
FAST DUAL-BASED LINEARIZED BREGMAN ALGORITHM FOR
COMPRESSIVE SENSING OF DIGITAL IMAGES

Jie Yan
Department or Electrical and Computer Engineering

University of Victoria
Victoria, BC, Canada V8W 3P6

jyan@ece.uvic.ca

Wu-Sheng Lu
Department of Electrical and Computer Engineering

University of Victoria
Victoria, BC, Canada V8W 3P6

wslu@ece.uvic.ca

ABSTRACT
A central problem in compressive sensing is the recovery
of a sparse signal using a relatively small number of linear
measurements. The basis pursuit (BP) has been a success-
ful formulation for this signal reconstruction problem. A-
mong other things, linearized Bregman (LB) methods pro-
posed recently are found effective to solve BP. In this paper,
we present a fast linearized Bregman algorithm applied to a
dual formulation that accelerates the conventional LB itera-
tions considerably. Performance of the proposed algorithm
is evaluated and compared with the conventional LB algo-
rithm in compressive sampling of 1-D sparse signals and
digital images.
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1 Introduction

A central problem in compressive sensing [1–3] (CS) is the
recovery of a sparse signal from a relatively small number
of linear measurements. A successful approach in the cur-
rent CS theory deals with this signal reconstruction prob-
lem by means of nonsmooth convex programming (NCP).
A representative formulation in the NCP setting examines
the equality constrained problem

min
x

J(x) s.t. Ax = b (1)

where J(x) is a continuous (but non-differentiable) objec-
tive function. In particular when J(x) = ‖x‖1, (1) be-
comes the well known basis pursuit problem [4]. Another
representative NCP formulation is associated with the un-
constrained �1-�2 problem

min
x

λ‖x‖1 + ‖Ax− b‖2 (2)

where ‖·‖ denotes the �2 norm and parameter λ regularizes
signal sparsity while taking signal fidelity into account.

Concerning the computational aspects of the prob-
lem, a rich variety of algorithms is now available. With
J(x) = ‖x‖1, (1) can be solved by linear programming
(LP) for real-valued data or by second-order cone pro-
gramming (SOCP) for complex-valued data. Reliable LP

and SOCP solvers are easy to find, but they are not tai-
lored for CS problems involving large-scale data such as
digital images. Gradient-based algorithms for problem
(2) that are especially suited for large-scale CS problems
have been developed [5]. Of particular interest are those
based on proximal-point functions in conjunction with iter-
ative shrinkage techniques. These include the fast iterative
shrinkage-thresholding algorithm (FISTA) and monotone
FISTA (MFISTA) [6]. For a solution of (2) to be a good
approximate solution of (1), parameter λ in (2) must be
sufficiently small that inevitably slows down the FISTA as
a large number of iterations are required for the algorith-
m to converge. In [7–9], solution methods for problem (1)
based on Bregman distance [10] are proposed. These meth-
ods are known as linearized Bregman (LB) algorithms that
are suited for large-scale problems and shown to be able
to identify global minimizer of (1) efficiently. In addition,
the LB algorithm is shown to be equivalent to a gradient
descent algorithm applied to a dual formulation [9].

In this paper, we propose a fast dual-based LB algo-
rithm for problem (1) with J(x) = ‖x‖1. The algorith-
m’s acceleration is made possible by enhancing each gra-
dient descent iteration in a way similar to that employed
in FISTA. Unlike FISTA, however, the algorithm is carried
out for a dual problem, making the selection and adjust-
ment of the regularization parameter rather straightforward.
Performance and complexity of the proposed algorithm are
evaluated and compared with the conventional LB algorith-
m [7] by applying them to CS reconstruction of 1-D sparse
signals. In addition, performance of the proposed algorith-
m in dealing with large-scale data is demonstrated by accu-
rately reconstructing several test images.

2 Linearized Bregman Methods

The Bregman distance [10] with respect to a convex func-
tion J(·) between points u and v is defined as

Dp
J (u,v) = J(u)− J(v) − 〈p,u− v〉 (3)

where p ∈ ∂J(v), the subdifferential of J at v. The lin-
earized Bregman (LB) method was proposed in [7], and
its convergence and optimality properties were investigat-
ed in [8] and [11]. An LB algorithm for problem (1) as
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presented in [7] is sketched below in Algorithm 1, where
we have adopted the notation of [12] for presentation con-
sistency.

Several important results of the LB method, which are
most relevant to the new development described in this pa-
per, are summarized as follows.

Proposition 1 ( [8]). Suppose J(·) is convex and continu-
ously differentiable, and its gradient satisfies

‖∇J(u)−∇J(v)‖2 ≤ β〈∇J(u)−∇J(v),u − v〉 (4)

for ∀u,v ∈ R
N . Then the sequence {xk}k∈N generated by

Algorithm 1 with 0 < τ < 2
μ‖AAT ‖ converges. The limit of

{xk}k∈N is the unique solution of

min
x

J(x) +
1

2μ
‖x‖2 s.t. Ax = b. (5)

However, note that Proposition 1 is not applicable
when J(·) = ‖ · ‖1 because the �1-norm is not differen-
tiable. For the �1 norm case, we have the following propo-
sitions.

Proposition 2 ( [11]). Let J(·) = ‖·‖1. Then the sequence
{xk}k∈N generated by Algorithm 1 with 0 < τ < 1

μ‖AAT ‖
converges to the unique solution of problem (5). Let S be
the set of all solutions of problem (1) when J(x) = ‖x‖1

and define x1 as the unique minimum �2-norm solution a-
mong all the solutions in S, i.e., x1 = argminx∈S‖x‖2.
Denote the solution of (5) to be xμ. Then ‖xμ‖ ≤ ‖x1‖ for
all μ > 0 and limμ→∞ ‖xμ − x1‖ = 0.

Algorithm 1 LB ( [7])

1: Input: x0 = p0 = 0, μ > 0 and τ > 0.
2: for k = 0, 1, ...K do
3: xk+1 = argminx{Dpk

J (x,xk) + τ〈AT (Axk −
b),x〉 + 1

2μ‖x− xk‖2};
4: pk+1 = pk − τAT (Axk − b)− 1

μ (x
k+1 − xk);

5: end for

3 A Fast Dual-Based Linearized Bregman
Algorithm

3.1 Lagrangian Dual of Problem (5)

Recently, the LB method is shown to be equivalent to a
gradient descent algorithm applied to the Lagrangian dual
of (5) [9], which assumes the form

max
y

min
x

J(x) +
1

2μ
‖x‖2 − 〈y,Ax − b〉. (6)

By defining

x̃ = argmin
x

{J(x) + 1

2μ
‖x‖2 − 〈y,Ax − b〉}, (7)

problem (6) can be expressed as

min
y

E(y) = −{J(x̃) + 1

2μ
‖x̃‖2 − 〈y,Ax̃ − b〉}. (8)

It is known that E(y) is continuously differentiable with its
gradient ∇E(y) = Ax̃ − b. If J(·) = ‖ · ‖1, then ∇E is
Lipschitz continuous with the smallest Lipschitz constan-
t L = μ‖AAT ‖. Consequently, the dual problem can
be solved by means of gradient-based techniques such as
limited-memory BFGS, conjugate gradient, and Nesterov’s
methods, possibly in conjunction with efficient line search
(e.g., Barzilai-Borwein) techniques.

3.2 Fast Algorithm Optimizing the Lagrangian Dual

In the rest of the paper, we focus on the �1 case, i.e., J(·) is
assumed to be ‖·‖1. BecauseE(y) is convex with Lipschitz
continuous ∇E(y), it follows that

E(y) ≤ E(yk) + 〈y−yk,∇E(yk)〉+ L

2
‖y−yk‖2 (9)

for any y and yk . In a steepest descent method [13], iterate
yk is updated to yk+1 with

yk+1 = yk − αk∇E(yk) (10)

where αk > 0 is a scalar step size. Note that iterate yk+1

may be interpreted as the solution to a quadratic problem

yk+1 = argmin
y

H(y,yk)

where

H(y,yk) = E(yk)+〈y−yk,∇E(yk)〉+ 1

2αk
‖y−yk‖2.

By comparing the equation above with (9), we see that the
quadratic functionH(y,yk) serves as a reasonable approx-
imation of E(y) at y = yk if αk is set to 1/L where
L = μ‖AAT ‖. Thus, at the (k + 1)th iteration, we com-
pute

yk+1 = yk − 1

L
∇E(yk) = yk − 1

L
(Axk+1 − b) (11)

where xk+1 is computed by

xk+1 = argmin
x

{‖x‖1 +
1

2μ
‖x‖2 − 〈yk,Ax− b〉}

= argmin
x

{‖x‖1 +
1

2μ
‖x− μATyk‖2}.

By defining Tα : RN → R
N as the soft-shrinkage operator,

i.e., Tα(z) = sgn(z) ◦ max{|z| − α, 0}, we have

xk+1 = Tμ(μATyk) = μT1(ATyk). (12)

If we choose the initial iterate y0 = 1
Lb, the implemen-

tation is described in Algorithm 2. Such iteration corre-
sponds to the conventional gradient-descent method, and is
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known to possess a worst-case convergence rate of O(1/k)
where k refers to the number of iterations. Convergence
proof of Algorithm 2 is provided in the Appendix. In addi-
tion, the equivalent between the dual-based LB method and
the conventional LB in Algorithm 1 has been established
in [9, 12].

In [9], Yin considered several techniques such as
line search, Barzilai-Borwein step and limited memory
BFGS (L-BFGS) to accelerate the classical gradient de-
scent method. When working on this project, we have be-
come aware of a very recent manuscript [12] that deals with
the CS problem in the dual space by utilizing the acceler-
ation technique proposed by Nesterov [14]. On the oth-
er hand, Beck and Teboulle devise a faster method called
FISTA [6] where at each iteration a smartly chosen point is
introduced. While both FISTA and Nesterov’s method are
proven to converge with the same rate, the two schemes are
remarkably different both conceptually and computational-
ly [6]. Since FISTA is a proximal subgradient algorithm, it
is also simpler than Nesterov’s method.

Algorithm 2 Dual-Based LB

1: Input: μ > 0, L = μ‖AAT ‖ and y0 = 1
Lb.

2: for k = 0, 1, ... do
3: xk+1 = μT1(ATyk);
4: yk+1 = yk − 1

L (Axk+1 − b);
5: end for

Inspired by Beck and Teboulle [6], we propose a fast
iteration scheme by carrying out FISTA type of iterations in
the dual space. Specifically, we perform gradient projection
with a new iterate zk+1 as

yk+1 = zk+1 − 1

L
∇E(zk+1) (13)

where
zk+1 = yk +

tk − 1

tk+1
(yk − yk−1). (14)

In particular, the balancing parameter tk has an iterative
formula

tk+1 = (1 +
√
1 + 4t2k)/2 (15)

starting from the initial t0 = 0. The main difference be-
tween (13) and (10) is that the current iteration is not em-
ployed on the previous point yk, but rather at the point
zk+1 which uses a very specific linear combination of the
preceding two points {yk,yk−1}. Obviously the request-
ed additional computation for the fast algorithm is clear-
ly marginal. However, the new iteration possesses a faster
convergence speed of O(1/k2) as opposed to the conven-
tional O(1/k). The specific formula of the linear combi-
nation (14) and the computation of parameter t k in (15) e-
merge from the recursive relation that has been established
in [6] in the framework of fast iterative shrinkage algorithm
(FISTA).

Naturally it follows from ∇E(y) = Ax̃ − b that we
have

∇E(zk+1) = Axk+1 − b (16)

where, as suggested by (7), xk+1 is obtained by

xk+1 = argmin
x

{‖x‖1 +
1

2μ
‖x‖2 − 〈zk+1,Ax− b〉}

= Tμ(μAT zk+1) = μT1(AT zk+1)

In this way, we are ready to summarize the iteration proce-
dures described above in Algorithm 3 as the fast dual-based
linearized Bregman algorithm. The convergence complexi-
ty of our proposed algorithm is further analyzed in the next
section.

Algorithm 3 Fast Dual-Based LB

1: Input: μ > 0, L = μ‖AAT ‖, y−1 = y0 = 1
Lb and

t0 = 0,
2: for k = 0, 1, ..., K do
3: tk+1 =

1+
√

1+4t2k
2 ;

4: zk+1 = yk + tk−1
tk+1

(yk − yk−1);
5: xk+1 = μT1(AT zk+1);
6: yk+1 = zk+1 − 1

L (Axk+1 − b);
7: end for

3.3 Convergence of the Fast Dual-Based Linearized
Bregman Algorithm

In this section, we sketch a proof to show that Algorithm
3 converges at a rate of O(1/k2). The proof is based on
the fact [6] that if {ak, bk} are positive sequences of reals
satisfying

ak − ak+1 ≥ bk+1 − bk and a1 + b1 ≤ c (17)

for some c > 0 and k ≥ 1, then ak < c.
Let {yk} be a sequence generated by Algorithm 3,

ak = 2t2kvk/L, bk = ‖uk‖2, c = ‖y0 − y∗‖2 with vk =
E(yk)−E(y∗) and uk = tky

k−(tk−1)yk−1−y∗. It can
be proved that (17) is satified (readers are referred to [6] for
more details). Hence ak < c which implies that

E(yk)− E(y∗) <
L(‖y0 − y∗‖2)

2t2k
. (18)

It can also be verified that the sequence tk produced by
Algorithm 3 satisfies tk ≥ (k+1)/2, which in conjunction
with (18) shows that for k ≥ 1

E(yk)− E(y∗) <
2L‖y0 − y∗‖2

(k + 1)2
. (19)

Hence yk is an ε-optimal solution with respect to the dual
function E(y) if k > 
C/

√
ε− 1� where C =

√
2L‖y0 −

y∗‖2. As {yk} converges to y∗, the sequence {xk} con-
verges to xμ, the unique minimizer of (5) with the same
rate of O(1/k2).

We remark that our algorithm has the advantage over
FISTA in the sense that FISTA is only limited to minimize
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the unconstrained �1-�2 problem [15]. That said, it takes a
large number of iterations for FISTA to converge to a solu-
tion that satisfies equality constraints Ax = b. However
unlike FISTA, the proposed Algorithm 3 is associated with
a dual problem of (5). As a result, the method is able to
efficiently deal with equality constrained CS problem with
fast converging speed.

4 Performance Evaluation

4.1 Compressive Sensing of 1-D Signals

In the first set of examples, a partial DCT matrix A ∈
R

M×N was used as the measurement matrix whose M
rows were chosen randomly from an N × N DCT matrix
with N = 4 × 103, 2 × 104 and 5 × 104 respectively, and
M = 0.5N . In each case, a K-sparse test signal x∗ ∈ R

N ,
with K = 0.05N and 0.02N respectively, was construct-
ed by assigning K values that are randomly drawn from
U(−1, 1) (i.e., 2*rand(K,1)-1) to K randomly select-
ed locations in an otherwise zero vector of length N . We
remark that partial DCT matrix is known to be efficient for
compressive sensing, and both Ax and ATu can be car-
ried out efficiently by fast DCT or the inverse DCT. The
observed data b was set to b = Ax∗.

Algorithm 3 was implemented and compared with the
conventional LB method [7]. The measurement matrix
constructed above implies that L = μ where μ was set
to 10 in the simulation. The algorithms were terminated
when ‖Axk −b‖/‖b‖ < 10−5 or the number of iterations
exceeds 104. The performance of the algorithms was mea-
sured in terms of number of iterations (NoI) and CPU time
using a PC laptop with a 2.67GHz Intel quad-core proces-
sor. The results are summarized in Tables 1 and 2, where
the reconstructed signal is denoted as xp, which clearly in-
dicate improved performance offered by Algorithm 3 rela-
tive to the conventional LB method.

N M ‖x∗‖0 NoI ‖xp−x∗‖
‖x∗‖ time (s)

4000 2000
0.05N

4011 1.0355e-5 10.7
20000 10000 10000+ N/A 90.2+
50000 25000 10000+ N/A 238.4+
4000 1000

0.02N
7096 1.1380e-5 17.3

20000 5000 10000+ N/A 84.6+
50000 12500 10000+ N/A 223.1+

Table 1: Conventional LB [7]

In addition, Fig. 1 illustrates the number of itera-
tions for Algorithm 3 to achieve a precision of ‖Axk −
b‖/‖b‖ < 10−5 versus μ from 1 to 100 where the param-
eters were set to N = 5 × 104, M = 0.5N , K = 0.02N .
It is observed that the number of iterations increases ap-
proximately linearly with respect to μ. Unlike parameter λ
involved in the �1-�2 unconstrained problem (2) that need-
s to be tuned diligently, Fig. 1 indicates that the number
of iterations w.r.t. μ for a given solution accuracy is rather

N M ‖x∗‖0 NoI ‖xp−x∗‖
‖x∗‖ time (s)

4000 2000
0.05N

220 1.0247e-5 0.6
20000 10000 1004 7.2738e-6 9.1
50000 25000 759 9.7291e-6 19.0
4000 1000

0.02N
346 1.0635e-5 0.8

20000 5000 1680 6.2055e-6 14.7
50000 12500 1202 1.0571e-5 27.4

Table 2: Fast Dual-Based LB (Algorithm 3)

0 20 40 60 80 100
0

1000

2000

3000

4000

μ

k

Figure 1: Number of iterations required by Algorithm 3
(with N = 5 × 104, M = 0.5N , K = 0.02N ) versus
parameter μ.

predicatable. In effect, the iteration number required by
Algorithm 3 for a highly accurate solution remains fairly
small relative to that required by FISTA.

4.2 Compressive Sensing of a Synthetic Image

To evaluate the proposed Algorithm 3 for large-scale data,
we applied it to a test image X∗ of size 512× 512 (see Fig.
2(a)) which was produced by retaining its K = 7 × 103

largest (9-level 2-D Haar) wavelet coefficients of an orig-
inal image known as “man”. Thus X∗ is sparse in the
wavelet domain as 97.33% of its wavelet coefficients are
zero. Image X∗ was then normalized so that its compo-
nents are in between 0 and 1.

To apply Algorithm 3, we adopted a sampling ma-
trix to measure the wavelet coefficients of the image. The
measurement matrix A was a partial 2-D DCT matrix of
size M × N with M = 
0.2N� and N = 5122. The
M rows were chosen randomly from an N × N 2-D D-
CT matrix. We remark that A needs not to be explicitly
produced or stored as any matrix-vector product involv-
ing A can be carried out by fast 2-D DCT. Parameter μ
was set to 100. Note that ‖AAT ‖ = 1, hence L = μ.
The algorithm was terminated as soon as the relative con-
straint error ‖Axk − b‖/‖b‖ falls below 10−2. It took
the proposed fast algorithm 217 iterations (41.1 seconds)
to converge. The relative reconstruction error as measured
by (‖Xp −X∗‖2)/‖X∗‖2 was found to be 0.0116, where
Xp represents the reconstructed image and ‖·‖2 denotes the
matrix Frobenius norm. By comparison, a total of 3168 it-
erations (601.6 seconds) were needed for the conventional
LB algorithm to produce a reconstructed image of a rela-
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tive reconstruction error 0.0118. The original and the re-
constructed images are illustrated in Fig. 2. The visual
difference between the two is hardly noticeable.

4.3 Compressive Sensing of Natural Images

Reconstructions of several 256× 256 natural images were
also carried out to demonstrate efficiency of the proposed
algorithm. Since natural images are sparse in the wavelet
domain, in the simulations, observed data b were obtained
by sampling (9-level 2-D Haar) wavelet coefficients of the
image under a partial 2-D DCT matrix of size M ×N with
N = 65536. The number of measurementM was specified
as 20000, and parameter μ was set to 100. The algorithm
was terminated when ‖Axk − b‖/‖b‖ < 10−2.

The number of iterations (NoI), the relative recon-
struction error, and the CPU time required for reconstruc-
tion of a number of digital images are listed in Tables 3 and
4 for the conventional LB method and the proposed fast
algorithm, respectively. It can be seen that the proposed al-
gorithm converges with number of iterations significantly
less than those obtained from the conventional algorithm.
As a matter of fact, it takes less than 10% of the time for
the fast dual-based LB algorithm to achieve similar recon-
struction performance compared with the conventional LB
method.

Images NoI ‖Xp−X∗‖2

‖X∗‖2
time (s)

camera 6951 0.0988 167.4

lena 7547 0.1311 185.1

barbara 6302 0.1721 147.6

fruits 6928 0.0716 163.9

boat 6641 0.1013 152.6

circles 3016 0.0112 69.1

building 5269 0.0695 117.0

crosses 7562 0.0146 173.8

bird 8654 0.0428 225.1

Table 3: Image Reconstruction by conventional LB

5 Conclusion

A fast dual-based linearized Bregman algorithm has been
proposed. Our analysis is focused on the Lagrangian du-
al function for which a fast iterative scheme is developed
in identifying its global minimizer. This method acceler-
ates the linearized Bregman method and shares a conver-
gence rate of O(1/k2). Experimental results are presented
to demonstrate the superiority of the proposed algorithm

(a)

(b)

Figure 2: (a) Synthesized image “man” with 97.33% zero
wavelet coefficients; (b) Reconstructed image “man” with
20% of DCT sampled coefficients by fast dual-based LB
algorithm with 217 iterations.

Images NoI ‖Xp−X∗‖2

‖X∗‖2
time (s)

camera 515 0.1014 14.7

lena 526 0.1335 12.7

barbara 478 0.1723 11.5

fruits 510 0.0751 12.1

boat 500 0.1039 12.2

circles 249 0.0097 6.0

building 438 0.0728 10.7

crosses 401 0.0126 9.8

bird 597 0.0475 14.7

Table 4: Image Reconstruction by Fast Dual-Based LB

compared with the conventional LB method for CS recov-
ery of images.
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Appendix: Convergence Proof of Dual-Based
LB Algorithm

We prove in the following that the global convergence rate
of Algorithm 2 is O(1/k).

Since E(y) is convex, it follows that

E(y) ≥ E(yk) + 〈y − yk,∇E(yk)〉. (20)

The above inequality together with (9) when y = yk+1

produces

E(y) − E(yk+1)

≥ 〈y − yk+1,∇E(yk)〉 − L

2
‖yk+1 − yk‖2

=
L

2
‖yk+1 − yk‖2 + L〈y − yk,yk − yk+1〉.

(21)

In particular, by substituting y = y∗ (the global minimizer
of E(y)) and y = yk in (21) respectively, the following
two inequalities hold,

E(y∗)− E(yk+1)

≥ L

2
(‖y∗ − yk+1‖2 − ‖y∗ − yk‖2),

(22)

and
E(yk)− E(yk+1) ≥ L

2
‖yk+1 − yk‖2. (23)

Clearly, summing inequality (22) over k = 0, · · · ,K − 1
produces

KE(y∗)−
K−1∑
k=0

E(yk+1) ≥ L

2
(‖y∗−yK‖2−‖y∗−y0‖2).

(24)
In a similar way, we multiply (23) by k and sum over k =
0, · · · ,K − 1, then

K−1∑
k=0

k(E(yk)− E(yk+1)) ≥ L

2

K−1∑
k=0

k‖yk+1 − yk‖2.

(25)
Since it can be shown that

K−1∑
k=0

k(E(yk)− E(yk+1))

=
K−1∑
k=0

(
kE(yk)− (k + 1)E(yk+1) + E(yk+1)

)

= −KE(yK) +
K−1∑
k=0

E(yk+1),

then we have

−KE(yK) +

K−1∑
k=0

E(yk+1) ≥ L

2

K−1∑
k=0

k‖yk+1 − yk‖2.

(26)

The sum of (24) and (26) produces

KE(y∗)−KE(yK) ≥ −L

2
‖y∗ − y0‖2 + c

where c ≥ 0. Therefore,

E(yk)− E(y∗) ≤ L‖y0 − y∗‖2
2k

(27)

At this point, we have shown that Algorithm 2 shares
a convergence rate of O(1/k). That is, yk is an ε-optimal
solution if k ≥ 
C/ε� with C = L‖y0 − y∗‖2/2. When
{yk} converges to y∗, with the same rate the sequence
{xk} converges to xμ, the unique minimizer of (5). In
addition, we observe that the sequence of function values
{E(yk)} produced by Algorithm 2 is non-increasing, as
shown by (23). Further, if we define the Lagrangian func-
tion for (5) as

Lμ(x,y) = ‖x‖1 +
1

2μ
‖x‖2 − 〈y,Ax − b〉, (28)

then based on Algorithm 2, we have

E(yk) = −Lμ(x
k+1,yk), (29a)

E(y∗) = −Lμ(xμ,y
∗). (29b)

Hence,

Lμ(xμ,y
∗)− Lμ(x

k+1,yk) ≤ L‖y0 − y∗‖2
2k

. (30)

Thus, (xk+1,yk) is an ε-optimal solution to problem (5)
with respect to the Lagrangian function if k ≥ 
C/ε� with
C = L‖y0 − y∗‖2/2.
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