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Abstract—We study nonconvex relaxation of the combinatorial maintaining practically the same complexity as the ISTAtHVI
£o-minimization for compressive sensing. In ané,-¢; minimiza-  glight increase in complexity, an enhanced version of FISTA
tion setting with p < 1, we propose an iterative algorithm with with monotone convergence (known as MFISTA) was also

two distinct features: (i) use of a proximal-point (P-P) obpctive . ) I
function composed of a convex quadratic term and ar/,-norm proposed [9]. In addition, algorithms based@rminimization

term, and a fast parallel-based solver for global minimizaton With 0 < p < 1 were proposed for improved reconstruction
of the P-P function in each iteration; and (ii) a power-iterative  performance relative to that obtained fiyminimization [10],
strategy that begins by solving a convex/;-¢2 problem whose [11].

solution is then used to start nexwp-_ég probl_em with p close to In this paper, we study a nonconvex relaxation of the com-
but less than one. The process continues with gradually redied binatorial £ inimization for CS i .-t inimizai
p until a target power p; is reached. By simulations the algorithm inatorial £o-minimization for In-ant,-tz minimization

is shown to offer considerable performance gain. setting, namely,
|. INTRODUCTION min F(s) = Alls[|} + [|©s — y|I5 (2

As an alternative and effective data acquisition paradigigith o < p < 1. New algorithms for CS signal reconstruction
compressive sensing (CS) acquires a signal by collecting,gsed on/,-f, optimization are proposed. The two new
relatively smalllnumber Qf linear measurements, and thmad;ig ingredients in the proposed algorithms that are respanéil
is recovered with a nonlinear process [1], [2]. A centralnboi the algorithm to achieve considerable performance gain are
in CS is to seek an accurate or approximate solution to BRefly described below.
underdetermined linear system while requiring the sotutm (i) We associate problem (2) with af,-¢, P-P objective
have fewest nonzero components. Regardless of Whethetorfﬁ%ctionQP(s, by) wherep < 1, and minimize the nonconvex
the measurements are noise-free, the recovery problemecarpbp function at each iteration. We are able to devise a fast
solved in ant;-{, formulation as formulation to secure the global minimizer &f,(s, by). In
(1) particular, a parallel implementation is incorporateditite

global solver and is shown to significantly accelerate the
where® = ¥ with & a measurement matrix arl an  g|gorithm.
orthogonal transform, andl > 0 is a regularization parameter.(jj) We develop an algorithm in the framework of MFISTA,

As a variant of the well-known basis pursuit (BP) [3], (1) izalled modified MFISTA (M-MFISTA), by replacing the con-

a nonsmooth, convex, unconstrained problem for which maggntional shrinkage solver for thé-¢; P-P function with
efficient solution techniques exist [4]. Thg-¢> problem was the global solver forQ, (s, by ). Equipped with M-MFISTA, a
traditionally treated using various classical iteratiy#timiza- power-iterative strategy is designed to reach a solutio(2pf
tion algorithms [3], homotopy solvers [5], [6] and greedYor a target power valug;.

techniques like matching pursuit and orthogonal matchingThe proposed algorithms are evaluated by performing CS
pursuit [7]. However, these algorithms are often impratdticreconstruction of sparse signals with various values, aind

in high-dimensional problems, as often encountered in &magh compare with the well known basis pursuit (BP) algorithm
processing applications [4]. Over the past several yedesna [3] with p = 1.

ily of iterative-shrinkage algorithms have emerged as lgigh

effective numerical methods for the aboke?, problem. Of [I. NOTATION AND BACKGROUND

particular interest is a proximal-point-function basegiogithm A, Signal acquisition and recovery with compressive sensing
known as the fast iterative shrinkage-thresholding atgori Compressive sensing (CS) based signal acquisition com-

(FISTA) developed in [8]. The FISTA is shown to IorOVideputesJV[ linear measurements of an unknown sigrat RV

2
a convergence rate of(1/k?) .compa.red to t_he rate of with M < N. This acquisition process can be described as
O(1/k) by the well-known proximal-point algorithm known

as the iterative shrinkage-thresholding algorithm (IST#ile y=®x with ®=[p, ¢, ... ¢, 3)

min Al|s|1 + [|©s — ylI3



where ¢, € RY(k = 1,2,...,M). Suppose signak is K- wherec;, = s;,_1 — lVf(Skq). f(s) = ||®s —y||3, and L
: e
sparse with respect to an orthonormal basis;};_; (¥; € s the smallest Lipsclzhitz constant ®f (s), which is found to

RY), thenx can be expressed as be L = 2Amax(©O7). The kth iteration of the ISTA finds the
% — Ws (4) next iterate by minimizing; (s, sy—1). Because both terms in

Q1 (s,sk—1) are coordinate-separable, it can be readily verified
where &' = [, 1, ... ] is an orthogonal matrix and that the minimizer ofQ:(s,s;—1) can be calculated by a

s is a K-sparse signal withK < N nonzero elements. simple shrinkage of vectas;, with a constant threshold/L
The CS theory mandates that if the maték = ®W¥ obeys as
the restricted isometry property (RIP) of ord2K, i.e. the sk = Th/r(ck)

inequality . s .
where operatof™ applies to a vector pointwisely with, (¢) =

(1 — daxc)|[s|[2 < [|1©s]]3 < (1 + darc)|I8][3 sign(c)max{|c| — a, 0}. Once iterates, is obtained, it is used
to update vector frone, to ¢, and the shrinkage operator
T is then applied to it to get the next iterate, and so on.
The ISTA iterations are of very low complexity, how-
min lIs|lx (5a) €ver, the algorithm only provides a slow convergence rate
subject to:  ©@s—y (5b) of O(1/k). In [8] and [9], an algorithm known as the fast
’ iterative shrinkage-thresholding algorithm (FISTA) wa®{
andx is recovered by Eq. (4). posed and shown to provide a much improved convergence
A sensing matrix® obeys RIP of ordeRK with 5,5 < rate of O(1/k?) with the complexity of each iteration being
V2—1ifitis constructed by (i) sampling i.i.d. entries from thePractically the same as that of ISTA. The FISTA is built on
normal distribution with zero mean and Variarﬂq@\/[’ or (”) ISTA with an extra Step in each iteration that, with the help
sampling i.i.d. entries from a symmetric Bernoulli distrilon  ©f & sequence of scaling factds creates an auxiliary iterate
(i.e. Proli¢;; = +1/v/M) = 1/2), or (iii) sampling i.i.d. from br+1 by moving the current iterate,, along the direction of
other sub-Gaussian distribution, or (iv) sampling a randofax — Sk—1 SO as to improve the subsequent itersite;. The
projection matrixP that is incoherent with matrix® and Steps in thekth iteration of FISTA are outlined as follows with

normalizing it as® = /N/MP, with M > CK log(N/K) initial by =so and; = 1.

holds for all2K -sparse vectors with d,x < v/2 — 1, thens
can be exactly recovered via the convex optimization

andC' a constant [12]. 1) Perform shrinkage
In practice x is most likely only approximately<-sparse in 2
W. In addition, measurement noise may be introduced in the Sk = 7;\/L{Z® (y — ©byg) + by };

sensing process 3s= ®x + e. A relaxed version of problem
(5) permits a small deviation as 1+ /144t
B E—
tp — 1
3) Updatebyy; = si + ( ) (Sk — Sk—1)-

tr+1
Furthermore, by including an additional step to the FISTA
where e stands for the permiSSible deviation. This prOblerﬁ_eration, the a|gorithm is enhanced to possess desirabt®m
was first discussed in [3] as basis pursuit (BP). In recef§ne convergence [9]. The algorithm so modified is called the
years, many applications in signal and image processim), Sinonotone FISTA (MFISTA).
as denoising, inpainting, deblurring and compressiveisgns
all lead to a variant of problem (6) that mixés and ¢, [Il. POWER-ITERATIVE ALGORITHMS FOR/),-/
expressions in the form of (1) where the constraint is regadac OPTIMIZATION
with a penalty term. The paramet&rreplaces the threshold \we consider the/,-(, optimization problem (2). The algo-
€ in (6), in governing the tradeoff between the reconstructidithm described below is developed within the framework of
error and signal sparsity. MFISTA. Unlike a typicalf,-¢, proximal-point (P-P) objective
B. FISTA and MFISTA function, we associate each iteration of the algorithm teRa P

objective function given by
We begin with reviewing an algorithm, known as the

iterative shrinkage-thresholding algorithm (ISTA), wiialso Qp(s, br) =f(bx) + (s — bi, V(b))
bears the names of “proximal-point method” and “separable + £||S b2+ A2
surrogate functionals method” [4]. A key step in itgh 2 2 P
iteration is to approximate the objective function in (1) byhere f(s) = [|©s — y||2. With p < 1, minimizing Q, (s, by,)
an easy-to-deal-with upper-bound (up to a constant) convigx(g) is a nonconvex problem. By taking the advantage of
function given by functionQ, (s, bx) being separable in its variable coordinates,
L we devise a fast solver to secure its global minimizer, aed th
Qi(ss6-1) = S lls = cill3 + Allsl (7) " incorporate the global solver into the framework of MFISTA.

2) Computety, 1 =
min || (6a)
subjectto:  ||@s—yll2 <€ (6b)

(8)



Up to a constant, the problem of minimizir@, (s, by) can Input Data | cx, L, A andp.
be cast as Output Data | zx = argminQ,(s, bx).
Step 1 Setd = signck) andc = 0. * ci.
LA L 2 Step 2 If p=0, computed = [Zc.” > (A 1)], setz =
— — — p ’ ’
min Qy (s, br) = 2 I8 = exllz + Allsllp ©) c. =9 and do Step 4; otherwise do Step 3.
. o | Step 3 1. Computes. = [M\p(1 — p) /LY ® P setd =
with ¢, = b, — £V f(b). At a glance, the objective function P [(se - 1;)< i] an([j Zp(: 19_p)/ )
in (9) differs from (7) only slightly with its/; term replaced 2. DefineA = {i : 9(i) = 1} and updatec +
by an ¢, term. The/, variation is expected to improve the c(A). »
CS recovery performance because wjth< 1 problem (9) 3. Computev = dL(Sc'~1_—C)+AP35 -1, update
provides a problem setting closer to tkig-norm problem. ¥=[v2>0]an | ses = s - . )
. . 4. DefineQ = {i : ¥(i) = 0}. For eachi ¢
However, withp < 1 the problem in (9) becomes nonconvex, Q, replace theth component of by the global
hence conventional technique like soft shrinkage fails ¢okw solution of (10) overs., c] with ¢ = ¢(4).
in general. In what follows, we present an efficient parallgl 5. Setd = [£c? > L(5—¢)” + As”] and
processing technique to find the global solution of (9). z=5.x7. B
6. updatez(A) = z.
Step 4 zr = 0. x z.

A. Global solver for the ¢,-¢-> problem (9)

— Lo . TABLE |
The objective function in (9) consists of two terms, both of A PARALLEL £,-¢> SOLVER FORGLOBAL SOLUTION OF (9)

which are separable. Consequently, (9) is reduced to asserie
of N 1-D problems of the form

min u(s) = g(s — 0)2 + Als|P. (10) B. M-MFISTA and a power-iterative strategy
) . By replacing the conventional shrinkage solver for the
An algorithm for the global solution of (10) (hence (9)) iy, p-p function with the globa¥,-¢; solver presented in
proposed in [13]. Based on this, a global solver of (10) faggc |1-A in MFISTA, an algorithm, called modified MFISTA

¢ > 0 can readily be generated. If we denote the solution W—MFISTA), for a (local) solution of problem (2) can be

this solver byz = gsol (c, L, A, p), then it is evident that constrycted. The algorithm is outlined as follows.
the global solution of (10) forr < 0 can be obtained as

z = —gsol (—¢, L, \,p). A drawback of this solution method[ Tnput Data X, p, © andy.

is its low efficiency, especially for large-scale probleras, | Output Data | Local solution of problem (2).
one needs to solveV 1-D problems. Below we describe| Step 1 Take L = 2Amax(©O7) as the Lipschitz constanit
an improved algorithm which employs a parallel processing fif th S}_e(t mgal];ter_atesoka_ndl thed?uTbler of
technique to accelerate the global solver. fOTatons A SE1b1 = S, k= aNdh — .

- ) Step 2 Compute minimizerz;, of (9) using the parallel
For description conciseness, denoteabyb the component- global solver. Then update
wise product of vectora andb; by a.P the vector whoséth
component isla(:)|P; and by 1 and 0 the all-one and zero terr = (144/1+4t7)/2,
vectors, respectively. We uga > b] ([a < b]) to denote a s, = argmin{F(s): s=z,s,-1},
vector whoseth component is 1 if(i) > b(i) (a(i) < b(i)) besi = sk + (tr/tes1)(zr —sk)
and 0 otherwise; anfh > b] (Ja < b]) is similarly defined. (b — 1) /trr1) (S — k1)

Let A be a lengthK subset of{1,2, ..., N} andb be a vector
of length K, we usea(A) = b to denote a vector obtained
by updating the components af whose indices are in,
with those ofb; ¢ + c¢(A) denotes a vector of lengti
that retains those components ©fwhose indices are in\.
A step-by-step description of the algorithm is given in &bl
| where it is quite obvious that the data are processed in a
vector-wise rather than component-wise manner. The ghrall Although in each iteration the M-MFISTA minimizes the
processing of data is made possible by taking the advantd@® function globally, a solution of problem (2) obtained by
of the separable structure of the objective function in (@ a M-MFISTA is not guaranteed globally optimal because (2) is
playing a technical trick about the signs of (see (9)) as a nonconvex problem fgr < 1. In what follows we propose a
illustrated for the scalar case (10) earlier. power-iterative strategy that promotes a local algorithrohs
We remark that the proposég-/» solver is highly parallel as M-MFISTA to converge to a solution of (2), which is likely
with exception only in Step 3.4 where a total|®f calls for 1- globally optimal.
D solvergsol are made. Sinc#)| is typically much smaller ~ The power-iterative strategy begins by solving the convex
than N, overall the complexity of the proposed solver ig;-¢5 problem in (1) based on MFISTA [8], [9] where a
considerably reduced compared with that required by apglyiconventional soft-shrinkage operation is carried out ichea
1-D solvergsol N times. iteration. The global solutios(®) is then used as the initial

Step 3 If £ = K,,, stop and outpuk; as the solution;
otherwise sek = k + 1 and repeat from Step 2.

TABLE Il
THE M-MFISTA
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Fig. 1. Rate of perfect reconstruction fdf,-¢> problems withp =  Fig. 2. Average relative reconstruction errors el problems withp =
1,0.9,0.8,0.7,0.4 and 0 over 100 runs for signals of lengiti = 32 and 1,0.9,0.8,0.7,0.4 and 0 over 100 runs for signals of lengffi = 32 and
number of random measuremerits = 20. number of random measuremerit$ = 20.

point to start the next,-¢, problem with ap close to but such that the equality constraint was practically satisfeu
slightly less than one. This problem is solved by the Ma total of 50 M-MFISTA iterations was executed for eachA
MFISTA and the solution obtained is denoted #§. The recovered signa was deemed perfect if the relative solution
iterates(!) is then served as an initial point for the néxt/, error||$ —s||2/||s|» was less than 1e-5. For each valueFof
problem withp further reduced slightly. This process continuethe number of perfect reconstructions were counted over 100
until the target power valug, is reached. runs.

For a nonconvex problem, a gradient based algorithm is notFigs. 1 and 2 show the results fpr= 1,0.9,0.8,0.7,0.4
expected to converge to a global solution unless it starsmatand 0. It is observed that (i) for a fixed sparshy, the rate
initial point sufficiently close to the global solution. Wegae of perfect reconstruction increases and the averagevelit
that for a given powep < 1 and an appropriate value ofconstruction error reduces as a smaller powesas used. This
A, the global solution of (9) possesses continuityyoim the justifies the usefulness of the proposgdpursuit algorithm;
sense that the global solutions of (9) associated with ppwéii) the performance improvement tends to be nonlinear with
p andp + Ap are close to each other as long as the powsgspect to the change in powgr experiencing considerable
differenceAp is sufficiently small in magnitude. It is based orimprovement asp reduces from 1 to 0.9. A® decreases
this inuitive observation the above power iterative tegamiis further, the performance continues to gain but the incraaien
developed to produce solutions of (2) that are likely glgbalgain becomes gradually less significant. It is also obsetivad
optimal. the best reconstruction performance was achieved=at.

Among other things, Figs. 3 and 4 compare théand/g o)
IV. SIMULATIONS solution obtained by the proposed method described above

In this section, we evaluate the proposed algorithm f&yith an¢o (and o) solution obtained by M-MFISTA with

reconstruction of sparse signals by solving the/, problem the least-squares solution or the zero vector as the initial
with various powerp. point, showing considerable performance gain achievedéy t

EachK -sparse test signalwas constructed by assignirig proposed method with an adequate initial point. This suigges

values randomly drawn frooV'(0, 1) to K randomly selected that choosing an initial point greatly affects reconstiutper-
locations of a zero vector of lengthh = 32. A total of formance. The simulations conducted so far seem to indicate

20 values of K from 1 to 20 were used. The number ofhat the proposed power-iterative method remains progisin
measurements was set 16 — 20 and a measurement matrixin @Pproaching a global solution of the nonconvex problem

& of size M x N was constructed with its elements drawi2)-
from N(0,1) followed by normalizing each column to unit

l5 norm. Matrix ¥ was set to the identity matrix as the
test signals were all{-sparse. The power-iterative strategy A power-iterative strategy has been proposed for CS in an
in conjunction with M-MFISTA was applied to problem (2)¢,-¢2 minimization setting. This methodology is built on a
to reconstruck. A sequence of powep was set from 1 to modified MFISTA (M-MFISTA) developed for local solution

0 with a decrement off = 0.1. For eachp, M-MFISTA was of the ¢,-¢5 problem, in which a parallel global solver is
executed in a successive way with a set of decreadinag devised for the/,-¢, P-P function. Experimental results for

V. CONCLUSIONS
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Fig. 3. Rate of perfect reconstruction féy-¢2 problems forp = 0 and 0.9 Fig. 4. Average relative reconstruction errors gl problems forp = 0
obtained with different initial points over 100 runs with = 32 andM = 20. and 0.9 obtained with different initial points over 100 rumigh N = 32 and
The upper graph compares thg solution obtained by the proposed method)M = 20. The upper graph compares thgsolution obtained by the proposed
with the ¢ solution obtained by M-MFISTA with the least-squares dolut method with thelo solution obtained by M-MFISTA with the least-squares
or the zero vector as the initial point. The lower graph dd®sdomparison solution or the zero vector as the initial point. The lowergr does the
for the p = 0.9 counterpart. The curve correspondingpte= 1 is also shown comparison for the = 0.9 counterpart. The curve correspondingpte= 1

as a comparison benchmark. is also shown as a comparison benchmark.

CS signal recovery are presented to show the superiority & M- Zib“'_e"s'g agld M. Elad, *L1-L2 Op“mizaﬁonl "2‘ Signagd imagse
. ) : ; Processing M . IEEE, vol. 27, no. 3, pp. 76—
the proposed algorithms compared with the conventional BP Bg o0 > 0 o0 edeane Vol &£, ho. 3, pp

benchmark, and to demonstrate that the solutions obtaingg] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, 4se angle
are highly Iiker to be globally optimal. regression,’Annals of statistics, vol. 32, no. 2, pp. 407-451, 2004.
[6] D. Donoho and Y. Tsaig, “Fast solution of I1-norm miniration
problems when the solution may be spard&EE Trans. Information
Theory, vol. 54, no. 11, pp. 4789-4812, Nov. 2008.
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