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Abstract—Implementing a variable fractional delay (VFD)
filter in Farrow model is costly as each coefficient of a VFD
filter is a polynomial rather than a numerical scalar as in a
conventional digital filter. This paper presents a method for
the design of VFD filters with sparse coefficients which admits
efficient implementation. The design is accomplished in two
phases with the first phase identifying locations in polynomial
impulse response that are suitable to be set to zero and the
second phase optimizing the remaining nonzero coefficients so as
for the VFD filter to best approximate a desired frequency re-
sponse. Performance evaluation and comparison of the proposed
algorithm relative to an equivalent nonsparse counterpart are
also presented.

I. INTRODUCTION

Variable fractional delay (VFD) filters refer to digital filters
capable of changing group delay continuously by tuning
parameter(s) contained in filter coefficients. It is an impor-
tant class of digital filters as it finds many applications
in engineering and science, and algorithms for its design
have been proposed, see [1]–[7] and the references cited
therein. This paper addresses VFD FIR filters with sparse
coefficients. Several authors have recently investigated sparse
digital filters, these include general sparse FIR filters using
convex minimization [8], [9] and sparse differentiators using
orthogonal matching pursuit [10]. The work reported here may
be considered as an extension of our effort made in [9] and
is motivated by the fact that there are considerably more filter
coefficients in a VFD filter relative to that in a conventional
FIR filter because each coefficient of a VFD filter (in Farrow
model [2]) is a polynomial rather than a numerical scalar.
Consequently, implementing a VFD filter of even a moderate
order requires a large amount of computation. In this regard,
sparse VFD filters become attractive alternatives as they admit
substantially more efficient implementations. We present a
two-phase design method which is in spirit similar to that
in [9], but the formulation as well as the solution method of
the convex problems involved in the design method are quite
different from [9]. Performance evaluation and comparison
of the proposed algorithm relative to an equivalent nonsparse
counterpart are presented through computer simulation studies.

II. VFD FIR FILTERS AND DESIGN PROPLEM

We adopt standard notation to denote the transfer function
of a VFD FIR filter by

H(z, p) =
N∑

n=0

an(p)z−n (1)

where

an(p) =
K∑

k=0

ankpk (2)

for n = 0, 1, . . . , N are polynomials of degree K with p ∈
[0, 1] representing the fractional delay. If we let

ω = [1 e−jω · · · e−jNω ]T

p = [1 p · · · pK ]T

A = [aij ] ∈ R(N+1)×(K+1)

then the frequency response of the VFD filter can be expressed
as

H(ω, p) = ωT Ap (3)

In designing a VFD filter, the desired variable frequency
response is given as

Hd(ω, p) = e−jω(D+p) (4)

where 0 ≤ p ≤ 1 is the same parameter p encountered in
(1)–(3) representing a fractional group delay in addition to an
integer delay D which is typically chosen to be (N −1)/2 for
an odd filter order N or N/2 for an even N . A weighted least-
squares (WLS) design of a sparse VFD FIR filter of order N
refers to finding a transfer function H(z, p) of form (1) that
minimizs WLS error

J(A) =
1
2

π∫
0

1∫
0

W (ω, p)|H(ω, p) − Hd(ω, p)|2 dp dω (5a)

subject to: sparsity(A) = Nz (5b)

where Nz is an integer and sparsity(A) denotes the number
of zero entries in A.

III. DESIGN METHOD

This section presents a two-phase design method for sparse
VFD filters. To begin with, we recall a closed-form expression
[5] of J(A) given by

J(A) =
1
2

tr(PAT ΩA) − tr(SA) + const. (6)

where matrices P , Ω and S are related to weighting function
W (ω, p). Suppose W (ω, p) is separable, namely W (ω, p) =



W1(ω)W2(p), then

P =
∫ 1

0

W2(p)ppT dp (7a)

Ω = Re

[∫ π

0

W1(ω)ω̄ωT dω

]
(7b)

S =
∫ 1

0

W2(p)pωT
p dp (7c)

with

ωT
p = Re

[∫ π

0

W1(ω)ωT ejω(D+p)dω

]
(7d)

As the condition numbers of P and Ω can be very large even
for a VFD filter of moderate order, Cholesky decompositions
P = P T

1 P 1 and Ω = ΩT
1 Ω1 are used in [5] in the

minimization of J(A). Note that the Cholesky decompositions
lead (6) (up to a constant) to

J(A) =
1
2

tr
(
P 1A

TΩT
1 Ω1AP T

1

)
− tr(SA) (8)

If we denote by a and s the vectors generated by concatenating
the columns of A and S, respectively, via straightforward
linear algebraic manipulations it can be shown that up to a
constant J(A) in (8) can be written as

J(a) =
1
2
‖Γa − y‖2

2, Γ = P 1 ⊗ Ω1, y = Γ−T s (9)

where ⊗ denotes Kronecker product. We are now in a position
to present algorithmic details of the design method.

A. Design Phase One

Given order (N, K), sparsity Nz and desired frequency
response Hd(ω, p), phase 1 of the design identifies an index set
of most adequate locations in coefficient matrix A to be set to
zero that satisfies the target sparsity. Under the circumstances,
it is natural to formulate the problem at hand as

minimize μ‖a‖1 + J(A) (10)

where ‖a‖1 =
(K+1)(N+1)∑

i=1

|ai| is the l1-norm of a = A(:)

and μ > 0 is a weight that controls the regularization level.
By performing (10), one obtains a coefficient matrix Â that
is sparser than that obtained by a conventional WLS design
because of the presence of term μ‖a‖1 which is known to
promote signal sparsity [11] and, because of the presence of
term J(A), Â as the minimizer of (10) represents a VFD filter
with a small WLS error. From (9), a formulation equivalent
to (10) follows:

minimize
a

μ‖a‖1 +
1
2
‖Γa − y‖2

2 (11)

The l1 − l2 optimization problem in (11) is nonsmooth
but convex, for which efficient algorithms and software are
available [12]. The particular algorithm that solves (11) for
phase 1 combines a proximal-point technique with a fast
iteration scheme known as FISTA [13]. For the sake of reader’s
convenience. We sketch the algorithm as follows.

Let f(a) = 1
2‖Γa− y‖2

2, the mth iterate am is updated to
am+1 by minimizing the proximal-point objective function

F (a) = f(am)+(a−am)T∇f(am)+
L

2
‖a−am‖2

2+μ‖a‖1

(12)
where L is the smallest Lipschitz constant of ∇f(a) that
is equal to the largest eigenvalue of ΓΓT . It can readily be
verified that minimizing F (a) in (12) is equivalent to

minimize

(
μ‖a‖1 +

L

2
‖a − dm‖2

2

)
(13a)

where
dm = am − 1

L
ΓT (Γam − y) (13b)

It is well known [12] that the global solution of (13) is given
by a soft shrinkage of dm, namely

am+1 = Sμ/L(dm) (14a)

where the shrinkage operator is defined as

Sα(u) = sgn(u) · max{|u| − α, 0} (14b)

The above algorithm can be considerably accelerated by
incorporating FISIA type of iterations [13]. In doing so, the
algorithm follows the steps given below.

Input: Data Γ and y, parameter μ and iteration number
M .

Step 1. Compute A0 = Γ−1y, a0 = A0(:). Set b1 =
a0, t1 = 1, and m = 1.

Step 2. Compute am = Sμ/L{bm − 1
LΓT (Γbm − y)}

Step 3. Compute tm+1 =
1 +

√
1 + 4t2m
2

Step 4. Update bm+1 = am +
(

tm − 1
tm+1

)
(am − am−1)

Step 5. If m < M, set m = m + 1 and repeat Step 2;
otherwise stop and output am as solution â.

Hard thresholding is applied to vector â that generates an
index set I = {i : |â(i)| < ε}. An appropriate value of
threshold ε∗ can easily be identified so that the length of the
associated index set I∗ is equal to target sparsity Nz . The
index set I∗ is a key ingredient of design phase 2.

B. Design Phase Two

The objective of phase 2 is to find a coefficient matrix A
that minimizes the WLS error J(A) in (5a) subject to sparsity
constraint (5b). Following (9), the problem at hand can be
formulated as

minimize
a

J(a) =
1
2
‖Γa − y‖2

2 (15a)

subject to: a(i) = 0 for i ∈ I∗ (15b)

which is a convex quadratic programming problem. Note the
length of a is (K + 1)(N + 1). Denote index sets I0 = {i :
i = 1, 2, . . . , (K + 1)(N + 1)} and Ī∗ = {i : i ∈ I0 and
i /∈ I∗}. For a vector x of length (K + 1)(N + 1), denote by
x(S) the vector composed of the entries of x whose indices
are in set S. Problem (15) can be solved by simply substituting



(15b) into the objective function in (15a) so that (15) becomes
an unconstrained convex quadratic problem. In this way, the
unique global solution a∗ of the problem can be specified as

a∗(Ī∗) = Γ−1
s y and a∗(I∗) = 0 (16a)

where Γs is composed of those columns of Γ whose indices
are in set Ī∗. The optimal coefficient matrix A∗ is obtained
by converting vector a∗ into a K + 1 by N + 1 matrix.

IV. PERFORMANCE EVALUATION

We present a design case to serve the purpose of evaluating
the proposed design algorithm. The algorithm was applied to
design a VFD FIR filter of order N = 65, hence D = 32. The
order of the polynomials an,k(p) was set to K = 7, and the
cutoff frequency ωc = 0.9π. The performance of VFD filters
were evaluated in terms of maximum error

emax = max{e(ω, p), 0 ≤ ω ≤ 0.9π, 0 ≤ p ≤ 1}
with

e(ω, p) = 20 log10 |H(ω, p) − Hd(ω, p)|
and L2-error

e2 =
[∫ 0.9π

0

∫ 1

0

|H(ω, p) − Hd(ω, p)|2dp dω

]1/2

The weighting function was set to W (ω, p) = W1(ω)W2(p)
with W2(p) ≡ 1 for 0 ≤ p ≤ 1 and

W1(ω) =

⎧⎨
⎩

1 for ω ∈ [0, 0.88π)
3 for ω ∈ [0.88π, 0.8994π)
0 for ω ∈ [0.8994π, π]

With (N, K) = (65, 7), μ = 1 × 10−5, and M = 80, phase 1
of the proposed algorithm produced an coefficient vector â. In
our design example, the target sparsity was set to Nz = 198
which means that 37.5% of the entries in Â were set to zero.
With ε∗ = 10−3, hard thresholding of â yielded an index set
I∗ of length 198. This index set was used for the algorithm
to proceed with phase 2 which produced an optimal filter
coefficient A∗ with sparsity(A∗) = 198. The maximum and
L2 errors of the sparse VFD filter obtained were found to
be emax = 0.0021 and e2 = −75.25dB, respectively. The
frequency response error and fractional delay of the VFD filter
over [0, 0.9π] and 0 ≤ p ≤ 1 are depicted in Fig. 1(a) and Fig.
2(a), respectively. For comparison, an equivalent nonsparse
VFD FIR filter with (N, K) = (65, 4) was designed to
minimize the WLS error in (5a) without imposing coefficient
sparsity. Note that with (N, K) = (65, 4) the total number
of nonzero coefficients in the nonsparse VFD filter is 330 —
exactly the same as in the sparse VFD filter designed above.
Also note that the nonsparse VFD filter possesses the same
order (N = 65) so that the integer delay D was unaltered.
The maximum and L2 errors of the nonsparse VFD filter
were found to be 0.0609 and e2 = −45.28dB, respectively.
Its frequency response error and fractional delay are shown in
Fig. 1(b) and Fig. 2(b), respectively.

In the rest of the section, the proposed algorithm is further
illustrated by examining the significance of each design phase.
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Fig. 1. Profile of frequency response error |e(ω, p)| over 0 ≤ ω ≤ 0.9π and
0 ≤ p ≤ 1 of (a) sparse VFD filter with (N, K) = (65, 7) and Nz = 198;
(b) equivalent nonsparse VFD filter with (N, K) = (65, 4).

A. Justification of Phase One

To this end, we started with a conventional (nonsparse) WLS
optimal VFD FIR filter of order (N, K) = (65, 7) whose
coefficient matrix is denoted by A. Without going to phase 1,
a hard thresholding was applied to A with ε = 3.8× 10−3 to
generate 198 zero entries. Denote the index set associated with
these zeros by I∗∗. With the identified index set I∗∗ (rather
than I∗), phase 2 was carried out to design a sparse VFD
filter. The maximum and L1 errors of the filter were found
to be emax = 0.0025 and e2 = −73.41dB, respectively, see
Fig. 3 for its frequency response error and fractional delay. On
comparing with the maximum and L2 errors emax = 0.0021
and e2 = −75.25dB achieved by the proposed algorithm, this
justifies phase 1 of the design method that identifies a better
index set to achieve a target sparsity.

B. Justification of Phase Two

Suppose one terminates the design process right after phase
1 is complete. The result is a coefficient vector â and an index
set I∗ with |I∗| = 198. A sparse ã with sparsity(ã) = 198 is
generated by setting ã(i) = 0 for i ∈ I∗. A sparse coefficient
matrix Ã can be constructed by converting ã into a (K +
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Fig. 2. Fractional delay over 0 ≤ ω ≤ 0.9π and 0 ≤ p ≤ 1 of (a) sparse
VFD filter with (N, K) = (65, 7) and Nz = 198; (b) equivalent nonsparse
VFD filter with (N, K) = (65, 4).

1) × (N + 1) matrix with (N, K) = (65, 7). The maximum
and L2 errors of the VFD filter associated with Ã were found
to be emax = 0.1291 and e2 = −43.23dB, respectively. The
severely degraded performance is attributed to the absence of
phase 2 of the design.

V. CONCLUSION

A two-phase technique for the design of variable fractional
delay FIR filters that are WLS optimal subject to a target
coefficient sparsity has been proposed. The design algorithm
is easy to implement and computationally efficient because it is
based on l1 − l2 convex optimization. Computer simulations
for performance evaluation and comparison of the proposed
algorithm relative to an equivalent nonsparse counterpart have
also been presented.
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