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Abstract— This paper is concerned with the reduction of
roundoff noise effects subject tol2-scaling constraints for state-
space digital filters by means of high-order error feedback
and realization. First, the roundoff noise gain is mimimized
subject to l2-scaling constraints by choosing the coordinate
transformation matrix appropriately. Optimal high-order error-
feedback matrices are then determined so as to minimize the
roundoff noise gain in the state-space digital filter transformed
by the resulting coordinate transformation matrix. Finally a
numerical example is presented to illustrate the utility of the
proposed technique.

I. INTRODUCTION

In the implementation of IIR digital filters in fixed-point
arithmetic, the problem of reducing the effects of roundoff
noise at the filter output is an important subject of study. It
is known that error feedback (EF) is a useful tool for the
reduction of finite-word-length (FWL) effects in IIR digital
filters. Many EF techniques have been reported in the past
for IIR digital filters [1]-[10]. The roundoff noise can also be
reduced by introducing a delta operator to IIR digital filters
[11]-[13] or by applying a new structure based on the concept
of polynomial operators for digital filter implementation [14].
Another useful approach is to construct the state-space filter
structure such that the roundoff noise gain is minimized by
applying a linear transformation to state-space coordinates
subject tol2-scaling constraints [15]-[18]. As a natural exten-
sion of the aforementioned methods, efforts have been made
to develop new methods that combine EF and realization, for
achieving better performance [19]-[20]. Separately-optimized
analytical algorithms have been proposed for state-space dig-
ital filters [19]. In [19], jointly-optimized iterative algorithms
have also been considered for filters with a general or scalar
EF matrix. In [20], a jointly-optimized iterative algorithm has
been developed for state-space digital filters with a general,
diagonal, or scalar EF matrix by applying a quasi-Newton
method.

Unlike the techniques in [19]-[20], in this paper we con-
sider state-space digital filters that utilize high-order EF and
realization and propose an algorithm that separately optimizes
the EF and realization which minimize roundoff noise subject

to l2-scaling constraints. To this end, an appropriate coordi-
nate transformation matrix is first identified by minimizing
the roundoff noise gain. Then high-order EF matrices are
determined so as to minimize the round-off noise gain in the
state-space digital filter constructed by the above coodinate
transformation matrix where the high-order EF matrices are
diagonal or scalar matrices. Finally, a numerical example is
presented to demonstrate its performance.

II. PROBLEM FORMULATION

Consider a stable, controllable and observable state-space
digital filter (A, b, c, d)n described by

x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)
(1)

wherex(k) is ann × 1 state-variable vector,u(k) is a scalar
input, y(k) is a scalar output, andA, b, c and d are real
constant matrices of appropriate dimensions.

By taking the quantizations performed before matrix-vector
multiplication into account, an finite-word-length (FWL) im-
plementation of the state-space model in (1) with error feed-
forward and high-order EF can be expressed as

x̃(k + 1) = AQ[x̃(k)] + bu(k) +
N∑

i=1

Die(k − i + 1)

ỹ(k) = cQ[x̃(k)] + du(k) + he(k)
(2)

whereh andDi for i = 1, 2, · · · , n are referred to as a1×n
error-forward vectorand ann × n EF matrix, respectively,
and

e(k) = x̃(k) − Q[x̃(k)].

In model (2), all coefficient matricesA, b, c, and d are
assumed to have an exact fractionalBc bit representation. The
FWL state-variable vector̃x(k) and output̃y(k) all have aB
bit fractional representation, while inputu(k) is a(B−Bc)-bit
fraction. The quantizerQ[·] in (2) rounds theB bit fraction
x̃(k) to (B−Bc) bits after completing the multiplications and
additions, where the sign bit is not counted. It is assumed that
the roundoff error vectore(k) can be modeled as a zero-mean



noise process with covarianceσ2In. Subtracting (2) from (1)
yields

∆x(k + 1) = A∆x(k) + Ae(k) −
N∑

i=1

Die(k − i + 1)

∆y(k) = c∆x(k) + (c − h)e(k)
(3)

where ∆x(k) = x(k) − x̃(k) and ∆y(k) = y(k) − ỹ(k).
By taking the z-transform on both sides of (3) and setting
∆x(0) = 0, we have

∆Y (z) = He(z)E(z)

He(z) = c(zIn − A)−1

(
A −

N∑
i=1

Diz
−i+1

)
+ c − h

(4)

where∆Y (z) andE(z) represent the z-transforms of∆y(k)
ande(k), respectively.He(z) in (4) is written as

He(z) =
∞∑

k=1

c

(
Ak −

N∑
i=1

Ak−iDi

)
z−k + c − h (5)

where Ai = 0 for i < 0. The normalized noise gain
Je1(h, D) = σ2

out/σ2 with D = [D1, D2, · · · ,DN ] is then
defined by

Je1(h,D) = tr

[
1

2πj

∮
|z|=1

H∗
e(z)He(z)

dz

z

]
(6)

Substituting (5) into (6) yields

Je1(h, D)

= tr

[
AT W oA −

N∑
i=1

{
(AT )iW oDi + DT

i W oA
i
}

+
N∑

i=1

N∑
j=1

DT
i

{
(AT )j−iW o + W oA

i−j
}

Dj

−
N∑

i=1

DT
i W oDi

]
+ (c − h)(c − h)T

(7)
whereW o is the observability Gramian of the filter that can
be obtained by solving the Lyapunov equation

W o = AT W oA + cT c.

Assuming that EF matrciesD1, D2, · · · ,DN are diagonal, the
normalized noise gain in (7) can be written as

Je1(h, D) = tr

[
AT W oA − 2

N∑
i=1

W oA
iDi

+
N∑

i=1

N∑
j=1

W oA
|i−j|DiDj


+ (c − h)(c − h)T .

(8)

It is noted that thel2-scaling constraints on the state variables
involves the controllability GramianKc of the filter computed
by solving the Lyapunov equation

Kc = AKcA
T + bbT .

A different yet equivalent state-space description of (1),
(A, b, c, d)n, can be obtained via a coordinate transformation
x(k) = T−1x(k) with

A = T−1AT , b = T−1b, c = cT . (9)

Accordingly, the controllability and observability Gramians for
the new state-space model(A, b, c, d)n can be expressed as

Kc = T−1KcT
−T and W o = T T W oT , (10)

respectively. Thel2-scaling constraints are imposed on the
state-variable vectorx(k) so that

(Kc)ii = (T−1KcT
−T )ii for i = 1, 2, · · · , n. (11)

Based on the analysis, the problem at hand is to design
the EF diagonal matricesD1, D2, · · · , DN and the optimal
coordinate transformation matrixT separately minimizing

Je2(T , D) = tr

[
A

T
W oA − 2

N∑
i=1

W oA
i
Di

+
N∑

i=1

N∑
j=1

W oA
|i−j|

DiDj

 (12)

subject tol2-scaling constraints in (11) where the error feed-
forward vectorh is assumed to be chosen ash = c.

III. ANALYTIC METHOD FOR SEPARATE
OPTIMIZATION OF (12) SUBJECT TO (11)

The separate minimization is carried out in two major steps.
First, we fix the EF matrices toDi = 0 for i = 1, 2, · · · , N in
(12) so that the objective function is reduced toJe2(T ,0) =
tr[A

T
W oA] which is minimized with respect to matrixT

subject to thel2-scaling constraints in (11). Second, withT
optimized in the first step, (12) is minimized under the fixed
T with respect to matricesD1, D2, · · · , DN . To perform the
first step, we define the Lagrange function

Jo(P , λ) = tr[AT W oAP ] − λ (tr[KcP
−1 − n) (13)

where P = TT T . The optimal coordinate transformation
matrix T can be determined by solving the equations

∂Jo(P , λ)
∂P

= 0,
∂Jo(P , λ)

∂λ
= 0 (14)

which is led to [19]

T =
1√
n

(
n∑

i=1

θi

) 1
2

V− 1
2

[
V

1
2 KcV

1
2

] 1
4

U (15)

where
V = AT W oA



θ2
1, θ

2
2, · · · , θ2

n are the eigenvalues of matrixKcW c andU is
an arbitraryn × n orthogonal matrix.

Suppose that the eigenvalue-eigenvector decomposition of[
V

1
2 KcV

1
2

] 1
2

can be written as[
V

1
2 KcV

1
2

] 1
2

= R diag{θ1, θ2, · · · , θn}RT (16)

where RRT = In. By numerical manupilations, we can
obtain ann × n orthogonal matrixS such that [17]

SΛST =


1 ∗ · · · ∗
∗ 1

. ..
...

...
. . .

. .. ∗
∗ · · · ∗ 1

 (17)

where

Λ = diag{λ1, λ2, · · · , λn}

λi =
nθi

θ1 + θ2 + · · · + θn
for i = 1, 2, · · · , n.

Below we consider two cases of the EF matrices.
Case 1: Dp is a diagonal matrix forp = 1, 2, · · · , N
In this case, matrixDp assumes the form

Dp = diag{dp1, dp2, · · · , dpn} for p = 1, 2, . . . , N. (18)

It follows that

∂Je2(T ,D)
∂dpl

= −2
(
W oA

i)
ll

+ 2
N∑

k=1

dkl

(
W oA

|p−k|)
ll

= 0 for l = 1, 2, · · · , n.
(19)

As a result, matrixDp can be derived from
d1l

d2l

...
dNl

=


p0l p1l · · · p(N−1)l

p1l p0l · · · p(N−2)l

...
...

. . .
...

p(N−1)l p(N−2)l · · · p0l


−1 

p1l

p2l

...
pNl


(20)

whereppl =
(
W oA

p)
ll

.
Case 2: Dp is a scalar matrix forp = 1, 2, · · · , N
In this case, the EF matrices assume the formDp = αpIn

with a scalarαp. It follows that

∂Je2(T , D)
∂αp

= −2 tr
(
W oA

p)
+ 2

N∑
k=1

αk tr
(
W oA

|p−k|)
= 0 for p = 1, 2, · · · , N.

(21)
Therefore, scalarsα1, α2, · · · , αN can be computed using

α1

α2

...
αN

 =


q0 q1 · · · qN−1

q1 q0 · · · qN−2

...
...

. . .
...

qN−1 qN−2 · · · q0


−1 

q1

q2

...
qN


(22)

whereqp = tr
(
W oA

p)
.

IV. A NUMERICAL EXAMPLE

As a numerical example, we consider a state-space digital
filter (A, b, c, d)3 specified by

A =

 0 1 0
0 0 1

0.453770 −1.556160 1.974860


b =

[
0 0 0.2420961

]T

c =
[

0.095706 0.095086 0.327556
]

d = 0.015940.

The controllability and observability GramiansKc and W o

of the above filter were computed as

Kc =

 1.000000 0.872501 0.562822
0.872501 1.000000 0.872501
0.562822 0.872501 1.000000


W o =

 0.820742 −2.035323 1.628159
−2.035323 5.307270 −4.264912
1.628159 −4.264912 3.941488

 .

The noise gain of the filter with no error feedforward and no
EF was then computed from (8) as

Je1(0,0) = 10.0695.

The optimal coordinate transformation matrix was constructed
using (15) as

T =

 −1.066701 1.326232 0.257799
−0.321892 1.155334 −0.070508

0.252063 0.827689 −0.002870

 .

With T found and fixed, we now consider two cases: one
employs a single EF matrixD1 (i.e. N = 1) and the other
uses two EF matricesD1 and D2 (i.e. N = 2). In each
case, EF matrix assumes the form of either diagonal or scalar
matrices. The EF matrices were optimized using the method
presented in Section 3, and the results in terms of noise
gain Je2(T , D) are summarized in Table I, where“ 3-Bit
Quantization”refers to value ofJe2(T , D) where the fraction
part of each component ofD was rounded to 3 bits in a
power-of-two representation. From the table, it is observed that
(i) Diagonal EF matrices offer improved performance relative
to their scalar counterparts; (ii) employing more EF matrices
helps reduce the noise gain in a significant way, and (iii)
compared with their infinite-precision counterparts, the use
of quantized EF matrices reduces implementation complexity
with only slightly degraded performance.

TABLE I
SEPARATE OPTIMIZATION

N D Infinite Precision 3-Bit Quantization

1
Diagonal 0.1209 0.1252

Scalar 0.1325 0.1368

2
Diagonal 0.0612 0.0659

Scalar 0.0992 0.1038



V. CONCLUSION

The separate optimization problem of high-order EF and re-
alization for roundoff noise minimization subject tol2-scaling
constraints in state-space digital filters has been investigated.
After choosing the optimal coordinate transformation matrix
under thel2-scaling constraints, high-order EF matrices are
determined so as to minimize the roundoff noise gain in the
optimal realization where high-order EF matrices are diagonal
or scalar matrices. A numerical example has been presented
to demonstrate the validity and effectiveness of the proposed
technique. A technique for solving the joint optimization
problem of high-order EF and realization for roundoff noise
minimization in state-space digital filters has been reported in
[21].

REFERENCES

[1] H. A. Spang, III and P. M. Shultheiss, “Reduction of quantizing noise by
use of feedback,”IRE Trans. Commun. Syst., vol. CS-10, pp. 373-380,
Dec. 1962.

[2] T. Thong and B. Liu, “Error spectrum shaping in narrowband recursive
digital filters,” IEEE Trans. Acoust. Speech, Signal Processing, vol. 25,
pp. 200-203, Apr. 1977.

[3] T. L. Chang and S. A. White, “An error cancellation digital filter
structure and its distributed-arithmetic implementation,”IEEE Trans.
Circuits Syst., vol. 28, pp. 339-342, Apr. 1981.

[4] D. C. Munson and D. Liu, “Narrowband recursive filters with error
spectrum shaping,”IEEE Trans. Circuits Syst., vol. 28, pp. 160-163,
Feb. 1981.

[5] W. E. Higgins and D. C. Munson, “Noise reduction strategies for digital
filters: Error spectrum shaping versus the optimal linear state-space
formulation,” IEEE Trans. Acoust. Speech, Signal Processing, vol. 30,
pp. 963-973, Dec. 1982.

[6] M. Renfors, “Roundoff noise in error-feedback state-space filters,”Proc.
Int. Conf. Acoustics, Speech, Signal Processing(ICASSP’83), pp. 619-
622, Apr. 1983.

[7] W. E. Higgins and D. C. Munson, “Optimal and suboptimal error-
spectrum shaping for cascade-form digital filters,”IEEE Trans. Circuits
Syst., vol. 31, pp. 429-437, May 1984.

[8] T. I. Laakso and I. O. Hartimo, “Noise reduction in recursive digital
filters using high-order error feedback,”IEEE Trans. Signal Processing,
vol. 40, pp. 1096-1107, May 1992.

[9] P. P. Vaidyanathan, “On error-spectrum shaping in state-space digital
filters,” IEEE Trans. Circuits Syst., vol. 32, pp. 88-92, Jan. 1985.

[10] D. Williamson, “Roundoff noise minimization and pole-zero sensitiv-
ity in fixed-point digital filters using residue feedback,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. 34, pp. 1210-1220, Oct. 1986.

[11] G. Li and M. Gevers, “Roundoff noise minimization using delta-operator
realizations,”IEEE Trans. Signal Processing, vol. 41, pp. 629-637, Feb.
1993.

[12] D. Williamson, “Delay replacement in direct form structures”,IEEE
Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 453-460, Apr.
1988.

[13] M. M. Ekanayake and K. Premaratne, “Two-dimensional delta-operator
formulated discrete-time systems: Analysis and synthesis of minimum
roundoff noise realizations,”Proc. IEEE Int. Symp. Circuits Syst.(IS-
CAS’96), vol. 2, pp. 213-216, May 1996.

[14] G. Li and Z. Zhao, “On the generalized DFIIt structure and its state-
space realization in digital filter implementation,”IEEE Trans. Circuits
Syst. I, vol. 51, pp. 769-778, Apr. 2004.

[15] S. Y. Hwang, “Roundoff noise in state-space digital filtering: A general
analysis,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 24, pp.
256-262, June 1976.

[16] C. T. Mullis and R. A. Roberts, “Synthesis of minimum roundoff noise
fixed-point digital filters,”IEEE Trans. Circuits Syst., vol. 23, pp. 551-
562, Sept. 1976.

[17] S. Y. Hwang, “Minimum uncorrelated unit noise in state-space digital
filtering,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 25, pp.
273-281, Aug. 1977.

[18] L. B. Jackson, A. G. Lindgren and Y. Kim, “Optimal synthesis of
second-order state-space structures for digital filters,”IEEE Trans.
Circuits Syst., vol. 26, pp. 149-153, Mar. 1979.

[19] T. Hinamoto, H. Ohnishi and W.-S. Lu, “Roundoff noise minimiza-
tion of state-space digital filters using separate and joint error feed-
back/coordinate transformation,”IEEE Trans. Circuits Syst. I, vol. 50,
pp. 23-33, Jan. 2003.

[20] W.-S. Lu and T. Hinamoto, “Jointly optimized error-feedback and
realization for roundoff noise minimization in state-space digital filters,”
IEEE Trans. Signal Processing, vol. 53, pp. 2135-2145, June 2005.

[21] T. Hinamoto, A. Doi and W.-S. Lu, “Jointly optimized high-order error
feedback and realization for roundoff noise minimization in state-space
digital filters”, Proc. 54th 2011 IEEE Int. Midwest Symp. Circuits Syst.,
Seoul, Korea, CD-ROM, Aug. 2011.


