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Abstract

This paper investigates a nonconvex relaxation of the
popular £1-£y formulation for finding sparse representation
of discrete signals in overcomplete dictionary. The specific
nonconvex problem we propose to solve is an £,,-{5 problem
with 0 < p < 1. Our algorithms are built on a recen-
t algorithm, known as the monotone fast iterative shrink-
age/thresholding algorithm, where a key step of soft shrink-
age is replaced by a global solver for the minimization of
a I1-D nonconvex £,, problem. Two efficient techniques for
solving the 1-D €, problem in question are proposed. Simu-
lation studies are presented to evaluate the performance of
the proposed algorithms with various values of p and com-
pare with the well known basis pursuit (BP) algorithm with

p=1

1. Introduction

Over the last two decades, modeling signals exploring s-
parsity has emerged as an effective technique in signal pro-
cessing. A central point of sparse signal processing is to
seek an approximate solution to an ill-posed or underdeter-
mined linear system while requiring that the solution has
fewest nonzero entries. This problem arises in various ar-
eas across engineering and science [1, 2]. Many of these
applications lead to the minimization of a mixed /1 and /5
expressions in the form

F(s) = |lx = U] + Alls|1.

An attractive feature of this formulation is that function
F'(s) is globally convex and its global minimizer can be i-
dentified easily using a convex program solver.

The problem of the ¢1-¢5 sparse approximation was tra-
ditionally treated using various classical iterative optimiza-
tion algorithms, homotopy solvers and greedy techniques
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like matching pursuit and orthogonal matching pursuit [3].
However, these algorithms are often inefficient to reach the
solution. Furthermore, the homotopy and greedy techniques
are impractical in high-dimensional problems, as often en-
countered in image processing applications [4]. Over the
past several years, iterative-shrinkage algorithms have e-
merged as a family of highly effective numerical methods
for above (-5 optimization problems. Of particular in-
terest is a state-of-the-art algorithm called the fast itera-
tive shrinkage-thresholding algorithm (FISTA) developed
in [5]. The FISTA is shown to provide a convergence rate
of O(1/k?) compared to the rate of O(1/k) (with k de-
noting the number of iterations used) by the well-known
proximal-point algorithm known as the iterative shrinkage-
thresholding algorithm (ISTA), while maintaining practical-
ly the same complexity as the ISTA. In [6], with slight in-
crease in complexity an enhanced version of FISTA, known
as MFISTA, was proposed that possesses a desired property
of monotone convergence. In [7] and [8], algorithms based
on /¢, minimization with 0 < p < 1 were proposed for
sparse representation and improved reconstruction results
relative to those obtained by #; minimization were demon-
strated.

In this paper, new algorithms for sparse representation
based on £,-¢> optimization are proposed. Our algorithms
are built on MFISTA with several major changes. In partic-
ular, because of our methodological shift from ¢1-¢5 formu-
lation to £,,-¢5 formulation, the problem at hand is no longer
convex, and the soft shrinkage-a key step in MFISTA, is re-
placed by a global solver for the minimization of a 1-D non-
convex £, problem. To this end, two efficient techniques for
solving the 1-D ¢, problem in question are proposed that be-
come the technical cornerstone in the new algorithms. The
computational complexity of the proposed algorithms is an-
alyzed and simulation studies are presented to evaluate the
performance of the proposed algorithms with various values
of p and compare with the well known basis pursuit (BP) al-
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gorithm with p = 1.
2. Preliminaries

2.1. Sparse representations in overcomplete
bases

A typical sparse representation problem can be stated as
finding the sparsest representation of a discrete signal x un-
der a (possibly overcomplete) dictionary ¥. The sparsity
of a vector s is often expressed as the ¢y norm of s defined
by ||s|jo = the number of nonzero entries in s, although
strictly speaking ¢y norm is not a vector norm. With this
notation, the above problem can be described as minimiz-
ing ||s||op subject to x = Ws. Unfortunately, this problem
is known to be NP hard. A relaxed version of this problem
permits a small perturbation in the representation, leading
to the problem

msin [Is||o subject to ||x — Ps]|z < e. (1)
This problem is also known to be NP hard, and one is mo-
tivated to develop efficient suboptimal approximation algo-
rithms. An appealing solution method is the basis-pursuit
(BP) [1] which solves a modified problem of (1) with the ¢,
norm replaced by a convex ¢; norm. The problem so mod-
ified is a quadratic convex problem, known as second order
cone programming (SOCP), which admits a unique global
solution. In principle, the BP problem can be solved us-
ing a standard solver for convex problems. Recent studies
exploring the specific structure of the problem have led to
more efficient algorithms [3, 9]. Among these, a popular ap-
proach is to convert the constrained minimization encoun-
tered in BP type of problems into an ¢;-{» unconstrained
convex problem as

min F(s) = ||x — @[3 + Alls|) )
where A > 0 is a regularization parameter that controls the
tradeoff between the sparsity of s and the approximation
error ||x — ¥s||2.

2.2. FISTA and MFISTA

We begin with reviewing an algorithm, known as the iter-
ative shrinkage-thresholding algorithm (ISTA), which also
bears the names of “proximal-point method” and “separa-
ble surrogate functionals method” [4]. A key step in its kth
iteration is to approximate the objective function in (2) by
an easy-to-deal-with upper-bound (up to a constant) convex
function given by

- L
F(s) = Sl = exlls + Alls|ly 3)
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1
where ¢, = sk,l—ZVf(sk,l), f(s) = ||x—Ws||3, and L

is the smallest Lipschitz constant of V f(s), which is found
to be L = 2Apa (P®T). The kth iteration of the ISTA
finds the next iterate by minimizing F'(s). Because both
terms in F(S) are coordinate-separable, it can be readily
verified that the minimizer of F (s) can be calculated by a
simple shrinkage of vector cj, with a constant threshold A/ L
as s, = Ty/r(ck) where operator 7 applies to a vector
pointwisely with 7,(¢) = sign(c)max{|c| — a,0}. Once
iterate sy, is obtained, it is used to update vector from cy, to
cir+1 and the shrinkage operator 7 is then applied to it to
get the next iterate, and so on.

Evidently, the iterations in ISTA are of very low com-
plexity. However, the algorithm only provides a slow con-
vergence rate of O(1/k). In [5] and [6], an algorithm called
the fast iterative shrinkage-thresholding algorithm (FISTA)
was proposed and shown to provide a much improved con-
vergence rate of O(1/k?), where the complexity of each
iteration is practically the same as that of ISTA. The FISTA
is built on ISTA with an extra step in each iteration that,
with the help of a sequence of scaling factors ¢, creates
an auxiliary iterate by by moving the current iterate sy,
along the direction of s — s;_1 so as to improve the subse-
quent iterate si41. The steps in the kth iteration of FISTA
are outlined as follows with initial by = sg and t; = 1.

1. Perform shrinkage

1
Sp = TA/L{E\IIT(X — ¥by) + by}

1+ /1 +417
2 b

2. Compute ty41 =

tp — 1
tet1

3. Update bgy1 = si + < > (Sk — Sk—1)-
Furthermore, by including an additional step to FISTA, the
algorithm is enhanced to possess desirable monotone con-
vergence [6]. The algorithm is called the monotone FISTA
or MFISTA.

Another interesting development in sparse representa-
tion and compressed sensing is to investigate a nonconvex
variant of the basis pursuit by replacing the /1 norm term in
BP with an £, norm with 0 < p < 1 [7, 8]. (We remark
that with p < 1, the “/,, norm” is no longer a norm, how-
ever ||x — y||, remains a meaningful distance measure). It
was demonstrated by numerical experiments [7] that fewer
measurements than that of BP are required for exact recon-
struction of a sparse signal. Naturally, an £,-{5 counterpart
of (2) can be formulated as

min F(s) = [jx — s||3 + Alls||? @)

where x € RY, W ¢ RV*M and s € RM™. For an over-
complete basis ¥, M > N.



3. Algorithms for /,-(, optimization in sparse
representation

The algorithms we propose in this paper will be devel-
oped within the framework of FISTA/MFISTA in that

s aremin {Zls—alf Az} ©)
where 0 < p < 1. At a glance, the objective function in (5)
differs from (3) only slightly with its ¢, term replaced by an
¢, term. However, this change turns out to be a rather major
one in two aspects: First, with p < 1 (5) provides a problem
setting closer to the £yp-norm problem, hence an improved s-
parse representation is expected, and this is indeed the very
reason of the studies reported in this paper. Second, with
p < 1 the problem in (5) becomes nonconvex. As a result,
efficient technique like soft shrinkage fails to work in gen-
eral. In what follows, we present two techniques that can be
used to find the global solution of (5) with p < 1.

3.1. Method 1: When p is Rational

Assume s = [s1 S -+ sy]and ¢ = [Chy Chy 0 Chpyls

Eq. (5) can be expressed as
LNy
S = arg;nin ; [5(81 — Cki)z —+ >\|S,L|p .

It is not hard to see that the computation of s; reduces to
solving M one-dimensional (1-D) minimization problem:s,
and it boils down to solving the 1-D problem
* : L 2
s* = argmin {u(s) = 5(5 — )+ Als]P}. (6)
Suppose p is a rational number, namely p = a/b with

a, b positive integers and a < b. Let us first consider s > 0
so that the absolute value sign can be removed, then

u(s) = g(s — )% + As.

To get rid of the rational power, let z = s/%. In this way,

L
§(zb —c)? 4 A2”

v(2) = u(s)s=sp =
and the problem of minimizing function u(s) (s > 0) is
converted to minimizing function v(z) (z > 0), which is a

polynomial and can be written in descending power as
L

L
222 Leb 4+ 0%+ 502.

v(z) = 5

Since v(z) is differentiable, the global minimizer 2% must
either be 0, or one of those stationary points where Vu(z) =
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0. Consequently, the problem is reduced to solve the equa-
tion

Vo(z) = Lbz?""1 — Leb2" '+ Xaz® P =0.  (7)

The solutions of this polynomial equation are the eigenval-
ues of the companion matrix of size (2b — 1) x (2b — 1).
In our simulations, MATLAB function roots was applied
to find all the roots of polynomial Vv(z). Among the set
of positive roots and the boundary point 0, the global min-
imizer 27 is identified as the one that yields the smallest
v(z), and s* = (2% )" is the solution that minimizes u(s)
for s > 0.

In a similar way, the global minimizer s* that minimizes
u(s) for s < 0 can be computed, and the global minimizer
s* is obtained as

s* = argmin {u(s):s=s7,s"}.
S

It follows that the global solution s; for problem (5) can
be found by repeating the procedures described above M
times.

If we incorporate the above ¢, solver into an
FISTA/MFISTA type algorithm, then the computation re-
quired in each iteration of the algorithm is dominated by
the ¢, solver that computes the eigenvalues of a matrix of
size 2b— 1 by 2b— 1, hence a complexity of O(M (2b—1)?).
Clearly, the value of b greatly affects the computational
cost. In a practical implementation of the algorithm, let p
be a given (desired) value in (0,1) and ¥’ be an even in-
teger so that 1/b’ is considered acceptable tolerance for a
rational approximation of p. The interval (0, 1) is parti-
tioned uniformly into subintervals of length 1/b’. Now sup-
pose value p falls into one of the subintervals, say Iy,
[k/V, (k+ 1)/'] for some integer k. Obviously, either end
point of Ij, serves as a rational approximation within toler-
ance 1/b'. One then chooses the end point with an even-
integer numerator. In this way, the rational approximation
of p (within tolerance 1/b") assumes the form of a/b with
b = b/2 50 as to yield a reduced complexity O(M (b’ —1)?)
for the /£, solver.

In summary, the method proposed above works well
whenever p is rational with a small denominator integer
suchas p € {1/4,1/3,1/2,2/3,3/4}, or p is an irrational
number that can be approximated by one of the above ratio-
nal numbers within an acceptable tolerance. For a power p
that does not fall within these cases, the global solution of
(6) can be obtained using the method descried below.

3.2. Method 2: When p is an Arbitrary Real
in (0,1)

The method proposed above produces precise solution
for rational p and works efficiently when b is small. How-
ever, we remark that it only generates approximate solutions



Figure 1: Function u(s) with ¢ > 0.

for irrational values of power p, and its complexity becomes
considerable especially if a large denominator integer b is
involved. The method presented below is designed for an
arbitrary p in (0, 1) with low complexity.

To begin with, we examine function u(s) in (6) with re-
spect to parameter c. If ¢ = 0, it is obvious that s* = 0.
Next, we consider the case of ¢ > 0. To illustrate the current
circumstance, Fig. 1 plots a(s) = £(s — ¢)%, b(s) = A[s|?
and u(s) a(s) + b(s) for some L,c, A and p. It can
be observed that when variable s is in the region (—o0, 0),
a(s) and b(s) are both monotonically decreasing; in addi-
tion when s € (¢, 4+00), a(s) and b(s) are both monotoni-
cally increasing. Hence the global minimizer s* lies in [0, c|

where the function of interest becomes

u(s) = g

(s — )2+ \sP fors € [0,c]. (8)
As mentioned earlier, gradient information is not sufficient
to identify the global minimizer. The convexity property of
u(s) can be analyzed by examining the 2nd-order derivative
of (8), 1.e.,

u(s) = L+ A\p(p — 1)sP 2. )

By solving the equation u”(s) 0, we obtain s, =
[W]l/@_p). Clearly, s. > 0. For 0 < s < s, u(s)
is concave as u”(s) < 0; for s > s., u(s) is convex as
u”’(s) > 0. For s in interval [0, c], two cases need to be
examined.

1. If s, > ¢, u(s) is concave in [0, ¢]. As aresult, s* must
be either O or ¢. Namely, s* = argmin {u(s) : s =

0, c}. This case is illustrated in Fig. 2.

2. If s, < ¢, as illustrated in Fig. 3, since u(s) is concave
in [0, s.] and convex in [s., c|, we argue that s* must
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concave convex

Figure 2: Function u(s) when s. > ¢ (with ¢ > 0).

Y

~

concave convex

Figure 3: Function u(s) when s. < ¢ (with ¢ > 0).

be either at the point s; that minimizes convex function

u(s) in [s., c], or at the boundary point 0. Hence the

global solution is obtained as s* = argmin {u(s) : s =
S

0, St}.

To minimize convex function u(s) in [s., ¢], three situa-
tions may occur: (a) If Vu(s.) > 0 and Vu(c) > 0, then
st = S¢; () If Vu(s.) < 0and Vu(c) < 0, then s; = ¢; (c)
If Vu(se) < 0 and Vu(c) > 0, then a quadratic interpola-
tion method can be applied as an approximation approach to
find point s, see Sec. 4.5 of [10] for the details. Typically,
it takes only a small number of iterations for this quadratic-
approximation based algorithm to converge to minimizer s
over a small interval [s., ¢]. A similar analysis can be car-
ried out for the case of ¢ < 0.

In summary, we have proposed two techniques for the
global minimization of the 1-D subproblem in (6) for an
arbitrary power p between O and 1. Based on this, an M-
FISTA type algorithm for nonconvex problem (4) can be
developed by replacing the shrinkage step of the conven-
tional MFISTA [6] with the above 1-D ¢, solver. In what
follows, the algorithm proposed here will be referred to as
the modified MFISTA.
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Figure 4: Bumps signal of length N = 256.

4. Simulations

A test signal x of length N = 256, known as “bump-
s” [3], was used to examine the effectiveness of the
proposed algorithm, see Fig. 4. The dictionary adopt-
ed here is a combination of three orthonormal bases
U = [¥; ¥, W3] € RV>*3N where W, is the Dirac basis,
W, is the 1-D DCT basis and W3 is the wavelet basis gener-
ated by orthogonal Daubechies wavelet DS. Our objective
is to find a representation vector s € R3*V*! for signal x
such that x ~ Ws with s as sparse as possible. To this
end we solve problem (4) with p = 1,0.95,0.9,0.85,0.8
and 0.75, respectively. Our simulations are based on the
MFISTA [6] as the algorithm ensures monotonic conver-
gence. This algorithm was implemented with s, calculated
from Eq. (5) either by Method 1 or Method 2 presented
in Sec. 3. For each /,-{5 problem with a particular p, the
experiment was carried out by the steps outlined below.

Step 1. Set sy = 0 and ¢ = 1. Generate a vector
A= [/\1 PYIRED /\T] with Ay > Ao > -+ > Ap. The
number of iterations of the modified MFISTA was set to be
K = 200.

Step 2. Apply the modified MFISTA to solve problem (4)
with initial point s;_; and parameter A\ = \; to obtain the
solution S. Set's; = S.

Step 3. Compute relative equation error

Ps, — x
g, — [¥si =l
[BS[P

Compute the percentage of zeros in s; and denote it by Z; (a
component of s; was regarded as zero if its absolute value
falls below 1e-5).
Step 4. If : = T, stop; otherwise set = = ¢ 4+ 1 and repeat
from Step2. W

0.941

0.92
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(0]
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Figure 5: Comparison of (,-¢5 sparse representation of
“bumps” signal for p = 1,0.95,0.9,0.85,0.8,0.75 in terms
of relative equation error and signal sparsity in the dictio-
nary domain.
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Figure 6: Sparse representation of the “bumps” signal based
on /1 and { 75 reconstruction.

It should be stressed that the parameter vector A consists
of decreasing components A\; > Ay > --- > Ap. Take p =
1 for instance, these components were set to be an arith-
metic progression from \; = 5e — 2 to Ay = 5e — 3 with



a common difference of 5e-3. The components of A were
tuned for each individual value of p so that the same level
of relative equation error is attained. As a result, for a given
value of power p, two sequences R = [Ry Ry --- Rp| and
Z =17y Zy --- Zrp|] were produced.

The quality of a sparse representation can be evaluated
by two criteria: (a) how sparse the coefficient vector § is in
the dictionary domain; and (b) how well X = WS resembles
x. In the experiment, sparsity is measured by computing
the percentage of zeros in § (as seen in vector R). And the
signal reconstruction precision is measured by the relative
equation error ||x — x||/||x]|| (as seen in vector Z). Since
the value of regularization parameter \ controls the tradeoff
between sparsity and equation error of the solution, a curve
generated with the components of R as its z-coordinates
and the components of Z as its y-coordinates provides a
performance profile of the solution that shows how the spar-
sity/equation error evolves as parameter A varies. A total of
six such curves for p = 1,0.95,0.9,0.85,0.8 and 0.75 for
signal “bumps” are depicted in Fig. 5.

From Fig. 5, several observations can be made. (1) For
a fixed relative equation error, the sparsity improves as a s-
maller power p was used, and this justifies the usefulness of
the proposed ¢, pursuit algorithm; (2) For a fixed level of
sparsity, we see that the relative equation error decreases as
a smaller power p was used. This is just a different perspec-
tive to justify the ¢, pursuit algorithm; (3) The performance
improvement appears to be kind of nonlinear with respect
to the change in power p. Starting from p = 1 (the BP pur-
suit), a 0.05 decrease in p leads to a significant performance
improvement. As p continues to decrease, the performance
continues to gain but the incremental gain becomes gradu-
ally less significant.

For further illustration, Fig 6 depicts the signals obtained
by solving problem (4) with p = 1 and p = 0.75, respec-
tively. For a fair comparison, the values of parameter A
were chosen such that both solutions yield the same relative
equation error of 0.00905. Note that these two instances
correspond to the two leftmost points on the two curves in
Fig. 5 that are associated with the above two p values. The
sparsity achieved was found to be 87.24% for p = 0.75 ver-
sus 81.77% for p = 1. The improvement in sparsity with
p = 0.75 over that of p = 1 is visually clear in Fig. 6.
Note that in Fig. 6 the components of two sparse signal-
s are plotted over a value range of [—0.03, 0.03] for better
visualization.

5. Conclusions

New algorithms for sparse representation based on
¢,-Uy optimization with 0 < p < 1 are proposed. The
algorithms are built on MFISTA. In particular, the soft
shrinkage step in MFISTA is replaced by a global solver
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for the minimization of a 1-D nonconvex ¢, problem.
Two efficient techniques for solving the 1-D ¢, problem
in question are proposed. Simulation studies for sparse
representations are presented to evaluate the performance
of the proposed algorithms with various values of p and
compare with the basis pursuit (BP) benchmark with p = 1.
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