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Abstract— For two-dimensional (2-D) state-space digital filters
described by the Fornasini-Marchesini second local state-space
model, the joint optimization of high-order error feedback
and realization for minimizing roundoff noise at filter output
subject to [2-scaling constraints is investigated. We present linear-
algebraic techniques that convert the problem at hand into an
unconstrained optimization problem, and present an efficient
quasi-Newton algorithm to solve the unconstrained optimization
problem iteratively, in which closed-form formulas are derived
for fast and accurate gradient evaluation. A numerical example is
presented to illustrate the utility and effectiveness of the proposed
algorithm.

1. INTRODUCTION

In the implementation of IIR digital filters in fixed-point
arithmetic, it is of critical significance to reduce the effects
of roundoff noise at the filter output. Error feedback (EF) is
found effective for the reduction of finite-word-length (FWL)
effects in IIR digital filters, and many EF methods have
been proposed in the past [1]-[10]. Alternatively, the roundoff
noise can also be reduced by introducing a delta operator to
IIR digital filters [11]-[13], or by adopting a new structure
based on the concept of polynomial operators for digital filter
implementation [14]. Another useful approach is to synthesize
the state-space filter structures for the roundoff noise gain to
be minimized by applying a linear transformation to state-
space coordinates subject to l-scaling constraints [15]-[18].
As a natural extension of the aforementioned methods, efforts
have been made to develop new methods that combine EF
and state-space realization, for achieving better performance
[19],[20]. Separately and jointly optimized scalar or general
EF matrix for state-space filters have been explored in [19]. In
[20], a quasi-Newton method for joint optimization of general,
diagonal, or scalar EF matrix for state-space digital filters is
proposed.

In this paper, the problem of jointly optimizing high-order
EF and realization for 2-D state-space digital filters described
by the Fornasini-Marchesini second model [21] to minimize
the roundoff noise subject to ls-scaling constraints is inves-
tigated. The constrained optimization problem encountered is
converted into an unconstrained optimization problem by using
linear-algebraic techniques. An efficient quasi-Newton algo-
rithm [22] is utilized to solve the unconstrained optimization
problem at hand. The proposed technique is applied to the case
where the high-order EF has diagonal matrices. A numerical
example is presented to illustrate the proposed algorithm and
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demonstrate its performance.
2. PROBLEM STATEMENT

Consider a stable, locally controllable and locally observable
2-D state-space digital filter (A1, Az, b1, ba, ¢, d),, described
by the Fornasini-Marchesini second model [21]

x(i,7) = A1x(i — 1,7) + Asz(i,j — 1)
+b1u(i — 1,5) + bau(i,j — 1) 1)
y(i,j) = cx(i,j) + du(i, j)

where x(i,7) is an n x 1 local state vector, u(i,j) is a scalar
input, y(¢, 7) is a scalar output, and A4, Ao, by, by, ¢ and d
are real constant matrices of appropriate dimensions.

By taking into account the quantizations performed before
matrix-vector multiplication, an FWL implementation of (1)
with high-order EF can be obtained as

o(i,j) = A1Q[z(i — 1,5)] + A2Q[&(i,j — 1)]
+byu(i —1,5) + bau(i,j — 1)
N
+> {Due(i — k,j) + Dareli,j — k)}
k=1
y(i,j) = cQ[x(i, j)] + du(i, j) + he(i, j)

where h is a 1 x n error-feedforward vector, Dy and Doy,
for £k = 1,2,--- N are referred to as n x n high-order
EF diagonal matrices, and e(i,j) = &(i,5) — Q[&(i,7)].
The coefficient matrices A1, Ao, by, bo, ¢ and d in (2) are
assumed to have exact fractional B.-bit representations. The
FWL local state vector &(i,j) and the output 3(7, j) all have
B-bit fractional representations, while the input u(i,j) is a
(B — B.)-bit fraction. The quantizer Q[-] in (2) rounds the
B-bit fraction Z(4, j) to (B — B.)-bit after the multiplications
and additions, where the sign bit is not counted. It is assumed
that the roundoff error e(4, j) can be modeled as a zero-mean
noise process with covariance o2I,,. By subtracting (2) from
(1), we obtain

Az(i,j) = A1Az(i — 1,j) + A Ax(i,j — 1)
+Aje(i—1,5)+ Ase(i,j— 1)
N
—> {Due(i — k,j) + Daye(i,j — k)}

k=1
Ay(7aj) = CA:B(Z).?) + (C - h)e(l,j)
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where Az (i,j) = x(i,j) — (i, j) and Ay(i, j) = y(i,j) —
9(i,7). By taking the (z1, z2)-transform on both sides of (3)
and setting the boundary conditions Az (i,0) = Az(0,5) =0
for¢,7 =1,2,---, we have

AY(ZI,ZQ) = He(Z17ZQ)E(Zl,ZQ)
H.(z1,22) = (I, — zl_lAl — 22_1A2)*1
N

~(In — Z{Zl_lek + ZQ_kDQk;}) — h
k=1

“)

where AY (z1,22) and E(z1,29) are the (21, 22)-transforms
of Ay(i,j) and e(s,j), respectively. Defining the transition
matrix A7) the noise transfer function H e(z1,22) can be
written as

oo o0
H(21,2) = ) Y Atz

=03=0, )
'(In — Z{Zl_lek + Zz_kDQk}) —h
k=1

where
AT — AIA(FLJ') + AQA(iJfl)
— A(iflyj)A1 _i_A(iAjfl)A2
A0 — I,, AW =0 for i <0 or 7 <0.
We define the normalized noise gain J.i(h, Dy, D) =
02,,/0% with D, = [D,1,D,a,--- ,D,y] for r = 1,2 as
Je1(h, Dy, Do)
le d22:|

1
= tr[i_ 7{ H}(21,22)H(21,20)— —
(275)% Jiz11=1 a2 2 2

(6)
Substituting (5) into (6) yields

N
Jel(h,Dl,Dg) = tr[WO — QZ{W;CODUC + WIOkDQk}
k=1

N N —

+ Z Z{W;ﬁi—l,OleDll + Wg,k—lDQkDQl
k=1 1=1

+ 2W} D1, Dy} — c'e+ (c— h)(c— h)}

N

where

W, = i i(cA(i’j))TcA(i’j)

i=0 j=0

= Z Z(CA(i+k’j+l))TCA(i7j)
i=0 j=0

WY, = Z Z(CA(i—s-k,j))TcA(i,jH)_
i=0 j=0

It should be noted that /5-scaling constraints on the local
state vector x(7,j) involve the local controllability Gramian
K . of the filter in (1) which can be computed by

K.=Y > f(i,)f"G5) ®)

i=0 j=0

where f(i,j) = AU"1Db + AT,

A different yet equivalent local state-space description of
(1), (A1, As,b1,by,€,d),, can be obtained via a coordinate
transformation Z(i,j) = T~ 'a(i, j) where

A, =T 'AT, A,=T'A,T

by =T by, by=T "'b,,
The l5-scaling constraints are imposed on the local state vector
Z(i,7) so that

(K= (T 'K.T ");=1,

€))

c=cT.

i=1,2,--,n (10)

The problem being considered here is to design an optimal
coordinate transformation matrix T as well as high-order
EF diagonal matrices D1, Dyo,--- , D,y for r = 1,2 that
jointly minimize the noise gain

Je2 (T, Dy, D5)
—tr [TTWOT 23 {T"W ) TDyi + TTW(, T Dy}

N N k=1
+ZZ{TTW;€*I,OTDU€DU +T" W, T Do Dy
k=11=1
+2T" W, TD; Dy} — (cT)TeT|.

11
subject to [5-scaling constraints in (10) where the error feed-
forward vector h is chosen as h = ¢.

3. JOINT OPTIMIZATION OF HIGH-ORDER
ERROR FEEDBACK AND REALIZATION

To deal with the l5-scaling constraints in (10), we define

T-TTK.*. (12)

Then (10) becomes

1

@ T ha=1 i=12-.n

13)

L1
It is noted that these constraints are always satisfied if T
assumes the form

T1:|: tl ’ t2 e tn :|
[l {122l 1|

Substituting (12) into (11), we obtain

(14)

N
- - At a
Jeg(T,Dl,Dg)ZH’[WO -2 E {WkOle +W0kD2k}
N N k=1

~ / .

+Z Z{Wk—l,OleDll+W07k_lD2kD21
k=1 1=1 . ,

+2W DDy} — & c}

(15)
where

~ ~ 1 1.7
Wo :TKCZWOKgT )
AN ~ 1 1 1.7

Al ~ 1 ’ 1.7
Wkl == TKLQ WleCQT
1.7
c=cK:T .
From the foregoing arguments, the problem of obtaining
matrices T', Dy and D5 that jointly minimize (11) subject
to the l-scaling constraints in (10) is now converted into an
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unconstrained optimization problem of obtaining T, D; and
D, that jointly minimize Jeg(T,Dl, D5) in (15).

Let « be the column vector that collects the variables in
matrices [t1,ts,--- ,t,], Dy and Ds. Then Jo3(T', Dy, Dy)
in (15) is a function of «, denoted by J(x). The proposed
algorithm starts with an initial point x, obtained from an initial
assignment T' = D,y = D, = --- = D,y = I,, for r =
1,2. In the kth iteration, a quasi-Newton algorithm updates
the most recent point xj, to point ;1 as [22]

Tpi1 = Tk + apdy, (16)
where
di, = =Sy VJ(xy), «ar=arg [min J(xy + adk)
. YIS\ 6.0, 0T SHS,C')'

So = I, 5k:33k+1733k, 7k:VJ(:ck+1)—VJ(:ck).

Here, VJ(x) is the gradient of J(x) with respect to x, and
S\, is a positive-definite approximation of the inverse Hessian
matrix of J(x). This iteration process continues until

|J(@ht1) — J(xi)| <€ a7
is satisfied where € > 0 is a prescribed tolerance.
In what follows, we define for k =1,2,..., N
D,y = diag{ak1, ar2, -, Qkn} (18)
Doy, = diag{B1, Br2, -, Ben}-

Then the gradient of J(x) with respect to T' is found to be

oJ(x “ T
at( ) _, T{ z:{(kaLWk0 Dy,
ij
/ 1 NN nT
+(W0k+W0k)D2k}+§;;{Q(Wkl+wkl )D1x Doy

A/ ~_IT A/ ~_IT
+(Wi10tW i 10) D1k Dut(Wo AW ) D2 Do }

ivj:1727"' y T

~&'e|Ty,
(19)

where

l1t]1%e:)

1
R Y S
Tl /%% = g

and the gradients of .J(x) with respect to the EF matrices D1y,
and Dy, are given by

o) o N

=/
da _2(W7"0 pp T2 Z Bip(W 1) pp
P =1
a /!
+Zo‘lp r— lo)pp (Wi_r0)pw]
N
4 2
R LA
p

=1
~
+Zﬁlp W0r Do+ Woir)ppl

=1
r=12---,N; p=12,--- n.

We remark that using the closed-form formulas given in (19)
and (20) allows us to quickly and accurately evaluate gradient
VJ(x), which is a key quantity in updating the iterate via
(16), hence ensures high efficiency of the proposed algorithm.

4. AN ILLUSTRATIVE EXAMPLE

As a numerical example, consider a 2-D state-space digital
filter (A1, Az, b1,b2,c,d), described by

[0 0 0 —0.00411
A |1 0 0 008007
=10 1 0 —0.42458

| 0 0 1  1.04460

[ —0.22608 —0.40594 —0.30955 —0.14469
Ao — 1.61428  1.61040  1.02336  0.43872
2= 0.10054 —0.60615 —0.45322 —0.31019

| —0.00723  0.24580  0.38668  0.56289
by = [ —0.01452 0.01234 0.02054 0.04762]T

by = [ 0.01189 0.02351 —0.00637 0.02094 |"
c=[00 0 1], d = 0.00943.

The local controllability Gramian K. and the local observ-
ability Gramian W, of the above filter were computed from
(7) and (8) with truncation (0,0) < (7, 7) < (100, 100) as

0.00877 —0.01777  0.00506 —0.02829
—0.01777  0.04636 —0.02382  0.06085

0.00506 —0.02382 0.23071 —0.45355
—0.02829  0.06085 —0.45355 1.05272
1.52516 0.72461 0.35244 0.16613
0.72461 0.35320 0.17607 0.08413
0.35244 0.17607 0.09200 0.04605
0.16613 0.08413 0.04605 0.02539

The noise gain of the filter with no error feedforward and no
error feedback was then computed from (7) as

Je1(0,0,0) = tr[W,] = 1.995751 x 10°.

K, =

w, =103

This noise gain was changed to
Je1(0,0,0) = tue[TTW ,T,] = 7.769460 x 10
when the [5-scaling constraints described by
(T;'K.T;7); =1 for i=1,2,3,4
are satisfied where
T, = diag{0.093632, 0.215308, 0.480320, 1.026019}.

With the EF order set to N = 2, the quasi-Newton algorithm
was applied to minimize (15) with tolerance € = 1078 in (17).
It took the algorithm 122 iterations to converge to the solution

0.39346 —0.63325 0.88325 —0.04612

o 0.96045 0.42245 0.17845 0.07936
—0.61172 0.52495 0.64699 —0.73294
0.10613 —0.34455 0.39887 1.20673

D;; = diag{0.32201 0.52235 0.55642 0.72838}
D,y = diag{ 0.14448 —0.19827 —0.25002 —0.23110}

1122



Dy;=diag{0.44095 1.10838 0.40658 0.41164 }
Dsy=diag{ 0.01968 —0.49273 0.02778 —0.00144}

whose noise gain was found to be
Jes(T, Dy, Dy) = 0.073287.

The profile of Je3(T, D, D5) during the first 122 iterations
of the algorithm is dipicted in Fig. 1.

10 f ]

L Il L
100 k

Fig. 1. Profile of Jeg(T, D, D,) during the first 122
iterations.

The other results regarding the noise gain J.3(T', D1, D>)
in (15) were summarized in Table I where the term “Infinite
Precision” refers to the value of Jeg(T7 D1, Ds) derived from
the optimal T, D1 and D>, and the term 3-Bit Quantization”
means that of J.3(T", Dy, D3) where only each entry of the
optimal matrix D = [D1, Ds] was rounded to a power-of-two
representation with 3 bits after the binary point.

TABLE I
PERFORMANCE COMPARISON
Infinite 3-Bit
N | D1, D Precision Quantization
1 | Diagonal 0.186190 0.216706
2 | Diagonal 0.073287 0.099026

5. CONCLUSION

For 2-D digital filters described by the Fornasini-Marchesini
second model, the joint optimization problem of high-order
EF and realization to minimize the effects of roundoff noise
subject to l»-scaling constraints has been investigated. Linear
algebraic techniques have been employed to convert the prob-
lem at hand into an unconstrained optimization problem. The
resultant unconstrained optimization problem has been solved
iteratively by applying an efficient quasi-Newton algorithm.
Moreover, closed-form formulas for fast evaluation of the
gradient of the objective function have been derived. The

proposed technique has been applied to the case where high-
order EF has diagonal matrices. A numerical example has
demonstrated the effectiveness of the proposed technique.
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