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Abstract—A new fast monotonic blind deconvolution algo-  approaches [4] [5] are formulated with the aim of pre-
rithmic method is investigated based on the constrained var  serving edges by not over-penalizing discontinuities.eAft
ational minimization framework under the periodic boundary that, also based on TV minimization framework, Tony F.
conditions. The contributions of our methodology are that he ch ' d Chiu-K Wond's alaorithm [61 i d d th
blur operator identification and image restoration can be simul- anan _'UT Wong ongs agorl'F m ,[ ] introduced the
taneously optimized even under high noise level as compared bounded variations blind deconvolution issues and treated
to previous methods. Specifically, the monotone fast iterate  image restoration problems. Lin He, Antonio Marquina and
shrinkage/thresholding algorithm (MFISTA) combined with the  Stanley J. Osher [7] used TV regularization and Bregman
fast gradient projection (FGP) algorithm, is extended to dal 1o ration algorithm to solve blind deconvolution optimiza

with our new proposed algorithm and guarantee the monotonic . - . . -
convergence rate. In addition, the deblurring subproblem § problem. On the topic of image restoration using variationa

enhanced by incorporating a bisection technique to effeately ~ Methods, we also refer to [8].
identify a near optimal value for the regularization parameter In this paper, we report some new developments for the
of the TV-Frobenius objective function quickly and accurately.  restoration of images and identification of kernel based on
Initial experimental results for gray satellite and color wireless variational minimization framework. First, based on pdiio
capsule endoscopy (WCE) images demonstrate the considefab boundary conditions and TV minimizati’on framework, the
performance of the proposed algorithm. ° y ) . N
new blind deconvolution mathematical convex model is for-
Index Terms—Blind Deconvolution, Total Variation, De-  mulated in the specific inner product space, and the image

blurring, Denoising, Bisection Technique and kernel are considered as two independent variableswhic
can be optimized simultaneously. Second, the monotone fast
I. INTRODUCTION iterative shrinkage/thresholding algorithm (MFISTA) com

bined with the fast gradient projection (FGP) algorithm,
proposed recently in [9], is extended to deal with vector

[1]. It acquires images during a slow squirm process ane(alued (color) images with several major changes and also

transmits them by a wireless transmitter. However, raw WCE® shown to exhibit fast theoretical and practical convecge

images are often contaminated by unknown kernel due prf—ate' Tdhlfrd,t%nce the OlpngaI '_dem'f'gd kglrneltls Obtt,a'”fd'th
marily to the complicated situation of intestine and irgin IS used tor the general delurring subproblem to estimate the

restrictions of the equipment in terms of image acquisitiorfmage Incorporating a bisection technique [10].[11] to wne
and transmission. This in turn increases difficulties for acthe rfagularl_zanon parameter Of. the TV—Froben|us objectiv
curate and effective diagnosis for the clinicians. Imagedl function to its optimal value. Simulations are presenteq to
deconvolution technique is an effective algorithmic phae demonstrate the performanc_:e of the_new proposed algont_hm.
for unknown blur identification and image restoration. The rest of the paper is organized as follows. Section

Purpose of digital image restoration is to estimate thél offers image model and previous related work. Section Il

original image from the degraded observed image. The criti(—jescrlbes the new proposed algorithm, the complexity algo-

cal issue to solve this ill-posed inverse problem [2] is @op rithmic analysis and SOme necessary ”Ot"’?“ons-. Sjmula_tion
incorporation of prior knowledge about the original imageresultS are demonstrat(_ed N comparison with eX|st!ng blind
into restoration process, that's why blind deconvolutith s dfacon_volgnotr_] m\e/thod in Section IV and Conclusions are
remains a complicated and challenging research topic jgiven in section V.
image processing. The generalized regularization approac Il. PRELIMINARIES
using anisotropic diffusion has been proposed by You an%\ | Modd
Kaveh [3] based ond! norm and other TV regularization “* mage Mo

Consider a blurring model for discrete images

WCE is a sophisticated technique for diagnosing gas
trointestinal tract diseases with practically no invas@ss

*This work is supported by the National High Technology Reseand
Development Program of China Grant #2006AA040206. f=kxu+w (1)



where k represents an affine map standing for a blurringof continuous variables that belong to a class known as
operator,f denotes an observed noisy image, amdis functions of bounded variations (BV) [15], for convenience
normally distributed additive noise. The restoration peald  we begin by reviewing the concept of their model,

here is to estimate (recover) imagegiven the observation

o . ) . 1
f, operatok and some statistical properties of noiggsuch nJu"nF(u, k) = 5Hku — 113+ Bllull By + B2llKl %y (6)
as mean and variance of). '

It is well known [9] [12] [13] that the restoration at TV regularization works effectively for recovering
hand can be treated as an unconstrained convex optimizatiogjocky” image [16] with consideration of keeping more
problem critical sharp edges of the image. In [7], the authors devel-

L 1 5 oped alternating minimization algorithm to solve two Euler
minimize  Z{lku —f[| + ufullrv (2)  Lagrange equations af andk alternatively. During humeri-

cal experiments, they noticed the minimization problem may

where || - || denotes Frobenius norm of matriy, is reg- . . ) _
ularization parameter that balances the trade-off betweelit have a unique solution. Simulations demonstrate a great

removing noise or small details, anlllry denotes the improvement in quality of image and fast convergence of

two-dimensional (2-D) discrete isotropic total variatiohu, this glgorlthm after_a feyv iterations. Practically, it lsplan
which for a matrixu of sizen, by n, is defined by not simultaneously identify the kernel and restored image o

even worse the Bregman iteration will bring some noise back

to the earlier round.
ni—1n,—1

lullrv = ; jz:l \/(um —Uig1)? + (Ui — Ui je)” C. Monotonic Gradient-Based Algorithms
n—1 np—1 Of particular interest and relevance to the work reported
+ 3 Uin, = Uisin |+ D [Uny g — Un, 1] here is a dual-based approach developed in [9] which yields
i=1 j=1 a monotone fast iterative shrinkage-thresholding alforit
(3)  (MFISTA) where each iteration requires to solve a denoising
B. Previous Work subproblem which is carried out using a fast gradient projec

tion (FGP) algorithm. The basic idea of [9] is to construct a

dual problem in a way similar to that of A. Chambolle [17]

o . > . X ) X here the unconstrained problem of minimizing the objectiv

t|qn S Main purpose 1S to gstlmate image and |den'§|fy kerneXl\jnction without the box constraints was solved by a gradien

without any priori mformatl_on of original observ_ed IMage.  pased algorithm. Due to the limitation in space, the reasler i
. There are many algorlthr_ns t_o solve fche blind decor“lo'referred to paper [9] [18] for the algorithmic details of the

lution for blur operator identification and image restavati MFISTA/FGP technique.

The last two decades have witnessed the growth of increasing

research interest in this effective methodology and a large,; NEw MODEL AND NUMERICAL ALGORITHM

volume of literature covering a variety of image restonatio

problems. In 1996, Y.You and M.Kaveh [3] proposed theA. Mathematical Problem Formulation

following model In order to overcome shortcomings of nonsynchronous
. 1 roblems of the aforementioned methods, our new algorithm
minG(u, k) = = [[ku — f||2 2 K|z, (@ P 1or ' .
u,lk Glu, k) 2” u—fllz + Bullullz + Bal Kl (4) is proposed to address this issue by treating the image and
kernel as two independent variables. The blind deconaniuti
problem is formulated as a boundary constrained convex

HUH%l :/ | 7 ul?dzdy :/ (Ui + u,f/)d:cdy (5) problem based on the TV framework:
Q Q

Restoration of image is usually a numerically ill-posed
problem [2] [14] for general blur operator, blind deconvolu

where H! norm is defined as

Because above functionals are continuous, variational 1
calculus need to be solved by Partial Differential Equation min F'(u,a) = §Ha* u—fl% + pfullrv + pellaln (7)
(PDESs) for minimization which requiring heavy computation '
and this is practically a challenge research topic esggcial wherea denotes the kernel andis the original imageu is
for tackling large scale image. The fatal weakness is that ithe noisy and blurred image, denotes the convolution op-
can not yield a local minimizer. After that, You and Kaveh [3] erator,;z; > 0 and o > 0 are the regularization parameters
and Tony F. Chan and Chiu-Kwong Wong [6] proposed thefor the TV norm of the image and kernel, respectively.
blind deconvolution algorithm using TV-minimization base Suppose the image,; and the kernela, is already
techniques and this method is suitable for large-scale. datknown,a = a; + Aa, u = U + Au, Aa and Au are small
Originally in mathematical texts, TV is defined for function enough, then



procedure will significantly accelerate the convergende ra

ax U =ay, * Uy, + a * AU+ Aax Uy + Aax Au of our algorithm. » _

B A A Suppose the size of the original kerregl is M x M,

=(ap *x U + Aax*Ug) + (ax * AU+ ag * Uy) according to the symmetric characteristic of the Gaussian

—a x U, + Aax Au (8)  kernel matrix, the kernel size can be reduced dramatically

=ax Uy +ag*xU—a,*U, +Aax Au from M x M to My x My, whereM = 2m+1, M1 = m+1,
~ak Up + ag * U — ag * Uy then the kernel can be denoteddywith the size ofd/; x M,
under above assumption, the quadratic pad « Au can 3 A Iy a [ | /I\T }
be ignored temporarily for simple calculation purpose.The k= k| M

' (13)
problem (7) will be revised as

:TakTT
min F(U, a) = =[x Uy +ay #U—F, | 3+ ullrv + g2 | @l v therelAM1 is an identity mfltnx with theATS|ze oAMl x My,
ua 2 ©) |:|:Im 0} . andI:{IM1 I },Imcanbe
m X My . . .
wheref, = a, * u, +f. obtained by flip anm x m identity matn)_(. o
Assuming x = {u,a}, AyX = a# Uy + @ * U Based on the the qbove assumptions and dgfmmon of

and |[X|tv = |Jullrv + ||allrv, based on the inner product Frobieus norm, the fidelity term can also be described as
properties, then problem (9) can be rewritten by

. 1 Az — f|3 =tr (a]AT A, — 23LATT)

minF() = LI Ax Gl bulxln oy 1748 T (@A AR =28

T~ T T T
=tr(ag la] I —2@lATf
subject to : r(apA Aay +1apA Aay, (ap A 1))

m Ml
/a(x)dx ., :22 ((agk))TATAagk)) _ 22 (aﬁ’“))Tqi
i=1 i=1

U(x), a(x) >0 " (ag\];)l)T:AT ~ 5\1/2
max(by, ul) — Ba) < uy.q < min(by,ulk) + Bo) ) (14)
aE,’? —p1<a;; < az(.f“j) + 5 whereg; is theith column ofg =1 ATl f.

a(z,y) = a(—=, —y) More specifically, the detailed mathematical derivations
Y= Y for the gradient expression of the above Frobieus norm can
where 31, 8, are two random small enough numbers ando€ expressed as

by, b, is the lower and upper boundary of the image sepa-
rately. Then model (10) can be solved by two subproblems: "

Vo (A8, — f|2) =2(24" A) @)T - 247F | -
. 1 9 ay H K HF k) |

min £(u) = 5[l Axx — fi [ + plluflrv (11)

u

~1{ ~ I,
. 1 =2 2A3;, —f ~
minF(@) = 3[4~ 5 + el (12) A ( A l i
B. Algorithmic Details for Blind Deconvolution 5 ;tT AlTa7 T
= ol —
For the sake of predicting the feasibility and accuracy
of our proposed blind deconvolution algorithm, this settio —2TTAT (.Aé _ f)|~
is dedicated to the detailed mathematical derivation far ou o k (15)

new methodology under the periodic boundary conditiong nere
[19]. As will become transparent shortly, the Gaussian blugy, _
matrix is essentially quadrantly symmetric version and thi
perfect property offers a significantly breakthrough fostfa
convergence rate of our algorithm. Hence, there are ddfinite
some important revisions and totally different expressioh

k k k k k

At Al el Al el ]
Actually, the mathematical derivation is more compli-
cated for the above gradient expression (15) and the dritica

! - . process is that the calculus results should be consistent wi
our new method particularly for the gradient part. Accoglin yhe qriginal size of the kernel. Considering of the inner
to Gaussian kernel’'s symmetric characters, the originaidde product property, we have

can be reformulated as the following size in order to reduce
to the quantities the convolution operator parameters lisd t (AX,V) = (x, ATV) (16)



where Ax = a* U + a; * U, then (16) can be reformulated 2) If satisfy the terminate condition, then stop;
as what follows otherwise sek = k + 1 and repeat from step
until obtain the approximate optimal kerra),;.
Step 2: Proceed to the modified MFISTA/FGP algorithm
oncea,,; is obtained, then solve the iterative de-
= ({u,a}, {& * v, 05 * v}) blurring subproblem by incorporating the bisection
technique until get the final estimated imagge

(@*Up +ag *U,V) = (ax U, V) + (8 * U,V)
= (a, Oy *V) + <U,ak *V> a7

Due to the limitation of the paper format, formation (17) is
discussed by two related short forms and please refer to tfRemarks:

appendices (a) and (b) for the specific derivation processeil) During implementation, the kernel must be proceeded to

do symmetric step during every iteration.

C. A Bisection Technique for Determining An Optimal (2) This algorithm possesses an exponential convergetee ra

Regularization Parameter

of 1/2%.
Needless to say, using a good or, whenever possible,
optimal value of regularization parameteris crucial as it IV. SIMULATIONS
affects the deblurring performance directly and signifigan In this section, some numerical simulation results illus-

The bisection technique described below is designed tgate the efficiency and effectiveness of our new proposed
determine a near optimal vr.;llue@i',]l,!lckw for the deblurrlng_ fast blind deconvolution algorithm. Because the kernehide
subproblem using the obtained optimal kernel. The tecliquification is an ill-conditioned problem in the presence of
is based on the fact thatis related to the variance of noise  ypservation noise, especially the high level noise which wi
in a simple manner. For the sake of simplicity, we use modelake the situation even worse. This new technique demon-
(1) and formulation (2) to illustrate the technique. It &lls  girates perfect simulation results and offers significagna-
from (1) that if a solutionu from a deblurring algorithm is  {5_Noise (SNR) improvement even the image is contaminated
in perfept agrqement with t.he original noise-free and NONpy the high level noise in comparison with methods [6].
blurred image, it should satisfy A gray cameraman image of si266 x 256 suffering a
2 2 2 9 x 9 Gaussian blur plus a small amount of additive Gaussian
lAU = [l = [l ~ nanso (18) " White noise witho = 10—* is shown in Fig.1(b). The algo-

From (2), we see that parameter controls the trade-off rithm was implemented in MATLAB. A Windows XP Ia.ptop
between the TV-norm of the image and the closenegauof PC With an Intel Core Duo CPU P8700@2.53 GHz with 2.0
to f in Frobenius norm: ifu is set to be too large, then (2) GB of RAM, equipped with MALAB 7.8.0, was used to run
would put a heavier weight on the TV-norm term and, aghe code. The differences;., = 0.06, Sye, = 0.002 are for
a result, the second terriaHAu — f||2. (known as fidelity the image and ti]e kernel. The regula4r|zat|on pgrameters are
term) gets too large, exceedidg noo? and violating (18);  Hima = 3 x 107 and fiker = 1 X 1075, respectwel)_/. The
if 4 is too small, then (2) would weigh the second termnearly optimal kerr_1e| is acquired with the error dlfferer)ce
too heavy, leading to MU_fH%‘ considerably smaller than of 0.0034, then u3|.ng _the MFISTA/FGP mgthod t.O solvmg_
ninao? that violates (18) again. Consequentlydu—f||2. as th_e general deblurring issue. The restore_d image is sh_own in
a function ofy is a monotonic function that increases with ~ F19-1(d). The SNR of the blurred and noise-corrupted image
and a near optimal value ¢f can be identified as one that Was 25.8101 dB. We see that the SNR of fche deblurred image
approximately satisfies (18). Based on the above analysi¥/@s 37.4921 dB that offers 11.6820 dB improvement using
a bisection technique for efficiently identify a near optima the new algorithm based on MFISTA/FGP algorithm. The
value of 1 is developed for the subproblem for deblurring deblurred image performed by algorithm [6] is shown in
issue, for the detailed information about bisection aloni  F19-1(C) with the improved SNR 30.6319 dB. The original
please refer to [10] [11]. _kern_el and |dent|_f|ed one during _the |terat|ons_ are depicted

Due to the consideration of the above analysis, a neWn Fig.2(a) and Fig.2(b). The profiles of error differencelan

fast proposed blind deconvolution technique for efficiency!n® Obiective functional value are exhibited in the Fig)3(a

restoration of image and identification of blur operator carfnd Fig.3(b). Observing the profile of the objective fune&b
be readily sketched as follows: value, the monotonic convergence property will be obvipusl

shown.
: A color WCE image of sizaé40x 122 suffering al1x11
Input =, & function, u1, k2, B1, B2 and the tolerance. Gaussian blur plus a small amount of additive Gaussian white
Step 1: Iterate on k until convergence. noise witho = 10~* is shown in Fig.4(b). Differences of the
1) Solve problems (11)(12), geft, anday,, respec- images and kernels, the regularization parameters of the TV
tively. Frobieus objective functional for the three different chels



(a) Original image (b) Blurred image

i

(c) Chan and Wong (d) Deblurred image

- F

Fig. 1: Performance of the noise level of= 1074.

(a) Original kernel (b) Identified kernel

Fig. 2: Original and Identified kernel.

(BY,. =0.01,8]  =0.0015,pf,  =1x10"* pud  =4x
107*), blue channel(s?, , = 0.005, 8¢, = 0.002, 1%, =

2x 1074 b, = 4x107*). The restored image is shown in
Fig.4(d). The SNR of the blurred and noise-corrupted image
was 24.4758 dB. We see that SNR of the deblurred image
was 33.7907 dB that offered 9.3148 dB improvement. The
SNR achieved by algorithm [6] was found to be 30.3642 dB,
a gain that was 3.4265 dB less than our new algorithm, the
deblurred image with algorithm [6] is shown in Fig.4(c). The
original kernel and the identified one during the iteratians
depicted in Fig.5(a) and Fig.5(b).

(a) Original image (b) Blurred noisy image

(c) Chan and Wong (d) Delurred image

Fig. 4. Performance of the noise level @f= 10~*.

The profiles of identified kernel errors for three channels
during the iterations are depicted in Fig.5.

Kernel errors of three channels
1

— — — Red channel error
0.9 — = Green channel error
Blue channel error
0.8
(a) Error in kernel identification (b) Objective functional value 0.7
12
o6f |
10
0.8 05
8
0.6 6 0.4
03
0.4 4
2 0.2
0.2 0 0.1
0 -2 0 - _80
0 20 40 60 80 0 100 200
iteration k iteration k . )
Fig. 5: The kernel errors for the three different channels
Fig. 3: Profiles of the objective functional value and the V. CONCLUSIONS

kernel error during the iterations.

in the RGB space are: red channéf . = 0.04,8;,, =
0.0025, uf,,, =2 x 1074, ur =4 x 10~*), green channel:

A new monotonic algorithm for blind deconvolution
is proposed which possesses the capability of simultane-
ously kernel identification and image restoration under the
periodic boundary condition. This method is built on a
concept of color total variation in a MFISTA/FGP algorithami



framework, which guarantees the objective functional &alu wherew; ; = 3 3. uk)
possessing the monotonic property and fast convergence

ny no
p—i,q—J VZDCI’V*fk
p=1g=1

rate. Furthermore, once the optimal kernel is obtained, the
bisection technique which is used for solving the subprob-

lem of image deblurring issue and dedicating to determine
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APPENDICES

(a). For the specific derivation of th@, = u,v), it is
cast as

niy n2
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(b). For the detailed information ofaxuy,v), the
detailed deduction is presented as
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