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Abstract—A new algorithm for the reconstruction of so called
block-sparse signals in a compressive sensing framework is
presented. The algorithm is based on minimizing an �2/p-norm
regularized �2 error. The minimization is carried out by using
a sequential conjugate-gradient algorithm where the line search
involved is carried out using a technique based on Banach’s
fixed-point theorem. Simulation results are presented which show
that for large-size data the proposed algorithm yields improved
reconstruction performance and requires a reduced amount of
computation relative to several known algorithms.

I. INTRODUCTION

In conventional compressive sensing (CS), the algorithms
used to recover sparse signals do not take into account the
block structure of the signal components, where nonzero
coefficients occur in cluster [1]-[7]. In [8] and [9], an algorithm
based on an �2/1-norm minimization is used to recover block-
sparse signals where the �2/1-norm minimization problem is
solved by recasting it as a second-order cone-programming
(SOCP) problem. In [10], a block orthogonal matching pursuit
(BOMP) algorithm is proposed as an extension of the orthog-
onal matching pursuit (OMP) algorithm [11] for block-sparse
signals.

In this paper, we propose a new algorithm for the re-
construction of so called block-sparse signals in the CS
framework by minimizing an �2/p-norm regularized �2 error
with p < 1. The �2/p norm is used to promote inter-block
sparsity in the signal. The optimization problem involved is
solved using a sequential procedure where each optimization
problem is solved by a conjugate-gradient algorithm known
as the Fletcher-Reeves algorithm [12]. The approximation
of the �p norm facilitates the application of the Fletcher-
Reeves algorithm and helps to accelerate the convergence to
the optimal solution. Simulation results are presented, which
demonstrate that for large-size data the proposed algorithm
yields improved reconstruction performance and requires a
reduced amount of computation relative to several known
algorithms.

II. PRELIMINARIES

A. Compressive sensing

A real-valued discrete-time signal x of length N is said to
be K-sparse if it has K non-zero components with K � N .
The measurement process in CS is described by

y = Φx (1)

where y is a measurement vector of length M and Φ is a
measurement matrix of size M × N . With M < N , the
inverse-problem of recovering signal x from measurements y
is ill-posed [13]. In principle, the sparsest solution of (1) can
be estimated by minimizing the �0 norm of x, i.e., ||x||0 =∑N

i=1 |xi|0, subject to the constraint in (1). Unfortunately, the
problem of finding the solution with the minimum �0 norm
requires a combinatorial search among all the solutions of (1)
for which the computation required grows exponentially as N
increases. A tractable algorithm for the reconstruction of signal
x is the �1-minimization based basis pursuit (BP) algorithm
which solves the convex optimization problem

minimize
x

||x||1 subject to: Φx = y (2)

where ||x||1 is the �1 norm of x defined as ||x||1 =
∑N

i=1 |xi|
[4]. A key result in CS is that if signal x is K-sparse,
the elements of Φ are drawn from a Gaussian distribution
N (0, 1/N), and the number of measurements M satisfies the
condition

M ≥ cK log(N/K) (3)

with c a small constant, then x can be recovered by solving the
problem in (2) [1] - [3]. In [5] and [6], several �p-minimization
based algorithms that solve the optimization problem

minimize
x

||x||pp subject to Φx = y (4)

with p < 1 are shown to offer improved signal reconstruction
performance compared to the BP algorithm.

B. Block-sparse signals

Consider signal x of length N which is divisible by a
positive integer d. We divide signal x into N/d blocks x̃1,
x̃2, . . ., x̃N/d and denote x as

x =
[
x̃T
1 x̃T

2 · · · x̃T
N/d

]T
(5)

where

x̃i =
[
x(i−1)d+1 x(i−1)d+2 · · · x(i−1)d+d

]T
for i = 1, 2, . . . , N/d and xi is the ith component of x.

The signal x in (5) is said to be K-block sparse if x has
K nonzero blocks with K � N/d. Note that the definition
of K-sparse in the conventional CS is the special case of
K-block sparse with d = 1. Recently, it has been shown



that improved performance for the reconstruction of K-block
sparse signals can be achieved by solving the �2/1-norm
minimization problem

minimize
x

||x||2/1
subject to Φx = y

(6)

where ||x||2/1 is the �2/1 norm of x defined as

||x||2/1 =

N/d∑
i=1

||x̃i||2 (7)

where ||x̃i||2 is the �2 norm of the ith block x̃i [8], [9], [10].
The problem in (6) can be recast as

minimize
x,t

N/d∑
i=1

ti

subject to Φx = y
||x̃i||2 ≤ ti 1 ≤ i ≤ N/d
0 ≤ ti 1 ≤ i ≤ N/d

(8)

which can be solved using an SOCP solver. In the rest of the
paper, the algorithm used to solve the above problem will be
referred to as the �2/1-SOCP algorithm. In [10], the BOMP
algorithm was shown to offer improved signal reconstruction
performance relative to that of the �2/1-SOCP algorithm.

III. RECONSTRUCTION OF BLOCK-SPARSE SIGNALS BY

USING AN �2/p-REGULARIZED LEAST-SQUARES

OPTIMIZATION

A. Approximate �2/p norm and problem conversion

�p minimization with p < 1 is known to offer improved
signal reconstruction performance relative to �1 minimization.
In what follows, we propose a method for the reconstruction
of block-sparse signals by solving the optimization problem

minimize
x

Fε(x) =
1
2 ||Φx− y||22 + λ ||x||2/p,ε (9)

with p < 1, where λ > 0 is a regularization parameter and
||x||2/p,ε is an approximate �2/p norm of x defined as

||x||2/p,ε =
N/d∑
i=1

(||x̃i||22 + ε2
)p/2

(10)

Good signal reconstruction performance is expected when the
proposed method is applied with very small p and ε because
in that case function ||x||2/p,ε accurately approximates the
�0 norm of signal x. However, function ||x||2/p,ε becomes
highly nonconvex and nearly nondifferentiable if p and ε are
too small, which makes the problem in (9) a difficult one to
solve. In our experiments, we found p = 0.1 and ε = 10−5

appropriate for a wide range of signals and for noiseless
measurements.

Note that function ||x||2/p,ε remains differentiable and so is
function Fε(x) in (9) as long as ε is kept positive. In effect,
for ε > 0 the gradient of Fε(x) is given by

g = ΦT (Φx− y) + λu (11)

where u denotes the gradient of ||x||2/p,ε and assumes the
form

u =
[
ũT
1 ũT

2 · · · ũT
N/d

]T
(12)

where ũi is the ith block of u. The {(i−1)d+j}th component
of u in the ith block ũi is determined as

ũ(i−1)d+j = p
(||x̃i||22 + ε2

)p/2−1
x(i−1)d+j

for j = 1, 2, . . . , d and i = 1, 2, . . . , N/d where x̃i is the ith
block of x.

By examining the Hessian of Fε(x), it can be shown that the
region where Fε(x) is convex is proportional to the value of
ε, namely, the larger the ε, the larger the convex region. Thus
if a sufficiently large value of ε is used, a gradient descent
based algorithm will find the global solution of the problem
in (9). On the other hand, the desired solution is the global
minimizer of the objective function in (9) with a small value
of ε. A good optimal solution can, therefore, be obtained by
using a sequential optimization whereby a series of objective
functions are minimized starting with a large value of ε and
gradually decreasing ε to a very small value εT .

B. Use of Fletcher-Reeves algorithm

In the optimization procedure described above, the problem
in (9) is solved for a set of values ε. For each value of ε, we
propose to use a finite number of iterations of the Fletcher-
Reeves algorithm [12] to minimize the objective function. The
Fletcher-Reeves algorithm belongs to the class of conjugate
gradient methods where search directions are conjugate direc-
tions computed based on the gradient of Fε(x). In the kth
iteration, iterate xk is updated as

xk+1 = xk + αkdk for k = 0, 1, . . . , L− 1 (13)

where d0, d1, . . ., dL−1 are L conjugate directions and α0,
α1, . . ., αL−1 are L step sizes. The conjugate directions are
computed as

dk =

{ −g0 for k = 0
−gk + βk−1dk−1 for k = 1, 2, . . . , L− 1

(14)
where gk is the gradient computed by using x = xk in (11)
and βk = βn/βd where

βn = gT
k+1gk+1 and βd = gT

k gk

for k = 0, 1, . . . , L− 1.

C. Line search

Given parameters p, ε, and λ, the step size αk in the
Fletcher-Reeves algorithm is obtained by solving the one-
dimensional optimization problem

minimize
α

f(α)

where

f(α) =
1

2
||Φ (xk + αdk)− y||22 + λ ||xk + αdk||2/p,ε



By setting the first derivative of f(α) to zero, we obtain an
equation of the form α = G(α) where

G(α) = −
dT
k Φ

T (Φxk − y) + λ · p ·
N/d∑
i=1

γi · (x̃T
kid̃ki)

||Φdk||22 + λ · p ·
N/d∑
i=1

γi · (d̃T

kid̃ki)

In G(α), x̃ki and d̃ki are the ith blocks of vectors xk and dk,
respectively, and

γi =
(
||x̃i + αd̃i||22 + ε2

)p/2−1

for i = 1, 2, . . . , N/d

Therefore, finding a minimizer of f(α) amounts to finding a
fixed point of function G(α) which, according to the Banach
fixed-point theorem [14], can be done by using a sufficient
number of recursions of the recursive relation

αl+1 = G(αl) for l = 1, 2, . . . (15)

D. Algorithm

The proposed �2/p-regularized least-squares (�2/p-RLS) al-
gorithm is summarized in Table I. Parameter p, the number
of iterations T , the length of block d, the initial value ε1 and
target value εT of ε, and parameter λ are supplied as input.

A total of J − 2 values of ε, for which the optimization
in (9) is carried out, are set between the initial value ε1 and
target value εT as

εt = ε1e
−β(t−1) for t = 2, 3, . . . , T − 1 (16)

where β = log(ε1/εT )/(T−1). The initial conjugate direction
is set to −g at the beginning of the optimization for each value
of ε.

For noise-free measurement y, a large initial value λ1 and
a small target value λT are supplied as input instead of λ.
A total of T − 2 values of λ lying between λ1 and λT are
computed as

λt = λ1e
−σ(t−1) for t = 2, 3, . . . , T − 1 (17)

where σ = log(λ1/λT )/(T − 1).

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed method,
we have carried two experiments, as detailed below.

In the first experiment, the signal length N , the number of
measurements M , and block length d were set to 512, 100,
and 8, respectively. A total of sixteen block-sparsity levels
K = 1, 2, . . . , 16 were chosen. A K-block sparse signal x was
constructed by assigning random values drawn from a normal
distribution N (0, 1) to all the components of K randomly
selected blocks of a zero vector of length N . Measurement
matrix Φ of size M × N was constructed by drawing its
elements from N (0, 1) followed by an orthonormalization step
where the rows of Φ were made orthonormal to each other.
The measurement was obtained as y = Φx. With p = 0.1,
T = 80, ε1 = 1, εT = 1e − 5, λ1 = 1, λT = 1e − 10,

TABLE I
�2/p -RLS ALGORITHM

Step 1
Input: p, T , L, ε1, εT , Φ, y, Et.

λ if measurement y is noisy
λ1 and λT if measurement y is noiseless.

Set xs = 0.
Step 2
Compute εt for t = 2, 3, . . . , T − 1 using (16).

λt for t = 2, 3, . . . , T − 1 using (17)
if measurement y is noiseless.

Step 3
For t = 1, . . . , T

i) Set ε = εt, Lt = 3 + round(t/4).
ii) If measurement is noiseless, set λ = λt.
iii) Set k = 0, x0 = xs, Er = 1010.
iv) While Er > Et,

a) Compute gk using (11).
b) Compute dk using (14).
c) Compute αk using (15).
d) Compute xk+1 using (13).
e) Set k = k + 1.
f) Exit loop if k > Lt.
g) Compute Er = ||αkdk||2.

viii) Set xs = xLt .
Step 4
Output x∗ = xs and stop.

and Et = 1e − 25, the �2/p-RLS algorithm was applied and
compared with �2/1-norm minimization using �2/1 SOCP [9],
iterative re-weighted (IR) with p = 0.1 [6], smoothed �0 norm
(SL0) [7], BOMP [10], and BP [4] algorithms. Reconstruction
was deemed successful if the maximum absolute error between
the original signal, x, and the recovered signal, x̂, measured
as max

i
|xi − x̂i| was smaller than 0.09, where xi and x̂i are

the ith components of x and x̂, respectively. The percentage
of the number of successful reconstructions over 100 runs is
plotted in Fig. 1. It is observed that the performance of the
�2/p-RLS algorithm is significantly better than that of the other
algorithms.

In the second experiment, the average CPU time re-
quired by the algorithms to converge was measured over 100
runs for typical instances with M = round(N/2), K =
round(M/2.5d), and d = 8 for N = 128, 256, 512, 1024,
2048, 4096, and 8192. The CPU time was measured on a PC
desktop with an Intel Core 2 CPU E6850 3.00 GHz processor.
The CPU times for the six algorithms are plotted in Fig. 2
for values of N in the range 123 to 1024. The CPU times
for the �2/p-RLS algorithm with p = 0.1, and the SL0, BP,
and BOMP algorithms for values of N in the range 1024 to
8192 are plotted in Fig. 3. As can be seen, for N > 5000
the proposed �2/p-RLS algorithm requires the least amount of
computation among the algorithms tested.

V. CONCLUSION

We have proposed an algorithm for the reconstruction of
block-sparse signals in the CS framework. The algorithm min-
imizes an �2/p-norm regularized �2 error with p < 1 by using
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Fig. 1. Percentage of perfect reconstructions for �2, �2/p-RLS (p = 0.1),
�2/1-SOCP, SL0, IR (p = 0.1), BP, and BOMP algorithms over 100 runs
with N = 512, M = 100, d = 8.
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Fig. 2. Average CPU time required for �2,p-RLS (p = 0.1), �2/1-SOCP,
SL0, IR (p = 0.1), BP, and BOMP algorithms over 100 runs with M = N/2,
K = M/2.5d.

a sequential optimization in conjunction with the Fletcher-
Reeves algorithm. Simulation results show that the proposed
algorithm yields significantly improved signal reconstruction
performance and requires a reduced amount of computation
for large sized data relative to several contemporary competing
algorithms.
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Fig. 3. Average CPU time required for �2/p-RLS (p = 0.1), SL0, BP, and
BOMP algorithms over 100 runs with M = N/2, K = M/2.5d.
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