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Abstract—We study nonconvex relaxation of the combinatorial
ℓ0-minimization for compressive sensing. In anℓp-ℓ2 minimiza-
tion setting with p < 1, we propose an iterative algorithm with
two distinct features: (i) use of a proximal-point (P-P) objective
function composed of a convex quadratic term and anℓp-norm
term, and a fast parallel-based solver for global minimization
of the P-P function in each iteration; and (ii) a power-iterative
strategy that begins by solving a convexℓ1-ℓ2 problem whose
solution is then used to start nextℓp-ℓ2 problem with p close to
but less than one. The process continues with gradually reduced
p until a target power pt is reached. By simulations the algorithm
is shown to offer considerable performance gain.

I. I NTRODUCTION

As an alternative and effective data acquisition paradigm,
compressive sensing (CS) acquires a signal by collecting a
relatively small number of linear measurements, and the signal
is recovered with a nonlinear process [1], [2]. A central point
in CS is to seek an accurate or approximate solution to an
underdetermined linear system while requiring the solution to
have fewest nonzero components. Regardless of whether or not
the measurements are noise-free, the recovery problem can be
solved in anℓ1-ℓ2 formulation as

min λ‖s‖1 + ‖Θs− y‖22 (1)

whereΘ = ΦΨ with Φ a measurement matrix andΨ an
orthogonal transform, andλ > 0 is a regularization parameter.

As a variant of the well-known basis pursuit (BP) [3], (1) is
a nonsmooth, convex, unconstrained problem for which many
efficient solution techniques exist [4]. Theℓ1-ℓ2 problem was
traditionally treated using various classical iterative optimiza-
tion algorithms [3], homotopy solvers [5], [6] and greedy
techniques like matching pursuit and orthogonal matching
pursuit [7]. However, these algorithms are often impractical
in high-dimensional problems, as often encountered in image
processing applications [4]. Over the past several years, afam-
ily of iterative-shrinkage algorithms have emerged as highly
effective numerical methods for the aboveℓ1-ℓ2 problem. Of
particular interest is a proximal-point-function based algorithm
known as the fast iterative shrinkage-thresholding algorithm
(FISTA) developed in [8]. The FISTA is shown to provide
a convergence rate ofO(1/k2) compared to the rate of
O(1/k) by the well-known proximal-point algorithm known
as the iterative shrinkage-thresholding algorithm (ISTA), while

maintaining practically the same complexity as the ISTA. With
slight increase in complexity, an enhanced version of FISTA
with monotone convergence (known as MFISTA) was also
proposed [9]. In addition, algorithms based onℓp minimization
with 0 < p < 1 were proposed for improved reconstruction
performance relative to that obtained byℓ1 minimization [10],
[11].

In this paper, we study a nonconvex relaxation of the com-
binatorial ℓ0-minimization for CS in anℓp-ℓ2 minimization
setting, namely,

min F (s) = λ‖s‖pp + ‖Θs− y‖22 (2)

with 0 < p < 1. New algorithms for CS signal reconstruction
based onℓp-ℓ2 optimization are proposed. The two new
ingredients in the proposed algorithms that are responsible for
the algorithm to achieve considerable performance gain are
briefly described below.
(i) We associate problem (2) with anℓp-ℓ2 P-P objective
functionQp(s,bk) wherep < 1, and minimize the nonconvex
P-P function at each iteration. We are able to devise a fast
formulation to secure the global minimizer ofQp(s,bk). In
particular, a parallel implementation is incorporated into the
global solver and is shown to significantly accelerate the
algorithm.
(ii) We develop an algorithm in the framework of MFISTA,
called modified MFISTA (M-MFISTA), by replacing the con-
ventional shrinkage solver for theℓ1-ℓ2 P-P function with
the global solver forQp(s,bk). Equipped with M-MFISTA, a
power-iterative strategy is designed to reach a solution of(2)
for a target power valuept.

The proposed algorithms are evaluated by performing CS
reconstruction of sparse signals with various values ofp, and
to compare with the well known basis pursuit (BP) algorithm
[3] with p = 1.

II. N OTATION AND BACKGROUND

A. Signal acquisition and recovery with compressive sensing

Compressive sensing (CS) based signal acquisition com-
putesM linear measurements of an unknown signalx ∈ RN

with M < N . This acquisition process can be described as

y = Φx with Φ = [φ1 φ2 . . . φM ]T (3)



whereφk ∈ RN (k = 1, 2, . . . ,M). Suppose signalx is K-
sparse with respect to an orthonormal basis{ψj}Nj=1 (ψj ∈
RN ), thenx can be expressed as

x = Ψs (4)

whereΨ = [ψ1 ψ2 . . . ψN ] is an orthogonal matrix and
s is a K-sparse signal withK ≪ N nonzero elements.
The CS theory mandates that if the matrixΘ = ΦΨ obeys
the restricted isometry property (RIP) of order2K, i.e. the
inequality

(1− δ2K)||s||22 ≤ ||Θs||22 ≤ (1 + δ2K)||s||22
holds for all2K-sparse vectorsx with δ2K <

√
2− 1, thens

can be exactly recovered via the convex optimization

min ||s||1 (5a)

subject to: Θs = y (5b)

andx is recovered by Eq. (4).
A sensing matrixΦ obeys RIP of order2K with δ2K <√
2−1 if it is constructed by (i) sampling i.i.d. entries from the

normal distribution with zero mean and variance1/M , or (ii)
sampling i.i.d. entries from a symmetric Bernoulli distribution
(i.e. Prob(φij = ±1/

√
M) = 1/2), or (iii) sampling i.i.d. from

other sub-Gaussian distribution, or (iv) sampling a random
projection matrixP that is incoherent with matrixΨ and
normalizing it asΦ =

√

N/MP, with M ≥ CK log(N/K)
andC a constant [12].

In practice,x is most likely only approximatelyK-sparse in
Ψ. In addition, measurement noise may be introduced in the
sensing process asy = Φx+e. A relaxed version of problem
(5) permits a small deviation as

min ||s||1 (6a)

subject to: ||Θs− y||2 ≤ ǫ (6b)

where ǫ stands for the permissible deviation. This problem
was first discussed in [3] as basis pursuit (BP). In recent
years, many applications in signal and image processing, such
as denoising, inpainting, deblurring and compressive sensing
all lead to a variant of problem (6) that mixesℓ1 and ℓ2
expressions in the form of (1) where the constraint is replaced
with a penalty term. The parameterλ replaces the threshold
ǫ in (6), in governing the tradeoff between the reconstruction
error and signal sparsity.

B. FISTA and MFISTA

We begin with reviewing an algorithm, known as the
iterative shrinkage-thresholding algorithm (ISTA), which also
bears the names of “proximal-point method” and “separable
surrogate functionals method” [4]. A key step in itskth
iteration is to approximate the objective function in (1) by
an easy-to-deal-with upper-bound (up to a constant) convex
function given by

Q1(s, sk−1) =
L

2
‖s− ck‖22 + λ‖s‖1 (7)

whereck = sk−1 −
1

L
∇f(sk−1), f(s) = ‖Θs − y‖22, andL

is the smallest Lipschitz constant of∇f(s), which is found to
beL = 2λmax(ΘΘT ). Thekth iteration of the ISTA finds the
next iterate by minimizingQ1(s, sk−1). Because both terms in
Q1(s, sk−1) are coordinate-separable, it can be readily verified
that the minimizer ofQ1(s, sk−1) can be calculated by a
simple shrinkage of vectorck with a constant thresholdλ/L
as

sk = Tλ/L(ck)

where operatorT applies to a vector pointwisely withTa(c) =
sign(c)max{|c| − a, 0}. Once iteratesk is obtained, it is used
to update vector fromck to ck+1 and the shrinkage operator
T is then applied to it to get the next iterate, and so on.

The ISTA iterations are of very low complexity, how-
ever, the algorithm only provides a slow convergence rate
of O(1/k). In [8] and [9], an algorithm known as the fast
iterative shrinkage-thresholding algorithm (FISTA) was pro-
posed and shown to provide a much improved convergence
rate ofO(1/k2) with the complexity of each iteration being
practically the same as that of ISTA. The FISTA is built on
ISTA with an extra step in each iteration that, with the help
of a sequence of scaling factorstk, creates an auxiliary iterate
bk+1 by moving the current iteratesk along the direction of
sk − sk−1 so as to improve the subsequent iteratesk+1. The
steps in thekth iteration of FISTA are outlined as follows with
initial b1 = s0 andt1 = 1.

1) Perform shrinkage

sk = Tλ/L{
2

L
ΘT (y −Θbk) + bk};

2) Computetk+1 =
1 +

√

1 + 4t2k
2

;

3) Updatebk+1 = sk +

(

tk − 1

tk+1

)

(sk − sk−1).

Furthermore, by including an additional step to the FISTA
iteration, the algorithm is enhanced to possess desirable mono-
tone convergence [9]. The algorithm so modified is called the
monotone FISTA (MFISTA).

III. POWER-ITERATIVE ALGORITHMS FORℓp-ℓ2
OPTIMIZATION

We consider theℓp-ℓ2 optimization problem (2). The algo-
rithm described below is developed within the framework of
MFISTA. Unlike a typicalℓ1-ℓ2 proximal-point (P-P) objective
function, we associate each iteration of the algorithm to a P-P
objective function given by

Qp(s,bk) =f(bk) + 〈s− bk,∇f(bk)〉

+
L

2
‖s− bk‖22 + λ‖s‖pp

(8)

wheref(s) = ‖Θs−y‖22. With p < 1, minimizingQp(s,bk)
in (8) is a nonconvex problem. By taking the advantage of
functionQp(s,bk) being separable in its variable coordinates,
we devise a fast solver to secure its global minimizer, and then
incorporate the global solver into the framework of MFISTA.



Up to a constant, the problem of minimizingQp(s,bk) can
be cast as

min Q̂p(s,bk) =
L

2
||s− ck||22 + λ||s||pp (9)

with ck = bk− 1
L∇f(bk). At a glance, the objective function

in (9) differs from (7) only slightly with itsℓ1 term replaced
by an ℓp term. Theℓp variation is expected to improve the
CS recovery performance because withp < 1 problem (9)
provides a problem setting closer to theℓ0-norm problem.
However, withp < 1 the problem in (9) becomes nonconvex,
hence conventional technique like soft shrinkage fails to work
in general. In what follows, we present an efficient parallel
processing technique to find the global solution of (9).

A. Global solver for the ℓp-ℓ2 problem (9)

The objective function in (9) consists of two terms, both of
which are separable. Consequently, (9) is reduced to a series
of N 1-D problems of the form

min u(s) =
L

2
(s− c)2 + λ|s|p. (10)

An algorithm for the global solution of (10) (hence (9)) is
proposed in [13]. Based on this, a global solver of (10) for
c ≥ 0 can readily be generated. If we denote the solution of
this solver byz = gsol(c, L, λ, p), then it is evident that
the global solution of (10) forc < 0 can be obtained as
z = −gsol(−c, L, λ, p). A drawback of this solution method
is its low efficiency, especially for large-scale problems,as
one needs to solveN 1-D problems. Below we describe
an improved algorithm which employs a parallel processing
technique to accelerate the global solver.

For description conciseness, denote bya.∗b the component-
wise product of vectorsa andb; by a.p the vector whoseith
component is|a(i)|p; and by1 and 0 the all-one and zero
vectors, respectively. We use[a > b] ([a < b]) to denote a
vector whoseith component is 1 ifa(i) > b(i) (a(i) < b(i))
and 0 otherwise; and[a ≥ b] ([a ≤ b]) is similarly defined.
Let Λ be a length-K subset of{1, 2, ..., N} andb be a vector
of lengthK, we usea(Λ) = b to denote a vector obtained
by updating the components ofa, whose indices are inΛ,
with those ofb; c ← c(Λ) denotes a vector of lengthK
that retains those components ofc whose indices are inΛ.
A step-by-step description of the algorithm is given in Table
I where it is quite obvious that the data are processed in a
vector-wise rather than component-wise manner. The parallel
processing of data is made possible by taking the advantage
of the separable structure of the objective function in (9) and
playing a technical trick about the signs ofck (see (9)) as
illustrated for the scalar case (10) earlier.

We remark that the proposedℓp-ℓ2 solver is highly parallel
with exception only in Step 3.4 where a total of|Ω| calls for 1-
D solvergsol are made. Since|Ω| is typically much smaller
than N , overall the complexity of the proposed solver is
considerably reduced compared with that required by applying
1-D solvergsol N times.

Input Data ck, L, λ andp.
Output Data zk = argminQ̂p(s,bk).
Step 1 Setθ = sign(ck) andc = θ. ∗ ck.
Step 2 If p = 0, computeϑ =

[

L
2
c.2 > (λ · 1)

]

, setz =
c. ∗ ϑ and do Step 4; otherwise do Step 3.

Step 3 1. Computesc = [λp(1− p)/L]1/(2−p), setϑ =
[(sc · 1) < c] andz = ϑ.

2. DefineΛ = {i : ϑ(i) = 1} and updatec ←
c(Λ).

3. Computev = L(sc ·1−c)+λpsp−1
c ·1, update

ϑ = [v ≥ 0] and set̃s = sc · ϑ.
4. DefineΩ = {i : ϑ(i) = 0}. For eachi ∈
Ω, replace theith component of̃s by the global
solution of (10) over[sc, c] with c = c(i).

5. Setϑ = [L
2
c.2 > L

2
(s̃ − c).2 + λs̃.p] and

z̃ = s̃. ∗ ϑ.
6. updatez(Λ) = z̃.

Step 4 zk = θ. ∗ z.

TABLE I
A PARALLEL ℓp-ℓ2 SOLVER FORGLOBAL SOLUTION OF (9)

B. M-MFISTA and a power-iterative strategy

By replacing the conventional shrinkage solver for theℓ1-
ℓ2 P-P function with the globalℓp-ℓ2 solver presented in
Sec. III-A in MFISTA, an algorithm, called modified MFISTA
(M-MFISTA), for a (local) solution of problem (2) can be
constructed. The algorithm is outlined as follows.

Input Data λ, p, Θ andy.
Output Data Local solution of problem (2).
Step 1 TakeL = 2λmax(ΘΘT ) as the Lipschitz constant

of ∇f . Set initial iterates0 and the number of
iterationsKm. Setb1 = s0, k = 1 and t1 = 1.

Step 2 Compute minimizerzk of (9) using the parallel
global solver. Then update

tk+1 = (1 +
√

1 + 4t2k)/2,

sk = argmin{F (s) : s = zk, sk−1},

bk+1 = sk + (tk/tk+1)(zk − sk)

+[(tk − 1)/tk+1](sk − sk−1).

Step 3 If k = Km, stop and outputsk as the solution;
otherwise setk = k + 1 and repeat from Step 2.

TABLE II
THE M-MFISTA

Although in each iteration the M-MFISTA minimizes the
P-P function globally, a solution of problem (2) obtained by
M-MFISTA is not guaranteed globally optimal because (2) is
a nonconvex problem forp < 1. In what follows we propose a
power-iterative strategy that promotes a local algorithm such
as M-MFISTA to converge to a solution of (2), which is likely
globally optimal.

The power-iterative strategy begins by solving the convex
ℓ1-ℓ2 problem in (1) based on MFISTA [8], [9] where a
conventional soft-shrinkage operation is carried out in each
iteration. The global solutions(0) is then used as the initial
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Fig. 1. Rate of perfect reconstruction forℓp-ℓ2 problems with p =

1, 0.9, 0.8, 0.7, 0.4 and 0 over 100 runs for signals of lengthN = 32 and
number of random measurementsM = 20.

point to start the nextℓp-ℓ2 problem with ap close to but
slightly less than one. This problem is solved by the M-
MFISTA and the solution obtained is denoted ass(1). The
iterates(1) is then served as an initial point for the nextℓp-ℓ2
problem withp further reduced slightly. This process continues
until the target power valuept is reached.

For a nonconvex problem, a gradient based algorithm is not
expected to converge to a global solution unless it starts atan
initial point sufficiently close to the global solution. We argue
that for a given powerp < 1 and an appropriate value of
λ, the global solution of (9) possesses continuity onp in the
sense that the global solutions of (9) associated with powers
p and p + ∆p are close to each other as long as the power
difference∆p is sufficiently small in magnitude. It is based on
this inuitive observation the above power iterative technique is
developed to produce solutions of (2) that are likely globally
optimal.

IV. SIMULATIONS

In this section, we evaluate the proposed algorithm for
reconstruction of sparse signals by solving theℓp-ℓ2 problem
with various powerp.

EachK-sparse test signals was constructed by assigningK
values randomly drawn fromN (0, 1) to K randomly selected
locations of a zero vector of lengthN = 32. A total of
20 values ofK from 1 to 20 were used. The number of
measurements was set toM = 20 and a measurement matrix
Φ of size M × N was constructed with its elements drawn
from N (0, 1) followed by normalizing each column to unit
ℓ2 norm. Matrix Ψ was set to the identity matrix as the
test signals were allK-sparse. The power-iterative strategy
in conjunction with M-MFISTA was applied to problem (2)
to reconstructs. A sequence of powerp was set from 1 to
0 with a decrement ofd = 0.1. For eachp, M-MFISTA was
executed in a successive way with a set of decreasingλ’s
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Fig. 2. Average relative reconstruction errors forℓp-ℓ2 problems withp =

1, 0.9, 0.8, 0.7, 0.4 and 0 over 100 runs for signals of lengthN = 32 and
number of random measurementsM = 20.

such that the equality constraint was practically satisfied, and
a total of 50 M-MFISTA iterations was executed for eachλ. A
recovered signal̂s was deemed perfect if the relative solution
error‖ŝ− s‖2/‖s‖2 was less than 1e-5. For each value ofK,
the number of perfect reconstructions were counted over 100
runs.

Figs. 1 and 2 show the results forp = 1, 0.9, 0.8, 0.7, 0.4
and 0. It is observed that (i) for a fixed sparsityK, the rate
of perfect reconstruction increases and the average relative re-
construction error reduces as a smaller powerp was used. This
justifies the usefulness of the proposedℓp pursuit algorithm;
(ii) the performance improvement tends to be nonlinear with
respect to the change in powerp, experiencing considerable
improvement asp reduces from 1 to 0.9. Asp decreases
further, the performance continues to gain but the incremental
gain becomes gradually less significant. It is also observedthat
the best reconstruction performance was achieved atp = 0.

Among other things, Figs. 3 and 4 compare theℓ0 (andℓ0.9)
solution obtained by the proposed method described above
with an ℓ0 (and ℓ0.9) solution obtained by M-MFISTA with
the least-squares solution or the zero vector as the initial
point, showing considerable performance gain achieved by the
proposed method with an adequate initial point. This suggests
that choosing an initial point greatly affects reconstruction per-
formance. The simulations conducted so far seem to indicate
that the proposed power-iterative method remains promising
in approaching a global solution of the nonconvex problem
(2).

V. CONCLUSIONS

A power-iterative strategy has been proposed for CS in an
ℓp-ℓ2 minimization setting. This methodology is built on a
modified MFISTA (M-MFISTA) developed for local solution
of the ℓp-ℓ2 problem, in which a parallel global solver is
devised for theℓp-ℓ2 P-P function. Experimental results for
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Fig. 3. Rate of perfect reconstruction forℓp-ℓ2 problems forp = 0 and 0.9
obtained with different initial points over 100 runs withN = 32 andM = 20.
The upper graph compares theℓ0 solution obtained by the proposed method
with the ℓ0 solution obtained by M-MFISTA with the least-squares solution
or the zero vector as the initial point. The lower graph does the comparison
for thep = 0.9 counterpart. The curve corresponding top = 1 is also shown
as a comparison benchmark.

CS signal recovery are presented to show the superiority of
the proposed algorithms compared with the conventional BP
benchmark, and to demonstrate that the solutions obtained
are highly likely to be globally optimal.
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