
JOINT OPTIMIZATION OF HIGH-ORDER ERROR FEEDBACK AND REALIZATION FOR
ROUNDOFF NOISE MINIMIZAION IN THE FORNASINI-MARCHESINI SECOND MODEL

Takao Hinamoto, Akimitsu Doi
Hiroshima Institute of Technology

Hiroshima 731-5193, Japan
Emails: hinamoto@ieee.org, doi@cc.it-hiroshima.ac.jp

Wu-Sheng Lu
University of Victoria

Victoria, BC, Canada V8W 3P6
Email: wslu@ece.uvic.ca

Abstract— For two-dimensional (2-D) state-space digital filters
described by the Fornasini-Marchesini second local state-space
model, the joint optimization of high-order error feedback
and realization for minimizing roundoff noise at filter output
subject to 𝑙2-scaling constraints is investigated. We present linear-
algebraic techniques that convert the problem at hand into an
unconstrained optimization problem, and present an efficient
quasi-Newton algorithm to solve the unconstrained optimization
problem iteratively, in which closed-form formulas are derived
for fast and accurate gradient evaluation. A numerical example is
presented to illustrate the utility and effectiveness of the proposed
algorithm.

1. INTRODUCTION

In the implementation of IIR digital filters in fixed-point
arithmetic, it is of critical significance to reduce the effects
of roundoff noise at the filter output. Error feedback (EF) is
found effective for the reduction of finite-word-length (FWL)
effects in IIR digital filters, and many EF methods have
been proposed in the past [1]-[10]. Alternatively, the roundoff
noise can also be reduced by introducing a delta operator to
IIR digital filters [11]-[13], or by adopting a new structure
based on the concept of polynomial operators for digital filter
implementation [14]. Another useful approach is to synthesize
the state-space filter structures for the roundoff noise gain to
be minimized by applying a linear transformation to state-
space coordinates subject to 𝑙2-scaling constraints [15]-[18].
As a natural extension of the aforementioned methods, efforts
have been made to develop new methods that combine EF
and state-space realization, for achieving better performance
[19],[20]. Separately and jointly optimized scalar or general
EF matrix for state-space filters have been explored in [19]. In
[20], a quasi-Newton method for joint optimization of general,
diagonal, or scalar EF matrix for state-space digital filters is
proposed.

In this paper, the problem of jointly optimizing high-order
EF and realization for 2-D state-space digital filters described
by the Fornasini-Marchesini second model [21] to minimize
the roundoff noise subject to 𝑙2-scaling constraints is inves-
tigated. The constrained optimization problem encountered is
converted into an unconstrained optimization problem by using
linear-algebraic techniques. An efficient quasi-Newton algo-
rithm [22] is utilized to solve the unconstrained optimization
problem at hand. The proposed technique is applied to the case
where the high-order EF has diagonal matrices. A numerical
example is presented to illustrate the proposed algorithm and

demonstrate its performance.

2. PROBLEM STATEMENT

Consider a stable, locally controllable and locally observable
2-D state-space digital filter (𝑨1,𝑨2, 𝒃1, 𝒃2, 𝒄, 𝑑)𝑛 described
by the Fornasini-Marchesini second model [21]

𝒙(𝑖, 𝑗) = 𝑨1𝒙(𝑖− 1, 𝑗) +𝑨2𝒙(𝑖, 𝑗 − 1)

+𝒃1𝑢(𝑖− 1, 𝑗) + 𝒃2𝑢(𝑖, 𝑗 − 1)

𝑦(𝑖, 𝑗) = 𝒄𝒙(𝑖, 𝑗) + 𝑑𝑢(𝑖, 𝑗)

(1)

where 𝒙(𝑖, 𝑗) is an 𝑛× 1 local state vector, 𝑢(𝑖, 𝑗) is a scalar
input, 𝑦(𝑖, 𝑗) is a scalar output, and 𝑨1, 𝑨2, 𝒃1, 𝒃2, 𝒄 and 𝑑
are real constant matrices of appropriate dimensions.

By taking into account the quantizations performed before
matrix-vector multiplication, an FWL implementation of (1)
with high-order EF can be obtained as

�̃�(𝑖, 𝑗) = 𝑨1𝑸[�̃�(𝑖− 1, 𝑗)] +𝑨2𝑸[�̃�(𝑖, 𝑗 − 1)]

+𝒃1𝑢(𝑖− 1, 𝑗) + 𝒃2𝑢(𝑖, 𝑗 − 1)

+

𝑁∑
𝑘=1

{𝑫1𝑘𝒆(𝑖− 𝑘, 𝑗) +𝑫2𝑘𝒆(𝑖, 𝑗 − 𝑘)}

𝑦(𝑖, 𝑗) = 𝒄𝑸[�̃�(𝑖, 𝑗)] + 𝑑𝑢(𝑖, 𝑗) + 𝒉𝒆(𝑖, 𝑗)

(2)

where 𝒉 is a 1 × 𝑛 error-feedforward vector, 𝑫1𝑘 and 𝑫2𝑘

for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 are referred to as 𝑛 × 𝑛 high-order
EF diagonal matrices, and 𝒆(𝑖, 𝑗) = �̃�(𝑖, 𝑗) − 𝑸[�̃�(𝑖, 𝑗)].
The coefficient matrices 𝑨1, 𝑨2, 𝒃1, 𝒃2, 𝒄 and 𝑑 in (2) are
assumed to have exact fractional 𝐵𝑐-bit representations. The
FWL local state vector �̃�(𝑖, 𝑗) and the output 𝑦(𝑖, 𝑗) all have
𝐵-bit fractional representations, while the input 𝑢(𝑖, 𝑗) is a
(𝐵 − 𝐵𝑐)-bit fraction. The quantizer 𝑸[⋅] in (2) rounds the
𝐵-bit fraction �̃�(𝑖, 𝑗) to (𝐵−𝐵𝑐)-bit after the multiplications
and additions, where the sign bit is not counted. It is assumed
that the roundoff error 𝒆(𝑖, 𝑗) can be modeled as a zero-mean
noise process with covariance 𝜎2𝑰𝑛. By subtracting (2) from
(1), we obtain

Δ𝒙(𝑖, 𝑗) = 𝑨1Δ𝒙(𝑖− 1, 𝑗) +𝑨2Δ𝒙(𝑖, 𝑗 − 1)

+𝑨1𝒆(𝑖− 1, 𝑗) +𝑨2𝒆(𝑖, 𝑗 − 1)

−
𝑁∑

𝑘=1

{𝑫1𝑘𝒆(𝑖− 𝑘, 𝑗) +𝑫2𝑘𝒆(𝑖, 𝑗 − 𝑘)}

Δ𝑦(𝑖, 𝑗) = 𝒄Δ𝒙(𝑖, 𝑗) + (𝒄− 𝒉)𝒆(𝑖, 𝑗)
(3)
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where Δ𝒙(𝑖, 𝑗) = 𝒙(𝑖, 𝑗) − �̃�(𝑖, 𝑗) and Δ𝑦(𝑖, 𝑗) = 𝑦(𝑖, 𝑗) −
𝑦(𝑖, 𝑗). By taking the (𝑧1, 𝑧2)-transform on both sides of (3)
and setting the boundary conditions Δ𝒙(𝑖, 0) = Δ𝒙(0, 𝑗) = 0
for 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , we have

Δ𝑌 (𝑧1, 𝑧2) = 𝑯𝑒(𝑧1, 𝑧2)𝑬(𝑧1, 𝑧2)

𝑯𝑒(𝑧1, 𝑧2) = 𝒄(𝑰𝑛 − 𝑧−1
1 𝑨1 − 𝑧−1

2 𝑨2)
−1

⋅
(
𝑰𝑛 −

𝑁∑
𝑘=1

{𝑧−𝑘
1 𝑫1𝑘 + 𝑧−𝑘

2 𝑫2𝑘}
)
− 𝒉

(4)

where Δ𝑌 (𝑧1, 𝑧2) and 𝑬(𝑧1, 𝑧2) are the (𝑧1, 𝑧2)-transforms
of Δ𝑦(𝑖, 𝑗) and 𝒆(𝑖, 𝑗), respectively. Defining the transition
matrix 𝑨(𝑖,𝑗), the noise transfer function 𝑯𝑒(𝑧1, 𝑧2) can be
written as

𝑯𝑒(𝑧1, 𝑧2) =

∞∑
𝑖=0

∞∑
𝑗=0

𝒄𝑨(𝑖,𝑗)𝑧−𝑖
1 𝑧−𝑗

2

⋅
(
𝑰𝑛 −

𝑁∑
𝑘=1

{𝑧−𝑘
1 𝑫1𝑘 + 𝑧−𝑘

2 𝑫2𝑘}
)
− 𝒉

(5)

where

𝑨(𝑖,𝑗) = 𝑨1𝑨
(𝑖−1,𝑗) +𝑨2𝑨

(𝑖,𝑗−1)

= 𝑨(𝑖−1,𝑗)𝑨1 +𝑨(𝑖,𝑗−1)𝑨2

𝑨(0,0) = 𝑰𝑛, 𝑨(𝑖,𝑗) = 0 for 𝑖 < 0 or 𝑗 < 0.

We define the normalized noise gain 𝐽𝑒1(𝒉,𝑫1,𝑫2) =
𝜎2
𝑜𝑢𝑡/𝜎

2 with 𝑫𝑟 = [𝑫𝑟1,𝑫𝑟2, ⋅ ⋅ ⋅ ,𝑫𝑟𝑁 ] for 𝑟 = 1, 2 as

𝐽𝑒1(𝒉,𝑫1,𝑫2)

= tr
[ 1

(2𝜋𝑗)2

∮
∣𝑧1∣=1

∮
∣𝑧2∣=1

𝑯∗
𝑒(𝑧1, 𝑧2)𝑯𝑒(𝑧1, 𝑧2)

𝑑𝑧1
𝑧1

𝑑𝑧2
𝑧2

]
(6)

Substituting (5) into (6) yields

𝐽𝑒1(𝒉,𝑫1,𝑫2) = tr
[
𝑾 𝑜 − 2

𝑁∑
𝑘=1

{
𝑾 ′

𝑘0𝑫1𝑘 +𝑾 ′
0𝑘𝑫2𝑘

}

+

𝑁∑
𝑘=1

𝑁∑
𝑙=1

{
𝑾 ′

𝑘−𝑙,0𝑫1𝑘𝑫1𝑙 +𝑾 ′
0,𝑘−𝑙𝑫2𝑘𝑫2𝑙

+ 2𝑾 ′′
𝑘𝑙𝑫1𝑘𝑫2𝑙

}− 𝒄𝑇 𝒄+ (𝒄− 𝒉)𝑇 (𝒄− 𝒉)
]

(7)
where

𝑾 𝑜 =

∞∑
𝑖=0

∞∑
𝑗=0

(𝒄𝑨(𝑖,𝑗))𝑇 𝒄𝑨(𝑖,𝑗)

𝑾 ′
𝑘𝑙 =

∞∑
𝑖=0

∞∑
𝑗=0

(𝒄𝑨(𝑖+𝑘,𝑗+𝑙))𝑇 𝒄𝑨(𝑖,𝑗)

𝑾 ′′
𝑘𝑙 =

∞∑
𝑖=0

∞∑
𝑗=0

(𝒄𝑨(𝑖+𝑘,𝑗))𝑇 𝒄𝑨(𝑖,𝑗+𝑙).

It should be noted that 𝑙2-scaling constraints on the local
state vector 𝒙(𝑖, 𝑗) involve the local controllability Gramian
𝑲𝑐 of the filter in (1) which can be computed by

𝑲𝑐 =

∞∑
𝑖=0

∞∑
𝑗=0

𝒇(𝑖, 𝑗)𝒇𝑇 (𝑖, 𝑗) (8)

where 𝒇(𝑖, 𝑗) = 𝑨(𝑖−1,𝑗)𝒃1 +𝑨(𝑖,𝑗−1)𝒃2.
A different yet equivalent local state-space description of

(1), (𝑨1,𝑨2, 𝒃1, 𝒃2, 𝒄, 𝑑)𝑛, can be obtained via a coordinate
transformation 𝒙(𝑖, 𝑗) = 𝑻−1𝒙(𝑖, 𝑗) where

𝑨1 = 𝑻−1𝑨1𝑻 , 𝑨2 = 𝑻−1𝑨2𝑻

𝒃1 = 𝑻−1𝒃1, 𝒃2 = 𝑻−1𝒃2, 𝒄 = 𝒄𝑻 .
(9)

The 𝑙2-scaling constraints are imposed on the local state vector
𝒙(𝑖, 𝑗) so that

(𝑲𝑐)𝑖𝑖 = (𝑻−1𝑲𝑐𝑻
−𝑇 )𝑖𝑖 = 1, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (10)

The problem being considered here is to design an optimal
coordinate transformation matrix 𝑻 as well as high-order
EF diagonal matrices 𝑫𝑟1,𝑫𝑟2, ⋅ ⋅ ⋅ ,𝑫𝑟𝑁 for 𝑟 = 1, 2 that
jointly minimize the noise gain

𝐽𝑒2(𝑻 ,𝑫1,𝑫2)

= tr
[
𝑻 𝑇𝑾 𝑜𝑻 − 2

𝑁∑
𝑘=1

{
𝑻 𝑇𝑾 ′

𝑘0𝑻𝑫1𝑘 + 𝑻 𝑇𝑾 ′
0𝑘𝑻𝑫2𝑘

}

+

𝑁∑
𝑘=1

𝑁∑
𝑙=1

{
𝑻 𝑇𝑾 ′

𝑘−𝑙,0𝑻𝑫1𝑘𝑫1𝑙+𝑻 𝑇𝑾 ′
0,𝑘−𝑙𝑻𝑫2𝑘𝑫2𝑙

+2𝑻 𝑇𝑾 ′′
𝑘𝑙𝑻𝑫1𝑘𝑫2𝑙

}− (𝒄𝑻 )𝑇 𝒄𝑻
]
.

(11)
subject to 𝑙2-scaling constraints in (10) where the error feed-
forward vector 𝒉 is chosen as 𝒉 = 𝒄.

3. JOINT OPTIMIZATION OF HIGH-ORDER
ERROR FEEDBACK AND REALIZATION

To deal with the 𝑙2-scaling constraints in (10), we define

𝑻 = 𝑻 𝑇𝑲
− 1

2
𝑐 . (12)

Then (10) becomes

(𝑻
−𝑇

𝑻
−1

)𝑖𝑖 = 1, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (13)

It is noted that these constraints are always satisfied if 𝑻
−1

assumes the form

𝑻
−1

=

[
𝒕1

∣∣𝒕1∣∣ ,
𝒕2

∣∣𝒕2∣∣ , ⋅ ⋅ ⋅ ,
𝒕𝑛

∣∣𝒕𝑛∣∣
]
. (14)

Substituting (12) into (11), we obtain

𝐽𝑒3(𝑻 ,𝑫1,𝑫2) = tr

[
�̂� 𝑜 − 2

𝑁∑
𝑘=1

{
�̂�

′
𝑘0𝑫1𝑘 + �̂�

′
0𝑘𝑫2𝑘

}

+
𝑁∑

𝑘=1

𝑁∑
𝑙=1

{
�̂�

′
𝑘−𝑙,0𝑫1𝑘𝑫1𝑙+�̂�

′
0,𝑘−𝑙𝑫2𝑘𝑫2𝑙

+2�̂�
′′
𝑘𝑙𝑫1𝑘𝑫2𝑙

}− �̂�𝑇 �̂�

]

(15)
where

�̂� 𝑜 = 𝑻𝑲
1
2
𝑐 𝑾 𝑜𝑲

1
2
𝑐 𝑻

𝑇
, �̂�

′
𝑘𝑙 = 𝑻𝑲

1
2
𝑐 𝑾

′
𝑘𝑙𝑲

1
2
𝑐 𝑻

𝑇

�̂�
′′
𝑘𝑙 = 𝑻𝑲

1
2
𝑐 𝑾

′′
𝑘𝑙𝑲

1
2
𝑐 𝑻

𝑇
, �̂� = 𝒄𝑲

1
2
𝑐 𝑻

𝑇
.

From the foregoing arguments, the problem of obtaining
matrices 𝑻 , 𝑫1 and 𝑫2 that jointly minimize (11) subject
to the 𝑙2-scaling constraints in (10) is now converted into an
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unconstrained optimization problem of obtaining 𝑻 , 𝑫1 and
𝑫2 that jointly minimize 𝐽𝑒3(𝑻 ,𝑫1,𝑫2) in (15).

Let 𝒙 be the column vector that collects the variables in
matrices [𝒕1, 𝒕2, ⋅ ⋅ ⋅ , 𝒕𝑛], 𝑫1 and 𝑫2. Then 𝐽𝑒3(𝑻 ,𝑫1,𝑫2)
in (15) is a function of 𝒙, denoted by 𝐽(𝒙). The proposed
algorithm starts with an initial point 𝒙0 obtained from an initial
assignment 𝑻 = 𝑫𝑟1 = 𝑫𝑟2 = ⋅ ⋅ ⋅ = 𝑫𝑟𝑁 = 𝑰𝑛 for 𝑟 =
1, 2. In the 𝑘th iteration, a quasi-Newton algorithm updates
the most recent point 𝒙𝑘 to point 𝒙𝑘+1 as [22]

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘, (16)

where

𝒅𝑘 = −𝑺𝑘∇𝐽(𝒙𝑘), 𝛼𝑘 = 𝑎𝑟𝑔
[
min
𝛼

𝐽(𝒙𝑘 + 𝛼𝒅𝑘)
]

𝑺𝑘+1 = 𝑺𝑘+
(
1+

𝜸𝑇
𝑘𝑺𝑘𝜸𝑘

𝜸𝑇
𝑘 𝜹𝑘

)
𝜹𝑘𝜹

𝑇

𝑘

𝜸𝑇
𝑘 𝜹𝑘

− 𝜹𝑘𝜸𝑇
𝑘𝑺𝑘+𝑺𝑘𝜸𝑘𝜹

𝑇

𝑘

𝜸𝑇
𝑘 𝜹𝑘

𝑺0 = 𝑰, 𝜹𝑘=𝒙𝑘+1−𝒙𝑘, 𝜸𝑘=∇𝐽(𝒙𝑘+1)−∇𝐽(𝒙𝑘).

Here, ∇𝐽(𝒙) is the gradient of 𝐽(𝒙) with respect to 𝒙, and
𝑺𝑘 is a positive-definite approximation of the inverse Hessian
matrix of 𝐽(𝒙𝑘). This iteration process continues until

∣𝐽(𝒙𝑘+1)− 𝐽(𝒙𝑘)∣ < 𝜀 (17)

is satisfied where 𝜀 > 0 is a prescribed tolerance.
In what follows, we define for 𝑘 = 1, 2, . . . , 𝑁

𝑫1𝑘 = diag{𝛼𝑘1, 𝛼𝑘2, ⋅ ⋅ ⋅ , 𝛼𝑘𝑛}
𝑫2𝑘 = diag{𝛽𝑘1, 𝛽𝑘2, ⋅ ⋅ ⋅ , 𝛽𝑘𝑛}.

(18)

Then the gradient of 𝐽(𝒙) with respect to 𝑻 is found to be

∂𝐽(𝒙)

∂𝑡𝑖𝑗
= 2𝒆𝑇𝑗

[
�̂� 𝑜−

𝑁∑
𝑘=1

{
(�̂�

′
𝑘0+�̂�

′𝑇
𝑘0)𝑫1𝑘

+(�̂�
′
0𝑘+�̂�

′𝑇
0𝑘)𝑫2𝑘

}
+
1

2

𝑁∑
𝑘=1

𝑁∑
𝑙=1

{
2 (�̂�

′′
𝑘𝑙+�̂�

′′𝑇
𝑘𝑙 )𝑫1𝑘𝑫2𝑙

+(�̂�
′
𝑘−𝑙,0+�̂�

′𝑇
𝑘−𝑙,0)𝑫1𝑘𝑫1𝑙+(�̂�

′
0,𝑘−𝑙+�̂�

′𝑇
0,𝑘−𝑙)𝑫2𝑘𝑫2𝑙

}
− �̂�𝑇 �̂�

]
𝑻𝒈𝑖𝑗 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

(19)
where

𝒈𝑖𝑗 = ∂

{
𝒕𝑗

∣∣𝒕𝑗 ∣∣
}
/∂𝑡𝑖𝑗 =

1

∣∣𝒕𝑗 ∣∣3 (𝑡𝑖𝑗𝒕𝑗 − ∣∣𝒕𝑗 ∣∣2𝒆𝑖)

and the gradients of 𝐽(𝒙) with respect to the EF matrices 𝑫1𝑘

and 𝑫2𝑘 are given by

∂𝐽(𝒙)

∂𝛼𝑟𝑝
= −2(�̂�

′
𝑟0)𝑝𝑝 + 2

𝑁∑
𝑙=1

𝛽𝑙𝑝(�̂�
′′
𝑟𝑙)𝑝𝑝

+

𝑁∑
𝑙=1

𝛼𝑙𝑝[(�̂�
′
𝑟−𝑙,0)𝑝𝑝 + (�̂�

′
𝑙−𝑟,0)𝑝𝑝]

∂𝐽(𝒙)

∂𝛽𝑟𝑝
= −2(�̂�

′
0𝑟)𝑝𝑝 + 2

𝑁∑
𝑙=1

𝛼𝑙𝑝(�̂�
′′
𝑙𝑟)𝑝𝑝

+

𝑁∑
𝑙=1

𝛽𝑙𝑝[(�̂�
′
0,𝑟−𝑙)𝑝𝑝 + (�̂�

′
0,𝑙−𝑟)𝑝𝑝]

𝑟 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 ; 𝑝 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.

(20)

We remark that using the closed-form formulas given in (19)
and (20) allows us to quickly and accurately evaluate gradient
∇𝐽(𝒙), which is a key quantity in updating the iterate via
(16), hence ensures high efficiency of the proposed algorithm.

4. AN ILLUSTRATIVE EXAMPLE

As a numerical example, consider a 2-D state-space digital
filter (𝑨1,𝑨2, 𝒃1, 𝒃2, 𝒄, 𝑑)4 described by

𝑨1 =

⎡
⎢⎢⎣

0 0 0 −0.00411
1 0 0 0.08007
0 1 0 −0.42458
0 0 1 1.04460

⎤
⎥⎥⎦

𝑨2 =

⎡
⎢⎢⎣

−0.22608 −0.40594 −0.30955 −0.14469
1.61428 1.61040 1.02336 0.43872
0.10054 −0.60615 −0.45322 −0.31019

−0.00723 0.24580 0.38668 0.56289

⎤
⎥⎥⎦

𝒃1 =
[ −0.01452 0.01234 0.02054 0.04762

]𝑇
𝒃2 =

[
0.01189 0.02351 −0.00637 0.02094

]𝑇
𝒄 =

[
0 0 0 1

]
, 𝑑 = 0.00943.

The local controllability Gramian 𝑲𝑐 and the local observ-
ability Gramian 𝑾 𝑜 of the above filter were computed from
(7) and (8) with truncation (0, 0) ≤ (𝑖, 𝑗) ≤ (100, 100) as

𝑲𝑐 =

⎡
⎢⎢⎣

0.00877 −0.01777 0.00506 −0.02829
−0.01777 0.04636 −0.02382 0.06085
0.00506 −0.02382 0.23071 −0.45355

−0.02829 0.06085 −0.45355 1.05272

⎤
⎥⎥⎦

𝑾 𝑜 = 103

⎡
⎢⎢⎣

1.52516 0.72461 0.35244 0.16613
0.72461 0.35320 0.17607 0.08413
0.35244 0.17607 0.09200 0.04605
0.16613 0.08413 0.04605 0.02539

⎤
⎥⎥⎦ .

The noise gain of the filter with no error feedforward and no
error feedback was then computed from (7) as

𝐽𝑒1(0,0,0) = tr[𝑾 𝑜] = 1.995751× 103.

This noise gain was changed to

𝐽𝑒1(0,0,0) = tr[𝑻 𝑇
𝑜 𝑾 𝑜𝑻 𝑜] = 7.769460× 10

when the 𝑙2-scaling constraints described by

(𝑻−1
𝑜 𝑲𝑐𝑻

−𝑇
𝑜 )𝑖𝑖 = 1 for 𝑖 = 1, 2, 3, 4

are satisfied where

𝑻 𝑜 = diag{0.093632, 0.215308, 0.480320, 1.026019}.
With the EF order set to 𝑁 = 2, the quasi-Newton algorithm

was applied to minimize (15) with tolerance 𝜀 = 10−8 in (17).
It took the algorithm 122 iterations to converge to the solution

𝑻 =

⎡
⎢⎢⎣

0.39346 −0.63325 0.88325 −0.04612
0.96045 0.42245 0.17845 0.07936

−0.61172 0.52495 0.64699 −0.73294
0.10613 −0.34455 0.39887 1.20673

⎤
⎥⎥⎦

𝑫11 = diag{ 0.32201 0.52235 0.55642 0.72838 }
𝑫12 = diag{ 0.14448 −0.19827 −0.25002 −0.23110 }
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𝑫21=diag{ 0.44095 1.10838 0.40658 0.41164 }
𝑫22=diag{ 0.01968 −0.49273 0.02778 −0.00144 }

whose noise gain was found to be

𝐽𝑒3(𝑻 ,𝑫1,𝑫2) = 0.073287.

The profile of 𝐽𝑒3(𝑻 ,𝑫1,𝑫2) during the first 122 iterations
of the algorithm is dipicted in Fig. 1.
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Fig. 1. Profile of 𝐽𝑒3(𝑻 ,𝑫1,𝑫2) during the first 122
iterations.

The other results regarding the noise gain 𝐽𝑒3(𝑻 ,𝑫1,𝑫2)
in (15) were summarized in Table I where the term ”Infinite
Precision” refers to the value of 𝐽𝑒3(𝑻 ,𝑫1,𝑫2) derived from
the optimal 𝑻 , 𝑫1 and 𝑫2, and the term ”3-Bit Quantization”
means that of 𝐽𝑒3(𝑻 ,𝑫1,𝑫2) where only each entry of the
optimal matrix 𝑫 = [𝑫1,𝑫2] was rounded to a power-of-two
representation with 3 bits after the binary point.

TABLE I
PERFORMANCE COMPARISON

𝑁 𝑫1,𝑫2 Infinite
Precision

3-Bit
Quantization

1 Diagonal 0.186190 0.216706

2 Diagonal 0.073287 0.099026

5. CONCLUSION

For 2-D digital filters described by the Fornasini-Marchesini
second model, the joint optimization problem of high-order
EF and realization to minimize the effects of roundoff noise
subject to 𝑙2-scaling constraints has been investigated. Linear
algebraic techniques have been employed to convert the prob-
lem at hand into an unconstrained optimization problem. The
resultant unconstrained optimization problem has been solved
iteratively by applying an efficient quasi-Newton algorithm.
Moreover, closed-form formulas for fast evaluation of the
gradient of the objective function have been derived. The

proposed technique has been applied to the case where high-
order EF has diagonal matrices. A numerical example has
demonstrated the effectiveness of the proposed technique.
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