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Abstract—The basis pursuit denoising refers to the solution
of an �1-�2 minimization formulation which is well known as an
effective method for signal denoising. In this paper we investigate
an �p-�2 formulation with p ∈ (0, 1) for denoising. Based on an
analysis of the discontinuity of the global minimizer of the �p-
�2 problem with respect to regularization parameter, we propose
two smoothed �p-�2 solvers for orthogonal basis and overcomplete
dictionary respectively. Experimental studies that evaluate the
performance of the proposed solvers with various parameter
settings are also presented.

I. INTRODUCTION

A well-known technique for noise removal from discrete

measurements is the basis pursuit denoising (BPDN) which

refers to the solution of a nonsmooth convex �1-�2 uncon-

strained minimization problem [1]. The same �1-�2 formu-

lation also finds applications in linear inverse problems and

compressive sensing, and many efficient solvers have been

proposed, see [2] and the references cited therein. In addi-

tion, several authors have investigated a nonconvex extension,

namely,

min F (s) = λ‖s‖pp + ‖Θs− y‖22 (1)

where y denotes measurement, Θ represents a dictionary,

λ > 0 is a regularization parameter and p ∈ (0, 1), who

reported results that outperform its �1-�2 counterpart [3]–

[6]. In this paper, we study problem (1) for signal denoising

and propose two fast solvers where Θ represents either an

orthogonal basis or an overcomplete dictionary. For the case

of an orthogonal Θ, our �p-�2 solver is developed based on an

analysis of the discontinuity of the global solution of (1). For

the case of an overcomplete dictionary, our solver is developed

based on a proximal-point technique [7] which converts the

problem at hand to a set of scalar-variable problems that can

be handled using the preceding solver and allows FISTA [7]

type of iteration for fast convergence. The performance of the

proposed solvers are evaluated by applying them to signal

denoising problems where the results obtained from various

parameter settings are compared with each other.

II. BASIS PURSUIT DENOISING AND �p-�2 FORMULATION

A. Basis pursuit denoising

Let y be the observation of a signal x that is contaminated

by Gaussian white noise w, i.e., y = x + w. Without loss

of generality, assume that x admits a sparse or nearly sparse

representation in a suitable dictionary Θ, namely x = Θs

where s is sparse. The well-known (BPDN) [1] to recover

signal x from noisy measurement y refers to the solution of

min λ‖s‖1 + ‖Θs− y‖22 (2)

where parameter λ > 0 depends on the variance of w as well

as the cardinality of dictionary Θ [1]. Problem (2) is convex,

for which effective solution methods have been developed in

the past several years [2].

B. An �p-�2 formulation for denoising

In compressive sensing, the recovery of a sparse signal s
using noisy linear measurement y = Θs+w is formulated as

min ‖s‖0 s.t. ‖Θs− y‖22 ≤ ε (3)

where ‖s‖0 denotes the number of nonzero entries in s and

ε > 0 is an upper bound for measurement noise. Problem (3)

is usually relaxed to the convex problem

min ‖s‖1 s.t. ‖Θs− y‖22 ≤ ε (4)

so as to avoid the combinatorial complexity encountered in

solving (3). Note that an unconstrained reformulation of (4)

also leads to (2). From this perspective and the relation be-

tween (3) and (4), it is natural to investigate the �p-�2 problem

with p ∈ (0, 1) for signal denoising, where ‖s‖pp =
∑

i |si|p.

We stress that for any p < 1, problem (1) is no longer convex.

As a result, efficient solvers for problem (2) are not applicable

to (1).

III. A SMOOTHED �p-�2 SOLVER FOR ORTHOGONAL BASIS

In this section problem (1) is investigated with an orthogonal

Θ, i.e., ΘΘT = ΘTΘ = I, and a fixed power p ∈ (0, 1).

A. Discontinuity of the global solution with respect to λ

We write the objective function in (1) as

F (s) = λ‖s‖pp + ‖Θ(s−ΘTy)‖22 = λ‖s‖pp + ‖s− c‖22.
where c = ΘTy. Therefore, minimizing F (s) amounts to

solving N scalar optimization problems separately, each with a

single-variable objective function λ|si|p+(si−ci)
2. Therefore,

the problem of global minimization of F (s) amounts to global

minimization of the single-variable function

u(s;λ) = λ|s|p + (s− c)2.

(here for simplicity we abuse the notation by dropping

subindex i). Without loss of generality we assume c > 0 (if
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c < 0, we simply let c := −c as this does not affect the

analysis below).

By combining the graphs of λsp and (s− c)2, it is evident

that the minimizers of u(s;λ) as a function of s can only

occur in [0, c]. Over this interval, u(s;λ) = λsp + (s − c)2

is differentiable and a minimizer inside the interval satisfies

u′(s;λ) = λpsp−1+2(s− c) = 0 with u′′(s;λ) = 2−λp(1−
p)sp−2 > 0. In addition, the presence of term λ|s|p yields a

notch at s = 0 which is either a local or a global minimizer,

depending on the value of λ. In effect, there is a value λ̂ >
0 with which the two minimizers are equal and hence both

become global minimizers. The λ̂ and the locations of the two

global minimizers, 0 and ŝ, can be determined by solving the

equations u′(ŝ; λ̂) = 0 and u(ŝ; λ̂) = u(0, λ̂) simultaneously.

In doing so, we obtain

ŝ =
2(1− p)c

2− p
and λ̂ =

ŝ(2−p)

1− p
. (5)

Note that the ŝ in (5) satisfies 0 < ŝ < c and u′′(ŝ; λ̂) =
2 − p > 0 hence ŝ is indeed a minimizer inside [0, c]. From

(5) it follows that

λ̂ = γc2−p, γ =
1

1− p
·
[
2(1− p)

2− p

]2−p

. (6)

For a λ < λ̂, the interior minimizer s(λ) determined by

u′(s;λ) = 0 with u′′(s;λ) > 0 is the unique global minimizer

of u(s;λ); for a λ > λ̂, the origin s = 0 becomes the unique

global minimizer; and the global minimizer jumps between

the origin and the interior point ŝ (computed from (5)) as λ
varies across the critical value λ̂ given by (6). Fig. 1 illustrates

our analysis for the case of p = 0.5 and c = 1 in that

(6) gives λ̂ = 1.0887. Fig. 1(a)-(c) show the minimizers of

u(s;λ) for (a) λ = 1.08 < λ̂, (b) λ = λ̂ = 1.0887, and (c)

λ = 1.09 > λ̂. The global minimizer of u(s;λ), denoted by

s∗(λ), as a function of λ is depicted in Fig. 1(d) where its

discontinuity at λ̂ = 1.0887 is evident.

B. A smoothed �p-�2 solver

The discontinuity of s∗(λ) is undesirable as it degrades the

stability and predictability of the denoising process based on

formulation (1). Below we propose a solution strategy that

prefers a stable solution rather than a global solution in case

parameter λ is in a vicinity of the discontinuity point λ̂.

Like problem (2), when formulation (1) is employed for

denoising, parameter λ is a prescribed positive real. In what

follows we assume the value of λ falls within an interval

[λL, λH ]. On the other hand, vector c can be computed based

on the given orthonormal basis Θ and measurement y (see

Sec. II-A). Using (6) we evaluate the critical λ̂i for each

component ci as λ̂i = γc2−p
i for 1 ≤ i ≤ N . Each component

s∗i of the solution vector s∗ is found as follows:

(a) If λ̂i /∈ [λL, λH ], solution jump will not occur, hence the

global solution s∗i can be found with stability: if λ̂i < λL, set

s∗i = 0; if λ̂i > λH , take the minimizer inside [0, ci] as the

solution s∗i . This solution can be efficiently identified using a

one-dimensional search technique such as a golden section or
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Fig. 1: Global minimizer s∗(λ) of u(s;λ) = λ|s|0.5 + (s −
1)2 (a) λ = 1.08, (b) λ = λ̂ = 1.0887, (c) λ = 1.09, (d)

discontinuity of s∗(λ) at λ̂ = 1.0887.

bisection search. We refer the reader to [6] for details.

(b) If λ̂ ∈ [λL, λH ], to prevent solution jump, we take

the unique global solution of u(s;λ) with p = 1 as s∗i ,

which is simply computed by a soft-shrinkage operation as

s∗i = sgn(ci) · max{|ci| − λ/2, 0}.

Although not a truly global solver, the solution procedure

proposed above eliminates the jump phenomenon and offers a

stable yet nearly global solution s∗. In the rest of the paper,

we call it the smoothed �p-�2 solver whose performance for

denoising will be examined in Sec. V.

C. Parallel implementation of the smoothed �p-�2 solver

The proposed solver admits a fast implementation which

solves the N single-variable �p-�2 problem in parallel. For

notation simplicity, denote by a. ∗ b the component-wise

product of vectors a and b, and by a.p the vector whose

ith component is api . Let Λ be a subset of {1, 2, ..., N}, c
be a vector of length-N and b be a vector of length-K. We

use c(Λ) to denote a vector of length K that retains those

components of c whose indices are in Λ; c(Λ) = b to denote

a vector of length-N obtained by updating the components

of c, whose indices are in Λ, with those of b. A step-by-

step description of a parallel implementation (we refer it to as

Algorithm 1) of the proposed �p-�2 solver is given in Table

I where the data are processed in a vector-wise rather than

component-wise manner.

IV. A SMOOTHED �p-�2 SOLVER FOR OVERCOMPLETE

DICTIONARY

In this section, we investigate the circumstance that Θ ∈
RM×N with M < N is an overcomplete dictionary in space
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Input c, λ, p, λL and λH .

Output s∗.

Step 1 Compute c+ = sign(c). ∗ c.

Step 2 Compute ŝ =
2(1− p)c+

2− p
and λ̂ =

ŝ.2−p

1− p
.

Step 3 Define J = {i : λ̂i ∈ [λL, λH ]} and C = {i : λ̂i /∈
[λL, λH ]}. Define cJ = c(J ) and cC = c(C).

Step 4 Compute sJ = sign(cJ ). ∗ max(|cJ | − λ/2, 0) and
sC = argmin {λ‖s‖pp + ‖s− cJ ‖22}.

Step 5 Set s∗(J ) = sJ and s∗(C) = sC . Return s∗.

TABLE I: Algorithm 1 for (1) with orthogonal basis Θ

RM . We deal with the non-orthogonality of Θ by an iterative

technique that is in spirit similar to a proximal-point method

employed in [7]: iterate sk in the kth iteration is updated to

sk+1 = argmin
s

{λ‖s‖pp +
L

2
‖s− ck‖22} (7)

where ck = sk − 2

L
ΘT (Θsk − y) and L is the Lipschitz

constant of the gradient of ‖Θs − y‖22 given by L =
2λmax(Θ

TΘ). Note that for an orthogonal basis Θ, we have

L = 2, ck = ΘTy = c (see Sec. III-A) and (7) becomes

s∗ = argmins {λ‖s‖pp + ‖s − c‖22} which is exactly the case

addressed Sec. III. Also note that the formulation differs from

that of [7] as here we deal with a nonconvex objective function

because p ∈ (0, 1). The primary reason to emply (7) is that

it is again a separable objective function whose solution was

analyzed in detail in Sec. III. Furthermore, formulation (7)

allows us to incorporate FISTA [7] type of iteration into this

formulation so as to accelerate the algorithm without substan-

tial increase in computational complexity. Essentially a FISTA

iteration modifies vector ck to ck = bk − 2

L
ΘT (Θbk − y)

where bk is updated using two previous iterates sk−1 and

sk−2, see Table II for more algorithmic details. Below we

refer the algorithm proposed above as Algorithm 2.

V. PERFORMANCE EVALUATION AND COMPARISONS

The �p-�2 solvers proposed in Sec. III and IV were applied

to denoising 1-D measurements and the results obtained from

various settings are compared with each other.

A. Signal denoising with orthogonal basis

A test signal of length N = 256 known as “HeaviSine”

[8] was corrupted with additive white Gaussian noise n with

zero mean and standard deviation σ = 0.3. The signal-to-

noise ratio (SNR) of the noisy signal was found to be 20.25dB.

Matrix Θ represents an orthogonal 8-level Daubechies wavelet

D8 basis. The lower and upper bounds for λ were set to

λL = 0 and λH = 1.2. With p fixed as one of the six

values {1, 0.8, 0.6, 0.4, 0.2, 0}, Algorithm 1 was applied to

solve problem (1) with 121 uniformly placed λ from 0 to

1.2. The SNR obtained versus λ for each p are depicted

Input y, Θ, λ, p, λL, λH and s0.

Output s∗.

Step 1 Compute the Lipschitz constant L = 2λmax(Θ
TΘ).

Set the number of iterations K.

Step 2 Set b1 = s0, t1 = 1 and k = 1.

Step 3 Compute ck =
2

L
ΘT (y − Θbk) + bk, apply Algo-

rithm 1 to solve sk = argmins {2λ
L

‖s‖pp+ ||s−ck||22}
and compute

tk+1 =
1 +

√
1 + 4t2k
2

bk+1 = sk +

(
tk − 1

tk+1

)
(sk − sk−1)

k = k + 1

Step 4 If k = K, output sk as solution s∗ and terminate;
otherwise repeat from Step 3.

TABLE II: Algorithm 2 for (1) with overcomplete dictionary

Θ

as six curves in Fig. 2(a). It is observed that (a) for each

fixed λ, using a p < 1 offers improved SNR relative to that

obtained with p = 1 (BPDN); (b) for a fixed p, the SNR is

a smooth function of λ, and the value of λ achieving peak

SNR gradually increases as p decreases; and (c) the best

performance was achieved with p = 0.6 at λ = 0.92 offering

an SNR of 26.27dB compared to an SNR of 25.05dB obtained

by BPDN (with p = 1 at λ = 0.70). For comparison, Fig. 2(b)

depicts the SNR profiles obtained by global solutions of (1) (if

a λ used in (1) happened to be equal to the critical value λ̂ in

(6), the global solution ŝ given by (5) was used). Most of the

SNRs associated with p < 1 exhibit considerable oscillations

– a sharp departure from the smooth concave SNR profiles

obtained from Algorithm 1 where the peak SNR (for each p)

is unique and predicable.

B. Signal denoising with overcomplete dictionary

The “HeaviSine” signal x and its noisy version constructed

in part A were also used here. A Θ = [Θ1 Θ2] of size

256 × 512 with Θ1 the 8-level Daubechies D8 wavelet basis

and Θ2 the 1-level Haar wavelet basis was used as an

overcomplete dictionary. The lower and upper bounds of λ
were set to λL = 0 and λH = 1.4. Because both Θ1 and Θ2

are orthogonal, the Lipschitz constant L = 2λmax(ΘΘT ) =
4. Algorithm 2 was applied to each of the six cases of

p ∈ {1, 0.8, 0.6, 0.4, 0.2, 0}, where problem (1) was solved

for each of 141 λ’s that were equally placed over [0, 1.4].
In our implementation of Algorithm 2, the solution s(λ)
obtained from a given λ was used as the initial point for the

algorithm to proceed with the subsequent value of λ. The use

of this better initial point was found helpful in reducing the

number of iterations required. The SNRs obtained are shown

in Fig. 2(c). We see that the observations made in part A
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Fig. 2: SNRs produced by denoising signal “HeaviSine” by (a) Algorithm 1 with orthogonal Θ; (b) global solution with

orthogonal Θ; (c) Algorithm 2 with overcomplete Θ; and (d) replacing the 2nd sub-step in Step 3 of Algorithm 2 by sk =

global minimizer of {2λ
L

‖s‖pp + ||s− ck||22} with overcomplete Θ.

for the case of orthogonal basis also hold here, except that

the best performance in the present case was achieved with

p = 0.4 at λ = 1.17, offering an SNR of 27.12dB which is

0.9dB higher than the maximum SNR obtained by Algorithm

1. For comparison, Fig. 2(d) depicts the SNRs obtained by

replacing the 2nd sub-step in Step 3 of Algorithm 2 with

sk = global minimizer of {2λ
L

‖s‖pp + ||s − ck||22}. Like the

case in part A, the SNRs with p < 1 show a great deal of

instability with respect to λ.

Fig. 3 illustrates the clean “HeaviSine” signal, the noise-

corrupted signal, the denoised signal obtained by BPDN at

p = 1 and λ = 0.75 and the denoised signal obtained

by Algorithm 2 with p = 0.4 and λ = 1.17 using the

overcomplete dictionary.

VI. CONCLUSION

Two smoothed �p-�2 solvers with p ∈ (0, 1) for signal

spaces with orthogonal basis or overcomplete dictionary have

been proposed. Both solvers are computationally efficient

because the solver with orthogonal basis is non-iterative while

the solver with overcomplete dictionary admits FISTA type

iterations for fast convergence. By applying them to signal

denoising problems, the proposed solvers are demonstrated to

outperform their �1-�2 counterparts.
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