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ABSTRACT
Sequential quadratic programming (SQP) algorithms are wi-
dely recognized to be among the most successful algorithms
for general constrained optimization. This paper attempts
to develop an SQP-based method for equiripple FIR filters
with low group delay. We explain how the complemen-
tarity conditions in an SQP design algorithm help reduce
the amount of computation required to update the Lagrange
multipliers in a significant manner. Design examples are
presented to illustrate the algorithm’s performance that com-
pares favorably with several existing design methods.

1. INTRODUCTION

Minimax design of linear-phase FIR filters can be carried
out efficiently using the Parks-McClellan algorithm [1] and
its variants [2]. These algorithms however do not apply to
the class of FIR filters with low group delay (in passband),
which is the subject of study in this paper. A motivation
for this type of design is that an FIR filter of given length
may achieve an amplitude response comparable to that of its
linear-phase counterpart, but with reduced passband group
dely, a property desirable in many applications. The co-
efficients of such a filter are no longer symmetrical about
its midpoint, hence the entire set of filter coefficients is in-
volved in the design process.

Several methods are available for the design of this class
of filters. These include the adaptive approach [3], con-
strained optimization approach [4], semidefinite program-
ming (SDP) approach [5], and least-pth approach [6]. Among
others, the SDP method appears to perform very well, es-
pecially when constraints on the approximation bound are
imposed over a dense grid of frequencies. However, the
large number of constrained inevitably effects the design ef-
ficiency and, in the case of high-order filters, may cause nu-
merical difficulties. In this paper, we describe an attempt to
develop an sequential quadratic programming (SQP) method
for the design. SQP algorithms have been widely recog-
nized to be among the most successful for constrained non-
linear optimization problems [7], and as such it is naturally

considered to be a candidate design tool for the problem at
hand. More important, as will become clear shortly, the
complementarity conditions in an SQP-based design for-
mulation lead to a very small number of nonzero Lagrange
multipliers relative to the number of the constraints imposed
in the design. As a result, the amount of computation in-
volved in a single solution iteration is fairly moderate even
for high-order filters. Simulations are presented to demon-
strated the proposed algorithm’s performance in comparison
with several existing design methods.

2. PROBLEM FORMULATION

We seek to find an FIR transfer function

H(z) =
N−1∑
i=0

hiz
−i

to approximate a desired frequency response Hd(ω) in ac-
cordance with a weighted minimax criterion

minimize
h

{max
ω∈Ω

|W (ω)[H(ejω) − Hd(ω)]|} (1)

where h = [h0 h1 · · · hN−1]T , W (ω) ≥ 0 is a weight-
ing function, and Ω = {ω : 0 ≤ ω ≤ π}. Let η be an
upper bound of W 2(ω)|H(ejω)−Hd(ω)|2, then (1) can be
converted to

minimize η (2a)

subject to: W 2(ω)|H(ejω) − Hd(ω)|2 ≤ η for ω ∈ Ω (2b)

The desired frequency response Hd(ω) is complex-valued
and assumes the form Hd(ω) = Hdr(ω) − jHdj(ω), and
the frequency response of the filter to be designed can be
expressed as H(ejω) = hT c(ω)− jhT s(ω) where c(ω) =
[1 cos ω · · · cos(N − 1)ω]T and s(ω) = [0 sinω · · ·
sin(N − 1)ω]T . Hence the constraint in (2b) can be written
as a(ω, η,h) ≥ 0 for ω ∈ Ω, where

a(ω, η,h) =

η − W 2(ω){[hT c(ω) − Hdr(ω)]2 + [hT s(ω) − Hdj(ω]2}
(3)



For feasible exercise of optimization algorithms, the con-
straint in (2b) is imposed on a dense grid of frequencies,
Ωd = {ω1, ω2, . . . , ωK} ⊂ Ω, in the frequency bands of
interest. Consequently, the problem in (2) becomes

minimize η (4a)

subject to: a(ωi, η, h) ≥ 0 1 ≤ i ≤ K (4b)

If we define x = [η hT ]T , ai(x) = a(ωi, η,h), and e =
[1 0 · · · 0]T , then problem (4) can be written as

minimize eT x (5a)

subject to: ai(x) ≥ 0 1 ≤ i ≤ K (5b)

3. DESIGN METHOD

3.1. An SQP-based algorithm for problem (5)

The Lagrangian of (5) is defined by

L(x,µ) = eT x −
K∑

i=1

µiai(x)

where µ = [µ1 · · · µK ]T collects K Lagrange multipliers.
The Karush-Kuhn-Tucker (KKT) conditions of problem (5)
are the first-order necessary conditions for a solution of (5)
which are given as follows [8]:

∇L(x,µ) = e −
K∑

i=1

µi∇ai(x) = 0 (6a)

ai(x) ≥ 0 1 ≤ i ≤ K (6b)

µi ≥ 0 1 ≤ i ≤ K (6c)

µiai(x) = 0 1 ≤ i ≤ K (6d)

The conditions in (6d) are called complementarity condi-
tions which imply that if ai(x) �= 0 (which in conjunction
with (6b) means ai(x) > 0), then the ith Lagrange multi-
plier µi must be zero. In the context of filter design, this
simply means that if at a certain frequency ωi the approx-
imation error is smaller than necessary (i.e., smaller than
bound η), then the associated constraint ai(x) ≥ 0 does not
have to be involved in the next iteration (this degree of free-
dom is ensured because of µi = 0). In all computer simula-
tions we have conducted, the number of nonzero Lagrange
multipliers, say K̂, is only a small fraction of the total num-
ber of constraints K(K̂ < 0.1K). As a result, the amount
of computation requested for updating the Lagrange multi-
plier µk is not significant even for high-order filters. We
shall come back to this point when implementation details
of the proposed algorithm are described.

Now suppose we start with a reasonable initial point x0

and an initial µ0 = 0. In the kth iteration, {xk, µk} is
updated to {xk+1, µk+1} = {xk + δx,µk + δµ} such that

the KKT conditions in (6) are approximately satisfied up to
the first order. The first-order approximation of (6) leads to

Y kδx + e − AT
k µk+1 = 0 (7a)

Akδx ≥ −ak (7b)

µk+1 ≥ 0 (7c)

(µk+i)i(Akδk + ak)i = 0 1 ≤ i ≤ K (7d)

where Y k = ∇2L(xk,µk), ak = [a1(xk) · · · aK(xk)]T ,
and

Ak =



∇T a1(xk)

...
∇T aK(xk)




K×(N+1)

(7e)

The ith row of Ak assumes the form [1 W 2(Hdrc
T +

Hdjs
T−(ccT +ssT )hT

k )] where the frequency-dependence
of W, c, x, Hdr, and Hdj at ω = ωi has been omitted.
Eq. (7a)–(7d) are the exact KKT conditions of the quadratic
programming (QP) problem

minimize
1
2
δT Y kδ + δT e (8a)

subject to: Akδ ≥ −ak (8b)

Now if δx is the solution of (8), then xk is updated to
xk+1 = x − k + δx. Based on the analysis earlier, the
nonzero Lagrange multipliers can be updated using (7a) as

µ̂k+1 = (AakAT
ak)−1Aak(Y kδx + e) (9)

where the rows of Aak are those rows of Ak satisfying
(Akδx + ak)i = 0 and µk+1 is obtained by inserting zeros
wherever necessary into µ̂k+1. The fact that only a small
fraction of constraints in (8b) is active also implies that the
QP problem in (8) can be solved efficiently using for exam-
ple an active-set method [8].

The iteration continues until a convergence criterion in
terms of ‖δx‖2 or the total number of iterations is met.The
optimal impulse response of the length-N FIR filter can be
obtained from the solution vector x∗ as h∗ = x∗(2 : end).

3.2. Convex relaxation of problem (8)

A strictly convex relaxation of problem (8) can be made by
replacing Y k in (8a) with a positive definite matrix, still
denoted by Y k, recursively as follows: with Y 0 = I the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) recursion [8] up-
dates Y k to

Y k+1 = Y k +
ηkηT

k

δT
x ηk

− vkvT
k

δT
x vk

(10a)

where



vk = Y kδx (10b)

ηk = θγk + (1 − θ)vk (10c)

γk = −(Ak+1 − Ak)T µk+1 (10d)

θ =




1 if δT
x (γk − 0.2vk) ≥ 0

0.8δT

x vk

δT

x (vk−γk)
otherwise

(10e)

A desirable feature of the BFGS update is that if Y k is
positive definite, then Y k+1 is also positive definite. With
Y 0 = I , therefore, every QP subproblems in the entire de-
sign process is guaranteed to be a convex QP which can be
solved efficiently using an interior-point or active set algo-
rithm.

3.3. A closed-form line search

A further enhancement of the SQP algorithm described above
is made by including a line search step in the algorithms that
yields a positive scalar αk that minimizes a potential func-
tion ψ(xk + αδx) over α ∈ [0, 1] where δx is the solution
of (8) with Y k produced using (10). The potential function
adopted here assumes the form

ψ(x) = eT x −
K∑

i=1

(µk)iai(x) (11)

With x = xk + αδx, (11) becomes

ψ(xk + αδx) = eT (xk + αδx) −
K∑

i=1

(µk)iai(xk + αδx)

(12)

Since µk ≥ 0, minimizing ψ(xk +αδx) helps reducing the
objective function in (5a) and, in case some ai(xk +δx) fail
to hold the constraints in (5b), reducing the degree of viola-
tion of these constraints. In this way, the inclusion of a line
search step in an SQP algorithm turns out to be of great ben-
efit, although it adds an additional amount of computation to
the algorithm. It follows from (3) and (12) (and the fact that
µk ≥ 0) that the potential function ψ(xk +αδx) in (12) is a
second order polynomial of α with a positive coefficient for
α2, i.e., ψ(xk +αδx) = a

(k)
2 α2 +a

(k)
1 α+a

(k)
0 with a

(k)
2 >

0, which achieves its minimum at α∗ = −a
(k)
1 /2a

(k)
2 . Thus

we may choose αk = min{α∗, 1}.

4. DESIGN EXAMPLES

The method described above was applied to three FIR filters
with low group delay.
Example 1 A minimax design of lowpass FIR filter of length
91 with group delay d = 40, passband edge ωp = 0.475π

and stopband edge ωa = 0.525π was designed using the
proposed method with K = 1100. The weighting function
is piecewise constant with W (ω) ≡ 0.2 in the passband,
W (ω) ≡ 2 in the stopband and 0 elsewhere. It took the
algorithm 150 iterations to converge to a solution FIR fil-
ter with maximum passband ripple ep = 0.0189, minimum
stopband attenuation ea = 54.41 dB, and maximum relative
group delay deviation in passband egd = 0.026. The aver-
age number of active constraints was found to be K̂ = 22.
The amplitude amplitude response and passband ripple of
the filter obtained are depicted in Fig. 1a and b, respectively.
For comparison, an FIR filter with identical design specifi-
cations was designed in [5] using the SDP method, and the
minimax design gave ep = 0.0191, ea = 54.26 dB, and
egd = 0.027.
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Fig. 1. (a) The amplitude response and (b) passband ripple
of the filter in Example 1.

Example 2 A bandpass filter of length 161 with group de-
lay d = 65, ωa1 = 0.375π, ωp1 = 0.4π, ωp2 = 0.6π,
ωa2 = 0.625π was designed by the proposed method with
K = 1200, and W (ω) ≡ 1 in the passband and stopband
and 0 elsewhere. It took the algorithm 100 iterations to con-
verge to a solution filter with ep = 0.0127, ea = 38.04 dB,
and egd = 0.041. The average number of active constraints
was K̂ = 40. The amplitude response and passband ripple
of the filter obtained are shown in Fig. 2(a) and (b), respec-



tively. For comparison, an FIR filter with the same design
specifications was designed in [6] using the least pth meth-
ods. The results were ep = 0.0176, ea = 37.49 dB, and
egd = 0.043.
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Fig. 2. (a) The amplitude response and (b) passband ripple
of the filter in Example 2.

Example 3 The proposed algorithm was found reliable for
the design of a variety of equiripple FIR filters with low
group delay. This example presents a bandpass FIR filter of
relatively high order. The design parameters were N = 281,
d = 120, fa1 = 0.31π, fp1 = 0.35π, fp2 = 0.65π,
fa2 = 0.69π, W (ω) ≡ 1 in the passbands and stopband,
and K = 1400. It took the algorithm 110 iterations to con-
verge to a solution FIR filter with ep = 2.4833 × 10−5,
ea = 91.43dB, and egd = 2.043 × 10−4. The amplitude
response and passbnad ripple of the filter are shown in Fig.
3a and b, respectively.
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