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ABSTRACT

Sequential quadratic programming (SQP) algorithmsarewi-
dely recognized to be among the most successful algorithms
for general constrained optimization. This paper attempts
to develop an SQP-based method for equiripple FIR filters
with low group delay. We explain how the complemen-
tarity conditions in an SQP design algorithm help reduce
the amount of computation required to update the Lagrange
multipliers in a significant manner. Design examples are
presented toillustrate the al gorithm’s performance that com-
pares favorably with several existing design methods.

1. INTRODUCTION

Minimax design of linear-phase FIR filters can be carried
out efficiently using the Parks-McClellan algorithm [1] and
its variants [2]. These algorithms however do not apply to
the class of FIR filters with low group delay (in passband),
which is the subject of study in this paper. A motivation
for this type of design is that an FIR filter of given length
may achieve an amplitude response comparableto that of its
linear-phase counterpart, but with reduced passband group
dely, a property desirable in many applications. The co-
efficients of such a filter are no longer symmetrical about
its midpoint, hence the entire set of filter coefficientsisin-
volved in the design process.

Several methods are available for the design of thisclass
of filters. These include the adaptive approach [3], con-
strained optimization approach [4], semidefinite program-
ming (SDP) approach [5], and |east-pth approach [6]. Among
others, the SDP method appears to perform very well, es-
pecially when constraints on the approximation bound are
imposed over a dense grid of frequencies. However, the
large number of constrained inevitably effectsthe design ef-
ficiency and, in the case of high-order filters, may cause nu-
merical difficulties. In this paper, we describe an attempt to
develop an sequential quadratic programming (SQP) method
for the design. SQP agorithms have been widely recog-
nized to be among the most successful for constrained non-
linear optimization problems[7], and as such it is naturally

considered to be a candidate design tool for the problem at
hand. More important, as will become clear shortly, the
complementarity conditions in an SQP-based design for-
mulation lead to a very small nhumber of nonzero Lagrange
multipliersrelative to the number of the constraintsimposed
in the design. As a result, the amount of computation in-
volved in a single solution iteration is fairly moderate even
for high-order filters. Simulations are presented to demon-
strated the proposed algorithm’s performance in comparison
with several existing design methods.

2. PROBLEM FORMULATION

We seek to find an FIR transfer function
N-1

H(z) = Z hiz™"
1=0

to approximate a desired frequency response H;(w) in ac-
cordance with aweighted minimax criterion

minimize(mage W (@)[H () - Ha@)]l} @)

where h = [hg hy1 -+ hy_1]T, W(w) > 0 isaweight-
ing function, and @ = {w : 0 < w < 7w}. Letp bean
upper bound of W2(w)|H (e/*) — Hy(w)|?, then (1) can be
converted to

minimize 7 (29)
subject to: W2 (w)|H (/) — Hy(w)|? < n forw € Q (2b)
The desired frequency response H;(w) is complex-valued
and assumes the form Hy(w) = Hyr(w) — jHg(w), and
the frequency response of the filter to be designed can be
expressed as H(e7*) = h” ¢(w) — jh" s(w) where c(w) =
[1 cosw -+ cos(N —1)w]? and s(w) = [0 sinw ---
sin(N — 1)w]?'. Hence the constraint in (2b) can be written
asa(w,n,h) > 0forw € Q, where

a(w,n,h) =

=W wH{[h"e(w) — Hap()]* + [h"s(w) — Hy; (W](23};



For feasible exercise of optimization algorithms, the con-
straint in (2b) is imposed on a dense grid of frequencies,
Qg = {wi,wa,... ,wg} C Q, in the frequency bands of
interest. Consequently, the problem in (2) becomes

minimize 7 (49)

subjectto: a(w;, n, h) >0 1<i<K (4b)

If we definex = [ h']7, a;(z) = a(w;,n,h),and e =
[1 0 --- 0]7, then problem (4) can be written as

minimize e’z (5a)

subject to: a;(x) >0 1<i<K (5b)

3. DESSIGNMETHOD

3.1. An SQP-based algorithm for problem (5)
The Lagrangian of (5) is defined by

K
Lz, p) =eTx — Z wia;(x)

i=1

wherepu = [p1 -+ px]7 collects K Lagrange multipliers.
The Karush-Kuhn-Tucker (KKT) conditions of problem (5)
are the first-order necessary conditions for a solution of (5)
which are given asfollows [8]:

K
VL(x,p)=e— Z,uiVai(m) =0 (6a)
i=1
a;(x) >0 1<i<K (6b)
>0 1<i<K (60)
wia;(x) =0 1<i<K (6d)

The conditions in (6d) are called complementarity condi-
tions which imply that if a;(x) # 0 (which in conjunction
with (6b) means a;(x) > 0), then the ith Lagrange multi-
plier p; must be zero. In the context of filter design, this
simply means that if at a certain frequency w; the approx-
imation error is smaller than necessary (i.e., smaller than
bound 7), then the associated constraint a;(x) > 0 does not
have to be involved in the next iteration (this degree of free-
domis ensured because of ;; = 0). In al computer simula-
tions we have conducted, the number of nonzero Lagrange
multipliers, say k&, isonly asmall fraction of the total num-
ber of congtraints K (K < 0.1K). Asaresult, the amount
of computation requested for updating the Lagrange multi-
plier p, is not significant even for high-order filters. We
shall come back to this point when implementation details
of the proposed algorithm are described.

Now suppose we start with areasonable initia point xq
and an initial p, = 0. In the kth iteration, {xx, p,} is
updated to {x k11, pyy 1} = {Tk + 2, py, + 6, } Such that

the KKT conditionsin (6) are approximately satisfied up to
the first order. The first-order approximation of (6) leadsto

Y0, +e— Alp, =0 (7a)
Apd, > —ay (7b)
Hpy1 =0 (70)

(Hp4)i(ARdr +ai); =0 1<i<K  (7d)

whereY, = VZL(ZBk,[Lk), ap = [al(mk:) aK(mk)]T’
and
VTay(xzy)
Ap = : (7€)
VT(IK(iL'k-)

Kx(N+1)

The ith row of A, assumes the form [I W?2(Hy,.c” +
Hgis" —(ccT +ss7)hi )] wherethefrequency-dependence
of W, ¢, ©, Hyr, and Hy; @ w = w; has been omitted.
Eq. (7a)—(7d) arethe exact KKT conditions of the quadratic
programming (QP) problem

L 1
minimize §6TY;€6 +oTe (83)
subjectto: Apd > —ay (8h)

Now if &, is the solution of (8), then x; is updated to
rrr1 = ¢ — k + d,. Based on the analysis earlier, the
nonzero Lagrange multipliers can be updated using (7a) as

ﬂk+1 = (AakAaTk)_lAak(Yk‘sz +e) )

where the rows of A, are those rows of Aj satisfying
(Aré, +ay); = 0and ., isobtained by inserting zeros
wherever necessary into /i, ,. The fact that only a small
fraction of constraintsin (8b) is active also implies that the
QP problem in (8) can be solved efficiently using for exam-
ple an active-set method [8].

The iteration continues until a convergence criterion in
terms of ||d.||2 or the total number of iterations is met.The
optimal impulse response of the length- N FIR filter can be
obtained from the solution vector z* ash™ = x*(2 : end).

3.2. Convex relaxation of problem (8)

A strictly convex relaxation of problem (8) can be made by
replacing Y, in (88) with a positive definite matrix, still
denoted by Y, recursively as follows: with Y, = I the
Broyden-Fletcher-Gol dfarb-Shanno (BFGS) recursion [8] up-
datesY ;. to

T T
Ny ViV

Y=Y+ -
! oTn, 8 vy,

(10a)

where



Vi = Ykéx (10b)
M =07, + (1= 0)ve (100)
Vi = —(Aps1 — Ap) (10d)
1 if 61 (5, — 0.20;) >0
0=1 0800 Gheise
0. (V=)
(10e)

A desirable feature of the BFGS update is that if Y, is
positive definite, then Y, is aso positive definite. With
Y, = I, therefore, every QP subproblemsin the entire de-
sign process is guaranteed to be a convex QP which can be
solved efficiently using an interior-point or active set algo-
rithm.

3.3. A closed-form line search

A further enhancement of the SQP a gorithm described above
ismade by including aline search step in the algorithms that
yields a positive scalar o, that minimizes a potential func-
tion ¢ (xy + ad,) over « € [0, 1] where §,. isthe solution
of (8) with Y';, produced using (10). The potential function
adopted here assumes the form

v(w) = eTz = > (my)iai(x) (11)
With x = zj, + ad,, (11) becomes

K

Y(xy + ad,) = el (x), + ad,) Z“k )ia; (T + ady)
=1

(12)

Since p,;, > 0, minimizing ¢ (x, + ad,) helpsreducing the
objectivefunctionin (5a) and, in case some a;(xy + 4 .) fail
to hold the constraintsin (5b), reducing the degree of viola
tion of these constraints. In this way, the inclusion of aline
search step in an SQP a gorithm turns out to be of great ben-
efit, although it adds an additional amount of computation to
the agorithm. It followsfrom (3) and (12) (and the fact that
i > 0) that the potential function ¢ (xx +ad,) in(12) isa
second order polynomial of o with a positive coefficient for
a?ie, Y(xp+ad,) = aék)a2 + agk)a + a(()k) with agk) >
0, which achievesits minimum at o* = fagk)/2a§k). Thus
we may choose oy, = min{a*, 1}.

4. DESIGN EXAMPLES

The method described above was applied to three FIR filters
with low group delay.

Example 1 A minimax design of lowpass FIR filter of length
91 with group delay d = 40, passband edge w, = 0.4757

and stopband edge w, = 0.5257 was designed using the
proposed method with K = 1100. The weighting function
is piecewise constant with W (w) = 0.2 in the passband,
W(w) = 2 in the stopband and O elsewhere. It took the
agorithm 150 iterations to converge to a solution FIR fil-
ter with maximum passband ripple e, = 0.0189, minimum
stopband attenuation e, = 54.41 dB, and maximum relative
group delay deviation in passband e,q = 0.026. The aver-
age number of active constraints was found to be K = 22.
The amplitude amplitude response and passband ripple of
thefilter obtained are depicted in Fig. 1aand b, respectively.
For comparison, an FIR filter with identical design specifi-
cations was designed in [5] using the SDP method, and the
minimax design gave e, = 0.0191, e, = 54.26 dB, and
egqa = 0.027.
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Fig. 1. () The amplitude response and (b) passband ripple
of thefilter in Example 1.

Example 2 A bandpass filter of length 161 with group de-
lay d = 65, wg1 = 0.375m, wp1 = 0.47, wpp = 0.6m,
we2 = 0.6257 was designed by the proposed method with
K = 1200, and W (w) = 1 in the passband and stopband
and 0 elsawhere. It took the algorithm 100 iterations to con-
verge to asolution filter with e, = 0.0127, e, = 38.04 dB,
and eg,q = 0.041. The average number of active constraints
was K = 40. The amplitude response and passband ripple
of thefilter obtained are shown in Fig. 2(a) and (b), respec-



tively. For comparison, an FIR filter with the same design
specifications was designed in [6] using the least pth meth-
ods. The results were e, = 0.0176, e, = 37.49 dB, and
ega = 0.043.
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Fig. 2. () The amplitude response and (b) passhand ripple
of the filter in Example 2.

Example 3 The proposed algorithm was found reliable for
the design of a variety of equiripple FIR filters with low
group delay. This example presents a bandpass FIR filter of
relatively high order. The design parameterswere N = 281,
d = 120, f,u = 0.31m, fp1 = 0.35m, fpe = 0.657,
faz = 0.697, W(w) = 1 in the passhands and stopband,
and K = 1400. It took the algorithm 110 iterations to con-
verge to a solution FIR filter with e, = 2.4833 x 107°,
eq = 91.43dB, and e,q = 2.043 x 10~%. The amplitude
response and passbnad ripple of the filter are shown in Fig.
3aand b, respectively.
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