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Abstract

A new algorithm for the reconstruction of sparse sig-
nals from noise corrupted compressed measurements is pre-
sented. The algorithm is based on minimizing an �p,ε-norm
regularized �2 error. The minimization is carried out by
iteratively taking descent steps along the basis vectors of
the null space of the measurement matrix and its comple-
ment space. The step size is computed using a line search
based on Banach’s fixed-point theorem. Simulation results
are presented, which demonstrate that the proposed algo-
rithm yields improved reconstruction performance and re-
quires a reduced amount of computation relative to several
known algorithms.

1 Introduction

Compressive sensing (CS) ([1]-[3]) deals with the ac-
quisition of sparse signals using a small number of mea-
surements and the reconstruction of the signal from these
measurements. One of the most successful algorithms for
CS is basis pursuit (BP) which is based on �1-norm min-
imization [4]. Improved algorithms include the iteratively
reweighted (IR) algorithm which is based on �p-norm mini-
mization with p < 1 [5], the smoothed �0-norm (SL0) min-
imization algorithm [6], and the unconstrained regularized
�p-norm (URLP) minimization algorithm [7]. A variant of
BP known as basis pursuit denoising (BPDN) [4] was found
to be particularly effective for signal reconstruction in the
case of noise-corrupted measurements.

In this paper, we propose a new algorithm for the recon-
struction of sparse signals in the CS framework where the
measurements are corrupted by additive noise. The algo-
rithm is based on minimizing an �p,ε-norm regularized �2

error with p < 1. By working in the null space of the mea-
surement matrix and its orthogonal complement, descent di-

rections for the �p,ε-norm regularized objective function can
be efficiently computed. These principles along with Ba-
nach’s fixed-point theorem [8] can be used to construct an
efficient line search for the proposed algorithm. Simulation
results are presented which demonstrate that the proposed
algorithm yields improved reconstruction performance and
requires a reduced amount of computation relative to sev-
eral known algorithms.

2 Preliminaries

Let a real-valued discrete-time signal x of length N
which has K nonzero components with K � N . Such a
signal is said to be K-sparse. The measurement process in
the CS framework can be modelled as

y = Φx + w (1)

where y is a measurement vector of length M , Φ is a mea-
surement matrix of size M × N with M < N , and w is a
Gaussian noise vector with zero mean and variance σ2. A
tractable approach to recover x from y is to use BPDN [4]
which entails solving the convex problem

x̂ = minimize
x

1
2
||Φx − y||22 + λ||x||1 (2)

Parameter λ is an appropriate regularization parameter and
||x||1 is the �1 norm of x.

Several algorithms for signal reconstruction from both
noise-free and noisy measurements have been developed.
One such algorithm is the �p-norm minimization based IR
algorithm studied in [5] which solves the problem

minimize
x

||x||pp subject to Φx = y (3)

with p < 1 where ||x||p is the �p norm of x. In the URLP
algorithm introduced in [7], a sparse signal is obtained as

x∗ = xs + V nξ∗ (4)
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where xs is a solution of Φx = y, V n is an N × (N −M)
matrix composed of an orthonormal basis of the null space
of Φ, and ξ∗ is a vector obtained as

ξ∗ = arg min
ξ

N∑
i=1

[(
xsi + vT

i ξ
)2

+ ε2
]p/2

(5)

where xsi is the ith component of xs, vT
i is the ith row of

matrix V n, and p < 1.

3 Minimization of the �p Regularized �2

Error

3.1 Problem formulation

We proposed to reconstruct a sparse signal from noisy
measurements by solving the optimization problem

minimize
x

1
2
||Φx − y||22 + λ ||x||pp,ε (6)

where λ > 0 is a fixed regularization parameter and ||x||p,ε

is a regularized �p norm of x defined as

||x||pp,ε =
N∑

i=1

(x2
i + ε2)p/2 (7)

With ε > 0, function ||x||p,ε is differentiable. Also, pa-
rameter ε is helpful in dealing with the local minima of the
problem in (6).

Let Φ = U [Σ 0] V T be the singular-value decompo-
sition (SVD) of Φ. Matrix V can be expressed as V =
[V r V n] where V n is composed of the last N−M columns
of V , which span the null space of Φ, while V r is com-
posed of the first M columns of V , which span the orthogo-
nal complement of the null space. This orthogonal comple-
ment is also known as the row space of Φ in the literature.

By using the columns of V = [V r V n] as a set of or-
thonormal basis vectors, we can express a signal x of length
N as

x = V rφ + V nξ (8)

where φ and ξ are vectors of length M and N − M , re-
spectively. When measurement vector y is not corrupted by
noise, vector φ can be evaluated as

φ = Σ−1UT y (9)

If measurement y is corrupted by noise, then vector φ
obtained from (9) is not optimal in general and we shall
consider both φ and ξ as independent variables.

Using the SVD of Φ, we simplify the �2 term in (6) as

1
2
||Φx − y||22 =

1
2
||Σφ − ỹ||22

=
1
2

M∑
i=1

(σiφi − ỹi)2 (10)

where σi is the ith singular value of Φ, φi is the ith com-
ponent of vector φ, and ỹi is the ith component of vector
ỹ = UT y.

Using (8) and (10), we recast the optimization problem
in (6) as

minimize
φ,ξ

Fp,ε(φ, ξ) (11)

where

Fp,ε(φ, ξ) =
1
2

M∑
i=1

(σiφi − ỹi)2 + λ ||x||pp,ε (12)

with x given in (8).
Below, we propose an algorithm for the solution of the

optimization problem in (11).

3.2 Computation of descent direction

In the kth iteration of the proposed algorithm, signal x(k)

is updated to
x(k+1) = x(k) + αd(k) (13)

where
x(k) = V rφ

(k) + V nξ(k) (14a)

d(k) = V rd
(k)
r + V nd(k)

n (14b)

and α > 0. The scalar α is determined using a line search
(see Sec. 3.3), and the updating vectors dr and dn assume
the forms

d(k)
r =

[
δ
(k)
r,1 δ

(k)
r,2 · · · δ

(k)
r,M

]T

(15a)

and

d(k)
n =

[
δ
(k)
n,1 δ

(k)
n,2 · · · δ

(k)
n,N−M

]T

(15b)

Vectors d(k)
r and d(k)

n in (15) are determined by minimiz-
ing the objective function Fp,ε(φ, ξ) along each of the di-
rections defined by the column vectors of [V r V n]. In do-
ing so, d(k)

r and d(k)
n become descent directions of Fp,ε and

their components are found to be

δ
(k)
r,i = −−σiui + λpsi

σ2
i + λpβi

(16a)

and
δ
(k)
n,i = − si

βi
(16b)

where ui = ỹi − σiφi,

si =
N∑

j=1

x
(k)
j vijγj(ε) (17a)

βi =
N∑

j=1

v2
ijγj(ε) (17b)
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In (17a) and (17b), x(k)
j is the jth component of vector x(k)

and vij is the jth component of vector vi where vi is the
ith column of matrix V r if si and βi are computed for Eq.
(16a) and the ith column of matrix V n if si and βi are com-
puted for Eq. (16b), and

γj(ε) =
[(

x
(k)
j

)2

+ ε2
]p/2−1

(18)

Eqs. (16)–(18) are derived in the Appendix.

3.3 Line search

By using a line search based on Banach’s fixed-point the-
orem [8], the step size α can be computed as

α = −q1 + λpq2

q3 + λpq4
(19)

where

q1 =
M∑

j=1

(
σjφ

(k)
j − ỹj

)
σjd

(k)
rj (20a)

q2 =
N∑

j=1

x
(k)
j d

(k)
vj γj(α, ε) (20b)

q3 =
M∑

j=1

(
σjd

(k)
rj

)2

(20c)

q4 =
N∑

j=1

(
d
(k)
vj

)2

γj(α, ε) (20d)

In (20), φ(k)
j , d

(k)
rj , x

(k)
j , and d

(k)
vj are the jth components of

φ(k), d(k)
r , x(k), and d(k)

v , respectively, and

γj(α, ε) =
[(

x
(k)
j + αd

(k)
vj

)2

+ ε2
]p/2−1

Step size α can be obtained through a finite number of iter-
ations of the recursive formula in (19). Details of the line
search algorithm can be found in [7].

3.4 Optimization

From (11) and (7), we note that the objective function in
(11) is dependent on parameter ε. It turns out that the area of
the region where the objective function is convex is propor-
tional to the value of ε, namely, the larger the ε, the larger
the convex region. Thus if a sufficiently large value of ε is
used, the proposed algorithm will locate the global solution
of the current objective function. On the other hand, if a
very small value of ε is used, the objective function in (11)

will approach the true value of the �2, �p objective func-
tion but it will become nonconvex and, consequently, it will
have many suboptimal solutions. A good optimal solution
can be obtained by using a sequential optimization whereby
a series of objective functions are minimized starting with a
large value of ε and gradually decreasing ε to a very small
value. The detailed steps of such a sequential optimization
are as follows:

• First, set ε to a large value, say, ε1, typically 0.5 ≤
ε1 ≤ 1, and initialize φ and ξ to zero vectors.

• Solve the optimization problem in (11) by i) comput-
ing descent directions dv and dr, ii) computing the
step size α; and iii) updating solution x and coefficient
vector φ.

• Reduce ε to a smaller value and again solve the prob-
lem in (11).

• Repeat this procedure until a small target value, say,
εJ , is reached.

• Output x as the solution.

3.5 Algorithm

The proposed �p,ε-norm regularized least-squares
(LPeLS) algorithm for reconstructing sparse signals from
compresed measurements is summarized in Table 1. The
regularization parameter λ, number of iterations J , initial
value ε1, final value εJ , and parameter p are supplied
in Step 1. The algorithm uses the SVD to compute the
singular values σ1, σ2, . . . , σM of Φ and matrices U and
V whose columns are, respectively, the left and right
singular vectors of Φ. The evaluation of the SVD is
computationally demanding for measurement matrices of
larger sizes. However, the computation can be performed
offline and the resulting matrices can be stored and reused
while reconstructing the signal.

The J − 2 values of ε lying between the initial value ε1
and final value εJ are computed as

εi = e−βi for i = 1, 2, . . . , J − 1 (21)

where β = log(ε1/εJ)/(J − 1).
The computation of the step size using (19) in Step 4

requires vector φ(k) which is computed as

φ(k) = V T
r x(k) (22)

4 Experimental Results

Two experiments were performed to investigate the per-
formance of the proposed algorithm. In the first experiment,
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Table 1. LPeLS Algorithm
Step 1
Input: λ, p, ε1, εJ , J , L, Φ and y.
Set x(1) = 0 and k = 1.
Step 2
Compute εj for j = 2, 3, . . . , J − 1 using (21).
Step 3
Compute the SVD of Φ to obtain U , Σ, V r and V n.
Step 4
Repeat for j = 1, 2, . . . , J

i) Set ε = εj .
ii) Repeat for l = 1, 2, . . . , L

a) Use x(k) as an initial value and compute φ(k)

using Eq. (22).
b) Compute d(k) using Eq. (14b).
c) Compute α using the line search based on

Banach’s fixed-point theorem using Eq. (19).
e) Compute x(k+1) using Eq. (13).
f) k = k + 1.

Step 5
Set x = x(k) and stop.

the signal length N and the number of measurements M
were set to 1024 and 200, respectively. A total of eleven
values of sparsity K were chosen from 1 to 101 with an
increment of 10. A K-sparse signal x with energy value
100 was constructed as follows: i) a vector x of length
N with all zero components was constructed, ii) a random
vector of length K was constructed by drawing its com-
ponents from a normal distribution N (0, 1) followed by a
normalization step so that the �2 norm of the resulting vec-
tor is

√
100, and iii) the components of the resulting vec-

tor were set to randomly chosen K locations of vector x.
A measurement matrix Φ of size M × N was constructed
by drawing its elements from N (0, 1) followed by an or-
thonormalization step where the rows of Φ were made or-
thonormal with each other. The measurement was obtained
as y = Φx + w where noise vector w was constructed
by drawing its components from N (0, 0.01). The proposed
LPeLS algorithm was used to reconstruct x from y with
p = 0.1, λ = 0.0008, ε1 = 0.8, εJ = 10−2, J = 30,
and L = 5. The reconstruction performance of the LPeLS
algorithm was compared with that of the BPDN [4], un-
constrained regularized �p (URLP) [7] with p = 0.1, iter-
ative reweighted (IR) with p = 0.1 [5], and smoothed �0

norm (SL0) [6] algorithms. For each algorithm, the signal
was deemed reconstructed if the signal-to-noise ratio value,
measured as 20 log10 (||x||2/||x − x̂||2), was greater than
27 dB where x and x̂ are the initial and reconstruted sig-
nals, respectively. The results are shown in Figure 1. As can
be seen, the performance of the LPeLS algorithm is better
than that of the other algorithms.

In the second experiment, signal length N was varied
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Figure 1. Percentage of recovered instances
for the LPeLS, URLP, IR, SL0, and BPDN algo-
rithms over 100 runs with N = 1024, M = 200.

in the range 128 to 512 where M = N/2 and K =
round(M/2.5). We constructed a measurement matrix Φ
and five K-sparse signals x1, x2, x3, x4, and x5 each with
different values and locations of nonzero components. Five
noisy measurements y1, y2, y3, y4, and y5 were obtained
by multiplying the sparse signals by Φ and adding five dif-
ferent noise vectors constructed by drawing their compo-
nents from N (0, 0.01). The LPeLS, URLP, IR, SL0, and
BPDN algorithms were used to reconstruct signals from all
five measurements and the CPU times required by the var-
ious algorithms to reconstruct the five signals were mea-
sured. For the proposed LPeLS algorithm, the SVD was
performed once and the resulting matrices were reused
while reconstructing five signals. For the URLP algorithm,
the QR decomposition was performed once for all five re-
constructions (see [7] for details). For the IR and SL0 al-
gorithms, the pseudo-inverse of Φ was computed only once

as ΦT
(
ΦΦT

)
and reused for five signal reconstructions.

The CPU times were measured using a PC desktop with In-
tel Core 2 CPU 6400 2.13 GHz processor using MATLAB
command cputime. The results are shown in Figure 2. We
observe that the LPeLS algorithm requires much less CPU
time than that required by the URLP and IR algorithms,
slightly less than that required by the BPDN algorithm, and
slightly more than that required by the SL0 algorithm.

We should point out that the use of the SVD to com-
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Figure 2. Average CPU time required by the
LPeLS, URLP, IR, SL0, and BPDN algorithms
over 100 runs with M = N/2, K = M/2.5.

pute matrices U , Σ, V r, and V n in Step 3 of the algorithm
is computationally expensive for data of moderate to large
sizes. Below we discuss three cases where the computa-
tional burden can be reduced or eliminated.

• In CS, a measurement matrix is usually reused for both
sensing and reconstructing. In such applications, the
SVD can be computed offline, and vector ỹ, matrices
V r and V n, and singular values σ1, σ2, . . . , σM can
be stored and reused for the reconstruction process.

• In some applications, the measurement matrix Φ is
constructed by selecting a number of rows of a ran-
dom orthonormal matrix R. In these applications, we
can use V r = ΦT and V n = ΨT where Ψ is formed
by using the remaining rows of R; on the other hand,
matrix U is the identity matrix and the singular values
σ1, σ2, . . . , σM are all equal to unity.

• When measurements are taken as a set of samples of a
standard transform of the signal such as the Fourier,
DCT, or orthogonal wavelet transform, W can be
taken to be the orthogonal transfrom matrix. In such
cases, the measurement matrix Φ is composed of a
number of rows of W . Consequently, we can assign
V r = ΦT and V n = ΨT where Ψ is formed by us-
ing the remaining rows of W . In these applications

matrix U is the identity matrix and the singular values
are all equal to unity.

5 Conclusion

We have proposed an algorithm for the reconstruction of
sparse signals from noise-corrupted compressed measure-
ments. The algorithm minimizes an �p,ε-norm regularized
�2 error by iteratively taking steps along the basis vectors of
the null space of the measurement matrix and its comple-
ment space. The step size is determined using a line sarch
based on Banach’s fixed-point theorem. Simulation results
show that the proposed algoirthm yields improved signal re-
construction performance and requires a reduced amount of
computation relative to several known algorithms.
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Appendix

Eqs. (16)–(18) can be derived as detailed below.
Let ei be a vector of length M whose ith component

is unity and the rest of its components are zero. Provided
that φ and ξ are given, a descent direction along the ith
component of vector φ in (12) can be obtained by solving
the one-dimensional optimization problem

minimize
δ

F (δ) (23)

where

F (δ) =
1
2
||Σ (φ + δei) − ỹ||22 + λ ||x + δvi||pp,ε

=
1
2

[σi(φi + δ) − ỹi]
2

+λ
N∑

j=1

[
(xj + δvij)

2 + ε2
]p/2

(24)

In Eq. (24) x = V rφ+V nξ, vi is the ith column of vector
V r, and xj and vij are the jth components of vectors x and
vi, respectively. By equating the first-order derivative of
F (δ) to zero, we obtain

δ = −
−σiỹi + σ2

i φi + λp
N∑

j=1

γj(ε)xjvij

σ2
i + λp

N∑
j=1

γj(ε)v2
ij

(25)
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where
γj(ε) =

[
(xj + δvij)2 + ε2

]p/2−1
(26)

Now Eq. (25) is a fixed-point equation which can be used
to determine δ iteratively. A descent step can, however, be
determined using only the first iteration of (25), which can
be done by using δ = 0 in the right-hand side of (26) to
compute δ. With δ = 0, Eq. (26) simplifies to (18) and Eq.
(16a) follows from (25).

For the descent directions along the components of vec-
tor ξ in (12) and (8), the fidelity term becomes a constant.
As a result, −σlỹl and σ2

l φl in the numenerator and σ2
i in

the denominator of (25) can be deleted. Consequently, from
(25) Eq. (16b) can be obtained.
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