]. Alternatively, the roundoff noise can also be reduced by introducing a delta operator to IIR digital filters [11]-[13], or by applying a new structure based on the concept of polynomial operators for digital filter implementation [14]. Another useful approach is to construct the state-space filter structures for the roundoff noise gain to be minimized by applying a linear transformation to statespace coordinates subject to l_2 -scaling constraints [15]-[18]. As a natural extension of the aforementioned methods, efforts have been made to develop new methods that combine EF and state-space realization, for achieving better performance [19]-[20]. Separately-optimized analytical algorithms have been proposed for state-space digital filters [19]. Jointly-optimized iterative algorithms have also been considered for filters with a general or scalar EF matrix [19]. In [20], a jointly-optimized iterative algorithm has been developed for state-space digital filters with a general, diagonal, or scalar EF matrix using a quasi-Newton method.

This paper investigates the problem of jointly optimizing *high-order* EF and realization for state-space digital filters to minimize the roundoff noise subject to l_2 -scaling constraints. An iterative technique which relies on an efficient quasi-Newton algorithm [21] is developed. To this end, the constrained optimization problem encountered is converted into an unconstrained optimization problem by using linear-algebraic techniques. The proposed technique is applied to the cases where the high-order EF has diagonal or scalar matrices. A numerical example is presented to illustrate the proposed

algorithm and demonstrate its performance.

2. PROBLEM STATEMENT

Consider a stable, controllable and observable state-space digital filter $(\mathbf{A}, \mathbf{b}, \mathbf{c}, d)_n$ described by

$$\begin{aligned} \boldsymbol{x}(k+1) &= \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k) \\ y(k) &= \boldsymbol{c}\boldsymbol{x}(k) + d\boldsymbol{u}(k) \end{aligned} \tag{1}$$

where $\boldsymbol{x}(k)$ is an $n \times 1$ state-variable vector, u(k) is a scalar input, y(k) is a scalar output, and $\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}$ and d are real constant matrices of appropriate dimensions.

By taking the quantizations performed before matrix-vector multiplication into account, an finite-word-length implementation of (1) with error feedforward and high-order EF can be obtained as

$$\tilde{\boldsymbol{x}}(k+1) = \boldsymbol{A}\boldsymbol{Q}[\tilde{\boldsymbol{x}}(k)] + \boldsymbol{b}\boldsymbol{u}(k) + \sum_{i=1}^{N} \boldsymbol{D}_{i}\boldsymbol{e}(k-i+1)$$
$$\tilde{\boldsymbol{y}}(k) = \boldsymbol{c}\boldsymbol{Q}[\tilde{\boldsymbol{x}}(k)] + d\boldsymbol{u}(k) + \boldsymbol{h}\boldsymbol{e}(k)$$
(2)

where h and D_1, D_2, \dots, D_N are referred to as a $1 \times n$ error-feedforward vector and $n \times n$ high-order error-feedback matrices, respectively, and $e(k) = \tilde{x}(k) - Q[\tilde{x}(k)]$.

The coefficient matrices A, b, c, and d in (2) are assumed to have exact fractional B_c -bit representations. The FWL state-variable vector $\tilde{\boldsymbol{x}}(k)$ and the output $\tilde{y}(k)$ all have B-bit fractional representations, while the input u(k) is a $(B - B_c)$ bit fraction. The quantizer $\boldsymbol{Q}[\cdot]$ in (2) rounds the B-bit fraction $\tilde{\boldsymbol{x}}(k)$ to $(B - B_c)$ -bit after the multiplications and additions, where the sign bit is not counted. It is assumed that the roundoff error $\boldsymbol{e}(k)$ can be modeled as a zero-mean noise process with covariance $\sigma^2 \boldsymbol{I}_n$. Subtracting (2) from (1) yields

$$\Delta \boldsymbol{x}(k+1) = \boldsymbol{A} \Delta \boldsymbol{x}(k) + \boldsymbol{A} \boldsymbol{e}(k) - \sum_{i=1}^{N} \boldsymbol{D}_{i} \boldsymbol{e}(k-i+1)$$
$$\Delta \boldsymbol{y}(k) = \boldsymbol{c} \Delta \boldsymbol{x}(k) + (\boldsymbol{c} - \boldsymbol{h}) \boldsymbol{e}(k)$$
(3)

where $\Delta \boldsymbol{x}(k) = \boldsymbol{x}(k) - \tilde{\boldsymbol{x}}(k)$ and $\Delta y(k) = y(k) - \tilde{y}(k)$. By taking the z-transform on both sides of (3) and setting $\Delta \boldsymbol{x}(0) = \boldsymbol{0}$, we have

$$\Delta Y(z) = \boldsymbol{H}_{e}(z)\boldsymbol{E}(z)$$
$$\boldsymbol{H}_{e}(z) = \boldsymbol{c}(z\boldsymbol{I}_{n} - \boldsymbol{A})^{-1} \left(\boldsymbol{A} - \sum_{i=1}^{N} \boldsymbol{D}_{i} z^{-i+1}\right) \qquad (4)$$
$$+ \boldsymbol{c} - \boldsymbol{h}$$

where $\Delta Y(z)$ and E(z) represent the z-transforms of $\Delta y(k)$ and e(k), respectively. $H_e(z)$ in (4) is written as

$$\boldsymbol{H}_{e}(z) = \sum_{k=1}^{\infty} \boldsymbol{c} \left(\boldsymbol{A}^{k} - \sum_{i=1}^{N} \boldsymbol{A}^{k-i} \boldsymbol{D}_{i} \right) z^{-k} + \boldsymbol{c} - \boldsymbol{h} \quad (5)$$

where $A^i = 0$ for i < 0. Next, we define the normalized noise gain $J_{e1}(h, D) = \sigma_{out}^2 / \sigma^2$ with $D = [D_1, D_2, \cdots, D_N]$ as

$$J_{e1}(\boldsymbol{h}, \boldsymbol{D}) = \operatorname{tr}\left[\frac{1}{2\pi j} \oint_{|z|=1} \boldsymbol{H}_{e}^{*}(z) \boldsymbol{H}_{e}(z) \frac{dz}{z}\right]$$
(6)

Substituting (5) into (6) yields

$$J_{e1}(\boldsymbol{h}, \boldsymbol{D}) = \operatorname{tr} \left[\boldsymbol{A}^{T} \boldsymbol{W}_{o} \boldsymbol{A} - \sum_{i=1}^{N} \left\{ (\boldsymbol{A}^{T})^{i} \boldsymbol{W}_{o} \boldsymbol{D}_{i} + \boldsymbol{D}_{i}^{T} \boldsymbol{W}_{o} \boldsymbol{A}^{i} \right\} \right. \\ \left. + \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{D}_{i}^{T} \left\{ (\boldsymbol{A}^{T})^{j-i} \boldsymbol{W}_{o} + \boldsymbol{W}_{o} \boldsymbol{A}^{i-j} \right\} \boldsymbol{D}_{j} \right. \\ \left. - \sum_{i=1}^{N} \boldsymbol{D}_{i}^{T} \boldsymbol{W}_{o} \boldsymbol{D}_{i} \right] + (\boldsymbol{c} - \boldsymbol{h}) (\boldsymbol{c} - \boldsymbol{h})^{T}$$

$$(7)$$

where W_o is the observability Gramian of the filter in (1) that can be obtained by solving the Lyapunov equation

$$\boldsymbol{W}_{o} = \boldsymbol{A}^{T} \boldsymbol{W}_{o} \boldsymbol{A} + \boldsymbol{c}^{T} \boldsymbol{c}.$$
 (8)

Assuming that D_1, D_2, \dots, D_N are diagonal, (7) can be written as

$$J_{e1}(\boldsymbol{h}, \boldsymbol{D}) = \operatorname{tr} \left[\boldsymbol{A}^{T} \boldsymbol{W}_{o} \boldsymbol{A} - 2 \sum_{i=1}^{N} \boldsymbol{W}_{o} \boldsymbol{A}^{i} \boldsymbol{D}_{i} + \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{o} \boldsymbol{A}^{|i-j|} \boldsymbol{D}_{i} \boldsymbol{D}_{j} \right] + (\boldsymbol{c} - \boldsymbol{h}) (\boldsymbol{c} - \boldsymbol{h})^{T}.$$

$$(9)$$

It should be noted that the l_2 -scaling constraints on the statevariable vector $\boldsymbol{x}(k)$ involve the controllability Gramian \boldsymbol{K}_c of the filter in (1) which can be computed by solving the Lyapunov equation

$$\boldsymbol{K}_c = \boldsymbol{A}\boldsymbol{K}_c\boldsymbol{A}^T + \boldsymbol{b}\boldsymbol{b}^T. \tag{10}$$

A different yet equivalent state-space description of (1), $(\overline{A}, \overline{b}, \overline{c}, d)_n$, can be obtained via a coordinate transformation $\overline{x}(k) = T^{-1}x(k)$ where

$$\overline{A} = T^{-1}AT, \quad \overline{b} = T^{-1}b, \quad \overline{c} = cT.$$
 (11)

Accordingly, the controllability and observability Gramians for $(\overline{A}, \overline{b}, \overline{c}, d)_n$ become

$$\overline{\boldsymbol{K}}_{c} = \boldsymbol{T}^{-1} \boldsymbol{K}_{c} \boldsymbol{T}^{-T}, \quad \overline{\boldsymbol{W}}_{o} = \boldsymbol{T}^{T} \boldsymbol{W}_{o} \boldsymbol{T}$$
(12)

respectively. The l_2 -scaling constraints are imposed on the state-variable vector $\overline{\boldsymbol{x}}(k)$ so that

$$(\overline{\boldsymbol{K}}_c)_{ii} = (\boldsymbol{T}^{-1}\boldsymbol{K}_c\boldsymbol{T}^{-T})_{ii} = 1, \quad i = 1, 2, \cdots, n.$$
 (13)

The problem being considered is to design the *high-order* EF diagonal matrices D_1, D_2, \dots, D_N as well as the optimal coordinate transformation matrix T that jointly minimize

$$J_{e2}(\boldsymbol{T}, \boldsymbol{D}) = \operatorname{tr} \left[\overline{\boldsymbol{A}}^T \overline{\boldsymbol{W}}_o \overline{\boldsymbol{A}} - 2 \sum_{i=1}^N \overline{\boldsymbol{W}}_o \overline{\boldsymbol{A}}^i \boldsymbol{D}_i + \sum_{i=1}^N \sum_{j=1}^N \overline{\boldsymbol{W}}_o \overline{\boldsymbol{A}}^{|i-j|} \boldsymbol{D}_i \boldsymbol{D}_j \right]$$
(14)

subject to l_2 -scaling constraints in (13) where the error feedforward vector h is assumed to be chosen as $h = \overline{c}$.

3. JOINT OPTIMIZATION OF HIGH-ORDER ERROR FEEDBACK AND REALIZATION

To deal with (13), we define

$$\hat{\boldsymbol{T}} = \boldsymbol{T}^T \boldsymbol{K}_c^{-\frac{1}{2}}.$$
(15)

The l_2 -scaling constraints in (13) can then be written as

$$(\hat{\boldsymbol{T}}^{-T}\hat{\boldsymbol{T}}^{-1})_{ii} = 1, \quad i = 1, 2, \cdots, n.$$
 (16)

These constraints are always satisfied if \hat{T}^{-1} assumes the form

$$\hat{\boldsymbol{T}}^{-1} = \left[\frac{\boldsymbol{t}_1}{||\boldsymbol{t}_1||}, \frac{\boldsymbol{t}_2}{||\boldsymbol{t}_2||}, \cdots, \frac{\boldsymbol{t}_n}{||\boldsymbol{t}_n||}\right].$$
 (17)

Substituting (15) into (14), we obtain

$$J(\hat{\boldsymbol{T}}, \boldsymbol{D}) = \operatorname{tr} \left[\hat{\boldsymbol{A}}^{T} \hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}} - 2 \sum_{p=1}^{N} \hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{p} \boldsymbol{D}_{p} + \sum_{p=1}^{N} \sum_{q=1}^{N} \hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{|p-q|} \boldsymbol{D}_{p} \boldsymbol{D}_{q} \right]$$
(18)

where

$$\hat{oldsymbol{A}}=\hat{oldsymbol{T}}^{-T}oldsymbol{K}_c^{-rac{1}{2}}oldsymbol{A}oldsymbol{K}_c^{rac{1}{2}}\hat{oldsymbol{T}}^T,\quad \hat{oldsymbol{b}}=\hat{oldsymbol{T}}^{-T}oldsymbol{K}_c^{-rac{1}{2}}oldsymbol{b}\ \hat{oldsymbol{c}}=oldsymbol{c}oldsymbol{K}_c^{rac{1}{2}}\hat{oldsymbol{T}}^T,\quad \hat{oldsymbol{W}}_o=\hat{oldsymbol{T}}oldsymbol{K}_c^{rac{1}{2}}oldsymbol{W}_ooldsymbol{K}_c^{rac{1}{2}}oldsymbol{W}_ooldsymbol{K}_c^{rac{1}{2}}oldsymbol{K}_c^{rac{1}{2}}oldsymbol{T},\quad \hat{oldsymbol{W}}_o=\hat{oldsymbol{T}}oldsymbol{K}_c^{rac{1}{2}}oldsymbol{W}_ooldsymbol{K}_c^{rac{1}{2}}oldsymbol{T},$$

From the foregoing arguments, the problem of obtaining matrices T and D_1, D_2, \dots, D_N that jointly minimize (14) subject to the l_2 -scaling constraints in (13) is now converted into an unconstrained optimization problem of obtaining \hat{T} and D_1, D_2, \dots, D_N that jointly minimize $J(\hat{T}, D)$ in (18).

Let \boldsymbol{x} be the column vector that collects the variables in matrices $[\boldsymbol{t}_1, \boldsymbol{t}_2, \cdots, \boldsymbol{t}_n]$ and $\boldsymbol{D}_1, \boldsymbol{D}_2, \cdots, \boldsymbol{D}_N$. Then $J(\hat{\boldsymbol{T}}, \boldsymbol{D})$ in (18) is a function of \boldsymbol{x} , denoted by $J(\boldsymbol{x})$. The proposed algorithm starts with an initial point \boldsymbol{x}_0 obtained from an initial assignment $\hat{\boldsymbol{T}} = \boldsymbol{D}_1 = \boldsymbol{D}_2 = \cdots = \boldsymbol{D}_N = \boldsymbol{I}_n$. In the *k*th iteration, a quasi-Newton algorithm updates the most recent point \boldsymbol{x}_k to point \boldsymbol{x}_{k+1} as [21]

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k, \tag{19}$$

where

$$\begin{split} \boldsymbol{d}_{k} &= -\boldsymbol{S}_{k} \nabla J(\boldsymbol{x}_{k}), \quad \alpha_{k} = arg \left[\min_{\alpha} \ J(\boldsymbol{x}_{k} + \alpha \boldsymbol{d}_{k}) \right] \\ \boldsymbol{S}_{k+1} &= \boldsymbol{S}_{k} + \left(1 + \frac{\boldsymbol{\gamma}_{k}^{T} \boldsymbol{S}_{k} \boldsymbol{\gamma}_{k}}{\boldsymbol{\gamma}_{k}^{T} \boldsymbol{\delta}_{k}} \right) \frac{\boldsymbol{\delta}_{k} \boldsymbol{\delta}_{k}^{T}}{\boldsymbol{\gamma}_{k}^{T} \boldsymbol{\delta}_{k}} - \frac{\boldsymbol{\delta}_{k} \boldsymbol{\gamma}_{k}^{T} \boldsymbol{S}_{k} + \boldsymbol{S}_{k} \boldsymbol{\gamma}_{k} \boldsymbol{\delta}_{k}^{T}}{\boldsymbol{\gamma}_{k}^{T} \boldsymbol{\delta}_{k}} \\ \boldsymbol{S}_{0} &= \boldsymbol{I}, \quad \boldsymbol{\delta}_{k} = \boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}, \quad \boldsymbol{\gamma}_{k} = \nabla J(\boldsymbol{x}_{k+1}) - \nabla J(\boldsymbol{x}_{k}). \end{split}$$

Here, $\nabla J(\boldsymbol{x})$ is the gradient of $J(\boldsymbol{x})$ with respect to \boldsymbol{x} , and \boldsymbol{S}_k is a positive-definite approximation of the inverse Hessian matrix of $J(\boldsymbol{x}_k)$. This iteration process continues until

$$|J(\boldsymbol{x}_{k+1}) - J(\boldsymbol{x}_k)| < \varepsilon \tag{20}$$

where $\varepsilon > 0$ is a prescribed tolerance.

In what follows, we derive closed-form expressions of $\nabla J(\boldsymbol{x})$ for the cases where $\boldsymbol{D}_1, \boldsymbol{D}_2, \cdots, \boldsymbol{D}_N$ assume the form of diagonal or scalar matrices.

Case 1: $D_p = \text{diag}\{d_{p1}, d_{p2}, \cdots, d_{pn}\}$ for $p = 1, 2, \cdots, N$ In this case, it follows that

$$\frac{\partial J(\boldsymbol{x})}{\partial t_{ij}} = 2\boldsymbol{e}_{j}^{T} \left[\hat{\boldsymbol{A}}^{T} \hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}} - \sum_{p=1}^{N} (\hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{p} + (\hat{\boldsymbol{A}}^{T})^{p} \hat{\boldsymbol{W}}_{o}) \boldsymbol{D}_{p} \right. \\ \left. + \frac{1}{2} \sum_{p=1}^{N} \sum_{q=1}^{N} (\hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{|p-q|} + (\hat{\boldsymbol{A}}^{T})^{|p-q|} \hat{\boldsymbol{W}}_{o}) \boldsymbol{D}_{p} \boldsymbol{D}_{q} \right] \hat{\boldsymbol{T}} \boldsymbol{g}_{ij} \\ \left. i, j = 1, 2, \cdots, n \right.$$

$$(21)$$

where

$$\boldsymbol{g}_{ij} = \partial \left\{ \frac{\boldsymbol{t}_j}{||\boldsymbol{t}_j||} \right\} / \partial t_{ij} = \frac{1}{||\boldsymbol{t}_j||^3} (t_{ij} \boldsymbol{t}_j - ||\boldsymbol{t}_j||^2 \boldsymbol{e}_i).$$

Moreover,

$$\frac{\partial J(\boldsymbol{x})}{\partial d_{pi}} = -2(\hat{\boldsymbol{W}}_{o}\hat{\boldsymbol{A}}^{p})_{ii} + 2\sum_{q=1}^{N} d_{qi}(\hat{\boldsymbol{W}}_{o}\hat{\boldsymbol{A}}^{|p-q|})_{ii} \qquad (22)$$
$$p = 1, 2, \cdots, N; \qquad i = 1, 2, \cdots, n.$$

Case 2: $D_p = \alpha_p I_n$ for $p = 1, 2, \dots, N$ The gradient of J(x) can be calculated as

$$\frac{\partial J(\boldsymbol{x})}{\partial t_{ij}} = 2\boldsymbol{e}_{j}^{T} \left[\hat{\boldsymbol{A}}^{T} \hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}} - \sum_{p=1}^{N} \alpha_{p} (\hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{p} + (\hat{\boldsymbol{A}}^{T})^{p} \hat{\boldsymbol{W}}_{o}) \right. \\
\left. + \frac{1}{2} \sum_{p=1}^{N} \sum_{q=1}^{N} \alpha_{p} \alpha_{q} (\hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{|p-q|} + (\hat{\boldsymbol{A}}^{T})^{|p-q|} \hat{\boldsymbol{W}}_{o}) \right] \hat{\boldsymbol{T}} \boldsymbol{g}_{ij} \\
\frac{\partial J(\boldsymbol{x})}{\partial \alpha_{p}} = -2 \operatorname{tr}(\hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{p}) + 2 \sum_{q=1}^{N} \alpha_{q} \operatorname{tr}(\hat{\boldsymbol{W}}_{o} \hat{\boldsymbol{A}}^{|p-q|}) \\
\left. i, j = 1, 2, \cdots, n; \quad p = 1, 2, \cdots, N. \right. \tag{23}$$

4. AN ILLUSTRATIVE EXAMPLE

As a numerical example, consider a state-space digital filter $(\mathbf{A}, \mathbf{b}, \mathbf{c}, d)_3$ described by

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.453770 & -1.556160 & 1.974860 \end{bmatrix}$$
$$\boldsymbol{b} = \begin{bmatrix} 0 & 0 & 0.2420961 \end{bmatrix}^{T}$$
$$\boldsymbol{c} = \begin{bmatrix} 0.095706 & 0.095086 & 0.327556 \end{bmatrix}$$
$$\boldsymbol{d} = 0.015940.$$

The controllability and observability Gramians K_c and W_o of the above filter were computed from (10) and (8) as

$$\boldsymbol{K}_{c} = \begin{bmatrix} 1.000000 & 0.872501 & 0.562822 \\ 0.872501 & 1.000000 & 0.872501 \\ 0.562822 & 0.872501 & 1.000000 \end{bmatrix}$$
$$\boldsymbol{W}_{o} = \begin{bmatrix} 0.820742 & -2.035323 & 1.628159 \\ -2.035323 & 5.307270 & -4.264912 \\ 1.628159 & -4.264912 & 3.941488 \end{bmatrix}.$$

The noise gain of the filter with no error feedforward and no EF was then computed from (9) as $J_{e1}(\mathbf{0}, \mathbf{0}) = 10.069510$. **Case 1:** D_1 and D_2 are diagonal matrices where N = 2

The quasi-Newton algorithm was applied to minimize (18) with tolerance $\varepsilon = 10^{-8}$ in (20). It took the algorithm 44 iterations to converge to the solution

$$\hat{\boldsymbol{T}} = \begin{bmatrix} 1.444866 & -0.214988 & 0.437178 \\ -1.309716 & 1.306211 & 0.465756 \\ -0.577484 & 0.237097 & 1.275346 \end{bmatrix}$$
$$\boldsymbol{D}_1 = \text{diag} \{ 0.6405 & 1.2864 & 1.44310 \}$$
$$\boldsymbol{D}_2 = \text{diag} \{ -0.0242 & -0.6992 & -0.6984 \}$$

with the noise gain $J(\hat{T}, D) = 0.003552$. The profile of $J(\hat{T}, D)$ during the first 44 iterations of the algorithm is dipicted in Fig. 1.

Fig. 1. Profile of $J(\hat{T}, D)$ during the first 44 iterations.

Case 2: D_1 and D_2 are scalar matrices where N = 2

The quasi-Newton algorithm with $\varepsilon = 10^{-8}$ was applied to minimize (18) for scalar high-order EF matrices D_1 and D_2 . It took the algorithm 19 iterations to converge to the solution

$$\hat{\boldsymbol{T}} = \begin{bmatrix} 1.219422 & -0.555940 & -0.042678 \\ -0.434261 & 1.235725 & 0.697171 \\ -0.079476 & -0.077024 & 1.153868 \end{bmatrix}$$
$$\boldsymbol{D}_1 = 1.1973 \, \boldsymbol{I}_3, \qquad \boldsymbol{D}_2 = -0.5099 \, \boldsymbol{I}_3$$

with the noise gain $J(\hat{T}, D) = 0.050379$. The profile of $J(\hat{T}, D)$ during the first 19 iterations of the algorithm is shown in Fig. 2.

Fig. 2. Profile of $J(\hat{T}, D)$ during the first 19 iterations.

The other results regarding the noise gain $J(\hat{T}, D)$ in (18) were summarized in Table I where "Infinite Precision" shows the value of $J(\hat{T}, D)$ derived from the optimal \hat{T} and D, and "3-Bit Quantization" means that of $J(\hat{T}, D)$ where only each entry of the optimal matrix $D = [D_1, D_2]$ was rounded to a power-of-two representation with 3 bits after the binary point.

N	$oldsymbol{D}_1,oldsymbol{D}_2,\cdots,oldsymbol{D}_N$	Infinite Precision	3-Bit Quantization
1	Diagonal	0.049981	0.083396
	Scalar	0.092729	0.105829
2	Diagonal	0.003552	0.008444
	Scalar	0.050379	0.060035

TABLE I PERFORMANCE COMPARISON

The results reported above have clearly demonstrated that the use of high-order (i.e. N > 1) EF, when jointly optimized with state-space realization, can improve the performance of roundoff noise reduction in a significant manner.

5. CONCLUSION

The joint optimization problem of high-order EF and realization to minimize the effects of roundoff noise of statespace digital filters subject to l_2 -scaling constraints has been investigated. It has been shown that the problem at hand can be converted into an unconstrained optimization problem by using linear algebraic techniques. Closed-form formulas for fast evaluation of the gradient of the objective function have been derived. An efficient quasi-Newton algorithm has been employed to solve the unconstrained optimization problem. The proposed technique has been applied to the cases where the high-order EF has diagonal or scalar matrices. A numerical example has demonstrated the effectiveness of the proposed technique.

REFERENCES

- H. A. Spang, III and P. M. Shultheiss, "Reduction of quantizing noise by use of feedback," *IRE Trans. Commun. Syst.*, vol. CS-10, pp. 373-380, Dec. 1962.
- [2] T. Thong and B. Liu, "Error spectrum shaping in narrowband recursive digital filters," *IEEE Trans. Acoust. Speech, Signal Processing*, vol. 25, pp. 200-203, Apr. 1977.
- [3] T. L. Chang and S. A. White, "An error cancellation digital filter structure and its distributed-arithmetic implementation," *IEEE Trans. Circuits Syst.*, vol. 28, pp. 339-342, Apr. 1981.
- [4] D. C. Munson and D. Liu, "Narrowband recursive filters with error spectrum shaping," *IEEE Trans. Circuits Syst.*, vol. 28, pp. 160-163, Feb. 1981.
- [5] W. E. Higgins and D. C. Munson, "Noise reduction strategies for digital filters: Error spectrum shaping versus the optimal linear state-space formulation," *IEEE Trans. Acoust. Speech, Signal Processing*, vol. 30, pp. 963-973, Dec. 1982.
- [6] M. Renfors, "Roundoff noise in error-feedback state-space filters," Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP'83), pp. 619-622, Apr. 1983.
- [7] W. E. Higgins and D. C. Munson, "Optimal and suboptimal errorspectrum shaping for cascade-form digital filters," *IEEE Trans. Circuits Syst.*, vol. 31, pp. 429-437, May 1984.
- [8] T. I. Laakso and I. O. Hartimo, "Noise reduction in recursive digital filters using high-order error feedback," *IEEE Trans. Signal Processing*, vol. 40, pp. 1096-1107, May 1992.
- [9] P. P. Vaidyanathan, "On error-spectrum shaping in state-space digital filters," *IEEE Trans. Circuits Syst.*, vol. 32, pp. 88-92, Jan. 1985.
- [10] D. Williamson, "Roundoff noise minimization and pole-zero sensitivity in fixed-point digital filters using residue feedback," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. 34, pp. 1210-1220, Oct. 1986.
- [11] G. Li and M. Gevers, "Roundoff noise minimization using delta-operator realizations," *IEEE Trans. Signal Processing*, vol. 41, pp. 629-637, Feb. 1993.
- [12] D. Williamson, "Delay replacement in direct form structures", *IEEE Trans. Acoust., Speech, Signal Processing*, vol. 36, pp. 453-460, Apr. 1988.
- [13] M. M. Ekanayake and K. Premaratne, "Two-dimensional delta-operator formulated discrete-time systems: Analysis and synthesis of minimum roundoff noise realizations," *Proc. IEEE Int. Symp. Circuits Syst.* (IS-CAS'96), vol. 2, pp. 213-216, May 1996.
- [14] G. Li and Z. Zhao, "On the generalized DFIIt structure and its statespace realization in digital filter implementation," *IEEE Trans. Circuits Syst. I*, vol. 51, pp. 769-778, Apr. 2004.
- [15] S. Y. Hwang, "Roundoff noise in state-space digital filtering: A general analysis," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. 24, pp. 256-262, June 1976.
- [16] C. T. Mullis and R. A. Roberts, "Synthesis of minimum roundoff noise fixed-point digital filters," *IEEE Trans. Circuits Syst.*, vol. 23, pp. 551-562, Sept. 1976.
- [17] S. Y. Hwang, "Minimum uncorrelated unit noise in state-space digital filtering," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. 25, pp. 273-281, Aug. 1977.
- [18] L. B. Jackson, A. G. Lindgren and Y. Kim, "Optimal synthesis of second-order state-space structures for digital filters," *IEEE Trans. Circuits Syst.*, vol. 26, pp. 149-153, Mar. 1979.
- [19] T. Hinamoto, H. Ohnishi and W.-S. Lu, "Roundoff noise minimization of state-space digital filters using separate and joint error feedback/coordinate transformation," *IEEE Trans. Circuits Syst. 1*, vol. 50, pp. 23-33, Jan. 2003.
- [20] W.-S. Lu and T. Hinamoto, "Jointly optimized error-feedback and realization for roundoff noise minimization in state-space digital filters," *IEEE Trans. Signal Processing*, vol. 53, pp. 2135-2145, June 2005.
- [21] R. Fletcher, Practical Methods of Optimization, 2nd ed. Wiley, New York, 1987.