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Abstract

Wireless capsule endoscopy (WCE) finds wide appli-
cations in diagnosing diseases in human intestine on ac-
count of its convenience and non-invasiveness to the pa-
tients. Due to complicated environment of the intestine
and intrinsic restrictions of the equipment in terms of im-
age acquisition and transmission, however, raw WCE im-
ages are often corrupted by noise and degraded by within-
channel or cross-channel blurs. In this paper, we present
a total variation (TV) minimization framework for deblur-
ring within-channel blurs for color WCE images. Specif-
ically, the monotone fast iterative shrinkage/thresholding
technique combined with the fast gradient projection algo-
rithm, proposed recently by Beck and Teboulle, is extended
to deal with multichannel images. In addition, the proposed
algorithm is enhanced by incorporating a bisection tech-
nique to effectively identify a near optimal value for the reg-
ularization parameter of the TV-Frobenius objective func-
tion. Experimental results are presented to demonstrate the
performance of the proposed algorithm.

1. Introduction

Wireless capsule endoscopy (WCE) is a state-of-the-art
technology to diagnose gastrointestinal tract diseases with
practically no invasiveness [1]. It acquires images during
a slow squirm process and transmits them from inside of
the body by a wireless transmitter. However, raw WCE im-
ages are often blurred due primarily to the complicated en-
vironment of the intestine and intrinsic restrictions of the
equipment in terms of image acquisition and transmission.
This in turn imposes difficulties for accurate and effective
diagnosis. Image deblurring is an algorithmic procedure for

restoring digital images degraded by one or more of var-
ious kinds of blurs. Of the rich variety of techniques for
image restoration, it is most relevant to mention the cele-
brated Rudin, Osher and Fatemi (ROF) algorithm [2] that
was the first to introduce the notion of total variation (TV)
and treat image denoising problems in a TV-regularized
minimization framework, and reference [3] was the first
work on image deblurring based on TV minimization was
reported. The last two decades have witnessed the growth
of increasing research interest in this effective methodology
and a large volume of literature covering a variety of image
and video processing problems [4]. Dealing with blurs for
multichannel images such as color images are more compli-
cated than that for single-channel images because blurs may
exist within and/or cross channels. In this paper, we report
some new developments for the restoration of color WCE
images with within-channel blurs in a TV minimization
framework. Specifically, the monotone fast iterative shrink-
age/thresholding algorithm (MFISTA) combined with the
fast gradient projection algorithm, proposed recently in [5],
is extended to deal with multichannel (e.g. color) images.
In addition, the algorithm is enhanced by incorporating a bi-
section technique for tuning the regularization parameter of
the TV-Frobenius (TV-F) objective function to its optimal
value quickly and accurately. Experimental results using
color WCE images are presented to demonstrate the perfor-
mance of the proposed algorithm.

2. Previous work

2.1. Image model and TV-regularized
minimization

Consider a blurring model for discrete images

u0 = Au + w (1)
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where A represents an affine map standing for a blurring
operator, u0 denotes an observed noisy image, and w is nor-
mally distributed additive noise. Assuming noise w is Gaus-
sian white with i.i.d. components of zero mean and variance
σ2, the restoration problem here is to estimate (recover) im-
age u given the observation u0 and operator A.

It is well known [2–5] that the restoration at hand can be
treated as an unconstrained convex optimization problem

minimize
u

µ‖u‖TV +
1

2
‖Au − u0‖2F (2)

where µ > 0 is a regularization parameter, ‖ · ‖F denotes
the Frobenius norm of matrix, and ‖u‖TV denotes the two-
dimensional (2-D) discrete total variation of u. For a matrix
u of size n1 by n2, its TV norm is defined by

‖u‖TV =

n1∑
i=1

n2∑
j=1

‖Di,ju‖2, Di,ju =

[
D(h)

i,j u

D(v)
i,j u

]
(3a)

where

D(h)
i,j u =

{
ui+1,j − ui,j i < n1,

0 i = n1

D(v)
i,j u =

{
ui,j+1 − ui,j j < n2,

0 j = n2

(3b)

2.2. A TV-norm for color images

Let u = {u(1), u(2), u(3)} be a color image of size n1
by n2, where u(1), u(2) and u(3) are the components of u
in red (R), green (G) and blue (B) channels, respectively.
A natural extension of the TV norm for gray-scale images
given in (3) to color (multi-channel) images is given by

‖u‖CTV =

(
3∑

i=1

‖u(i)‖2TV

)1/2

(4)

where each ‖u(i)‖TV is defined by (3). In the rest of the pa-
per, we refer the TV-norm defined by (4) as color-TV norm,
or briefly as CTV norm. Note that ‖u‖CTV is reduced to the
conventional ‖u‖TV when u is a scalar-valued (e.g., gray-
scale) image.

We remark that the CTV-norm defined in (4) is a dis-
crete counterpart of a CTV norm defined in [6] for images
as functions of continuous variables. In that case, the Euler-
Lagrange (EL) equations are found to be

‖u(i)‖TV

‖u‖CTV
∇ ◦

(
∇u(i)

‖u(i)‖

)
− λA∗(Au(i) − u(i)

0

)
= 0 (5)

for i = 1, 2, 3, where A∗ is the adjoint of A, u(i)
0 denotes

the ith component of noisy observation u0, and λ is a La-
grange multiplier. Note that the three EL equations in (5)
are not independent from each other but coupled via the ra-
tio of the TV norms:

ri(u) =
‖u(i)‖TV

‖u‖CTV
for i = 1, 2, 3 (6)

Based on (5), the problem of deblurring color images can
be carried out in the RGB space by numerically solving the
partial differential equations (PDEs)

∂u(i)

∂t
= ri(u)∇◦

(
∇u(i)√

β + ‖u(i)‖2

)
−λA∗(Au(i)−u(i)

0

)
(7)

for i = 1, 2, 3, where β is a small positive scalar to pre-
vent from dividing by zero. The reader is referred to [6] for
details.

2.3. Gradient-based algorithms for problem
in (2)

Several authors [3–5] have proposed methods to address
image deblurring problems by solving optimization prob-
lems (2). Of particular interest and relevance to the work re-
ported here is a dual-based approach developed in [5] which
yields a monotone fast iterative shrinkage-thresholding al-
gorithm (MFISTA) where each iteration requires to solve a
denoising subproblem which is carried out using a fast gra-
dient projection (FGP) algorithm. Due to the limitation in
space, the reader is referred to Sections 4 and 5 of [5] for
the algorithmic details of the MFISTA/FGP technique.

3. An algorithm for deblurring color images

3.1. Analysis

Multichannel images may suffer from either within-
channel or cross-channel blur. Within a TV-minimization
framework, there are two deblurring approaches for multi-
channel images, namely the channel-by-channel (CBC) TV
minimization and Color-TV (CTV) minimization. If one
treats a color image as a vector-valued function of two con-
tinuous variables with three differentiable scalar function
components, then the CBC-TV approach leads to the EL
equations [3]

∇◦
(
∇u(i)

‖u(i)‖

)
−λA∗(Au(i)−u(i)

0

)
= 0 for i = 1, 2, 3

(8)
which are evidently independent from each other in the
sense that these equation can be dealt with individually and
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the solution of one equation does not effect the solutions
of the other two equations. On the other hand, the CTV
approach leads to the EL equations in (5) which are cou-
pled via the TV norm ratios ri(u) in (6). Since high cor-
relation between channel components u(i) often exists, the
associated EL equations are expected to be coupled with
each other. For this reason a deblurring technique based on
CTV minimization is expected to outperform its counter-
part based on CBC-TV minimization. This expectation was
positively confirmed in [6] for image denoising problems.

For discrete images, the formulation corresponding to
the CBC-TV based EL equations (8) is given by

minimize
u

µ‖u(i)‖TV +
1

2
‖Au(i) − u(i)

0 ‖2F (9)

for i = 1, 2, 3, where parameter µ is inversely related to
Lagrange multiplier λ, i.e., µ ∝ 1/λ. Fast algorithms exist
([4], [5]) for solving (9).

For the reason stated earlier, however, we are more in-
terested in a discrete formulation that is related to the CTV-
based EL equations (5). To this end, we use (5) and (6)
to write the steady-state EL equations (7) (with time t ap-
proaching infinity) as

∇ ◦
(
∇u(i)

‖u(i)‖

)
− λ

ri(u)
A∗(Au(i) − u(i)

0

)
= 0 (10)

for i = 1, 2, 3. On comparing (10) with (8), we see that the
effect of employing CTV rather than CBC-TV is essentially
to modify the constant Lagrange multiplier λ to an image-
dependent Lagrange multiplier λ/ri(u). By letting λi(u) =
λ/ri(u), (10) becomes

∇ ◦
(
∇u(i)

‖u(i)‖

)
− λi(u)A∗(Au(i) − u(i)

0

)
= 0 (11)

where each “generalized” Lagrange multipliers λi(u) is a
function of the entire image u, through which the three EL
equations are coupled. From (11), a counterpart of formu-
lation (9) follows as

minimize
u

µi(u)‖u(i)‖TV +
1

2
‖Au(i) − u(i)

0 ‖2F (12)

where µi(u) ∝ 1/λi(u) and assumes the form

µi(u) = µ · ri(u) = µ · ‖u(i)‖TV

‖u‖CTV
for i = 1, 2, 3 (13)

3.2. Solving minimization problem in (12)

The algorithm we propose for solving (12) is iterative.
In its kth iteration, the µi(u) in (12) is set to µi(uk−1) =

µ · ri(uk−1) where uk−1 is an iterate obtained from the pre-
ceding iteration and constant µ is determined by a bisection
technique to be described in detail in Sec.3.3. In this way,
the problem in (12) becomes

minimize
u

µi(uk−1)‖u(i)‖TV +
1

2
‖Au(i) − u(i)

0 ‖2F (14)

for i = 1, 2, 3, which is a standard TV-F minimization prob-
lem that can be solved using the conventional MFISTA/FGP
[5]. An important difference of the proposed algorithm
from that of [5] is that unlike the MFISTA in [5] where the
regularization parameter is kept invariant in the entire iter-
ation process, the proposed algorithm updates µi(u) from
µi(uk−1) to µi(uk) once iterate uk is obtained. The it-
eration continuous until the difference of two consecutive
iterates in norm is less than a prescribed tolerance, or the
number of iterations reaches a prescribed integer K.

3.3. A bisection technique for determining
an optimal regularization parameter

Needless to say, using a good or, whenever possible, op-
timal value of regularization parameter µ is crucial as it af-
fects the deblurring performance directly and significantly.
The bisection technique described below is designed to de-
termine a near optimal value of µ quickly. The technique is
based on the fact that µ is related to the variance of noise
w (see (1)) in a simple manner. For the sake of simplic-
ity, we use model (1) and formulation (2) to illustrate the
technique. It follows from (1) that if a solution u from a de-
blurring algorithm is in perfect agreement with the original
noise-free and non-blurred image, it should satisfy

‖Au − u0‖2F = ‖w‖2F ≈ n1n2σ
2 (15)

From (2), we see that parameter µ controls the trade-off be-
tween the TV-norm of the image and the closeness of Au
to u0 in Frobenius norm: if µ is set to be too large, then (2)
would put a heavier weight on the TV-norm term and, as
a result, the second term 1

2‖Au − u0‖2F (known as fidelity
term) gets too large, exceeding 1

2n1n2σ
2 and violating (15);

if µ is too small, then (2) would weigh the second term too
heavy, leading to a ‖Au − u0‖2F considerably smaller than
n1n2σ

2 that violates (15) again. Consequently, ‖Au−u0‖2F
as a function of µ is a monotonic function that increases
with µ, and a near optimal value of µ can be identified as
one that approximately satisfies (15). Based on the above
analysis, a bisection technique for efficiently identify a near
optimal value of µ is developed for the problem in (14) and
is outlined as follows.

Step 1: Set an initial iterate, say, to the noisy observation
u0 and identify an interval [µL, µU ] which contains
the optimal value of µ. Set tolerance ε, and k = 1.
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Step 2: Set µk = (µL + µU )/2 , solve (14) for i = 1, 2, 3
and form uk = {u(1), u(2), u(3)}.

Step 3: If ‖Auk−u0‖2F > n1n2σ
2, set µU = µ; otherwise

set µL = µ.

Step 4: If µU − µL < ε, output solution uk and stop; oth-
erwise set k = k + 1 and repeat from Step 2.

Remarks:

(1) The technique possesses an exponential convergence
rate of 1/2k.

(2) It requires an interval [µL, µU ] containing the solution
µ to start.

Since µ is always positive, the initial lower bound can be
set to µL = 0. To get an initial upper bound, we use an ini-
tial µW > 0 and solve (14) for i = 1, 2, 3 to get a solution u.
If ‖uW − u0‖2F > n1n2σ

2, then set µU = µW . Otherwise,
double the value of µW , solve (14) for an updated uW , and
check to see if ‖uW − u0‖2F > n1n2σ

2 is satisfied. The
process continues until an appropriate upper bound µU > 0
is identified. We remark that this is a procedure where a
candidate upper bound µW grows exponentially, hence an
upper bound µU can be secured rather quickly.

4. Performance evaluation

A color WCE image of size 140 × 122 was used for
performance evaluation of the proposed algorithm, see
Fig.1(a). The same image but suffering a 7 × 7 averag-
ing blur plus a small amount of additive Gaussian white
noise with σ = 10−4 is shown in Fig.1(b). The modi-
fied MFISTA/FGP algorithm based on the CTV formula-
tion (14) for color images, equipped with the bisection tech-
nique, was applied to the above blurred and noise-corrupted
WCE image. The algorithm was implemented in MATLAB.
A Windows XP laptop PC with an Intel Core Duo CPU
P8700@2.53 GHz with 2.0 GB of RAM, equipped with
MALAB 7.8.0, was used to run the code. The restored im-
age is shown in Fig.1(c). The peak-signal-to-noise (PSNR)
of the blurred and noise-corrupted image was 18.5717 dB.
A profile of the PSNR of the deblurred image in the final
round of iterations using the optimized value of µ (see be-
low) is depicted in Fig.2. We see that the PSNR of the de-
blurred image after 104 iterations was 31.5638 dB that of-
fers 12.9921 dB improvement, and the PSNR was found to
be 32.8658 dB after 3× 104 iterations.

As described in Sec.3.3, within a single iteration (with
fixed preceding iterate uk−1), a bisection procedure was
performed to identify a near optimal value of µ. In the first
iteration (k = 1) of the algorithm, for example, the interval
[µL, µU ] required by the bisection algorithm was identified

(a) (b)

(c) (d)

Figure 1: (a) Original WCE image, (b) Blurred and noise-
corrupted image, (c) Restored image by CTV-TV minimiza-
tion, (d) Restored image by CBC-TV minimization.
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Figure 2: Profile of the PSNR of the deblurred image.

as µL = 0 and µU = 10−4. With tolerance ε set to 5×10−6

(see step 4 of the bisection algorithm), five values of µ were
produced and optimal µ was found to be µ = 3.125×10−6.
Fig.2 depicts a profile of these five µ’s. As a result, the op-
timal values of µi(u0)) for each channel were found to be
2.1534× 10−6, 1.7334× 10−6 and 1.4575× 10−6. As ex-
pected, these µ’s remain small primarily because of the low
level of the additive noise in the observed image data u0.

For comparison purposes, a modified MFISTA/FGP al-
gorithm based on CBC-TV formulation (9), equipped also
with the bisection technique, was also applied to the above
blurred and noise-corrupted image, the PSNR achieved by
the deblurring algorithm was found to be 31.8996 dB, a gain
that was 0.9692 dB less than that obtained by the CTV-TV
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Figure 3: Profile of parameter µ produced by the bisection
step.

based algorithm. The deblurred image obtained is shown
in Fig.1(d). Visual inspection of Fig.1 clearly indicates the
success of both CTV-TV and CBC-TV based algorithms in
removing the blur from the image, with the CTV-TV based
algorithm having the edge on its CBC-TV counterpart.

5. Conclusions

We have proposed an algorithm for removing within-
channel blurs as well as random noise from multichannel
images. The algorithm is built on a concept of color to-
tal variation in a MFISTA/FGP algorithmic framework. In
addition, the algorithm is enhanced by incorporating a bi-
section technique into the algorithm that helps identify a
near optimal value for a key regularization parameter. Sim-
ulation results have demonstrated the effectiveness of the
proposed algorithm for restoring color WCE images.
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