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Abstract—A new fast monotonic blind deconvolution algo-
rithmic method is investigated based on the constrained vari-
ational minimization framework under the periodic boundar y
conditions. The contributions of our methodology are that the
blur operator identification and image restoration can be simul-
taneously optimized even under high noise level as compared
to previous methods. Specifically, the monotone fast iterative
shrinkage/thresholding algorithm (MFISTA) combined with the
fast gradient projection (FGP) algorithm, is extended to deal
with our new proposed algorithm and guarantee the monotonic
convergence rate. In addition, the deblurring subproblem is
enhanced by incorporating a bisection technique to effectively
identify a near optimal value for the regularization parameter
of the TV-Frobenius objective function quickly and accurately.
Initial experimental results for gray satellite and color wireless
capsule endoscopy (WCE) images demonstrate the considerable
performance of the proposed algorithm.

Index Terms—Blind Deconvolution, Total Variation, De-
blurring, Denoising, Bisection Technique

I. I NTRODUCTION

WCE is a sophisticated technique for diagnosing gas-
trointestinal tract diseases with practically no invasiveness
[1]. It acquires images during a slow squirm process and
transmits them by a wireless transmitter. However, raw WCE
images are often contaminated by unknown kernel due pri-
marily to the complicated situation of intestine and intrinsic
restrictions of the equipment in terms of image acquisition
and transmission. This in turn increases difficulties for ac-
curate and effective diagnosis for the clinicians. Image blind
deconvolution technique is an effective algorithmic procedure
for unknown blur identification and image restoration.

Purpose of digital image restoration is to estimate the
original image from the degraded observed image. The criti-
cal issue to solve this ill-posed inverse problem [2] is proper
incorporation of prior knowledge about the original image
into restoration process, that’s why blind deconvolution still
remains a complicated and challenging research topic in
image processing. The generalized regularization approach
using anisotropic diffusion has been proposed by You and
Kaveh [3] based onH1 norm and other TV regularization
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approaches [4] [5] are formulated with the aim of pre-
serving edges by not over-penalizing discontinuities. After
that, also based on TV minimization framework, Tony F.
Chan and Chiu-Kwong Wong’s algorithm [6] introduced the
bounded variations blind deconvolution issues and treated
image restoration problems. Lin He, Antonio Marquina and
Stanley J. Osher [7] used TV regularization and Bregman
iteration algorithm to solve blind deconvolution optimization
problem. On the topic of image restoration using variational
methods, we also refer to [8].

In this paper, we report some new developments for the
restoration of images and identification of kernel based on
variational minimization framework. First, based on periodic
boundary conditions and TV minimization framework, the
new blind deconvolution mathematical convex model is for-
mulated in the specific inner product space, and the image
and kernel are considered as two independent variables which
can be optimized simultaneously. Second, the monotone fast
iterative shrinkage/thresholding algorithm (MFISTA) com-
bined with the fast gradient projection (FGP) algorithm,
proposed recently in [9], is extended to deal with vector
valued (color) images with several major changes and also
is shown to exhibit fast theoretical and practical convergence
rate. Third, once the optimal identified kernel is obtained,it
is used for the general delurring subproblem to estimate the
image incorporating a bisection technique [10] [11] to tune
the regularization parameter of the TV-Frobenius objective
function to its optimal value. Simulations are presented to
demonstrate the performance of the new proposed algorithm.

The rest of the paper is organized as follows. Section
II offers image model and previous related work. Section III
describes the new proposed algorithm, the complexity algo-
rithmic analysis and some necessary notations. Simulation
results are demonstrated in comparison with existing blind
deconvolution method in Section IV and Conclusions are
given in Section V.

II. PRELIMINARIES

A. Image Model

Consider a blurring model for discrete images

f = k ∗ u + w (1)



where k represents an affine map standing for a blurring
operator, f denotes an observed noisy image, andw is
normally distributed additive noise. The restoration problem
here is to estimate (recover) imageu given the observation
f, operatork and some statistical properties of noisew (such
as mean and variance ofw).

It is well known [9] [12] [13] that the restoration at
hand can be treated as an unconstrained convex optimization
problem

minimize
u

1

2
‖ku − f‖2F + µ‖u‖TV (2)

where ‖ · ‖F denotes Frobenius norm of matrix,µ is reg-
ularization parameter that balances the trade-off between
removing noise or small details, and‖u‖TV denotes the
two-dimensional (2-D) discrete isotropic total variationof u,
which for a matrixu of sizen1 by n2 is defined by

‖u‖TV =

n1−1∑

i=1

n2−1∑

j=1

√
(ui,j − ui+1,j)2 + (ui,j − ui,j+1)2

+

n1−1∑

i=1

|ui,n2 − ui+1,n2 |+

n2−1∑

j=1

|un1,j − un1,j+1|

(3)

B. Previous Work

Restoration of image is usually a numerically ill-posed
problem [2] [14] for general blur operator, blind deconvolu-
tion’s main purpose is to estimate image and identify kernel
without any priori information of original observed image.

There are many algorithms to solve the blind deconvo-
lution for blur operator identification and image restoration.
The last two decades have witnessed the growth of increasing
research interest in this effective methodology and a large
volume of literature covering a variety of image restoration
problems. In 1996, Y.You and M.Kaveh [3] proposed the
following model

min
u,k

G(u, k) =
1

2
‖ku − f‖22 + β1‖u‖2H1 + β2‖k‖2H1 (4)

whereH1 norm is defined as

‖u‖2H1 =

∫

Ω

| ▽ u|2dxdy =

∫

Ω

(
u2
x + u2

y

)
dxdy (5)

Because above functionals are continuous, variational
calculus need to be solved by Partial Differential Equations
(PDEs) for minimization which requiring heavy computation
and this is practically a challenge research topic especially
for tackling large scale image. The fatal weakness is that it
can not yield a local minimizer. After that, You and Kaveh [3]
and Tony F. Chan and Chiu-Kwong Wong [6] proposed the
blind deconvolution algorithm using TV-minimization based
techniques and this method is suitable for large-scale data.
Originally in mathematical texts, TV is defined for functions

of continuous variables that belong to a class known as
functions of bounded variations (BV) [15], for convenience,
we begin by reviewing the concept of their model,

min
u,k

F (u, k) =
1

2
‖ku − f‖22 + β1‖u‖2BV + β2‖k‖2BV (6)

TV regularization works effectively for recovering
“blocky” image [16] with consideration of keeping more
critical sharp edges of the image. In [7], the authors devel-
oped alternating minimization algorithm to solve two Euler-
Lagrange equations ofu andk alternatively. During numeri-
cal experiments, they noticed the minimization problem may
not have a unique solution. Simulations demonstrate a great
improvement in quality of image and fast convergence of
this algorithm after a few iterations. Practically, it still can
not simultaneously identify the kernel and restored image or
even worse the Bregman iteration will bring some noise back
to the earlier round.

C. Monotonic Gradient-Based Algorithms

Of particular interest and relevance to the work reported
here is a dual-based approach developed in [9] which yields
a monotone fast iterative shrinkage-thresholding algorithm
(MFISTA) where each iteration requires to solve a denoising
subproblem which is carried out using a fast gradient projec-
tion (FGP) algorithm. The basic idea of [9] is to construct a
dual problem in a way similar to that of A. Chambolle [17]
where the unconstrained problem of minimizing the objective
function without the box constraints was solved by a gradient-
based algorithm. Due to the limitation in space, the reader is
referred to paper [9] [18] for the algorithmic details of the
MFISTA/FGP technique.

III. NEW MODEL AND NUMERICAL ALGORITHM

A. Mathematical Problem Formulation

In order to overcome shortcomings of nonsynchronous
problems of the aforementioned methods, our new algorithm
is proposed to address this issue by treating the image and
kernel as two independent variables. The blind deconvolution
problem is formulated as a boundary constrained convex
problem based on the TV framework:

min
u,a

F (u, a) =
1

2
‖a ∗ u − f‖2F + µ1‖u‖TV + µ2‖a‖TV (7)

wherea denotes the kernel andu is the original image,u0 is
the noisy and blurred image,∗ denotes the convolution op-
erator,µ1 > 0 andµ2 > 0 are the regularization parameters
for the TV norm of the image and kernel, respectively.

Suppose the imageuk and the kernelak is already
known,a = ak +△a, u = uk +△u, △a and△u are small
enough, then



a ∗ u =ak ∗ uk + ak ∗ △u +△a ∗ uk +△a ∗ △u

=(ak ∗ uk +△a ∗ uk) + (ak ∗ △u + ak ∗ uk)

− ak ∗ uk +△a ∗ △u

=a ∗ uk + ak ∗ u − ak ∗ uk +△a ∗ △u

≈a ∗ uk + ak ∗ u − ak ∗ uk

(8)

under above assumption, the quadratic part△a ∗ △u can
be ignored temporarily for simple calculation purpose. Then
problem (7) will be revised as

min
u,a

F (u, a) =
1

2
‖a∗uk+ak ∗u−fk‖

2
F +µ1‖u‖TV+µ2‖a‖TV

(9)
wherefk = ak ∗ uk + f.

Assuming x = {u, a}, Akx = a ∗ uk + ak ∗ u
and ‖x‖TV = ‖u‖TV + ‖a‖TV, based on the inner product
properties, then problem (9) can be rewritten by

min
x

F (x) =
1

2
‖Akx − fk‖

2
F + µ‖x‖TV (10)

subject to :
∫

a(x)dx = 1

u(x), a(x) ≥ 0

max
(
bl, u(k)

p,q − β2

)
≤ up,q ≤ min

(
bu, u(k)

p,q + β2

)

a
(k)
i,j − β1 ≤ ai,j ≤ a

(k)
i,j + β1

a(x, y) = a(−x,−y)

where β1, β2 are two random small enough numbers and
bl, bu is the lower and upper boundary of the image sepa-
rately. Then model (10) can be solved by two subproblems:

min
u

F (u) =
1

2
‖Akx − fk‖

2
F + µ1‖u‖TV (11)

min
a

F (a) =
1

2
‖Akx − fk‖

2
F + µ2‖a‖TV (12)

B. Algorithmic Details for Blind Deconvolution

For the sake of predicting the feasibility and accuracy
of our proposed blind deconvolution algorithm, this section
is dedicated to the detailed mathematical derivation for our
new methodology under the periodic boundary conditions
[19]. As will become transparent shortly, the Gaussian blur
matrix is essentially quadrantly symmetric version and this
perfect property offers a significantly breakthrough for fast
convergence rate of our algorithm. Hence, there are definitely
some important revisions and totally different expressions of
our new method particularly for the gradient part. According
to Gaussian kernel’s symmetric characters, the original kernel
can be reformulated as the following size in order to reduce
to the quantities the convolution operator parameters and this

procedure will significantly accelerate the convergence rate
of our algorithm.

Suppose the size of the original kernelak is M ×M ,
according to the symmetric characteristic of the Gaussian
kernel matrix, the kernel size can be reduced dramatically
from M×M to M1×M1, whereM = 2m+1, M1 = m+1,
then the kernel can be denoted byãk with the size ofM1×M1

ãk ,

[
IM1

Î

]
ak

[
IM1

Î
T
]

= Ĩak Ĩ
T

(13)

whereIM1
is an identity matrix with the size ofM1 ×M1,

Î =
[

Îm 0
]
m×M1

and Ĩ =
[

IM1
Î
T
]

, Îm can be

obtained by flip anm×m identity matrix.
Based on the the above assumptions and definition of

Frobieus norm, the fidelity term can also be described as

‖Aãk − f‖2F =tr
(

ãT
kA

T
Aãk − 2ãT

kA
Tf
)

=tr
(
aT
kÃ

T
Ãak + ÎaT

kÃ
T
Ãak Î

T
− 2(aT

kÃ
T
Ĩ f )
)

=2

m∑

i=1

((
a(k)
i

)T
Ã

T
Ãa(k)i

)
− 2

M1∑

i=1

(
a(k)
i

)T
qi

+
(

a(k)M1

)T
Ã

T
Ãa(k)M1

(14)
whereqi is the ith column ofq = Ĩ

T
A

TĨ f.
More specifically, the detailed mathematical derivations

for the gradient expression of the above Frobieus norm can
be expressed as

∇ak

(
‖Aãk − f‖2F

)
=2
(
2Ã

T
Ã

)
(ãk)

T − 2ATf

[
IM1

Î

]

=2Ã
T
(
2Ããk − f

[
IM1

Î

])

=2Ã
T
(
A

(
Ĩ ãk Ĩ − f Ĩ

))

=2̃I
T
A

T(
Aãk − f

)̃
I

(15)
where
ãk =

[
a(k)1 · · · a(k)

M1−1 a(k)M1
a(k)M1−1 · · · a(k)

1

]
.

Actually, the mathematical derivation is more compli-
cated for the above gradient expression (15) and the critical
process is that the calculus results should be consistent with
the original size of the kernel. Considering of the inner
product property, we have

〈Ax, v〉 = 〈x,ATv〉 (16)



whereAx = a ∗ uk + ak ∗ u, then (16) can be reformulated
as what follows

〈a ∗ uk + ak ∗ u, v〉 = 〈a ∗ uk, v〉+ 〈ak ∗ u, v〉

= 〈a, ûk ∗ v〉+ 〈u, âk ∗ v〉

= 〈{u, a}, {âk ∗ v, ûk ∗ v}〉

(17)

Due to the limitation of the paper format, formation (17) is
discussed by two related short forms and please refer to the
appendices (a) and (b) for the specific derivation processes.

C. A Bisection Technique for Determining An Optimal
Regularization Parameter

Needless to say, using a good or, whenever possible,
optimal value of regularization parameterµ is crucial as it
affects the deblurring performance directly and significantly.
The bisection technique described below is designed to
determine a near optimal value ofµ quickly for the deblurring
subproblem using the obtained optimal kernel. The technique
is based on the fact thatµ is related to the variance of noisew
in a simple manner. For the sake of simplicity, we use model
(1) and formulation (2) to illustrate the technique. It follows
from (1) that if a solutionu from a deblurring algorithm is
in perfect agreement with the original noise-free and non-
blurred image, it should satisfy

‖Au − f‖2F = ‖w‖2F ≈ n1n2σ
2 (18)

From (2), we see that parameterµ controls the trade-off
between the TV-norm of the image and the closeness ofku
to f in Frobenius norm: ifµ is set to be too large, then (2)
would put a heavier weight on the TV-norm term and, as
a result, the second term12‖Au − f‖2F (known as fidelity
term) gets too large, exceeding12n1n2σ

2 and violating (18);
if µ is too small, then (2) would weigh the second term
too heavy, leading to a‖Au− f‖2F considerably smaller than
n1n2σ

2 that violates (18) again. Consequently,‖Au−f‖2F as
a function ofµ is a monotonic function that increases withµ,
and a near optimal value ofµ can be identified as one that
approximately satisfies (18). Based on the above analysis,
a bisection technique for efficiently identify a near optimal
value of µ is developed for the subproblem for deblurring
issue, for the detailed information about bisection algorithm
please refer to [10] [11].

Due to the consideration of the above analysis, a new
fast proposed blind deconvolution technique for efficiency
restoration of image and identification of blur operator can
be readily sketched as follows:

Input : f, δ function,µ1, µ2, β1, β2 and the toleranceε.

Step 1: Iterate on k until convergence.

1) Solve problems (11)(12), getuk andak, respec-
tively.

2) If satisfy the terminate condition, then stop;
otherwise setk = k + 1 and repeat from step1
until obtain the approximate optimal kernelaopt.

Step 2: Proceed to the modified MFISTA/FGP algorithm
once aopt is obtained, then solve the iterative de-
blurring subproblem by incorporating the bisection
technique until get the final estimated imageuf .

Remarks:

(1) During implementation, the kernel must be proceeded to
do symmetric step during every iteration.

(2) This algorithm possesses an exponential convergence rate
of 1/2k.

IV. SIMULATIONS

In this section, some numerical simulation results illus-
trate the efficiency and effectiveness of our new proposed
fast blind deconvolution algorithm. Because the kernel iden-
tification is an ill-conditioned problem in the presence of
observation noise, especially the high level noise which will
make the situation even worse. This new technique demon-
strates perfect simulation results and offers significant Signal-
to-Noise (SNR) improvement even the image is contaminated
by the high level noise in comparison with methods [6].

A gray cameraman image of size256× 256 suffering a
9×9 Gaussian blur plus a small amount of additive Gaussian
white noise withσ = 10−4 is shown in Fig.1(b). The algo-
rithm was implemented in MATLAB. A Windows XP laptop
PC with an Intel Core Duo CPU P8700@2.53 GHz with 2.0
GB of RAM, equipped with MALAB 7.8.0, was used to run
the code. The differencesβima = 0.06, βker = 0.002 are for
the image and the kernel. The regularization parameters are
µima = 3 × 10−4 andµker = 1 × 10−4, respectively. The
nearly optimal kernel is acquired with the error difference
of 0.0034, then using the MFISTA/FGP method to solving
the general deblurring issue. The restored image is shown in
Fig.1(d). The SNR of the blurred and noise-corrupted image
was 25.8101 dB. We see that the SNR of the deblurred image
was 37.4921 dB that offers 11.6820 dB improvement using
the new algorithm based on MFISTA/FGP algorithm. The
deblurred image performed by algorithm [6] is shown in
Fig.1(c) with the improved SNR 30.6319 dB. The original
kernel and identified one during the iterations are depicted
in Fig.2(a) and Fig.2(b). The profiles of error difference and
the objective functional value are exhibited in the Fig.3(a)
and Fig.3(b). Observing the profile of the objective functional
value, the monotonic convergence property will be obviously
shown.

A color WCE image of size140×122 suffering a11×11
Gaussian blur plus a small amount of additive Gaussian white
noise withσ = 10−4 is shown in Fig.4(b). Differences of the
images and kernels, the regularization parameters of the TV-
Frobieus objective functional for the three different channels



(a) Original image (b) Blurred image

(d) Deblurred image(c) Chan and Wong

Fig. 1: Performance of the noise level ofσ = 10−4.
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Fig. 2: Original and Identified kernel.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

iteration k

(a) Error in kernel identification

0 100 200
−2

0

2

4

6

8

10

12

iteration k

(b) Objective functional value

Fig. 3: Profiles of the objective functional value and the
kernel error during the iterations.

in the RGB space are: red channel:
(
βr
ima = 0.04, βr

ker =
0.0025, µr

ima = 2× 10−4, µr
ker = 4× 10−4

)
, green channel:

(
βg
ima = 0.01, βg

ker = 0.0015, µg
ima = 1× 10−4, µg

ker = 4×
10−4

)
, blue channel:

(
βb
ima = 0.005, βb

ker = 0.002, µb
ima =

2× 10−4, µb
ker = 4× 10−4

)
. The restored image is shown in

Fig.4(d). The SNR of the blurred and noise-corrupted image
was 24.4758 dB. We see that SNR of the deblurred image
was 33.7907 dB that offered 9.3148 dB improvement. The
SNR achieved by algorithm [6] was found to be 30.3642 dB,
a gain that was 3.4265 dB less than our new algorithm, the
deblurred image with algorithm [6] is shown in Fig.4(c). The
original kernel and the identified one during the iterationsare
depicted in Fig.5(a) and Fig.5(b).

(a) Original image (b) Blurred noisy image

(d) Delurred image(c) Chan and Wong

Fig. 4: Performance of the noise level ofσ = 10−4.

The profiles of identified kernel errors for three channels
during the iterations are depicted in Fig.5.
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Fig. 5: The kernel errors for the three different channels

V. CONCLUSIONS

A new monotonic algorithm for blind deconvolution
is proposed which possesses the capability of simultane-
ously kernel identification and image restoration under the
periodic boundary condition. This method is built on a
concept of color total variation in a MFISTA/FGP algorithmic



framework, which guarantees the objective functional value
possessing the monotonic property and fast convergence
rate. Furthermore, once the optimal kernel is obtained, the
bisection technique which is used for solving the subprob-
lem of image deblurring issue and dedicating to determine
an optimum regularization parameter rapidly and precisely.
Several simulation studies in comparison with algorithm [6]
are presented to evaluate the considerable performance gain
of the proposed algorithm.
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APPENDICES

(a). For the specific derivation of the〈ak ∗ u, v〉, it is
cast as

〈ak ∗ u, v〉 =
n1∑

p=1

n2∑

q=1

(
m∑

i=−m

m∑

j=−m

a(k)
i,j up−i,q−j

)
· vp,q

=

m∑

i=−m

m∑

j=−m

a(k)i,j

(
n1−i∑

p′=1−i

n2−j∑

q′=1−j

up′,q′ · vp′+i,q′+j

)

=

−m∑

i′=m

−m∑

j′=m

a(k)
−i′,−j′

(
n1+i′∑

p′=1+i′

n2+j′∑

q′=1+j′

up′,q′ · vp′
−i′,q′−j′

)

=

m∑

i=−m

m∑

j=−m

â(k)i,j

(
n1+i∑

p=1+i

n2+j∑

q=1+j

up,q · vp−i,q−j

)

=

m∑

i=−m

m∑

j=−m

â(k)i,j

(
n1∑

p=1

n2∑

q=1

up,q · vp−i,q−j

)

=

n1∑

p=1

n2∑

q=1

up,q

(
m∑

i=−m

m∑

j=−m

â(k)i,j · vp−i,q−j

)

= 〈u, âk ∗ v〉

(b). For the detailed information of〈a ∗ uk, v〉, the
detailed deduction is presented as

〈a ∗ uk, v〉 =
n1∑

p=1

n2∑

q=1

( m∑

i=−m

m∑

j=−m

ai,ju(k)
p−i,q−j

)
· vp,q

=
m∑

i=−m

m∑

j=−m

ai,j
n1∑

p=1

n2∑

q=1

u(k)
p−i,q−j · vp,q

=

m∑

i=−m

m∑

j=−m

ai,j · wi,j

= 〈a, ûk ∗ v〉

wherewi,j =
n1∑
p=1

n2∑
q=1

u(k)
p−i,q−j · vp,q, v = fk.
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